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The axion, motivated as a solution to the strong CP problem, is also a viable dark matter candi-
date. The axion field takes random values in causally disconnected regions if the symmetry breaking
that establishes the particle occurs after inflation, leading to white-noise density fluctuations at low
wavenumbers and forming dense minihalos with sub-planetary masses subsequently. There have
been two recent proposals that appear capable of testing this scenario, namely using pulsar tim-
ing arrays and studying cosmological microlensing caustics. Motivated by these proposals, we use
N-body simulations to study the formation of substructures from white-noise density fluctuations.
The density profiles of our relaxed axion minihalos can be described by the Navarro-Frenk-White
profile, and the minihalos’ concentration number agrees well with a simple, physically-motivated
model. We develop a semi-analytic formula to fit the mass function from our simulation, which
agrees broadly at different redshifts and only differs at factor of two level from classic halo mass
functions. This analytic mass function allows us to consider uncertainties in the post-inflation axion
scenario, as well as extrapolate our high-redshift simulations results to the present.
Our work estimates the present-day abundance of axion substructures, as is necessary for predict-

ing their effect on cosmological microlensing caustics and pulsar timing. Our calculations suggest
that if pulsar timing and microlensing probes can reach recent sensitivity forecasts, they may be
sensitive to the post-inflation axion dark matter scenario, even when accounting for uncertainties
pertaining to axion strings. For pulsar timing, the most significant caveat is whether axion minihalos
are disrupted by stars, which our estimates show is mildly important at the most relevant masses.
Finally, as our gravitational simulations are scale invariant, the results can be extended to models
where the dark matter is comprised of other axion-like particles and even clusters of primordial
black holes.

I. INTRODUCTION

The QCD axion, a leading solution for the strong CP
problem, can also be the dark matter if its mass falls in
the range 1− 100µeV [1–7], and possibly smaller masses
still with anthropic tuning [8] or a low inflation scale
[9]. In the post-inflationary scenario where Peccei-Quinn
symmetry [10] is broken after inflation, axion dark mat-
ter has enhanced small-scale structure that may make it
more observable. This enhanced structure occurs because
the axion field is coherent over the Hubble horizon when
Peccei-Quinn symmetry is broken. Afterwards, the ax-
ion field is smoothed by its dynamics on scales up to the
horizon size, plus additional discontinuities from topolog-
ical defects [11]. The axion then acquires its mass during
QCD era and starts to act as nonrelativistic matter. The
local number density of axions when the axion acquires
its mass is directly determined by the axion field value
there, leaving primordial inhomegeneity at the horizon
scale. Topological defects from the symmetry breaking
like axion strings also introduce inhomogeneities, extend-
ing axion perturbations to even smaller scales [12, 13].

After the axion becomes nonrelativstic, gravity takes
over as the dominant force. Axions residing in & 1
fractional density perturbations will collapse at matter-
radiation equality and form ‘axion miniclusters’ with
characteristic masses of ∼ 10−12M� and radii of ∼
1012cm [14–16]. (The mass and radii range can be mod-
ified by nonstandard thermal history before big bang
nucleosynthesis [17, 18].) In the standard thermal his-
tory, the mass range of axion substructures might be

detected in femto-, pico- [16], and microlensing surveys
if the concentration number is larger than ∼ 107 at
the characteristic mass [19]. Those initial miniclusters
merged and formed bigger and less concentrated struc-
tures after matter-radiation equality. As the axion den-
sity perturbations have a white spectrum that extends
to long wavelengths, at progressively later times longer
wavelength perturbations collapse and form more mas-
sive structures. We call these late-time structures axion
minihalos, and the low-redshift spectrum of structures
that results is what is relevant for proposed observables.
Many of these still form well before the halos of standard
inflationary perturbations, and as such the axion mini-
halos can be much more compact and denser – making
them more hardy to disruption processes and also more
detectable.

There are several proposals for detecting axion mini-
halos. One uses the Shapiro time delays and Doppler
shifts that these axion minihalos could impart on pulsar
timing [20, 21]. Pulsar timing signal of dark matter sub-
structures in mass range 10−11-103M� [20, 21] can be de-
tected in the future by pulsars detected with the Square
Kilometer Array (SKA) [22]. A second proposal uses
the effect of these minihalos on the microlensing caus-
tics of cosmological stars that are highly magnified both
by a cluster lens and stellar microlens [23]. Such highly-
magnified stars have been discovered recently with the
Hubble Space telescope [24–26], and the James Webb
Space Telescope (JWST) is projected to find more of
these extreme events [27]. Other proposals include de-
tecting radio emission from axion stars (which are likely
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to form in the central cusp of axion halos [15, 28–37]),
transients such as Fast Radio Bursts as a potential signal
of the explosive decay of axion miniclusters [38–43], and
axion-photon conversion in neutron stars [44–47] or the
Galactic Center [48]. Finally, the clumpiness of cosmic
axions could affect direct detection efforts like the Ax-
ion Dark Matter eXperiment (ADMX)[49], especially if
a significant fraction of present-day axions are bound in
minihalos.

To place meaningful constraints on axion minihalos
and the post-inflation axion scenario requires an under-
standing of the mass spectrum of these minihalos. Sev-
eral works have used semi-analytic models that were
developed for the inflationary fluctuations to compute
the mass function and concentration of axion minihalos
[19, 23, 50–52]. It is important to test these semi-analytic
models using numerical simulations for the much differ-
ent case of white isocurvature fluctuations that arise for
post-inflationary axions. In addition, the fraction of ax-
ion dark matter that collapsed into axion minihalos can
only accurately be estimated by numerical simulations.
The spectrum of axion density perturbations prior to
the QCD epoch has been numerically simulated [12, 53].
Starting from the predictions of these early universe sim-
ulations [54, 55], the subsequent nonrelativistic phase in
which the evolution is mainly gravitational has also been
simulated, and this work follows this program. We com-
pute the (subhalo) mass function and density profiles of
axion minihalos at all redshifts to z = 0. Even though our
simulation is designed for QCD axions, the initial density
power spectrum in our numerical experiments is scale-
invariant, which makes generalizing some of our results
to other axion-like particles (such as fuzzy dark matter
[56, 57]) straightforward.

This paper is organized as follows: In section II, we
discuss the initial conditions of axion perturbations and
other simulation setup. In section III, we present the
halo mass function obtained from simulation data and
fit it with a semi-analytic formula. In section IV, we
present the density profiles and the mass-concentration
relation obtained from our simulation data. In section
V, we discuss the observations that will be sensitive to
those objects. Our simulation is run with a ΛCDM cos-
mology with h=0.697, Ωm = 0.2814, and ΩΛ = 0.7186,
and some of our semi-analytic calculations further adopt
ns = 0.9667, which are consistent with Planck cosmic
microwave background results [58]. The radiation com-
ponent is included in the background evolution with a
present-day CMB temperature 2.7255 K and we treat the
neutrinos/antineutrinos as massless particles with 3.045
effective degrees of freedom.

II. SIMULATION OF AXION MINIHALOS

We follow the nonlinear gravitational evolution of the
initial axion perturbations with the MP-Gadget code
[59], which is based on GADGET-2 [60]. Our simu-
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FIG. 1. Visualization of a projection through the 10/h pc
simulation at z = 99 (top panel) and z=24 (bottom panel).
The color scale indicates the logarithm of the projected den-
sity field, log(1 + δP ), where δP is the projected overdensity.
The size of axion minihalos grow significantly between these
two redshifts, yet they do not inhabit as distinctive a cos-
mic web as lower redshift halos that form from the adiabatic
perturbations from inflation.

lations focus on larger axion minihalos than previous
simulations (such as [55]). This choice is motivated by
our finding that most of the mass at low redshifts is in
relatively massive ∼ 10−7M� minihalos. This mass is
much greater than the mass of the first axion miniclus-
ter halo that forms, which are smaller than the mass
within the horizon when the axion becomes nonrelativis-
tic (∼ 10−12M�). This motivates a simulation box size
that is much greater than this horizon. A second moti-
vation is that the axion isocurvature perturbations are
white on these super-horizon scales, whereas on smaller
scales is set by complicated dynamics that requires evolv-
ing the relativistic sine-Gordon equation.

