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Primordial black holes (PBHs), formed out of large overdensities in the early Universe, are a viable
dark matter (DM) candidate over a broad range of masses. Ultra-light, asteroid-mass PBHs with
masses around 1017 g are particularly interesting as current observations allow them to constitute
the entire DM density. PBHs in this mass range emit ∼MeV photons via Hawking radiation which
can directly be detected by the gamma ray telescopes, such as the upcoming AMEGO. In this work
we forecast how well an instrument with the sensitivity of AMEGO will be able to detect, or rule
out, PBHs as a DM candidate, by searching for their evaporating signature when marginalizing
over the Galactic and extra-Galactic gamma-ray backgrounds. We find that an instrument with the
sensitivity of AMEGO could exclude non-rotating PBHs as the only DM component for masses up
to 7×1017 g at 95% confidence level (C.L.) for a monochromatic mass distribution, improving upon
current bounds by nearly an order of magnitude. The forecasted constraints are more stringent for
PBHs that have rotation, or which follow extended mass distributions.

I. INTRODUCTION

Unequivocal evidence of a non-baryonic form of mat-
ter, known as dark matter (DM), as a dominant com-
ponent of the Universe has been confirmed by numerous
astrophysical and cosmological observations [1–3]. Ex-
perimental searches for the elusive DM have thus far
shown no firmly preferred model [4–6]. Primordial black
holes (PBHs), possibly formed via gravitational collapse
of large overdensities in the early universe or via other
exotic mechanisms, are one of the earliest proposed and
well-motivated DM candidates [7–10]. PBHs have a wide
range of masses and can constitute a large fraction or
even the entirety of the DM density [11–17]. The idea of
PBH DM has recently received renewed attention with
the first detection of a BH merger by the LIGO-Virgo
collaboration [18], argued to have a PBH rather than as-
trophysical origin [19–21]. Several techniques have been
implemented to probe the DM fraction of PBHs over a
wide mass range. These have resulted in a multitude of
observational constraints [13, 14, 22–57], along with sev-
eral future projections [11, 29, 58–72] along a broad range
of PBH masses.

Due to their Hawking emission, extremely light PBHs
would have evaporated by today, setting a lower limit on
the mass of ∼ 5 × 1014 g for non-rotating PBHs (or ∼
7 × 1014 g if maximally rotating) [73–75]. PBHs heav-
ier than that still evaporate, and act as decaying DM.
Ultra-light PBHs with masses in between 5 × 1014 g −
2 × 1017 g, are typically probed via searches of their

a anupam.ray@theory.tifr.res.in
b ranjanlaha@iisc.ac.in
c julianmunoz@cfa.harvard.edu
d regina.caputo@nasa.gov

Hawking radiation. Non-observations of such Hawking-
produced photons [22, 29, 30, 56], neutrinos [14], and
electrons/ positrons [14, 26–28, 76–79] provide the lead-
ing constraints on ultra-light PBHs. Additional con-
straints in this mass range are also obtained via precise
observations of the cosmic microwave background and
Big Bang Nucleosynthesis [23, 80–82]. PBHs in the mass
range of ∼ 2×1017 g−1023 g, often known as the asteroid-
mass range1, are currently allowed to compose the en-
tirety of the DM [11–13]. Unlike solar-mass BHs, these
ultra-light BHs cannot be produced by any known astro-
physical processes (even with the continued accumulation
of asymmetric DM particles in compact objects [83, 84]),
and thus would be a smoking gun of new physics, be it
during the early Universe or in a complex dark sector [85].

In this work, we propose a technique to decisively
probe a part of the parameter space for PBH DM in the
asteroid-mass range. We show that observation of the
Galactic Center by future MeV telescopes, such as an in-
strument with the sensitivity of AMEGO [86], can probe
the DM fraction of asteroid-mass PBHs. AMEGO can
exclude non-rotating (maximally rotating) PBHs as the
sole component of DM upto ∼ 7×1017 g (∼ 4×1018 g), at
95% C.L., assuming no signal is present in the data and a
monochromatic mass function of PBHs. Assuming that
PBHs follow an extended mass distribution (log-normal
distribution with width σ = 0.5), AMEGO can probe fur-
ther into an entirely unexplored mass window, improv-
ing our current constraints by nearly an order of magni-
tude and pushing us closer to probe the entire asteroid-
mass PBH window. Ref. [56], which appeared as our
paper was near completion, performs a similar study for
non-rotating PBHs with a monochromatic mass distri-

