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Abstract

Eternally inflating universes lead to an infinite number of Boltzmann brains but also an infinite

number of ordinary observers. If we use the scale factor measure to regularize these infinities, the

ordinary observers dominate the Boltzmann brains if the vacuum decay rate of each vacuum is

larger than its Boltzmann brain nucleation rate. Here we point out that nucleation of small black

holes should be counted in the vacuum decay rate, and this rate is always larger than the Boltzmann

brain rate, if the minimum Boltzmann brain mass is more than the Planck mass. We also discuss

nucleation of small, rapidly inflating regions, which may also have a higher rate than Boltzmann

brains. This process also affects the distribution of the different vacua in eternal inflation.
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I. INTRODUCTION

If the observed dark energy is in fact a cosmological constant, our universe will expand

forever and will soon approach de Sitter space. There will be an infinite volume in which

many types of objects may nucleate. In particular there will be an infinite number of

Boltzmann brains [1]1, human brains (or perhaps computers that simulate brains) complete

with our exact memories and thoughts, that appear randomly as quantum fluctuations.

Human beings (and their artifacts) can arise in the ordinary way for only a certain period of

time after the Big Bang, when there are still stars and other necessities of life, but Boltzmann

brains can arise at any time in the future. So one might conclude that the Boltzmann

brains infinitely outnumber ordinary humans, and thus that we are Boltzmann brains, a

nonsensical conclusion [3] because our observations on which we base this conclusion would

have no connection to the actual universe in which we live.

However, in any scenario such as the above, it is also possible for new inflating regions

to nucleate, leading to eternal inflation. In that case there will be an infinite number of

ordinary observers in addition to the infinite number of Boltzmann brains, so we may hope

to avoid the conclusion that we are Boltzmann brains.2 In order to know what to expect

in cases with infinite numbers of observers, we need a measure: a procedure to regulate

the infinities and produce a sensible probability distribution. Any measure faces a number

of difficulties [5–7] and we do not have any principle to tell us which measure is correct.

An obvious selection criterion is that the measure should not make predictions that are in

conflict with observation. This removes most of the measures that have been suggested

so far. The proper time measure suffers from the ”youngness paradox”, predicting that

the CMB temperature should be much higher than observed [8]; the causal patch measure

predicts that the cosmological constant should be negative with an overwhelming probability

[9]; the pocket based measure suffers from a “Q-catastrophe”, predicting either extremely

small or large values of the density fluctuation amplitude Q [10, 11]. A measure that fares

reasonably well is the scale factor cutoff measure [12–14]. Other measures that have not

been ruled out by observations (such as the lightcone time cutoff, apparent horizon cutoff

and 4-volume cutoff measures) make predictions very similar to the scale factor cutoff. (For

1 Similar ideas appeared earlier in [2].
2 Don Page [4] argued for a more drastic solution: vacuum decay on a scale similar to or shorter than the

present Hubble time avoids the infinite volume in which Boltzmann brains may form.
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more details and references see, e.g., [15].)

In the present paper we shall adopt the scale factor cutoff measure, which we will discuss

in more detail below. In this measure, the ratio of Boltzmann brains to ordinary observers

in a given vacuum is roughly given by the ratio of the Boltzmann brain nucleation rate ΓBB
i

to the total decay rate of that vacuum Γi. Here ΓBB
i is the rate at which Boltzmann brains

form per unit (physical) volume of vacuum i, and Γi is proportional to the total rate at

which volume flows out of vacuum i (a precise definition of Γi will be given below).

We point out here that there are two processes that are not always considered that

influence the vacuum decay rate. The first is the nucleation of small black holes. This

process removes volume from the vacuum, and so contributes to Γi. The rate is largest for

the smallest black holes. As we will discuss below, it is always larger than the Boltzmann

brain nucleation rate, if the minimum Boltzmann brain mass is larger than the Planck mass,3

so the Boltzmann brain problem is solved in that case.