Our simulations start at z = 30, 000 with radiation
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background included in the expansion. The evolution
of axion isocurvature perturbations is dominated by the
matter density and the radiation component can be ap-
proximated as a uniform background. The comoving size
of our fiducial simulation is 50 pc/h, and the simulation
follows the gravitational dynamics of 10243 dark matter
particles each with a mass of 1.3×10−11M�. We also run
a smaller 10pc/h box with 5123 particles to test a differ-
ent power spectrum cutoff at high k, as well as a series
of 50 pc/h, 5123 simulations to test convergence in force
softening and time stepping (Appendix B). However, as
our simulations are largely scale invariant with struc-
ture formation occurring in a self-similar manner during
matter domination, they can essentially be remapped to
other mass scales to study other axion-like scenarios. All
simulations are run to z = 19. By this point, larger scales
than captured in our box start to collapse and so it is
not motivated to run the simulation further. However,
we devise semi-analytic tools to predict the subsequent
evolution of minihalos in and outside of more massive
halos.

Our results only sensitively depend on the spectrum
of density fluctuations on separations larger than the
comoving Hubble scale when the axion starts to oscil-
late in its potential and act as nonrelativistic matter,
H−1

osc, where H = aH and a is the scale factor and H is
the Hubble function. Resolving the initial perturbations
on smaller scales would not change our results signifi-
cantly, as the collapse on larger scales effectively erases
the smaller collapsed structures that initially form. How-
ever, these smaller structures, if sufficiently segregated in
mass and collapse redshift, would likely be subhalos in
the larger axion minihalos that later form.

The axion isocurvature fluctuations at wavenumbers
with k � Hosc follow a white noise power spectrum be-
cause different H−1

osc patches were not in communication
and so there can be no correlation. Furthermore, be-
cause � 1 horizon patches contribute to these scales, we
assume the spectrum of fluctuations is Gaussian so that
the power spectrum full describes the fluctuations, al-
though we further justify this approximation later. We
initialize our simulation with a white power spectrum
until a sharp cutoff:

∆2
L(k) ≡ k3

2π2
PL(k) = Aosc

(
k

kosc

)3

at k < kosc, (1)

where PL(k) ≡ V −1|δ̃L(k)|2, V is the volume, δ̃L is the
Fourier transform of the configuration-space linear dark
matter overdensity, kosc ≡ Hosc and can be phrased in
terms of the axion mass at low temperatures, ma, via
[12]

1

kosc
= 0.036

(
50µeV

ma

)0.17

pc, (2)

and Aosc sets the normalization, with Aosc ∼ 1 result-
ing in order-unity fluctuations on the oscillation scale
[61]. Simulations of the QCD axion find that values

of the isocurvature variance at initial conditions are
Aosc ∼ 0.01−0.3 [12, 53], where the large range of values
we think owes to the importance of axion strings over
the misalignment mechanism in establishing the density
fluctuations. (There is some controversy in the impor-
tance of radiation from axion strings, as discussed later.
Our results are applicable regardless.) Though we start
our simulation well after the time when the field has be-
come nonrelativistic (at z = 30, 000), Eq. 1 still holds
to good approximation at subsequent times during radi-
ation domination [62].

Eq. 1 has an artificially sharp cutoff in the spectrum
at kosc. In the misalignment mechanism for density
perturbations, a somewhat sharp cut-off is expected for
the modes that entered the horizon when the axion be-
haved relativistically, as the field homogenize at higher
wavenumbers. Defects such as axion strings can result
in an even weaker cutoff. However, for the mass scales
probed by pulsar timing and microlensing lensing ob-
servables that we focus on, the precise wavenumbers and
spectral shape of the cut-off are irrelevant since our re-
sults will not be sensitive to the affected scales. There-
fore, our power spectrum is effectively scale-invariant for
the dynamical range of interest. One may also worry
about the axion Jeans scale, kJ, where density and pres-
sure are in equilibrium. Modes can grow only when k <
kJ otherwise it will be smoothed by pressure. The Jeans
scale is given by kJ ≈ 2 × 104a1/4

√
m/(10−5eV)pc−1 if

the axion is the dark matter [63]. Therefore, the modes
resolved in our simulation box satisfy k < kJ.

The initial conditions of our simulations are generated
with the parameters Aosc = 0.1 and the momentum cut-
off to be kosc = 19.8 pc−1, corresponding to axion mass
ma = 6.9µeV and decay constant fa ≈ 1012GeV. Note
that the axion decay constant plays no role in our sim-
ulation. The only parameter that matters for structure
formation on most mass scales is the amplitude of the
power spectrum, Aosc/kosc

3. There are some uncertain-
ties on axion mass due to the production of axions from
axion string decay, leading to different ma and kosc [13].
We use our simulations to calibrate a semi-analytic model
in § 2, which allows us to model a broad class of post-
inflation axion scenarios.

All modes in our simulation are well within the Hori-
zon at the starting time of the simulation and have a
growing and decaying component. We only include the
growing mode because of the following justification: The
comoving scale of perturbations that contribute to the
halos we focus on is larger than 1/kosc. On such scales
the isocurvature fluctuations are much smaller than one
(∆2
L(k)� 1), meaning that the formation of axion struc-

tures occurs after matter-radiation equality when the de-
caying mode is being redshifted away. The picture for
isocurvature fluctuations contrasts with adiabatic fluc-
tuations, where the overdensity contrast grows outside
the Horizon, at least in the Newtonian gauge, and then
its growth freezes if it enters the horizon during radia-
tion domination, leading to additional scale dependence
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depending on when a mode enters the horizon. This
growth outside the horizon is not present for our isocurva-
ture fluctuations. Once our isocurvature perturbation is
within the horizon so that the perturbations in radiation
and baryons have been damped, the growing mode of the
dark matter in radiation- and matter-dominated epochs
can be well described by a solution of the Mészáros equa-
tions:

D =
2

3
+

a

aeq
, (3)

where D is the growth function of cosmological perturba-
tions. At late times when the dark energy starts to dom-
inate, there are corrections to this growth function that
are included in this study. In [62], the scale-independent
linear evolution given by Eq. 3 was checked against a full
Boltzmann calculation with isocurvature perturbations
and found to agree well. (See this footnote for additional
discussion: [64]) We tested the power spectrum in the
simulation at early times and found that its behavior is
well described by this growth factor in the linear regime.

The initial condition of our simulation is gener-
ated with the MP-GenIC code included in MP-Gadget
which uses linear order Lagrangian Perturbation The-
ory (1LPT). Displacements and velocities are generated
assuming the power spectrum given by Eq. 1 with all
the power growing as Eq. 3. We justify this perturba-
tive approach because ∆2

L(k)� 1, reaching a maximum
of ∆2

L(kosc) = 0.1. Since the initial time we start the
simulation is way after the QCD era, axions are already
nonrelativistic at the scale of interest and the velocity is
only slightly nonzero in the 1LPT treatment. The ini-
tial conditions in Ref. [55] are generated with zero initial
velocity.

The simulation then evolves the linear axion perturba-
tions from z = 30, 000 to where they become nonlinear
and form of axion minihalos. Substructure forms at much
earlier times than in the standard ΛCDM cosmology. A
visualization of our simulation at z = 24 and z = 99 is
shown in Fig. 1.

III. MASS FUNCTION OF AXION MINIHALOS

We use the Friends-of-Friends (FOF) algorithm [65] to
identify groups of particles in the simulation, demanding
any particle that finds another particle within a linking-
length distance of l is linked to it to form a group. We
choose l = 0.2 d, where d is the mean separation of dark
matter particles in the simulation. The minimum num-
ber of dark matter particles in each FOF groups is chosen
to be Ng = 32. This Ng corresponds to a minimum halo
mass of 4 × 10−10M� in our fiducial simulation. These
choices of l and Ng are standard in cosmological studies,
as they approximately select groups that are large enough
to be reliably captured in the simulation and link regions
with overdensity greater than 80 [66], characteristic of
the outskirts of dark matter halos. (Minihalos that form

during matter domination have a characteristic overden-
sity of ∼ 200 at the time of formation.)

Studies of dark matter halos in the standard CDM cos-
mology have found great success at explaining the mass
function of halos with semi-analytic models developed in
the excursion set formalism [67]. It is unclear how well
these models should work in our case, where the density
perturbations have a much bluer spectrum, but success
for other nonstandard cosmologies gives reason to be-
lieve these models may work for our blue spectrum as
well [68]. We use these semi-analytic formulas to fit the
mass function obtained from the simulation. In particu-
lar, we consider Press-Schechter [69], Sheth-Tormen [70],
and a tweaked mass function that changes the barrier
parameters in Sheth-Tormen. See Appendix A for the
relevant formulae. We note that in the standard CDM
cosmology, Press-Schechter is able to explain the halo
mass function at the factor of ∼ 2 level (crudely speak-
ing, as the differences are exponentially enhanced at the
highest masses), whereas Sheth-Tormen has been tuned
to give percent-level agreement. For the post-inflation
axion scenario, both disagree with the simulation at the
factor of ∼ 2 level, whereas our tweaked Sheth-Tormen
mass function fits well the simulated mass function, ex-
cept for the masses influenced by our wavenumber cutoff
at kosc (M . 109M�).

