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Gravitational waves (GWs) from merging black holes allow for unprecedented probes of strong-field gravity.
Testing gravity in this regime requires accurate predictions of gravitational waveform templates in viable exten-
sions of General Relativity. We concentrate on scalar Gauss-Bonnet gravity, one of the most compelling classes
of theories appearing as low-energy limit of quantum gravity paradigms, which introduces quadratic curvature
corrections to gravity coupled to a scalar field and allows for black hole solutions with scalar-charge. Focusing
on inspiralling black hole binaries, we compute the leading-order corrections due to curvature nonlinearities in
the GW and scalar waveforms, showing that the new contributions, beyond merely the effect of scalar field,
appear at first post-Newtonian order in GWs. We provide ready-to-implement GW polarizations and phasing.
Computing the GW phasing in the Fourier domain, we perform a parameter-space study to quantify the de-
tectability of deviations from General Relativity. Our results lay important foundations for future precision tests
of gravity with both parametrized and theory-specific searches.

Introduction. Gravitational waves (GWs) from merging
black hole (BH) binaries are exploring new frontiers in strong-
field gravity, e.g., [1]. A key challenge is to test whether Ein-
stein’s theory of General Relativity (GR) describes gravity ac-
curately at all scales accessible to BHs, and to discover sig-
natures of quantum gravity. Several BH mergers have already
been detected by the LIGO and Virgo interferometers [2–6].
We anticipate an ever-increasing number and high precision
measurements starting with the upcoming fourth observing
run of the GW detector network.

To detect and to measure the properties of merging BH bi-
naries, we crucially rely on detailed theoretical models to in-
terpret GW signals. At present, models to test gravity are
mostly null tests against GR, with parameterized deviations
from GR waveforms. These tests are performed only on sin-
gle coefficients [7–9] and thus, such strategies remain limited
when interpreting theoretical constraints. Therefore, there is
an urgent need to compute inspiral-merger-ringdown wave-
forms from alternative theories of gravity in order to allow for
an informed mapping of parametrized approaches to exten-
sions of GR, consistent, theory-specific comparisons against
observations, and for a systematic search of quantum gravity
signatures in GW detections.

In this letter, we provide, for the first time, analyti-
cal waveforms that include the effect of non-linear curva-
ture corrections to inspiraling binaries beyond the weak-
coupling limit, for a well-motivated class of beyond GR the-
ories. These theories contain contributions from the Gauss-
Bonnet (GB) topological invariant class through the scalar
RGB = R2 − 4RµνRµν + RµνρσRµνρσ, which respects the
Lorentz and CPT symmetries (this differs from the dynamical
Chern–Simons theory [10, 11], for instance), and is coupled to
a dynamical scalar. Scalar Gauss-Bonnet (sGB) gravity theo-
ries are ghost-free and arise in the low-energy limit of quan-

tum gravity paradigms such as string theories and loop quan-
tum gravity [12–14], which makes them promising effective
theories at the energy scales relevant for astrophysical BHs.
In sGB theories, BHs can spontaneously scalarize [15, 16] or
develop scalar hair [14, 17–22]. The scalar and higher cur-
vature contributions modify BH binary’s dynamics and GWs,
making BH mergers the most interesting avenue to test these
theories.

Previous work on analytical models in sGB gravity has fo-
cused on the leading-order contributions to BH binary wave-
forms [23], which are impacted only by the scalar field and
not by the curvature nonlinearities, and on computing the La-
grangian for the dynamics [24]. The effects of an extra scalar
field on GWs of binary inspirals have also been analytically
computed in scalar-tensor (ST) theories [25–29], where, how-
ever, only neutron stars scalarize.

The first numerical relativity simulations of in sGB grav-
ity used an effective-field-theoretical treatment [30, 31] or the
decoupling limit [32] due to challenges in the time evolution
formulation for general couplings [33, 34]. Recent progress
in the formulation of sGB as well-posed initial value prob-
lem [35, 36] was used in the first numerical evolution of the
nonlinear field equations [37].