The other process is the nucleation of small regions of higher-energy inflating false vac-

uum. In the usual Lee-Weinberg [17] process, a region larger than the Hubble distance in the

old vacuum tunnels to the new vacuum. But here we are considering a localized fluctuation

that yields a region of the new vacuum large enough to inflate but much smaller than the old

Hubble distance [18–20]. The higher the energy of the new vacuum, the smaller the region

of it that is necessary for inflation. Thus this process (unlike Lee-Weinberg tunneling) is

least suppressed when the daughter vacuum energy is the highest. The most likely process

is to produce the highest energy inflating vacuum. If this is at the Planck scale, suppression

is similar to that of Planck-scale black hole production. Otherwise it is more suppressed

than that.

Nucleation of small high-energy regions is not discussed in most treatments of the multi-

verse physics. We shall comment on the reason for that below and explain why we believe

it should be included. This process upends the conventional wisdom that low-energy vacua

are most likely to tunnel to other low-energy vacua. Up-tunneling is still suppressed when

the parent vacuum energy is small, but now the most likely daughters are the ones with the

highest energy. To compute the probabilities in the scale factor measure, we construct a

3 A similar argument was made in [16] in the context of the ”watcher measure”. This measure makes

the assumption that the big crunch singularities in AdS bubbles lead to bounces, where contraction is

followed by expansion, so that geodesics can be continued through the crunch regions. We do not adopt

this assumption in the present paper.
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transition matrix between vacua and find its eigenvector whose eigenvalue is least negative.

This is usually made up almost entirely by a single “dominant vacuum” [21, 22] whose total

decay rate is the least. The measures of other vacua depend on tunneling processes lead-

ing to them from the dominant vacuum. When we take into account production of small

high-energy inflating regions, we can still find the dominant vacuum, but the details do not

matter. The likeliest transition out of the dominant vacuum is to jump directly to the high-

est energy possible. At very high energies, transitions are little suppressed, so all vacua are

quickly populated. The chance of any specific low-energy (and in particular anthropically

allowed) vacuum depends now on how it may be reached by a sequence of transitions from

high energies, with little effect from the details of the dominant vacuum.

The rest of this paper is organized as follows. In the next section we review the scale

factor measure and the resulting distribution of the different vacua, and discuss the effects of

nucleating black holes and small high-energy regions. In Sec. III we discuss the nucleation

rates of black holes, Boltzmann brains, and regions of different vacuum. We discuss the

effects of these processes on the Boltzmann brain problem in Sec. IV and on the distribution

of the different vacua in Sec. V. We conclude in Sec. VI.

II. THE SCALE FACTOR CUTOFF

The scale factor measure was introduced by Linde and collaborators (e.g., [12]) and

was worked out in detail in [13, 14, 23]. It is based on constructing a scale factor time

that represents (the logarithm of) the total expansion that each point in spacetime has

experienced. To make it well defined, we must start with some initial spacelike hypersurface

Σ and follow a congruence of geodesics orthogonal to Σ. The scale factor time is then given

by

η =

∫ t

0

θ

3
dt′ , (1)

where t is proper time, and the expansion θ = uµ
;µ, with uµ = dxµ/dt the tangent vector to

the geodesics. In a homogeneous region of the universe, the scale factor a is just exp η.

To use this as a measure, we consider all events that take place before some cutoff time

ηc. There are a finite number of these, so assigning probabilities is straightforward. Then

we take the limit of the probabilities as ηc grows without bound.

Unfortunately, when structures form, the local universe contracts instead of expanding,
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so η is not monotonic; we must make some provision for this case [14]. One plan would be

to use a modified scale factor time η̃, where η̃(x) is given by maximizing η over all points

in the causal past of x. Thus η̃ cannot decrease, and we avoid the possibility that an event

allowed by the cutoff is in the future of a point excluded by the cutoff.4 A number of other

possibilities have been suggested [14, 23].

It will not be important to our analysis here exactly how this issue is resolved, but for

definiteness we will use the above “maximum η” prescription. At any given scale factor,

almost all the volume is in regions that are expanding. In such a region, the distance

between two geodesics of the congruence is just their distance on the initial surface times

the expansion of the scale factor. If we select an evenly spaced, very large but finite set of

representative geodesics on initial surface, all of these geodesics will represent equal volumes

on the cutoff surface. Thus the fraction of volume in each type of region is just the fraction

of the initial geodesics that are there.