The halo mass function of axion minihalos computed
from our fiducial simulation is shown in Fig. 2. The y-axis
shows the comoving number density of axion minihalos
per logarithmic mass interval and, then, multiplied by
halo mass, such that the integral over this quantity in
lnM gives the total mass in minihalos. As time evolves,
the mass function shifts towards higher masses as halos
grow and merge. At all redshifts there is a peak halo
mass around which much of the mass in axion minihalos
lies (e.g. M ∼ 10−7M� at z = 19), although there is a
substantial fraction of lower mass halos.

The shape of the mass function at M . 10−9M� is
affected by the cutoff in our (input) linear power spec-
trum at kosc. A wavenumber of kosc can be turned into
a characteristic mass scale [23]:

M0 ≡
4π

3

(
π

kosc

)3

ρ̄a,0 = 2.3× 10−10

(
50µeV

ma

)0.51

M�,

(4)
where ρ̄a,0 is the mean density of axions in the present
day. For our initial conditions, M0 = 6.3 × 10−10M�,
corresponding to axion mass ma = 6.9µeV. We have run
simulations without a cutoff at kosc (‘no cutoff’ in Fig. 2,
with 10pc and 5123 particles). Comparison of the simu-
lations with and without a cutoff shows that the break
in the small-scale power-law scaling of the mass function
manifests at several times larger scales than M0. In-
terestingly, the semi-analytic model only shows a break
around M0 (a feature that falls off the left-hand side of
the plot), so the effect of a cutoff in the power spectrum
on the mass function is not well captured in these excur-
sion set models for the mass function. However, as the
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FIG. 2. The mass function of axion minihalos at select redshifts for a white power spectrum plus cutoff specified by Aosc = 0.1
and kosc = 19.8 pc−1. We compare mass functions obtained from two set of simulations to those in semi-analytic models.
The data points are from simulations, and the solid curves are the semi-analytic formula discussed in Appendix A, which
recalibrates the barrier parameters of the Sheth Tormen mass function. We also plotted the Press-Schechter and Sheth-Tormen
mass functions at z = 19. The recalibrated model agrees with the original simulation with a cutoff in the power spectrum
except for the high mass end. Another simulation that does not have a cutoff in the power spectrum, denoted by “no cutoff”,
agrees with more broadly with the simulation. The solid “z=0 extrapolated (Eq. 5)” band is our model for the present-day
number density of axion minihalos. It is our estimate for the mass function of minihalos that resides in most dark matter halos,
including those that exist as subhalos. We assume axion minihalos will fall into larger CDM halos (that are too large to be
captured in our simulation) and stop merging. The width of the purple band is set by whether the growth of axion minihalos
is terminated by when the larger host halo collapses or when it is at turnaround.

bulk of the mass in dark matter halos at z < 100 resides
in halos more massive than are affected by this break, the
mass scales around where the break manifests are not im-
portant for our primary results. Indeed, a scale-invariant
power spectrum is a sufficient description at almost all
scales we study: the only relevant parameter is the power
spectrum amplitude Aosc/k

3
osc.

Finally, we calculate the total amount of bound struc-
ture in axion minihalos. This fraction is important for di-
rect detection efforts, which are sensitive to the unbound
component. The fraction of axion dark matter in these
bound structures is found to be 0.8 at z=19, growing from
0.6 at z = 100. This is smaller than in Press-Schechter
but comparable to the Sheth-Tormen mass function (see
Fig. 3). We expect that this estimate for the total mass
in minihalos is an upper bound, especially in a Milky
Way-like environment where stellar disruption processes
are important (see § VI).

A. Comparison with mass function calculated from
early universe axion simulations

Previous N-body simulations have attempted to start
from the initial conditions calculated from solving the
sine-Gordon equation for the axion [54, 55]. Unlike our
simulations, which are of the white spectrum that oc-
curs at k � Hosc, their concentration was on k & Hosc,
scales shaped by the early universe axion dynamics. Such
a study was recently reported in [55], whose halo mass
function at different masses is shown by the dashed lines

Sheth-Tormen

Press-Schechter

CDM

simulated

0 20 40 60 80 100

0.4

0.6

0.8

1.0

FIG. 3. The collapsed fraction of axion dark matter as a
function of redshift for Aosc = 0.1 and kosc = 19.8 pc−1. The
orange data points are the collapsed fraction computed as the
mass fraction in our FOF groups from our fiducial white-noise
simulation, while the orange and blue curves are the collapse
fraction of white noise perturbations in the Sheth-Tormen
model and Press-Schechter model, respectively. The collapsed
fraction in the Sheth-Tormen and the Press-Shechter models
is obtained by intergrating over our white noise mass func-
tions from M0 = 7 × 10−10M� to 10−4M�. The red dashed
curve is the Press-Schechter collapse fraction in ‘CDM halos’
that form from adiabiatic fluctuations (which are calculated
by cutting off to include only masses of M > 10−3M� ha-
los for which adiabatic fluctuations dominate). This collapse
fraction which appears in our froward-evolution model (Eqs. 5
and 6).
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FIG. 4. Comparison of the mass function of axion minihalos
from [55] with the prediction of our semi-analytic halo model
using the same initial density power spectrum. The semi-
analytic model is tuned to fit our simpler white-noise simula-
tions, but still describes reasonably the simulated mass func-
tion of [55]. The N-body simulations in [55] evolve the density
field predicted from detailed early universe simulations of the
relativistic axion field, which results in the initial conditions
for their N-body simulations having a less abrupt cutoff in
the power spectrum at high wavenumbers than in our simula-
tions. However, our analytic model broadly agrees, especially
at lower redshifts (we suspect because the non-gaussianty in
the field matters less at these times). This agreement al-
lows us to forward model their predictions, which yields at
late times curves similar to our white noise model shown in
Fig. 8.

in Fig. 4. We use their results here to understand whether
the tools we develop are applicable for understanding ax-
ion structure formation on the scales they studied.

In particular, we have evaluated our semi-analytic
model, calculated using the input power spectrum for the
simulations (solid curves in Fig. 4). At late times, this
model is generally able to reproduce the evolution seen
in their N-body simulation. The model errs most for
the highest redshift [55] reported, z = 2507. Our semi-
analytic model is motivated by matter-dominated spher-
ical collapse calculations that do not apply during radia-
tion domination and need some modification. For exam-
ple, in Press-Schechter, the barrier δc is no longer 1.686
once radiation is important. While our model should not
be used when radiation is important in the universe, im-
proving our model to extend into radiation domination
would further enhance the differences. Rather, the mass
function found in [55] at these times is likely driven by the
collapse of small-scale non-Gaussian structures that our
Gaussian model does not capture (the formalism from
which these semi-analytic models are built is based on
Gaussian random walks). We surmise that the agreement
of the simulations of [55] and our model at later times oc-
curs for two reasons. First, for smaller mass scales than
the our peak-scale, the model is less sensitive to devia-
tions from Gaussianity since the minihalos that are col-

lapsing are not the rare peaks for which non-Gaussianity
has its largest effect. Further, as time progresses, the
mass scale at which halos are rare (exponentially sup-
pressed) moves to larger and larger masses. Many small-
scale contributions sum to determine the perturbations
on these larger scales, making the fluctuations on these
scales more Gaussian (although note that the model is
not well tested by the simulations of [55] at these high
masses).

Finally, we remark that even though our analytic
model is able to capture the mass function of [55] at
early times, at late times the amplitude of the white noise
power at k � Hosc shapes the mass function – this study
presents precise simulations in this regime. We use the
normalization of [55] at these scales as our fiducial model
when we analyze observations in § V. The complex spec-
trum of fluctuations on k & Hosc that were simulated by
[55] should largely affect the subhalo distribution in the
larger axion minihalos.

B. Extrapolating the mass function to the present
day

Our simulation boxes, with our largest containing in
total a cosmologically minuscule mass of 10−2M�, are
far from capturing the scales needed to follow cosmo-
logical structure formation, which results in most of the
dark matter being incorporated galactic mass halos of
& 1010M� today. Thus, we need a way of incorporating
the effects of these large scales. Fortunately, the separa-
tion of mass scales between what later collapses and our
axion minihalos suggests a reasonable approach.