1 https://nssdc.gsfc.nasa.gov/planetary/factsheet/asteroidfact.html
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bution. Our work differs from Ref. [56] in several key
aspects (e.g., the inclusion of the extra-Galactic astro-
physical background, and a different region of interest in
the Galactic Center), chief among them is our usage of
Fisher analysis to derive the projected exclusion limits on
the DM fraction of ultra-light PBHs including marginal-
ization over the astrophysical parameters.

II. PARTICLE EMISSION FROM
EVAPORATING BLACK HOLES

BHs evaporate via Hawking radiation [8]. An un-
charged and rotating BH of mass MBH and angular mo-
mentum JBH radiates at a temperature [73–75, 87, 88]

TBH =
1

4πGNMBH

√
1− a2

∗

1 +
√

1− a2
∗
, (1)

where GN denotes the gravitational constant and a∗ =
JBH/(GNM

2
BH) is the dimensionless spin parameter. For

a given BH mass, the temperature can vary by orders of
magnitude as it approaches its maximal spin, a∗ → 1,
where the BH stops evaporating.

The number of emitted particles from an evaporating
BH of mass MBH and dimensionless spin parameter a∗,
in the energy interval E and E+dE and in a time interval
dt follows a blackbody-like distribution [8, 73–75, 87, 88]

d2N

dEdt
=

1

2π

Γs(E,MBH, a∗, µ)

exp [E′/TBH]− (−1)2s
, (2)

where E′ denotes the effective energy of the emitted par-
ticles including the rotational velocity of the BH. Γs de-
notes the graybody factor which accounts for the depar-
ture from an ideal blackbody emission. It depends on the
spin of the emitted particle s, rest mass of the emitted
particle µ, and the BH mass and spin. In the high en-
ergy limit, GNMBHE � 1, the graybody factor becomes
independent of the spin of the emitted particle species
and reaches its geometric saturation value, i.e. Γs =
27G2

NM
2
BHE

2. In the opposite limit, GNMBHE � 1,
it strongly depends on the spin of the emitted particle
species [73, 87].

For this work, we use the publicly available
BlackHawk [89] package to generate the emitted parti-
cle spectrum from evaporating BHs. We have verified
this numerically obtained emission rate against semi-
analytical formulae from Ref. [73, 74, 87].

III. METHODS & RESULTS

Hereafter we focus on primordial black holes. Ultra-
light PBHs emit significant number of photons of energy
comparable to their temperature. More precisely, photon
emission peaks at an energy E ∼ 5.77TPBH [75, 87] for

an evaporating PBH with temperature TPBH. The emis-
sion of photons is exponentially suppressed for energies
exceeding TPBH (E � TPBH), and falls off as a power law
in the opposite limit (E � TPBH).

For a monochromatic mass distribution of PBHs, the
Galactic contribution to the differential flux from PBH
evaporation is

dφgal

dE

∣∣∣
mono

=
fPBH

4πMPBH

d2N

dEdt

∫ smax

0

ρ [r(s, l, b)] ds dΩ ,

(3)
where fPBH denotes the DM fraction of PBHs. DM pro-
file of the Milky Way (MW) is denoted by ρ [r(s, l, b)],
where r is the Galacto-centric distance, s is the distance
from the observer, l and b denote the Galactic longitude
and latitude respectively, and dΩ = cos[b] dl db is the dif-
ferential solid angle under consideration. The upper limit
of the line of sight integral, smax, depends on the size of
the MW DM halo, Galactic longitude, and Galactic lat-
itude:

smax = r� cos[b] cos[l]+
√
r2
max − r2

� (1− cos2[b] cos2[l]) ,

(4)
where rmax denotes the maximum size of the MW halo,
and r� is the Galacto-centric distance of the Sun.