We will be interested in the number of Boltzmann brains and ordinary observers that

appear in different vacua. Let us start by defining fi(η) to be the fraction of comoving volume

in vacuum i at time η. In expanding regions, the expansion factor a is the same everywhere

on the constant-η surface, so fi gives the fraction of physical volume. In contracting regions,

we must make some adjustment, as described above. But such regions will not matter, as

we discuss later.

The fi obey the rate equation [21],

dfj
dη

=
∑

i

(−κijfj + κjifi) , (2)

where κij is the fraction of volume currently in vacuum j that transitions into vacuum i per

unit scale factor time, or equivalently the chance per unit scale factor time for an observer

in vacuum j to transition to vacuum i.

We can express κij in terms of Γij, the rate of tunneling events that produce vacuum i

per unit physical spacetime volume of vacuum j. In general,

κij =
Vij

Hj
Γij , (3)

4 Such a situation would lead to an inverse Guth-Vanchurin [6] paradox where an observer may wake up

without ever having gone to sleep.
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where Vij is the volume of space at a given time where a given tunneling event would lead

to a given observer transitioning to the new vacuum. The expansion rate Hj of vacuum j

in the denominator is the conversion between scale factor time and physical time.

In the Coleman-De Luccia process, a small region of lower-energy vacuum appears by

tunneling and then expands to the horizon size. In the Lee-Weinberg process, a super-horizon

region of a higher-energy vacuum appears by tunneling and then contracts in comoving size

so the final comoving volume is just the comoving horizon at the time of nucleation. In

either case, Vij = (4π/3)H−3
j .

Here we will discuss two more processes. The first is the nucleation of black holes. A

certain set of geodesics will fall into the black hole, hit the singularity, and be removed from

the congruence.5 They will reach a maximum η before they start to converge near the black

hole; for larger η they will not be counted in the scale factor measure. They thus represent

a flow of volume fraction out of the vacuum in which the black holes nucleate. In that sense

the process is similar to the creation of anti-de Sitter vacua that then collapse. We will

describe black hole nucleation by a transition rate κ0j for each vacuum j, and include it in

Eq. (2) by including i = 0 in the sum.

If a black hole of mass M lives for a time long compared to the Hubble time, it will

capture all geodesics within radius [16]

rc ∼

(

GM

H2

)1/3

, (4)

which is the radius at which the attraction of the black hole gravity is balanced by the

repulsive force due to the cosmological constant. The volume of geodesics absorbed is thus

Vc ∼
GM

H2
. (5)

If the black hole is short-lived compared to the Hubble time, we can neglect the cosmo-

logical constant. A particle starting from rest at radius r will fall into the black hole on a

time scale

t ∼ r3/2(GM)−1/2 . (6)

5 Quantum gravity may resolve the singularity. It is not clear whether geodesics are still meaningful in

such a scenario, but if they are we must ask where the geodesics go. A similar question affects the fate of

geodesics after the crunch in anti-de Sitter regions. This was analyzed in [24, 25] with the conclusion that

the geodesics may travel through into new inflating vacua. Such a result would not affect our conclusions

here, but if the geodesics instead return to the parent universe and resume expanding, black hole nucleation

would not remove volume fraction.
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We want t < te, where the evaporation time is6 te ∼ G2M3. From this we find that the

capture radius and volume are

rc ∼ G5/3M7/3 ∼ GM

(

M

MPl

)4/3

(7)

Vc ∼ G5M7 ∼ (GM)3
(

M

MPl

)4

. (8)

We will also consider the formation of regions of higher cosmological constant Λi that are

smaller than the horizon of the parent vacuum j, but larger than their own horizon. Such a

region will inflate inside, but the outside will collapse into a black hole. As we mentioned in

the Introduction, this nucleation process is often omitted in studies of multiverse dynamics.