An axion halo will stop growing once it falls into CDM
halo. We distinguish “CDM halos” as the halos that form
from the standard adiabatic perturbations from inflation.
The spectrum of adiabatic density perturbations is such
that a large range of masses collapse at around the same
time: few CDM halos have formed at z ∼ 50, but most
have collapsed by z ∼ 10. Thus, most of the axion mini-
halos are incorporated into the larger CDM halos at these
redshifts. However, because the host CDM halos are gen-
erally much larger, most axion minihalos do not spiral
inward from dynamical friction and merge into a single
halo. Furthermore, once subsumed in the larger halo,
they stop growing via accretion because of the high ve-
locities in the host halo.

Therefore, we estimate the mass function at a given
redshift of axion minihalos, including those incorporated
into massive CDM halos, as

dnf
dM

(z) =

∫ z

zeq

dz′
dfCDM

col (z′)

dz′
dnWN

dM
(z′)

+
[
1− fCDM

col (z)
] dnWN

dM
(z), (5)

where dnWN/dM is the mass function computed from our
white noise–only simulations and fCDM

col (z) is the collapse
fraction of CDM halos at redshift z into halos (shown



7

with the dashed curve in Fig. 3), which goes from near
zero to near unity over z ∼ 10 − 50 – freezing the spec-
trum of axion minihalos. The second term on the right
hand side, which comes from axion minihalos unbound to
any CDM halos, becomes small at low redshifts. While
this estimate provides the global mass function of axion
minihalos, including those that are subhalos in CDM ha-
los, Eq. 5 likely approximates the mass function of axion
minihalos at z = 0 within any Milky Way-like or cluster-
scale CDM halo because the fCDM

col history of the matter
within these much larger halos is not be significantly dif-
ferent than the mean history. This estimate is a different
approach from previous studies where the mass function
is calculated using the power spectrum from the sum of
isocurvature and adiabatic fluctuations [23, 71]. In our
estimate, we tracked all the minihalos arising from isocur-
vature fluctuations even though they may have fallen into
CDM halos formed from adiabatic fluctuations. We con-
trast the two methods in the conclusions.

The estimate given by Eq. 5 may overestimate the frac-
tion of axion minihalos that exist today because it does
not account for destruction processes. Destruction ow-
ing to encounters with stars and other minihalos are dis-
cussed in § VI. We argue that in galactic environments
stellar destruction can remove an O(1) fraction, but it’s
likely many still remain. Another process is the tidal
stripping of the host macro-halo itself on the minihalo.
See this footnote for discussion [72]. While beyond the
scope of this study, techniques that have been developed
for the standard cosmology to evaluate the tidal strip-
ping and survival of subhalos should be applied to evolve
axion minihalos [73, 74].

With these caveats in mind, to evaluate Eq. 5, we
use the Press-Schechter model for the collapse fraction
of CDM halos, which yields

fCDM
col (z) = erfc

(
δc√

2σCDM(Mmin)D(z)

)
, (6)

where σCDM(M)2 is the variance in the initial density
fluctuation field, and Mmin is the smallest halo we are
counting in the tally of collapsed structures. We take
Mmin to be 10−2M�, corresponding to a scale where
CDM power spectrum starts to dominate and axion per-
turbations becomes subdominant. Our results are in-
sensitive to this choice owing to the roughly logarith-
mic dependence of σCDM(M) on M at relevant masses.
While the Press-Schechter mass function is known to er-
ror, the simplicity of our model does not motivate more
sophisticated prescriptions for fCDM

col (z). We evaluate δc
at two values: Its formal spherical collapse value of 1.69
and the value for turnaround of 1.06 (both of these are
matter-dominated values, but including dark energy has
a percent-level effect by z = 0). The two choices quan-
tify some uncertainty in our estimate, as it is unclear
whether turnaround or collapse better encapsulates the
time when subhalos stop growing owing to tidal effects.
Furthermore, choosing turnaround segregates the time of
formation of the host CDM halo from the axion miniha-

los and, thus, chooses the denser minihalos that form by
the earlier turnaround epoch that are more likely to sur-
vive. However, these choices for δc yield results that are
within a factor of two of each other.

The solid purple band in Fig. 2 shows our estimate
using Eq. 5 for the final mass function in axion minihalos.
The upper edge of the purple band at high mass uses
δc = 1.69 and lower δc = 1.06. The peak occurs at the
peak location of the individual snapshots when much of
the mass is incorporated in the standard CDM halos and
stop growing (at z ∼ 30). However, the mass function
extends over a broader range of masses than the mass
functions from individual snapshots in our simulations
(compare with this curve with, e.g., the z = 19 curve).
We use this estimate in § V to compare with observations.
Since we have an analytic model, we can further take
into account uncertainties in the initial spectrum of axion
fluctuations.

IV. DENSITY PROFILE OF AXION
MINIHALOS

The density profile of axion minihalos is important for
their detectability. The more dense and concentrated
these halos, the more detectable they generally are and
the longer they are able to survive in galactic environ-
ments. We study the angular-averaged density profiles
at z = 19 and z = 49. Much of our discussion uses the
famous Navarro-Frenk-White (NFW) profile and so we
start off by defining it and related quantities. In partic-
ular the NFW profile is given by [75]:

ρ(r) =
ρs

r/rs(1 + r/rs)2
, (7)

where ρs is the characteristic density of the halo and
rs is the scale radius. The scale radius determines the
concentration number via c ≡ rvir/rs, where rvir is the
virial radius of dark matter halo. The virial radius is
defined here by the matter density ρ̄(z) and halo mass
M as 4π(200)r3

virρ̄/3 = M , i.e. the region that encloses
an overdensity of 200. This standard choice is motivated
by spherical collapse, and it means that the concentration
number, c, of a static halo (i.e. one with a fixed density
profile) increases with time as rvir ∝ (1 + z)−1.

We plot NFW density profiles at z=19 and z=49 in
Fig. 5 and Fig. 6 respectively and compare them with
the density profiles of 10 halos taken from the simulation
that fall nearest the specified mass. The NFW profile is
fully determined by the halo mass M and scale radius in
Eq. 8 as ρs = M/[4πr3

s(log(1 + c)− c/(1 + c))], while the
colored curves are computed from the simulation data,
representing density profiles of 10 halos around the same
halo mass M . Many of the density profiles of small halos
agree with solid NFW profile reasonably. However, some
of the halo density profiles do not agree with the NFW
profile, with a flatter density profile in the central re-
gion. This occurs more often for our most massive halos
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FIG. 5. Density profile of halos with different masses at z = 19 from our fiducial simulation interpreted with Aosc = 0.1 and
kosc = 19.8 pc−1. The colored curves with less opacity represent the density profile of 10 halos around the same mass obtained
from our simulation data. The purple solid curve represents the NFW density profile with a mass-dependent scale radius given
by Eq.8, whereas the dashed purple curve is re-scaled to a factor of two smaller values for the scale radius (Eq. 8), which
suggests how well the scale radius can be determined from the simulation. The vertical black and orange-red dashed line are
indicating the gravitational softening length and scale radius of the halo respectively. The density profiles from simulations
broadly agree with the predicted NFW profiles at different masses, except for a contingent of halos that are unrelaxed at their
center. This contingent is especially present the higher masses, and owes to incomplete merging of two halos (Fig. 7 shows
some examples). An NFW profile with the model for the scale radius in Eq. 8 agrees reasonably with the more relaxed profiles.

(M ∼ 10−6M�). We do not expect this to be a grav-
itational softening effect because the flat density profile
starts on a scale much larger than the softening scale
(and is most common in our massive halos). Rather, it
owes to halos with multiple components that have not
merged: The largest minihalos – like galaxy clusters to-
day – are the least merged and relaxed systems. The
large amount of structure in our massive halos can be

seen in Fig. 7, which plots the projected density distribu-
tion of fourM ∼ 10−7M� halos at different redshifts and
four different mass halos at z = 19. For instance, the dis-
tance between the substructures for the axion minihalo
withM = 10−7M� at z = 49 is roughly 200 AU (10−3pc)
as shown in Fig. 7, which matches with the size of the
flat central region of high mass halos in Fig. 6. More gen-
erally, in our white noise cosmology, halo formation for a
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FIG. 6. The same as Figure 5 except showing the density profile of halos with different masses at z = 49 rather than z = 19.
The colored curves with less opacity represent the density profile of 10 halos around the same mass obtained from our simulation
data. The purple solid curve represents the NFW density profile with a scale radius described in Eq. 8, and the purple dashed
curve has a scale radius that is a factor of two smaller than the solid curve. The vertical black and orange-red dashed line are
indicating the gravitational softening length and scale radius of the halo respectively. The NFW model predictions broadly
agrees with the simulation data except for the high mass end where halos have substructures. The main conclusion is the same
as what we found in Fig. 5. In combination the two figures support that the density profile of axion halos do not change over
time (at trait that holds also for the NFW model curves).

given range of halo masses is spread over a larger range
in scale factor than in the standard cosmology. This en-
hances the density contrast of substructures and makes
them more able to survive in their parent halo.