The extra-Galactic contribution to the differential flux
for a monochromatic mass distribution of PBHs is

dφeg

dE

∣∣∣
mono

=
∆Ω

4π

fPBH ρDM

MPBH

∫ ∞
z=0

dz

H(z)

d2N

dEdt

∣∣∣
E→[1+z]E

,

(5)
where ∆Ω denotes the total solid angle under
consideration, ρDM is the average DM density of
the Universe at the present epoch, and H(z) =

H0

√
ΩΛ + Ωm(1 + z)3 + Ωr(1 + z)4 is the Hubble ex-

pansion rate at redshift z. The Hubble expansion rate
at the present epoch is H0; ΩΛ,Ωm, and Ωr denote the
current dark-energy, matter, and radiation densities of
the Universe, respectively. For numerical values of all
cosmological parameters, we use the latest Planck 2018
measurements [1].

In addition to a monochromatic mass distribution for
PBHs, we also consider a log-normal mass distribution,
as predicted by various inflationary models

dNPBH

dMPBH
=

1√
2πσMPBH

exp

[
− ln2 (MPBH/µPBH)

2σ2

]
,

(6)
where µPBH and σ are the mean mass and width of the
distribution. For an extended mass distribution of PBHs,
the (extra-)Galactic contribution to the differential flux
is

dφgal,eg

dE

∣∣∣
ext

=

∫
dMPBH

dNPBH

dMPBH

dφgal,eg

dE

∣∣∣
mono

. (7)

For non-rotating PBHs, the mass integral runs from
Mmin = 5 × 1014 g to Mmax = ∞. For PBHs approach-
ing to their maximal rotation, the mass integral runs from
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FIG. 1. The Galactic and extra-Galactic photon contribu-
tions from Hawking evaporation off a non-rotating PBHs of
mass 1017 g. It is assumed that PBHs make up the entirety
of DM and follow an NFW density profile. The blue and red
lines correspond to the Galactic and extra-Galactic contribu-
tions in the region of interest (|l| ≤ 5 deg and |b| ≤ 5 deg)
respectively.

Mmin = 7 × 1014 g to Mmax = ∞, as the maximal rota-
tion increases the minimum evaporation mass Mmin by
enhancing the Hawking emission rate. Note that, the
minimum PBH mass only matters for extended PBH dis-
tributions with low averages.

Fig. 1 shows the Galactic and extra-Galactic contribu-
tions to the total evaporation flux from PBHs of mass
1017 g in Galactic Center, defined to have: |l| ≤ 5 deg
and |b| ≤ 5 deg. Since this region of interest resides in
a DM-dominated environment, the extra-Galactic contri-
bution to the evaporation signal is always subdominant.
Galactic emission peaks at around ∼ 0.6 MeV as the tem-
perature of a 1017 g PBH is 0.1 MeV. The extra-Galactic
signal peaks at a slightly lower energy as it is redshifted.

Of course, PBHs are not the only possible source of
gamma-rays in the cosmos. In particular, there are
well-known astrophysical backgrounds, which we ought
to marginalize over to unearth a possible PBH sig-
nal. Fig. 2 shows the Galactic and extra-Galactic as-
trophysical backgrounds used in this analysis. We have

adapted the Galactic astrophysical background φbkg
gal from

Ref. [90]:

φbkg
gal (E) = Abkg

(
E

1 MeV

)−α
exp

[
−
(
E

Ec

)γ]
, (8)

in units of MeV−1 cm−2 s−1sr−1, which contains four pa-
rameters: an amplitude (Abkg), power-law index (α),
exponential cut-off energy (Ec), and the index within
the exponential (γ). Their best fit values are Abkg =

Galactic

background
extra-Galactic
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FIG. 2. Galactic and extra-Galactic astrophysical back-
grounds are shown as a function of the emitted photon energy.
Dashed black line corresponds to the Galactic background
which is adapted from Ref. [90]. Dashed red line corresponds
to the extra-Galactic background which is a single power law
fit to the Cosmic X-ray background measurements. Total
background, sum of the Galactic and extra-Galactic back-
grounds, is shown by the solid blue line. Evaporation signals
from non-rotating PBHs of mass 1017 g with dark matter frac-
tion of 10−4 and a non-rotating PBH of mass 7× 1017 g with
dark matter fraction of unity are shown for comparison.