The main reason is that it does not fit into the standard Coleman-De Luccia formalism,

where tunneling transitions are described by instantons. There are no known instantons

corresponding to nucleation of small high-energy inflating regions. However, quantum tran-

sitions allowed by the conservation laws should occur with some nonzero probability. The

state of a quantum field in de Sitter space is similar to a thermal state, and one expects that

fluctuations of the scalar field φ and/or its velocity φ̇ will occur in localized regions of space.

If the fluctuation is large enough, the field may acquire enough energy to fly over a poten-

tial barrier into a high-energy vacuum. And if the fluctuation extends over a super-horizon

region in the new vacuum, it will produce an inflating baby universe [19, 20].

Geometrically it is clear that a rapidly inflating daughter region will be connected by a

wormhole to the slowly inflating parent universe. The wormhole will close up in about one

light crossing time and both of its mouths will be seen as black holes.7. After the black

hole evaporates, the new inflating region is disconnected from the original universe, but

there is no problem in applying the scale factor measure to the resulting set of disconnected

universes.

If we could ignore gravitational effects, it would be easy to compute the energy necessary

to create such a region. Let Ui be the energy density of the daughter vacuum. The expansion

6 We note that magnetically charged black holes may be much more stable. They can lose their magnetic

charge only by emission of magnetic monopoles, which typically have large masses, so their emission

may be strongly suppressed. The black hole may even be absolutely stable if monopole solutions of

corresponding magnetic charge do not exist.
7 This process is similar to that described in [26]. It is also related to the process of [27], but in that paper

the authors propose deliberately constructing a region of high-energy vacuum that is not large enough to

inflate and hoping that it tunnels to the inflating state, while here we propose creating the region as a

fluctuation in de Sitter space.
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rate is thus Hi ∼
√
GUi =

√
Ui/MPl. The minimal volume to inflate would be a sphere of

radius H−1
i , which thus contains volume

V nuc
i ∼ M3

Pl/U
3/2
i (9)

and mass

Mnuc
i ∼ M3

Pl/U
1/2
i . (10)

This is modified by gravitation, but we will assume here that the effect is only to change the

numerical factors that we did not compute and so Eqs. (9) and (10) give the correct order

of magnitude.

The new inflating volume must be surrounded by a bubble wall that interpolates between

the two vacua. This is same wall as in Lee-Weinberg and the inside-out version of the

Coleman-De Luccia bubble wall. Suppose it is possible, as one normally expects, for a small

bubble of vacuum j to form inside a Hubble volume of vacuum i. That means that the

energy of this wall around a sphere of radius smaller than 1/Hi is less than the energy of the

displaced volume of vacuum i. In the present case, we have a larger sphere, of radius 1/Hi,

which increases the ratio of volume to surface energy. So the wall energy will be much less

than Mnuc
i , which is the energy of the sphere of vacuum i of radius 1/Hi, and there is no

important correction to Mnuc
i , from the wall.

Upon nucleation we expect that the geodesics inside volume V nuc
i will travel into the new

inflating region.8 Shortly after that, the nucleated region will collapse into a black hole, and

more geodesics will later fall into the black hole and end at the singularity, according to

Eq. (7). So this process gives

κij ∼
V nuc
i

Hj
Γij ∼ ΓijH

−1
j H−3

i (11)

and in addition contributes

∼ ΓijH
−1
j M3

PlH
−6
i (12)

to κ0j .

Calculation of the relative abundance of Boltzmann brains and ordinary observers in-

volves comparisons of extremely small numbers, such as tunneling transition rates κij and

8 A geodesic congruence is not well defined when the spacetime undergoes a discontinuous change, as in

quantum tunneling. But it should be possible to estimate, by order of magnitude, what fraction of the

initial comoving volume goes into each vacuum. This is typically all one needs in any anthropic analysis.
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Boltzmann brain nucleation rates. The tunneling actions are typically large, so these rates

are double exponentially suppressed. The pre-exponential factors have therefore little effect,

even though they can be very small or large. For this reason the factors multiplying Γij in

Eqs. (3), (11) and (12) can be ignored, and we will omit them from now on.