This work makes important progress on three fronts: (i)
we compute, for the first time, analytical waveforms during
the inspiral stage of binary evolution with the effect of higher
curvature corrections. Previous work in [23] captured only
the corrections due to the scalar field; (ii) Our calculation and
methods are not limited to the small-coupling approximation;
they are applicable to all coupling strengths that lie within the
theoretical bound [14, 17] as well as general couplings that re-
main unconstrained; (iii) We perform a parameter space study
by varying the coupling parameter, coupling function, and BH
masses, for scalar as well as tensor radiation-dominated inspi-
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rals. We further demonstrate that the effect of the GB scalar is
distinct from the scalar in ST theories due to explicit GB cou-
pling dependent terms. This has consequences for interpreting
GW signals from BH-neutron star binaries [38].

Using the Post-Newtonian (PN) approach, we compute the
scalar and tensor waves to half and one relative PN-order
(∼ O (1/c) and∼ O (1/c2), where c is the speed of light used
here as the formal PN expansion parameter), respectively. We
also calculate the GW phasing, to which measurements are
very sensitive, as well as the polarization waveforms. Our re-
sults include higher order strong-field effects than previously
computed, which are critical for GW measurements. Such ef-
fects in alternative theories may mimic biases in fundamen-
tal source parameters when analysing with GR-only wave-
forms. This work lays the foundation for potential discoveries
and provides the framework for computing new stringent con-
straints on nonlinear curvature effects of gravity.

Black hole binaries in scalar Gauss-Bonnet theory. The
gravitational action with the GB higher curvature terms is

S =

∫
d4x

c3
√
−g

16πG

[
R− 2(∇φ)2 + αf(φ)RGB

]
. (1a)

The coupling constant α has dimensions of length squared.
Choosing the coupling function f(φ) = e2φ/4 corresponds
to Einstein dilaton Gauss Bonnet (EdGB) gravity [14], and
f(φ) = φ to shift symmetric sGB (ssGB) gravity [17].

The skeletonized matter action [39] Sm describing two BHs
labeled by A,B, added linearly to S, is

Sm = −c
∫
MA(φ)

√
−gµνdxµAdxνA + (A↔ B). (1b)

Here xµA is the world line of particle A. With this ansatz, the
self-gravity of the compact objects enters through the scalar
dependent mass MA(φ). In the weak-filed limit, it can be
expanded as

MA(φ) = mA

[
1 + α0

Aδφ+
1

2

(
α0
A

2
+ β0

A

)
δφ2
]

+O(δφ3),

(2)
with δφ the perturbation of φ around its background value φ0

and mA the asymptotic value of the mass. The scalar-charge
parameter and its derivative are defined as

α0
A =

d lnMA(φ)

dφ

∣∣∣∣
φ=φ0

, β0
A =

dαA(φ)

dφ

∣∣∣∣
φ=φ0

. (3)

Within the small-coupling approximation, the explicit form
of the scalar-charge α0

A for nonspinning BHs has been derived
to fourth order in the coupling in [24]. To the leading order,
α0
A ≡ −αf ′(φ0)/2m2

A for all coupling functions.

Gravitational and scalar radiation. To compute the dy-
namics and gravitational radiation of BH binaries in the the-
ory (1), we introduce the gothic metric gαβ =

√
−ggαβ and

decompose it in the weak-field limit as gµν = hµν + ηµν ,

where ηµν is the flat metric and hµν is the tensor perturba-
tion. Specializing to harmonic gauge, where ∂νgµν = 0, we
write the field equations derived from action (1) in a relaxed
form [40], finding that

�hαβ =
16πG

c4
(−g)Tαβm + ΛαβGB + ΛαβGR , (4a)

�φ =
4πG

c4
Sm,φ√
−g
− αf ′(φ)

4
RGB , (4b)

where ΛαβGR contains terms that are quadratic in hαβ and its
derivatives [40] and Tαβm is the stress-energy tensor, derived
from the matter action in Eq. (1b). For the explicit GB contri-
bution to the metric field equation we find

ΛαβGB =− 8α(−g) ∗R̂∗cαβd∇cdf(φ)