0.013 MeV−1 cm−2 s−1sr−1, α = 1.8, Ec = 20 MeV, and
γ = 2, respectively. We have checked that this formula
provides an adequate fit to the data obtained by COMP-
TEL [93–95]. For the extra-Galactic background, φbkg

eg ,
we have considered a single power law which fits the
cosmic X-ray background spectrum measured by various
experiments [96–100] in the energy range 150 keV to 5
MeV [29]:

φbkg
eg (E) = Aeg

bkg

(
E

1 MeV

)−αeg

(9)

also in MeV−1 cm−2 s−1sr−1. Our power-law model for
the extra-Galactic background contains two parameters,
its amplitude (Aeg

bkg), and the power law index (αeg), with

best-fit values of Aeg
bkg = 0.004135 MeV−1 cm−2 s−1sr−1,

and αeg = 2.8956.
We consider photons in the energy range 0.15−5 MeV

for this analysis. The lower end of the energy range
is determined by the sensitivity of AMEGO, whereas,
the higher end of the energy range is determined by the
evaporation signal. For PBHs of mass 2 × 1016 g (mini-
mum mass considered for this analysis), evaporation sig-
nal peaks at around 3 MeV, and falls off exponentially
with increase in photon energy. Moreover, the single
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FIG. 3. Projected upper limit (95% C.L.) on the DM fraction
of PBHs, fPBH, from near future MeV telescope AMEGO.
The plot corresponds to a monochromatic mass distribution
of PBHs. Results for non-rotating PBHs (a∗ = 0) and PBHs
approaching to their maximal spin (a∗ = 0.9999) are shown by
the solid line and the dashed line respectively. The constraints
are derived by considering an NFW density profile of the
ultra-light PBHs. The existing exclusions on ultra-light non-
spinning PBHs from Voyager-1 measurement of positron flux
(shaded red) [26], extra-Galactic gamma ray emission(shaded
green) [22, 29, 91], SPI/INTEGRAL 511 keV emission line
with 1.5 kpc positron annihilation region & isothermal DM
profile (shaded black) [14, 27, 28] and INTEGRAL, COMP-
TEL Galactic Center MeV flux (shaded blue, shaded ma-
genta) [30, 56] are also shown for comparison. For reference,
there are no existing exclusion limits to the right of the plot
until MPBH ∼ 1023 g [11–13, 92].

power-law fit to the extra-Galactic background in Eq.(9)
is valid only up to ∼ 5 MeV [29].

We have applied Fisher forecasting [101–103] with
marginalization over all astrophysical background pa-
rameters to compute the projected upper limits at 95%
C.L. The exclusion limits are derived by assuming no
evaporation signal is present in the data. The Fisher in-
formation matrix (F) is aN×N matrix, whereN denotes
the total number of parameters #»p = {p1, p2, ..., pN} and
is defined as [90]

Fij =

∫
E

∫
Ω

∂iφ(E,Ω) ∂jφ(E,Ω)

φ(E,Ω)
TobsAeff(E) dΩ dE ,

(10)

where φ(E,Ω) =
(
φgal + φeg + φbkg

gal + φbkg
eg

)
is the total

flux, Tobs is the observation time, and Aeff(E) is the ef-
fective area. We conservatively ignore the extra-Galactic
PBH emission, as it is subdominant in our region of in-
terest. The effective area for AMEGO is adapted from

FIG. 4. Projected upper limit (95% C.L.) on the DM fraction
of PBHs, fPBH, from near future MeV telescope AMEGO.
Log-normal mass distribution with a width σ = 0.5 is consid-
ered in this plot. Results for non-rotating PBHs (a∗ = 0) and
maximally rotating PBHs (a∗ = 0.9999) are shown by the
solid line and the dashed line respectively. The constraints
are derived by considering an NFW density profile of the
ultra-light PBHs. The existing constraints on ultra-light non-
spinning PBHs from Voyager-1 measurement of positron flux
(shaded red) [26], extra-Galactic gamma ray emission(shaded
green) [22, 29, 91], and SPI/INTEGRAL 511 keV emission
line with 1.5 kpc positron annihilation region & isothermal
DM profile (shaded black) [14, 27, 28] are also shown for com-
parison.