III. NUCLEATION RATES

In this section, we review the usual nucleation rates for the Coleman-De Luccia and Lee-

Weinberg cases and discuss nucleation of black holes, small inflating regions, and Boltzmann

brains.9

A. Coleman-De Luccia and Lee-Weinberg nucleation

A metastable vacuum j may decay to a lower energy vacuum i through bubble nucleation.

If we ignore the effects of gravitation, we have the situation discussed by Coleman [32]. It

proceeds by forming a bubble whose total energy is zero because the decreased energy of

the vacuum inside compensates for the energy in the bubble wall. Including gravitation [33]

leads to corrections, but these are small if the bubble size is small compared to the Hubble

distance in both parent and daughter vacua. After formation, the bubble will expand rapidly

because the force on the wall due to the difference in vacuum energies is larger than the

effect of surface tension. Disregarding the pre-exponential factor, the bubble nucleation rate

is given by

Γij ∼ e−I−Sj , (13)

where I < 0 is the instanton action and Sj = π/H2
j is the Gibbons-Hawking entropy of the

parent vacuum j.

Lee and Weinberg [17] have argued that the same instanton should describe the inverse

transition from i to j, where the daughter vacuum has a higher energy than the parent

vacuum. The corresponding transition rate is

Γji ∼ e−I−Si , (14)

9 There is some controversy about the nucleation of objects in de Sitter space. References [28, 29] claimed

that there is no such nucleation, while [30] critiqued the claims of [29]. Reference [31] discussed the pos-

sibility that Boltzmann brains might form even in Minkowski space. Here we will adopt the conventional

view that objects nucleate in de Sitter space with the usual Boltzmann suppression, and do not appear

in Minkowski space.
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It follows that the upward and downward transition rates are related by

Γji/Γij ∼ eSj−Si . (15)

If the two vacuum energies are significantly different, the upward transition rate is very

strongly suppressed. Eq. (15) can be interpreted as an expression of detailed balance between

vacuum transitions in the multiverse. It fits well with the widely accepted picture of quantum

de Sitter space as a thermal state [2].

Analytic continuation of the instanton to the Lorentzian regime indicates that in the case

of upward tunneling the initial size of the bubble is larger than the parent vacuum horizon

H−1
i . The high-energy bubble is pushed inward because the vacuum energy density outside

is smaller than the density inside, and thus the inside pressure is more negative. But since

the bubble is outside the Hubble distance it is carried outward by the Hubble expansion,

even though locally it accelerates inward.

B. Black hole nucleation

In general we expect an arbitrary object of mass M that is much smaller than the Hubble

distance to appear in de Sitter space at a rate proportional to

exp(−2πM/H) = exp(−M/T ) . (16)

The latter expression gives the likelihood of finding such an object in a thermal bath in the

Gibbons-Hawking temperature T = H/(2π).10 The former expression has been found by

instanton calculations, for example see [34] for the nucleation of monopoles and [35] for the

nucleation of black holes. The calculation of black hole nucleation rate in [35] is somewhat

controversial, since it is based on an instanton with a conical singularity. Exclusion of such

instantons leads to the conclusion that only maximal black holes of horizon radius equal to

the cosmological horizon can nucleate in de Sitter space [36]. However, regular instantons

do exist for nucleation of electrically or magnetically charged black holes of sub-maximal

mass [37]. In the limit of small mass the corresponding nucleation rate is given by Eq. (16).

We note also that Eq. (16) would give the rate to nucleate a distribution of dust that would

collapse into a black hole.

10 More precisely, the nucleation rate is proportional to exp(−F/T ) = exp(−M/T + S), where F is the free

energy and S is the entropy of the nucleating object. This takes account of the possibility of nucleating

the object in various microstates. The correction, however, is small in cases of interest to us here.
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C. Small inflating regions

As discussed above, it is possible to nucleate a much smaller bubble of higher energy

vacuum i. As seen from the outside, the force on the bubble wall will cause it to shrink,

leading the bubble to collapse into a black hole. However, if the bubble volume is larger

than V nuc
i , it will inflate on the inside, leading to a new inflating region of vacuum i.