+∇cφ∇dφ
(
2gαcgβd − gαβgcd

)
,

(5)

where, ∗R̂∗cαβd is the gauge-fixed dual Riemann tensor. The
formal solutions to Eq. (4) are computed with the retarded
Green’s function approach

hµν(t,x) =
1

4π

∫
sµν (t′,x′) δ

(
t′ − t+ |x− x′| /c2

)
|x− x′|

d4x′,

(6)
where sµν denotes the source terms on the right hand side
of (4a), and similarly for the scalar field. The integral in
Eq. (6) extends over the past light cone of the field point
(ct,x). To calculate the solution of the integral, we split
the spacetime into three regions: (i) The strong-field zones
close to each of the BHs. At the boundaries of these zones
we extract the masses MA(φ), and treat their interior re-
gions as a skeletonized worldline [39, 41]; (ii) The near-zone,
where the separation between source and field point is less
than the characteristic wavelength of the GWs; and (iii) The
far zone at larger distances. With this splitting, we can use
the post-Newtonian Direct Integration of the Relaxed Einstein
equations (DIRE) [42] formalism to divide the integration of
Eq. (6) into four different calculations, corresponding to the
near and far zone contributions for each relative location of
the source and field points.

More specifically, to turn the formal solutions of Eq. (6)
into a practical scheme, we make the PN assumption that
hµν and δφ are small, and perturbatively expand the nonlinear
terms in sµν and its scalar analogue using the formal expan-
sion parameter 1/c2, keeping terms up to the relative first PN
order. We follow the methods of [42] for evaluating the four
different contributions to the integrals, and compute the equa-
tions of motion from the 1PN Lagrangian given in Ref. [24]
to eliminate accelerations. The technical details of the calcu-
lations are given in [43].

The energy radiated in tensor (T) and scalar (S) waves is
computed from

Ė = ĖT + ĖS =
c3R2

32πG

∮ [
ḣijTTḣ

ij
TT + φ̇2

]
d2Ω , (7)
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where R is the distance between the source and the far
zone field point i.e., the detectors, and TT denotes the
transverse-traceless projection. In the following, we special-
ize to circular-orbit binary systems. In analogous to ST theo-
ries [44], we define the binary parameters

ᾱ ≡
(
1 + α0

Aα
0
B

)
, γ̄ ≡ −2

α0
Aα

0
B

ᾱ
, β̄A ≡

1

2

β0
A(α0

B)2

ᾱ2
,

(8)

where ∆m = mA − mB , with the convention mA < mB ,
and m = mA + mB is the total mass. We obtain, omitting
corrections of O(c−4) :

ĖT= F̄N

{
1 + F1PN

GR −
16β̃+v̄

2

3c2
− 10γ̄v̄2

3c2
− εf ′(φ0)v̄6

G2ᾱ5/2c2[
8S1,1,0 +

16S3,1,0

3ᾱ
− 261(S1,0,1 − 2ηS1,0,−1)

7

]}
, (9)

ĖS= F̄D

[
S2
− −

2S2
−(20β̃+ + 5γ̄ − 2η)

3

v̄2

c2

+
(4S2

+ − 54S2
−)

5

v̄2

c2
− 8S−

γ̄

(
S−β̃+ + S+β̃−

) v̄2

c2

− v̄
6

c2
εf ′(φ0)

G2ᾱ5/2

(
32S3,1,0S2

−
3ᾱ

+
η∆mS+S−S1,1,0

8m

)]
. (10)

Here, η = mAmB/m
2 is the symmetric mass ratio. Note that

the circular-orbit velocity v̄ = (Gmᾱω)1/3 differs from its
GR definition by a factor of ᾱ. The leading order energy flux
in tensor radiation is F̄N = 32η2v̄10/(5Gc5ᾱ2), where N de-
notes the Newtonian order contribution. The contribution up
to 1PN order F1PN

GR is given e.g. in [45]. The prefactor of the
leading order flux of scalar radiation due to dipole emission is
F̄D = 4η2v̄8/(3Gᾱc3). We have also defined

S± =
α0
A ± α0

B

2
√
ᾱ

, β̃± =
β̄A(1− ∆m

m )± β̄B(1 + ∆m
m )