Ref. [86]2 and a uniform sky coverage Tobs of 1 year is
considered for this analysis. We use a sufficiently dense
binning in order to capture all the spectral variations in
the Fisher information matrix. We have considered 2000
logarithmically spaced bins between the energy interval
of 0.15− 5 MeV.

For this work, there is only one signal parameter, the
fraction fPBH of the DM that is composed of PBHs for
each mass we study, plus the 6 astrophysical parameters
introduced in Eqs. (8) and (9). Hence, the Fisher infor-
mation matrix (F) used in our analysis is a 7 × 7 sym-
metric matrix. The projected upper limit on the signal
parameter fPBH at 95% C.L. is [90]

fUL
PBH = 1.645

√
(F−1)11 . (11)

Because of the relatively large region of interest, our
results are almost insensitive to different choices of DM

2 https://asd.gsfc.nasa.gov/amego/technical.html

https://asd.gsfc.nasa.gov/amego/technical.html


5

FIG. 5. Confidence ellipses at 68.3% C.L. (1-σ, dark red) and 95% C.L. (2-σ, light red) for all background and signal
parameters. A larger correlation between parameters appears as a more tilted confidence ellipse. For this corner plot we
have assumed non-rotating and uncharged PBHs with a monochromatic mass distribution centered at 1017 g, following a NFW
density profile. Black dots represent best-fit (i.e., our chosen fiducial) values of the background parameters, and we assume a
fiducial fPBH = 0. The predicted posteriors for all parameters are shown by the Gaussian curves in blue.

density profiles. For this work, we assume that the den-
sity distribution of ultra-light PBHs in MW halo follows a
Navarro-Frenk-White (NFW) profile [104]. However, we
have tested our results with other density profiles such
as with a cored isothermal profile [105] and with a cored
NFW profile with a core radii of 2 kpc [30]. We find that

due to the different choices of DM density profiles, our re-
sults alter by as far as a factor of two (degrades by a factor
of ∼ 1.69 for a cored isothermal profile and by a factor of
∼ 1.55 for a cored NFW profile with a core radii of 2 kpc).
We have also checked that a somewhat larger region of
interest around the Galactic Center, say |l| ≤ 30 deg and
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|b| ≤ 10 deg, increases the Hawking evaporated photons
as well as background photons by a factor of 6.81 and
12 respectively, indicating a putative improvement of the
projections by a factor of (S/

√
N) ∼ 1.96 (which, how-

ever, may be reduced by marginalization with the Fisher
matrix).

Fig. 3 shows the projected upper limits (at 95% C.L.)
on DM fraction of PBHs, fPBH, that can be derived
from future AMEGO observations by assuming that no
DM signal is present in the data. Monochromatic mass
distribution of the PBHs is assumed in this plot. The
solid/ dashed lines correspond to non-rotating (a∗ =
0)/approaching maximal rotation (a∗ = 0.9999) PBHs.
Note that, we take the maximum value of spin as 0.9999
because BlackHawk can not go beyond that. The lim-
its are derived by assuming an NFW density profile of
the PBHs. As the PBHs become maximally rotating,
their temperatures as well as the effective energy of the
emitted photons fall off rapidly, and as a result max-
imally rotating PBHs probe higher mass window than
their non-spinning counterparts. Because of the lower
energy reach and larger effective area, AMEGO is able to
probe into asteroid-mass windows compared to the previ-
ous gamma-ray observatories such as INTEGRAL [106],
Fermi [107], and CRGO [108] for both non-rotating and
maximally rotating PBHs. The projected upper limit
from AMEGO excludes non-rotating (maximally rotat-
ing, a∗ = 0.9999) PBHs as the sole component of DM
upto 7 × 1017 g (4 × 1018 g). The kinks in the exclu-
sion limits for both non-rotating and maximally rotating
PBHs are due to finite number of mass point samplings.
Our exclusion limits start from 2×1016 g as lighter PBHs
mostly evaporate to higher-energy photons, outside of
our considered energy range. Quantitatively, for a non-
rotating PBH of mass 1016 g (2×1016 g), ∼ 30% (∼ 97%)
of the evaporation spectrum resides in our considered en-
ergy interval, explaining the choice of 2 × 1016 g as the
minimum PBH mass for this analysis.