What is the rate at which such regions are produced? The simple conjecture is that it is

proportional to

e−Mnuc

i
/T ∼ e−M3

Pl
/(T

√
Ui) ∼ e−M2

Pl
/(HiHj) , (17)

as we would expect for any object of mass Mnuc
i . However, there are some caveats. New

small inflating regions cannot be produced by any classical process, because their production

violates the null energy condition [38]. Thus a classical thermal state would not produce

regions such as these, perhaps casting some doubt on the use of a thermal expression above.

This is a fundamentally quantum process, so perhaps it can be described by an instanton,

but such an instanton is not known. A similar situation was discussed by Farhi, Guth, and

Guven [27], who considered tunneling from a small initial false vacuum seed in asymptotically

flat space to an inflating baby universe inside of a black hole. They constructed an instanton

for this process, but found that its metric is degenerate. The instanton action could still

be calculated, but it is not clear that such pathological instantons are legitimate. Fischler,

Morgan, and Polchinski [39] considered the same problem using the Hamiltonian formalism

and found no inconsistencies. The nucleation rate they found agrees with the result of [27]

based on the degenerate instanton. But this issue remains controversial.

Nucleation of high-energy inflating regions can also be pictured as a two-step process.

First a bubble of high-energy vacuum i having radius R < H−1
i spontaneously nucleates in

the parent vacuum j, and then this bubble tunnels to an inflating baby universe contained

inside of a black hole by the process discussed in [27, 39]. One expects that the rate for the

first step is Γ ∼ exp(−2πM/Hj), whereM is the mass of the bubble, and the tunneling action

is estimated as [27, 39] S ∼ (MPl/Hi)
2. Farhi et al. [27] find that the minimal bubble mass

required for the tunneling is M2
Pl/2Hi; then the nucleation rate is Γ ∼ exp(−πM2

Pl/HiHj).

For Hi ≫ Hj this is the dominant factor determining the nucleation rate of baby universes.

This is in agreement with the estimate in Eq. (17).

Another possible objection to nucleation of inflating baby universes is that it is in conflict
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with the detailed balance condition (15). This condition however does not follow from any

fundamental principle. It is violated in particular by transitions between de Sitter and

anti-de Sitter vacua, which are necessarily present in any multiverse theory.

As we argued above, inflating baby universes should nucleate at some nonzero rate, even

in the absence of instantons, because this process is allowed by all conservation laws. A

calculation of their nucleation rate was attempted in [20].11 This calculation appears to

be reliable when the energies of the two vacua and the height of the barrier separating

them are all sub-Planckian and are comparable to one another. But in the opposite limit,

when Hi ≫ Hj, the initial fluctuation is strongly influenced by gravitational effects and

calculation of its probability requires a quantum theory of gravity. Here we shall assume

that the nucleation rate in this case is given by Eq. (17), which seems to be a plausible

guess.

D. Boltzmann brains

Finally, we expect Boltzmann brains to appear at the rate given by Eq. (16) with brain

mass MBB. This process is dominated by the lightest brains that need to be considered for

anthropic reasoning. These may not actually be brains, per se, but tiny computers that

stimulate human thought sufficiently well to be considered in anthropics.12 We will assume

here that MBB > MPl ≈ 2×10−5 g. This is correct for a human brain and for any computer

that we have built so far. It is not correct if the only restriction is the fundamental-physics

limit on the number of bits that the computer can store [23], i.e., if we are not concerned

with what this computer might be made of and how it can operate. The minimum mass of

a working computer is uncertain. See [23] for further discussion.

IV. THE BOLTZMANN BRAIN PROBLEM

To avoid domination by Boltzmann brains requires that the rate of Boltzmann brain

production ΓBB
i is less than the vacuum decay rate Γi =

∑

j Γij in every vacuum i [14, 23].

11 Nucleation of small inflating regions was discussed earlier by Carroll and Chen [18] and by Brown and

Dahlen [19], but their estimates of the nucleation rate were much smaller than Eq. (17)
12 See [40] for some discussion of the difficulty in determining what systems should be included in anthropic

reasoning.