In the picture that the axion halo forms early and
then sits undisturbed, one might expect the characteris-
tic scale radius, rs, is only a function of halo massM and
does not depend on redshift [23]. (The virial radius as de-
fined, however, does depend on the redshift because it is

determined by the mean density of the Universe. There-
fore, c grows linearly with scale factor a in this picture.)
Dai & Miralda-Escudé [23] assumed that the axion mini-
halos form with a relatively small concentration of c = 4
and that the collapse at a given minihalo mass that can
be characterized by when a 1σ perturbation at that mass
collapses. These assumptions are sufficient to predict rs
and c analytically as a function of halo mass [23]. If we
calibrate the analytical prediction with a prefactor and
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compare it to the average density profiles in the simula-
tion, we found they are in good agreement for different
halo masses at different redshifts. Therefore, this picture
seems to be roughly obeyed by our simulations. The solid
curves in Fig. 5 and Fig. 6 show

rs(M) ≈3.7× 10−3h−1pc

(
AoscM0

10−11M�/h

)−1/2

×
(

M

10−6M�/h

)5/6

,

(8)

or equivalently

c(z) ≡ rvir

rs
=

1.4× 104

(1 + z)
√
M/(AoscM0)

, (9)

where M0 is the characteristic mass of axion minihalos
at power spectrum cutoff, which is defined in Eq. 4, and
Aosc is the amplitude in Eq. 1. The only relevant param-
eter in our simulation is Aosc/k

3
osc, which is proportional

to AoscM0. The dependencies of Eqns. 8 and 9 are from
the model of [23], discussed shortly. In Ref. [55], char-
acteristic concentration parameters for axion minihalos
at z = 99 for certain mass ranges are discussed. Their
concentration parameter varies with mass more slowly
than our relation at the low mass end, which is still rea-
sonably consistent with our model because their power
spectrum is also more flat at smaller scales. At high-
est masses they study of ∼ 10−8M�, their concentration
parameters roughly agree with what we found.

Figures 5 and 6 show respectively z = 19 and z = 49
four four halo mass bins that span 2 − 3 orders of mag-
nitude in mass. The solid curve is the rs(M) given by
Eq. 8, and the dashed is a factor of two smaller. The
former values of rs and c appear to describe most of the
relaxed halo profiles, and the outer profile of of the un-
relaxed.

We also note that these concentrations are much larger
and have a stronger mass dependence than standard
CDM halos [76]. We expect CDM halos only to have
a similar concentration if they form at the same redshift
as our minihalos. Finally, it is well known that CDM ha-
los have a lognormal distribution of concentrations with
a full width at half maximum (FWHM) of ≈ 1 dex at
z ≈ 0. For our relaxed axion minihalos, there is no clear
evidence for such significant scatter in their concentra-
tions although we did not study it quantitatively.

Our simulated minihalos halos have rs values that are
smaller than the analytic prediction in [23] by a factor of
four. We think that some of this difference comes from
the fact that they defined the halo mass when its con-
centration number is four. The scale radius of a halo will
remain a constant as time evolves, but the ‘boundary’ at
rvir will expand due to the less dense Universe. There-
fore, dark matter halos will go through ‘pseudo-growth’
as the boundary expands and encompasses more mass
[77]. For the NFW profile that describes halos in our
simulations, a halo with c = 100 at late times is about

four times heavier than it was at formation with c = 4
simply owing to this effect.

V. AXION MINIHALO OBSERVABLES

The previous sections obtained the mass function and
density profile of axion minihalos from simulations and
developed a semi-analytic model to extrapolate to the
present day. We can now use this model to evaluate
the prospects for detecting axion minihalos in the post-
inflation scenario. We will show that pulsar timing arrays
and the gravitational lensing of highly magnified stars
both show promise for constraining our mass spectrum
of axion minihalos.

Figure 8 is the key figure on which we will place our
constraints. It shows our semi-analytic model’s predic-
tion for the present time axion minihalo mass function
compared to forecasts for the observational sensitivity for
future pulsar timing array (PTA) observations and the
gravitational lensing in the scenario proposed in Dai and
Miralda-Escudé [23]. Different axion masses are shown
assuming Aosc = 0.03 (and for one curve Aosc = 0.03) for
the power spectrum normalization. The power spectrum
amplitude Aosc/k

3
osc can be deduced from the masses mA

via Eq. 2. The range of axion masses reflects the un-
certainty in how much axion strings contribute to the
production of early universe axions. The blue and solid
curves take mA = 500µeV and represent the scenario
of axion strings radiating mostly in the infrared and
dominating over misalignment production by the factor
log(fA/mA) ∼ 60. We note that Aosc = 0.03 is cali-
brated to match the low wavenumbers of the simulations
of Vaquero et al. [12] where strings provide a middle-of-
the-road enhancement. Pure misalignment production of
axions likely has a larger value for Aosc. However, even
a string dominated spectrum should have a significant
Aosc owing to the expectation that there are a handful of
strings per Hubble patch.

We now compare these model predictions to the fore-
cast sensitivities of pulsar time arrays and gravitational
lensing observables.

A. Pulsar Timing Array

Due to the stability of pulsar pulse phases observed
over at least several year durations, dark matter struc-
tures around the Earth-pulsar system can imprint dis-
cernible signatures in these phases via gravitational
Doppler and Shapiro delays. Using pulsar timing arrays
(PTAs), individual transiting subhalos can be detected in
the future by Square Kilometer Array (SKA) [22]. Con-
straints for a single ‘subhalo’ mass for dark matter sub-
structure are presented in [21], which [78] found can be
extended to non-monochromatic mass functions within a
mass bin of M1 < M < M2 using the following inequal-
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FIG. 7. The visualization of halos that have different masses and redshifts from our simulation interpreted with Aosc = 0.1 and
kosc = 19.8 pc−1. Left panels are showing halos with the same mass 10−7M� at different redshifts. Right panels are showing
halos with different masses at the same redshift. The density profile is supposed to be the same for halos that have the same
masses. However, we show that the halo at z = 49 has more substructures than other halos with the same mass. This is
because M = 10−7M� is at the high mass end of the mass function at z = 49 and the high mass end shifts to larger masses
at lower redshifts. Halos at high mass end just formed very recently and did not go through enough merger events. Therefore
they may have a lot of substructures than other halos. In summary, a larger value of ν = δc/σ(M, z) is corresponding to more
substructures.

ity: ∫ M2

M1

dM
dn

dlnM

1

ρ̄dmfmax(M, c)
≤ 1. (10)

Here, fmax is the maximum mass fraction of dark matter
in substructures of a single mass presented in [21], which
is a function of halo mass and concentration number, ρ̄dm

is the mean density of dark matter in the Universe, and
dn/dlnM is the mass function of axion minihalos. We
consider the two observational scenarios for fmax pre-
sented in [21]. One is an optimistic case based on the
futuristic PTA parameters NP = 1000, T = 30 yr, trms =
10 ns, ∆t = 1 week, where NP is the number of pulsars,
T is the observing duration, trms is the residual timing
noise and ∆t is the cadence. The second is a somewhat
less futuristic PTA sensitivities based on the estimated
capability of the PTA with the Square Kilometer Array:
NP = 200, T = 20 yr, trms = 50 ns, ∆t = 2 weeks. The
parameter choices in both cases are motivated further in
[21].