Fig. 4 shows the projected upper limits (95% C.L.) on
DM fraction of PBHs, fPBH, that can be derived from
future MeV telescope AMEGO by assuming no signal
present in the data for an extended mass distribution.
Log-normal mass distribution of PBHs, a motivated sce-
nario from several inflationary models, with a width of
σ = 0.5 is considered to derive the exclusion limits. The
density profile of PBHs are assumed to be NFW, how-
ever, the result degrades by at most a factor of two for
cored density profiles. The solid (dashed) lines corre-
spond to non-rotating (maximally rotating) PBHs. For
this particular mass distribution, our projections exclude
upto ∼ 2×1018 g (∼ 1019 g) for non-rotating (approach-
ing maximal rotation a∗ = 0.9999) PBHs. Similar to the
monochromatic mass distributions, here also, AMEGO
probes better than other proposed MeV telescopes be-
cause of its lower energy reach and larger effective area.
Similar to Fig. 3, here also, the kinks in the exclusion
limits at around 3× 1017 g for non-rotating PBHs, and
at ∼ 3× 1018 g for maximally rotating PBHs are due to

finite number of mass point samplings.
Fig. 5 shows the confidence ellipses at 68.3% C.L. and

95% C.L. for all signal and background parameters. Non-
rotating PBHs with a monochromatic mass distribution
centered at 1017 g and an NFW density profile is assumed
for this figure. The confidence ellipses show degeneracies
among all of the parameters and the parameters of the
ellipses are computed from [109]. For example, ampli-
tude of the Galactic background (Abkg), amplitude of the
extra-Galactic background (Aeg

bkg), and the exponential

cutoff energy for the Galactic background (Ecut) are cor-
related with the signal parameter, DM fraction of PBHs
(fPBH). However, power law index of the Galactic back-
ground (α), power law index of the extra-Galactic back-
ground (αeg), and index of the exponential cutoff energy
in the Galactic background (γ) are anti-correlated with
fPBH. From the confidence ellipses, it is also evident

that the correlation coefficient rij(= F−1
ij /

√
F−1
ii F

−1
jj )

between Aeg
bkg and fPBH (r = 0.697) is much stronger

than the correlation between Ecut and fPBH (r = 0.468).
In Fig. 5, we also show the best fit values of all back-
ground parameters as well as their corresponding error
bars by the mean and variance of the blue Gaussian
curves.

IV. SUMMARY AND CONCLUSIONS

PBHs in the asteroid-mass range, ∼ 1017 – 1023 g, can
make up the entire DM density and it is very important to
conclusively probe these candidates. We propose a strat-
egy to decisively probe a part of this parameter space.
At the lower end of this mass range, PBHs with masses
∼ 1017 g – 1018 g have Hawking temperatures in the
range of 0.01 MeV to 0.1 MeV, implying that substan-
tial evaporated photons are produced by them around
these energy scales. Near-future soft gamma-ray tele-
scopes like AMEGO, with its large effective area and im-
proved background rejection capabilities, can search for
these photons and investigate this hard-to-probe parame-
ter space. The most efficient search strategy involves ob-
servations of the region around the Galactic Center. We
include the Galactic astrophysical background produced
by cosmic-rays and the measured extra-galactic gamma-
ray background in our projected search strategy. Our
projections show that AMEGO can exclude non-rotating
PBHs as the sole component of DM upto ∼ 7 × 1017

g. We demonstrate that maximal rotation as well as ex-
tended mass distribution of the PBHs allow us to explore
larger ranges of PBH masses. We also predict that the
projected exclusions on PBH DM in the mass range ∼
1016 − 1017 g will be much stronger than the existing
limits. The projections presented in this work are robust
to the different choices of DM density profiles. At higher
PBH masses in this range, the Hawking radiation flux
gets smaller and thus much larger instruments need to
be built in order to detect the evaporation signature. In
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the absence of much larger telescopes, other techniques
need to be developed in order to probe the complete pa-
rameter space of asteroid-mass PBHs.
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