2
,

ε =
α

m2
, Sa,b,c = aS+ +

(
b
∆m

m
+ c

)
S− , (11)

where ε is the dimensionless coupling parameter.
our result for the energy fluxes have a similar structure to

those of a ST theory (see [27, 28] ) but differ through the ad-
ditional ε-dependent terms entering first at relative 1PN or-
der.This feature can be used in distinguishing the two theo-
ries when analysing BH-neutron star binaries. We also note
that the scaling of the GB contributions in the PN expansion
is O(c−2), irrespective of the value of the coupling. How-
ever, due to the different scaling with v̄, the GB contribu-
tions (∼ v̄6) are suppressed at large separation compared to
the other 1PN terms (∼ v̄2).

From the Lagrangian in [24] we derive the circular-orbit
binding energy [43] to O(c−2):

E = −ηmv̄2

[
E1PN

GR +
(2β̃+ − γ̄)v̄2

3c2
+

11S3,1,0v̄
6

3ᾱc2
εf ′(φ0)

G2ᾱ5/2

]
,

(12)

where E1PN
GR is the 1PN correction in GR [45].

Gravitational wave phasing. The GW measurements are
very sensitive to the phase evolution of the waveform. An ap-
proximation for the phasing can be derived from energy bal-
ance dE(v̄)/dt = −F(v̄), which is valid as long as ω̇/ω2 �
1. This yields the differential equations

dϕ

dt
− v̄3

Gᾱm
= 0 ,

dv̄

dt
+
F(v̄)

E′(v̄)
= 0. (13)

We solve this system in the Taylor T4 approximation [46],
by expanding the entire ratio F(v̄)/E′(v̄) to 1PN order and
solving Eq. (13) numerically for the phase evolution.

As the parametrized tests of gravity are mainly based
on waveforms in the Fourier domain, we also compute the
Fourier domain phase ψ(f) at the dominant GW frequency
f = ω/π in the stationary phase approximation (SPA) [47]
by using

ψ(f) = 2πft0 − φ0 + 2

∫ v0

vf

(v3
f − v3)

E′(v)

F(v)
dv . (14)

The subscript 0 refers to a reference point in the binary evolu-
tion. To solve for the GW phase from (14), we distinguish sys-
tems whose inspiral is driven by scalar-dipolar versus tensor-
quadrupolar radiation, with the scalar-dipolar driven (DD)
regime relevant for:

v̄2
DD �

5c2S2
−ᾱ

24
or fDD �

(
5

24

)3/2 c3 S3
−
√
ᾱ

πGm
. (15)

At higher frequencies the system is quadrupole driven (QD).
The phase evolution in the QD regime for equal masses (mass
ratio q = mA/mB = 1) is given by,

ψQD
q=1 =

3c5ᾱ

128v̄5ξ̄

{
1 +

20v̄2

9c2

[
1247

336ξ̄
− 3

2
+

(
980

336ξ̄
− 1

6

)
η

+

(
448

336ξ̄
− 4

3

)
γ̄ + 2

(
896

336ξ̄
+

4

3

)
β̃+

]
− 25c1PN

S ᾱv̄2

54ξ̄c2

−40S+v̄
6

c2
f ′(φ0)ε

g2ᾱ5/2

(
12

ξ̄
+

495(1− 2η)

28ξ̄
+

88

ᾱ

)}
, (16)

with ξ̄ = 1+S2
+ᾱ/6. The full expression for arbitrary masses

and for the DD regime is given in Ref. [43]. We note that
the QD phasing has contributions from 1PN scalar flux, indi-
cated as c1PN

S . We calculated the scalar waveform to 0.5PN
order, leaving this contribution undetermined. Following the
strategy employed for 2PN tidal effects [48], we will keep all
the other 1PN terms and set the missing contributions to zero.
The c1PN

S term is expected to have a similar structure as other
terms and possibly depend on the parameter S+. The inclu-
sion of this term would increase the overall energy flux and
thus the phase differences between sGB and GR.