With our mass function and concentration numbers of
axion minihalos at present day, we use Eq. 10 to deter-

mine whether PTA observations with future instruments
may be sensitive to axion minihalos. We present our re-
sults in Fig. 8, where the current mass function of axion
minihalos and the threshold mass function that will lead
to a detectable signal in PTA observations are plotted.
As shown in Fig. 8, our estimate for the current mass
function of axion halos lives well above the threshold that
would be detectable for future PTA observations with op-
timistic PTA parameters. This conclusion holds for each
of the axion mass scenarios we consider. However, our es-
timate for the current mass function is not large enough
to produce a detectable in PTA observations with SKA
parameters. We need more futuristic observations to de-
tect axion minihalos with PTAs. (See this footnote for
a caveat on our PTA bounds on the most massive halos
that pertains to their lower concentrations: [79])

In § VI we consider disruption by encounters with
stars. We argue that this process is not efficient enough
to suppress by the order of magnitude required to be be-
low the ‘PTA Optimistic’ limits.
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FIG. 8. Model prediction of axion halo mass function at
the present time with different choice of axion masses (solid
curves) compared against forecasts for the observational sen-
sitivity for a future pulsar timing array (PTA) observations
and gravitational lensing in the scenario proposed in Dai and
Miralda-Escudé [23]. Disruption is neglected for reasons dis-
cussed in § VI. Different axion particle masses are shown com-
puted assuming Aosc = 0.03 for the power spectrum normal-
ization, and our amplitude parameter can be deduced from
the masses ma via Eq. 2 and we show one string-dominated
case with Aosc = 0.003 and ma = 500µeV (orange curve).
The power spectrum with mass ma = 50µeV and Aosc = 0.03
agrees with the white scaling of the early universe axion sim-
ulations used in [55]. We show with the yellow band for our
middle-of-the road 50 µeV mass the range of estimates us-
ing the turnaround and collapse δc for when axion minihalo
growth is terminated. The red region represents the PTA
sensitivity with SKA parameters, while the orange region as-
sumes more optimistic PTA parameters (see main text). The
dashed curve presents the mass function in Dai et al. [23],
which owing to the size of an effect it creates on this observ-
able, we interpret as (very roughly) a lower bound on what
can be probed by lensing of magnified stars (see text).

B. Gravitational Lensing of highly magnified stars

The usual microlensing signatures of axion miniha-
los requires the concentration number to be ultrahigh
in order to exceed the critical surface density for lens-
ing (c & 107 for typical masses). Our minihalos do not
come anywhere near such high concentrations (Eq. 9).
However, recently another lensing diagnostic was sug-
gested. Caustic transiting stars behind a galaxy cluster
lens can reach extreme magnifications of µ & 103 – 104 as
the lensed stars cross microlensing caustics induced by
intracluster stars [80, 81]. The perturbations from dark
matter structure can add additional structure to these
lensing caustics, changing their profile [23]. Indeed, [23]
argued that this effect is sensitive to the minihalos in the
post-inflationary axion scenario.

In particular, Dai et al. [23] showed that this diag-
nostic is sensitive to convergence fluctuations are at the
level of ∆κ ∼ 10−4 – 10−3 on scales 10 – 104AU/h (corre-
sponding to mass scales 10−8 – 10−5M�). Motivated by

the fact that axion minihalos have rs in this interesting
range of scales, they modeled the abundance of axions
using the z ∼ 1 Press-Schechter mass function calculated
with both axion isocurvature and inflationary adiabatic
fluctuations. (This is likely a conservative model as it
predicts most of the mass is in large halos that form from
the adiabatic fluctuations. Others have also adopted this
model, which we contrast with in the conclusions.) They
concluded that the post-inflation axion scenario can pro-
duce sufficient level of fluctuations, although their results
suggest that their QCD axion model is near the minimum
of what might feasibly be detected. Our simulation re-
sults suggest a larger amplitude for the mass function
at all masses except the scenario where axion mass is
500µeV, indicating that axion minihalos likely lead to a
larger lensing signature than in their fiducial model. In
Fig. 8, we show the comparison between the mass func-
tion used for the lensing calculations in [23] (dashed red
curve) against our mass functions.

We also find in § VI that stellar disruption is unlikely
to destroy the axion minihalos in the cluster environ-
ment envisioned in [23], verifying simpler estimates they
present. This may not be the case for a similar diagnostic
involving a galactic macro-lens rather than a cluster.

VI. DISRUPTION OF AXION MINIHALOS

The primary mechanism for disrupting minihalos is
high speed encounters with stars and other miniha-
los. Here we present estimates of the disruption from
these encounters. We use the NFW profiles discussed in
§ IV, and the impulsive analytic framework developed
in Spitzer [82], Gerhard and Fall [83], Moore [84], Carr
and Sakellariadou [85], Binney and Tremaine [86], Green
and Goodwin [87]. The associated energy change from
an encounter is [87]:

∆E =
4α2

3

G2M2
pMr2

vir

V 2b4
, (11)

where Mp is the perturber mass, b is the impact param-
eter, M is the subject axion minihalo mass, and α2 is
the root mean square radius (0.1 . α2 . 0.4; the exact
expression can be calculated from the definitions in [87]).

Once minihalos fall onto a CDM halo, we assume they
stop accreting mass and evolving in any significant way.
Thus, for the purposes of our disruption analysis, we eval-
uate rvir = crs as a static quantity at z = 20 using Eq. 9.
This has the effect of cutting off the NFW halo at the
z = 20 virial radius, which makes the axions more bound
than a NFW halo that extends out to the z = 0 virial
radius.

To consider the disruption from an encounter, we com-
pare the energy imparted to the binding energy of the
subject minihalo: |Eb| = fcGM

2/2rvir, where fc is com-
puted for an NFW profile and ranges in value from 0.75
for 10−4M� to 12 for 10−10M� minihalos using our fitted
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FIG. 9. Disruption of axion minihalos from stellar encounters, assuming NFW density profiles with concentrations calculated
for Aosc = 0.03 and ma = 50µeV. The left panel shows the average time taken for one catastrophic (∆E > |Eb|) encounter to
occur, which is also the approximate time taken for dynamical heating from smaller encounters to add up to |Eb|. Most minihalo
should survive in the environment needed for the gravitational lensing observable. The right panel shows both disruption effects
as a function of passages through the Milky Way disk.

value for the concentration. There are two important lim-
its: 1) catastrophic encounters where ∆E/|Eb| > 1, and
2) dynamical heating from the cumulative effect of many
small encounters. The catastrophic regime occurs at im-
pact parameters satisfying this condition, the largest of
which we define to be bc.

Over its lifespan, a minihalo will have many encounters
with other minihalos and stars. Minihalo-minihalo inter-
actions occur in a larger macro halo, and are negligible
in galactic halos or cluster halos, where high encounter
speeds and low perturber masses prevent catastrophic
encounters entirely and suppress the heating rates. How-
ever, in the early stages of structure formation the mini-
halos inhabit halos with velocities not much larger than
their virial velocities, and so these effects could be impor-
tant. While preliminary calculations suggest this process
is less important than stellar disruptions (aided by fact
that often axion minihalos accrete onto much larger CDM
halos), we plan further study of minihalo interactions in
future work.

We now focus on stellar encounters. Assuming
Maxwellian velocity distributions, an estimate for the
catastrophic encounter rate is (Appendix C):

Rc =

√
8Gα2

3fcM
πρpr

3/2
vir . (12)

This rate does not depend on the velocity dispersion nor
the distribution of perturbers masses, just the overall
perturber mass density, ρp ≡ Mpnp, and subject mass.
A power law fitting can approximate this result when

M < 10−5M�:

R−1
c ≈ 40 Gyr

(
ρp

105M�kpc−3

)−1

(
M

10−6M�

)−0.16(
Aosc

0.03

)0.11

,

(13)

The M and Aosc dependence is weak.
The next consideration is the cumulative heating of

smaller encounters, with b > bc. Successive smaller en-
counters continue to add energy, leading to disruption
when the total energy added is ∼ |Eb|. We estimate that
the heating rate is (Appendix C):

RH ≡
Ė

|Eb|
=

√
8α2G

3fcM
πρpr

3/2
vir = Rc. (14)

Curiously our estimate for the heating rate is equal to
our estimate for the catastrophic destruction rate, Eq. 12.
The average time for one catastrophic encounter to occur
is also the average time needed for cumulative heating to
add up to the binding energy. Details on this interesting
equivalence can be found in Appendix C.

At small impact parameters of b . rs, Eq. 11 overpre-
dicts the energy imparted [85, 87]. Simulations explor-
ing this in [87] determined that the transition is well-fit
by a sharp cutoff between these two regimes, located at
bs ≡ (4α2/9β2)1/4rvir, where β2 is the is the root mean
square inverse radius and is 6 < β2 < 14 for our miniha-
los (see [87] for details). We find that, for the minihalos
in this work, bs = [0.25 − 0.41]rvir. For encounters with
bs > bc, catastrophic encounters are impossible. We cal-
culate bc and bs and find that, for speeds characteristic
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of the cluster lensing scenario (V = 1500 km s−1), mini-
halo of mass 10−5M� or larger have bs > bc for encoun-
ters with stars as high as 1.6M�. This implies that the
largest minihalos are immune to the majority of would-
be-catastrophic encounters in this environment; the en-
counters contribute to heating instead. We neglect this
in the following computations and note that the net ef-
fect is longer disruption times for & 10−5M� minihalos in
galaxy clusters. This consideration is even less relevant
in Milky Way-like environments, where the vast major-
ity of minihalos predicted by our simulations are nearly
unaffected by this correction.