12



Let us review the basic argument. Consider some vacuum i in which there are ordinary

observers. First we rewrite Eq. (2),

dfi
dη

= Mijfj , (18)

where Mij = κij − δijκi. In the limit where the cutoff grows without bound, this situation

can be analyzed by finding the least negative eigenvalue −q of the matrix M and the cor-

responding eigenvector s so that
∑

j κijsj − κisi = −qsi. The fraction of volume near the

cutoff surface in each vacuum i is then given by si. The number of Boltzmann brains in

that vacuum is proportional to siΓ
BB
i , because most of the volume is near the cutoff sur-

face. Meanwhile, the number of ordinary observers is proportional to the rate at which new

vacuum of type i is created, which is
∑

j κijsj = (κi − q)si. Ordinary observers are gener-

ally found in collapsed regions, which require some adjustment to the scale factor measure.

However this adjustment is insignificant compared to the double-exponential nature of Γi

and ΓBB
i , so it will not be important here.

Now q is generally smaller than the total decay rate of the dominant vacuum, which is less

than that of vacuum i. (Since there is only one dominant vacuum, it is very unlikely that

it is able to support Boltzmann brains. If it is, Boltzmann brains would certainly dominate

[14, 23].) Both κi and q are tiny numbers, and generally they are quite far apart. So q can

be ignored and we find κijsj ≈ κisi, i.e., the rate of creation and the rate of decay are nearly

equal. We are not concerned with differences in prefactors, so κi and Γi are interchangeable,

and the condition to avoid Boltzmann brain domination in vacuum i is that ΓBB
i < Γi.

References [14, 23] show that the condition to avoid Boltzmann brain domination overall is

that ΓBB
i < Γi in every vacuum.

Included in κi is κ0i, the rate of formation of black holes. The rate for black holes of mass

M is proportional to exp(−M/T ), so it is dominated by the smallest black hole possible.

Let us say this has mass MBH
min, which is around the Planck mass. Thus κi is at least of order

exp(−MPl/T ). Meanwhile, ΓBB
i is of order exp(−MBB/T ), where MBB is the minimum

Boltzmann brain mass. With our assumption that MBB > MPl, it follows that ΓBB
i ≪ Γi,

and there is no problem with Boltzmann brains.

The question of Boltzmann brain dominance involves comparing the number of Boltz-

mann brains and ordinary observers before the cutoff, so it may be counterintuitive that it

is affected by the production of black holes, which are neither of these. Here is a way to
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understand how this happens. Consider a multiverse up until a scale factor cutoff. Most of

the volume is near the cutoff, so we only need to look there. Most ordinary observers are

in regions that were created not long before the cutoff and thus still have conditions where

observers can live. But Boltzmann brains are in regions that were formed long ago, so we

need to know how much volume these regions have.

Let us put a large but finite number of evenly spaced fiducial particles on the initial

surface, traveling along the geodesics that we used to define the scale factor measure. In

expanding regions, equal scale factor time means an equal amount of expansion, so each

particle represents the same amount of spatial volume. Then the ratio of different volumes

is just the relative number of particles that they contain.

The effect of the black holes is to swallow up some of these particles so that they do

not reach the cutoff surface. The result is that the volume of a given vacuum on the cutoff

surface is smaller than it would be without black hole formation. Thus si, the fraction

of the cutoff surface in volume i, is inversely proportional to the decay rate Γi. Black hole

nucleation increases Γi and so decreases si. The number of Boltzmann brains in this vacuum

is then proportional to ΓBB/Γi. This leads to the criterion used above.

The process of removing particles by black hole formation is extremely slow. A Planck-

scale black hole removes only a fraction of order H3/M3
Pl of the Hubble volume where it

forms. More importantly, such a black hole only occurs once in every exp(MBH
min/T ) Hubble

volumes. Thus we must wait time of order exp(MBH
min/T ) Hubble times before this effect is

important. During this time the universe expands by a factor exp(exp(MBH
min/T )). In our

present universe, this is about exp(exp(1060)), a remarkably large number. Nevertheless, the

scale factor measure instructs us to consider the limit where the scale factor goes to infinity,

so the required scale factor to reach a steady-state situation does not matter.

Also included in κi is the nucleation of small inflating regions. This removes particles

from the parent vacuum at a rate ∼ exp(−M2
Pl/(HmT )), where Hm is the highest inflation

rate in the landscape. It is often assumed that Hm ∼ MPl, in which case this effect is

comparable to that of black hole nucleation.
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V. VACUUM DYNAMICS

The possibility of less-suppressed tunneling to higher energy vacua changes the distribu-

tion of different possible states and thus the results to be expected under anthropic reasoning.

The fraction of the volume in some vacuum i according to the scale factor measure depends

on the tunneling rates to get from the dominant vacuum to vacuum i [21]. To reach any an-

thropically allowed vacuum from the dominant vacuum we generally need an upward jump,

or many such jumps, followed by many downward jumps.13 Which vacua are easily reached

depends on which process we consider.

If we consider only the Lee-Weinberg process, there is a large suppression factor given by

Eq. (15). This suppression is less important when the two vacua are close in energy. Thus the

favored vacua are those which can be reached from the dominant vacuum by small upward

jumps followed by downward jumps. Depending on the structure of the landscape, these

vacua may be sparse enough that the anthropic explanation of the cosmological constant

does not work [21, 22].

However, when we consider the formation of small regions of high-energy vacuum j, the

mass of the region is Mnuc
j ∼ M2

Pl/Hj and the suppression goes as exp(−M2
Pl/(HiHj)). Thus

the least suppressed transitions are those to the largest Hi. Furthermore, there is little

dependence on which is the dominant vacuum, because wherever one starts, the same high-

energy vacua are preferred. From those vacua, one must then drop, generally in a number

of steps, to the anthropic region. This pattern of transitions generally leads to a much

smoother distribution of probabilities for the different vacua [42].

VI. CONCLUSION

In an eternally inflating universe, there is the possibility of Boltzmann brain domination,

meaning that anthropic reasoning would lead to the nonsensical conclusion that we are

Boltzmann brains. In the scale factor measure, this disaster is avoided when the rate of

Boltzmann brain nucleation is smaller than the vacuum decay rate in each vacuum (and the

dominant vacuum does not support Boltzmann brains). If one considers decay only by the

13 The dominant vacuum is likely to have a very low supersymmetry breaking scale η∗. Its energy density

U∗
<∼ η4∗ is then likely to be extremely small. It is also reasonable to expect that this nearly supersymmetric

vacuum can support neither ordinary observers nor Boltzmann brains. For a discussion of the expected

properties of the dominant vacuum in string theory see [41] and references therein.15



Coleman-De Luccia and Lee-Weinberg processes, this may not be the case (but see [43] for

a claim that string theory vacuum decay rates in string theory are always larger than ΓBB.).

However we showed above that black hole nucleation should be included in the vacuum decay

rate, and this process is much less suppressed than Boltzmann brain production, under a

rather mild assumption that the mass of a Boltzmann brain should be greater than the

Planck mass. Thus we should not expect to be Boltzmann brains.

We also discussed the nucleation of small regions of inflating high-energy vacuum. If

vacua of high enough energies exist, this process also would prevent Boltzmann brain domi-

nation. In any case it modifies the probability distribution of the various vacua, likely giving

a more uniform distribution for different anthropic possibilities and guaranteeing that an-

thropic explanations of the smallness of the cosmological constant are not affected by highly

nonuniform probability distributions across anthropic vacua.

We finally mention the swampland conjectures which have been intensively discussed in

recent years (see [44] for an up-to-date review and references). According to these conjectures

metastable de Sitter vacua do not exist and many models of eternal inflation are also ruled

out. However, it was shown in [45] that eternal inflation driven by inflating domain walls

may still be possible. It would be interesting to apply the considerations of the present

paper to this kind of multiverse models.
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