Using RH and Rc, we estimate the disruption of axion
minihalos in environments relevant for the Milky Way
and cluster environments. For the Milky Way, we cal-
culate the expected catastrophic encounters and total
heating in terms of the number of passages through the
Milky Way’s disk. This parameterization allows for the
fact that some minihalos will have encountered the disk
a handful of times if they were accreted late and had a
low angular momentum orbit that takes it far out into
the halo. Other minihalos at the Solar Circle likely pass
through the disk many tens of times. We neglect stars
in the bulge and stellar halo, estimate the stellar surface
density at 8 kpc to be 108M� kpc−2 and V = 200 km/s.
Results are shown in right panel of Figure 9.

In the Milky Way, relevant to the PTA observable, our
estimates show that ∼ 10−6M� minihalos experience a
catastrophic encounter and disruptive heating after ∼ 10
disk passages, with stellar impacts becoming somewhat
less important for less massive minihalos. The minihalos
accreted many Gyr ago likely would have had 1-3 catas-
trophic encounters, and those that avoided one would
have had significant heating. Material that has fallen
onto the Milky Way more recently or that is on an orbit
with rare disk passages is likely to retain its axion mini-
halos, even the larger ones. More detailed calculations
are required to make a better estimate. Our results sug-
gest disruption patterns similar to Kavanagh et al. [88],
despite differences in the modeling of the minihalos.

Detecting the perturbations from axion minihalos from
gravitational lensing of highly magnified stars (§V) de-
pends on whether minihalos are disrupted in the centers
of galaxy clusters (although minihalos outside of the clus-
ter can contribute non-negligibly). Galaxy clusters are a
less stellar rich location than the Milky Way and, thus,
survival is more likely. We calculate the expected disrup-
tion time for this cluster environment; results are shown
in the left panel of Figure 9. At these lower densities,
our estimates indicate that many minihalo do not expe-
rience a single catastrophic encounter and collective heat-
ing should not significantly alter the axion minihalos, in
agreement with the estimates in Dai and Miralda-Escudé
[23].

Authors studying the effects of these disruptive mech-
anisms on dark halos and stellar systems have made the
case that the result from ∆E > Eb encounters is not
full disruption, but mass loss [88–91]. The energy im-

parted from a catastrophic encounter is mostly carried off
by particles in outer layers, leaving behind dense cores.
More detailed simulations would be required to under-
stand the masses of these cores for the minihalos that
are most impacted by encounters.

VII. CONCLUSIONS

We have run N-body simulations that study the forma-
tion of axion minihalos on mass scales where the initial
spectrum of axion perturbations is described by Gaussian
white-noise. The exact spectrum of axion perturbations
will be damped below the white noise scaling at high mo-
mentum, and high-wavenumber modes can be shaped by
non-gaussianities. However, lower momenta modes where
the spectrum is white and that limit to being Gaussian
are likely to be most relevant for observations, as they
shape the late-time minihalo mass function.

We simulated the mass function and density profiles
of axion minihalos. Our results show that the standard
Press-Schechter and Sheth-Tormen mass functions only
err at the factor of ∼ 2 level. We further showed that
a tweaked version of the Sheth-Tormen mass function
and the NFW profile with a physically motivated scale
radius (adapting the model of Dai and Miralda-Escudé
[23]) accurately describe the simulated halo properties
at different redshifts. We further showed that our mass
function, developed on our Gaussian white noise simu-
lations, is also able to roughly describe the evolution of
the mass function found in the simulations of Eggemeier
and Niemeyer [30] that start from the outputs of early
universe simulations to the sine-Gordon equation.

Our cosmologically minute simulations do not capture
the range of structures that collapse in the real universe.
We developed a model which allows us to extrapolate
our results to the current time and make connection to
observations. Namely, we assume that axion minihalos
stop merging and growing once they fall into the much
larger halos sourced by the adiabatic fluctuations from
inflation, but that they are able to survive intact. This
extension of our model allowed us to make predictions for
pulsar timing arrays and microlensing of highly magnified
cosmological stars. The abundance of axion minihalos we
find appear to be above the threshold that can be probed
by PTA observation with futuristic parameters, modulo
uncertainty in the amplitude of the density fluctuations
when cosmic strings dominate the axion production. Our
predictions for halo mass function and concentration are
also greater than an estimate for the threshold sensitivity
of the microlensing scenario.

However, these predictions ignore processes that po-
tentially disrupt axion minihalos within larger dark mat-
ter halos. We investigated the disruption of minihalos by
stellar encounters. While we found that such disruption
is unlikely to be important within galaxy clusters (ap-
plicable for the microlensing observable), we found that
it is more important in a galactic environment relevant
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to PTAs; however, they are likely not disruptive enough
to suppress our predictions by more than an O(1) fac-
tor. Semi-analytic techniques that better approximate
stellar encounters as well as other disruptions processes,
such as tides from the parent halo, have been developed
[73, 74, 87]. We aim to apply these to improve our es-
timates for the abundance of axion minihalos in future
work. In lieu of these calculations, our primary result for
the mass function (without disruption) in Fig. 8 should
perhaps be considered an upper bound for the axion mini-
halo abundance. To further complicate the story, ax-
ion minihalos have more substructure than CDM halos,
which is not included in our model and would enhance
the signals.

Our estimates for the abundance of minihalos in
present-day systems contrast with previous studies [23,
71] where minihalos that merged into other halos before
they were subsumed into the Milky Way or galaxy clus-
ter halos were effectively excluded. In particular, [23, 71]
computed the mass function results from axion isocur-
vature plus adiabatic fluctuations at the time of forma-
tion of the Milky Way or cluster, which results in the
mass function of axion halos being shifted to considerably
higher masses and less concentrated halos compared to
our estimates (compare the dashed ‘D&M Lensing’ curve
in Fig 8 with the solid curves). Our estimates include
the less massive more concentrated minihalos that merge
earlier with CDM halos. We argued that many of these
should survive.

Our simulations are scale-invariant except on the
smallest scales, and most collapse occurs during matter
domination when the evolution is self-similar. In these
limits, the only relevant parameter is the variance on any
mass scale σ2(M). Our semi-analytic halo mass func-
tion naturally incorporates this symmetry. Thus, it is
straightforward to apply our results to other axion-like
particles (ALP), where the axion decay constant fa and
axion mass ma are two potentially independent model
parameters unlike for the QCD axion. Our simulations
apply to the white noise formation for all ALP scenar-
ios by only matching the mass scale that has the same
variance as in our calculations. Disruption processes do
depend on halo mass and so unfortunately our results
there do not generalize. Of course, the observables will
change with mass as well. For example, much more mas-
sive halos may exceed to the critical density to act as a
strong gravitational lens [19].

Our calculations also have relevance to much different
dark matter scenarios. Primordial black holes (PBHs)
should have a white spectrum much like the post-inflation
axion, with O(1) fluctuations on the mass scale of the
black holes,MPBH [92]. Our simulations and calculations
also apply to the case where these comprise the dark
matter for halos comprised of PBHs with M � MPBH

(although the center of PBH halos could be cored by
two body interactions). Indeed, there is still a window
at MPBH = 10−17 − 10−11M� where PBHs could be a
substantial fraction of the dark matter [e.g. 93], one of

the few windows left. Our calculations suggest that mi-
crolensing and PTAs may be able to constrain the more
massive end of this window. Finally, our white spectrum
of perturbations is closer to the blue spectrum antici-
pated from scenarios with early matter domination [94] or
a light vector whose abundance is set by inflationary fluc-
tuations [95], suggesting that the standard semi-analytic
mass functions will apply there as well.
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Appendix A: Fitting the Halo Mass Function

The halo mass function from our simulation does not
agree with the prediction by Press & Schechter [69] or
Sheth & Tormen [70] computed with power spectrum in
Eq.1. However, we can calibrate our mass function with
these analytic models and extrapolate the result of our
simulation to present time. A simple model of collapsed
halos by Press & Schechter [69] gives the following halo
mass function:

m2dn/dm

ρ̄

dm

m
= νf(ν)

dν

ν
, (A1)

where ρ̄ is the comoving density of matter and ν, f(ν) are
defined as:

νf(ν) =

√
ν

2π
exp(−ν/2),

ν ≡ δ2
c (z)

σ2(m)
,

(A2)

where δc is the critical density required for spherical col-
lapse at z. In an Einstein-de Sitter cosmology, δc = 1.686.
σ2(m) is the variance in the initial density fluctuation
field when smoothed with a tophat filter of scale R =
(3m/4πρ̄)1/3, which can be determined as:

σ2(m) ≡
∫
dk

k

k3P (k)

2π2
|W (kR)|2, (A3)

where W (x) = (3/x3)[sin(x) − xcos(x)] is the spherical
top-hat window function. The variance of white-noise
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power spectrum from axion can be expressed as:

σ(M) =

√
3Aosc

2π2

M0

M
. (A4)

The Sheth-Tormen mass function provides a better fit
to the number density of halos in simulations, which
gives:

νf(ν) = A(p)
(
1 + (qν)−p

) ( qν
2π

)1/2

exp(−qν/2), (A5)

where p ≈ 0.3, q ≈ 0.75 and A(p) = [1 + 2−pΓ(1/2 −
p)/
√
π]−1 ≈ 0.3222 [70]. The functional form of this

mass function is motivated by the impact of large-scale
tidal fields on delaying collapse relative to the (spherical)
Press-Schechter prediction.

We can fit the halo mass function from our simulation
by tuning the parameters A, p, q in the Sheth-Tormen
mass function. We treat model parameter A as a free pa-
rameter rather than expressing it in terms of p. We find
the best fitting parameters to be A = 0.374, p = 0.19, q =
1.2. Given these parameters, we can make predictions in
halo mass function at different redshifts. As shown in
Fig. 2, the fitted halo mass function broadly agrees with
the mass function obtained from simulation, except at
low mass end where halo mass M . 10−9M�. See the
main text for discussion of the differences at low masses.

Appendix B: Convergence testing

This appendix investigates whether our primary re-
sults are sensitive to our choice of gravitational softening
length and time stepping. A worry is that the axion cos-
mology is so much different than the standard cosmology
that simulations may require much different accuracy pa-
rameters. We find that this is not the case.

To test convergence, we have run a reference simula-
tion that uses the same box size, gravitational softening
parameter and time-stepping parameter as the simula-
tions in Sec.II. We compare it to a simulation with half
the gravitational softening length and one with twice as
small time steps. All simulations considered in this ap-
pendix take N = 5123 particles and are run in a box size
of 50 pc/h.

In particular, the reference gravitational softening
length is equal to 1/30 in units of the mean separation
of N-body particles. (The mean separation can be es-
timated as L/Ngrid, where L is the box size and Ngrid

is the cube root of the number of particles.) In the ref-
erence run, the time stepping parameter η is taken to
be 0.02, which is the default time-stepping parameter
in MP-Gadget. The time-stepping criterion [98] used in
MP-Gadget:

∆t =
√

2ηε/a, (B1)

where ε is the gravitational softening length, η =
ErrTolIntAccuracy is a dimensionless parameter and a

is the local acceleration. The error of MP-Gadget’s leap-
frog integration scheme scales quadratically in ∆t. Both
the softening and time stepping parameters are set to half
their reference values in our two additional simulations
to test for convergence.

We compare the mass function and the density profile
in the reference run and the convergence-testing runs, as
shown in Fig. 10 and Fig. 11. We plot the mass functions
at z = 19 and z = 49, as shown in Fig. 10 and the mass
functions of all the simulations agree well and with our
semi-analytic model.

The z = 19 density profiles in Figure 11 are obtained
by averaging 20 halos around the specified mass (points)
as well as the NFW halo profile with scale radius given
by Eq. 8 (solid curves). We show density profiles of ha-
los at four different masses, and they all agree well with
the NFW profile. There are some differences at smaller
radii, although the differences do not notably go in one
direction or the other. We suspect this owes to slight dif-
ferences in the properties of halos being used in the aver-
age. Overall, the halo mass function and density profile
appear to be convergence. In Fig. 2, we also compared
the mass function with simulation that has a different
box size 10 pc and particle number 5123, which shows
good convergence as well. We also note that Fig. 11 is
showing the lowest redshift in our simulation, where the
comoving softening length subtends the largest physical
scale.

Appendix C: Equivalence of Disruption Timescales

When the encounter velocity V is much greater than
the minihalo’s internal dispersion, the impulse approxi-
mation may be used. For minihalos, all encounters are
in this regime. When the impact parameter b � rs, the
characteristic radius of the minihalo, the distant-tide ap-
proximation is valid, allowing the perturbing potential to
be expanded and higher order terms dropped. This in-
troduces error in the low b regime which generally must
be investigated with simulations. For minihalos, Green
and Goodwin [87] investigated this and found that a good
approximation to the energy imparted from a high speed
encounter with stars is:

∆E =
4α2

3

G2M2
pMr2

vir

V 2b4
(b > bs); (C1)

∆E = 3β2
G2M2

pM

V 2r2
vir

(b < bs). (C2)

where bs ≡ (4α2/9β2)1/4rvir. As discussed in § VI, we
find that for all but the largest minihalos in cluster en-
vironments, the b > bs expression applies. Here we show
the derivation of the RH = Rc equivalence under this
assumption.

We assume the perturber and subject have velocities
drawn from Maxwellian distributions, so that the relative
encounter velocities are also Maxwellian, with dispersion
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FIG. 10. Simulated FOF mass function at z = 49 and z = 19. Data points with different colors are from simulations run
with different force softening and timestepping parameters, in addition to the fiducial simulation. See the appendix for more
information on the different parameter values. The solid curves are the semi-analytic prediction discussed in Appendix A. The
simulated mass functions all agree with each other, suggesting that the halo mass function is converged in softening and time
stepping.
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FIG. 11. Density profiles at z = 19 for halos with different masses. These plots are obtained by averaging 20 halos around
the specified mass. The orange, purple and red data points are from the reference simulation, the simulation with a smaller
gravitational softening length, and the simulation with a smaller time-stepping parameter, respectively. The solid curves are
the NFW halo profile with scale radius given by Eq. 8. The vertical dashed line indicates the fiducial gravitational softening
length in our simulation.

σrel. The average rate of encounters with perturbers of
number density np, encounter speed V , and impact pa-

rameter b is [86]:

Ċ =
2
√

2πnp
σ3

rel

exp

{
− V 2

2σ2
rel

}
V 3dV bdb. (C3)

The catastrophic encounter rate is then obtained from in-
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tegrating Eq. C3 over all encounter velocities and impact
parameters from 0 to bc:

Rc ≡
2
√

2πnp
σ3

rel

∫ ∞
0

V 3dV exp

{
− V 2

2σ2
rel

}∫ bc

0

bdb

=

√
8Gα2

3fcM
πρpr

3/2
vir , (C4)

where the maximum catastrophic impact parameter bc is
found by setting the ratio of the energy impacted over
the binding energy to unity:

bc =

(
8α2GM2

p r
3
vir

3fcMV 2

)1/4

. (C5)

The remaining encounters, b > bc, are in the diffusive
regime. Each encounter creates some small |∆v| � v
impulse on the particles, changing the energy per unit
mass by v ·∆v + | 12∆v|2. The first term is much larger,
but we assume there is no preferred angle and so it cancels
out, leaving the heating term. The average rate of energy
added from non-catastrophic encounters is Ė = Ċ 〈∆E〉.
We use Eq. C3 and the high b expression for ∆E (Eq. 11)
and integrate over all encounter velocities and from bc

upwards:

Ė = Ċ 〈∆E〉 =
8α2

3

√
2π
G2MM2

pnpr
2
vir

σ3
rel∫ ∞

0

V dV exp

{
− V 2

2σ2
rel

}∫ ∞
bc

db

b3
,

=

√
α2|Eb|M

3
2πGρprvir.

(C6)

Finally, we obtain the fractional heating rate by dividing
by the binding energy:

RH ≡
Ė

|Eb|
=

√
8Gα2

3fcM
πρpr

3/2
vir = Rc. (C7)

We arrive at the surprising conclusion that, so long the
use of the high b expression for ∆E is justified, the ex-
pected time for one catastrophic encounter is the same
as the average time taken for cumulative encounters to
impart energy equal to the binding energy.

Previous heating estimates in the literature using the
impulsive encounter framework often use a low b cutoff
of ∼ rvir, which introduces dependencies on σrel and the
mass distribution of perturbers. This is justified when
b ∼ rvir encounters are generally not catastrophic, and
when penetrative encounters should impart negligible en-
ergy. However, when the catastrophic regime exists, the
heating calculation should begin at bc, where the catas-
trophic encounters ended, to correctly count all encounter
impact parameters. This leads to the equivalence of the
disruption timescales.
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