Ready-to-use gravitational wave polarizations. In the time
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FIG. 1: The time evolution of GW signal for a m = 15M� binary with q = 1/2 and ε = 0.03, and the corresponding GW
frequency evolution. The blue dashed curve indicates the EdGB waveform and the black curve the 1PN GR waveform. The
orbit is viewed edge-on (i = π/2) and t = 0 indicates the time corresponding to f = 10Hz. The shaded colored regions
correspond to different snapshots of the waveform.

domain, GW detectors measure the linear combination of po-
larization waveforms h+(t) and h×(t). We derive the two
GW polarizations from the solution to Eq. (6), solved explic-
itly in [43]. To 1PN order, we obtain

h+,× =
2Gµ

Rc2
v̄2

c2

[
H0

+,× +
v̄

c
H

1/2
+,× +

v̄2

c2
H1

+,×

+
v̄6

c2
εf ′(φ0)

24G2ᾱ5/2
H1

+,×GB +O(c−3)

]
. (17)

where the normal to the orbit differs from the radial direction
to the observer by an inclination angle ı. The coefficients of
the plus polarization are

H0
+ = H0

+(GR) , H
1/2
+ = H

1/2
+ (GR) ,

H1
+ = H1

+(GR) +
2

3
(γ̄ + β̄+)

(
1 + cos2(i)

)
cos(2ϕ) ,

H1
+(GB) = 192 [(cos(2i) + 3) cos(2ϕ)S2,1,0+

sin2(i)S3,1,0

]
+ 32S3,1,0

[(
cos2(i) + 1

)
cos(2ϕ)− 3 sin2(i)

]
+ 18

[
(2η + 1)S− + (1− 2η)S+

][
2 sin2(2i) cos(2ϕ)− sin2(i)(cos(2i) + 3)(3 cos(4ϕ) + 1)

]
,

(18)

And for the cross polarization, they are

H0
× = H0

×(GR) , H
1/2
× = H

1/2
× (GR) ,

H1
× = H1

×(GR) +
4

3
cos(i) sin(2ϕ)

[
γ̄ + 2β+ − 2

∆m

m
β−

]
,

H1
×(GB) = cos(i)

{
2 sin(2ϕ)[

9 sin2(i)(S108,52,0 − 3 + (2η + 1)S− + (1− 2η)S+)
]

− 27 sin2(i) sin(4ϕ)
[
(2η + 1)S− + (1− 2η)S+

]}
.

(19)

In FIG.1 we show the GW polarization and phase evolu-
tion in time. Exemplarily, we choose an intermediate coupling
value ε = 0.03 for a BH binary withm = 15M� and q = 1/2.
We also show a comparison to the 1PN waveforms within GR.
The evolution starts at a GW frequency of f = 10Hz, i.e.,
when the GWs would first enter the sensitivity band of current
ground-based GW detectors. We observe that the dephasing
of the waves starts early in the evolution, while the difference
between the amplitudes remains relatively small until the bi-
nary reaches frequencies of around f ≈ 60Hz, after which
the GB phasing and amplitude increase rapidly and the differ-
ence with GR waveform becomes significant.

Impact of higher-curvature gravity on GWs. Considering
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FIG. 2: Top: GW inspiral phase ψ(f) as a function of frequency f for a m = 15M� binary with q = 1 (solid lines), q = 1/2
(dashed lines), and q = 1/4 (dot-dashed lines), with ε = 0.03 (left) and ε = 0.005 (right). The red curves indicate EdGB
gravity. In blue, we show the corresponding 1PN GR phase, and in black, the 3.5PN GR phase. Bottom: GW phase difference
between EdGB ψEdGB and 1PN GR ψGR shown for aforementioned systems.

EdGB and ssGB theories, we study the impact of the GB cou-
pling parameter on the phase evolution of quasi-circular BH
binaries in the A+LIGO sensitive frequency band [49].

Requiring regular BH horizons limits the coupling param-
eter to ε < 0.619 in EdGB [14] and ε . 0.3 in ssGB [17].
Simulations of BH mergers predict a bound on the coupling
of ε . 0.03 (i.e.

√
α . 3.2 km for an equal-mass binary of

20M�) from current GW observations [30, 31]. This is con-
sistent with the GW-based constraints of [50] and constraints
from low-mass X-ray binaries [51].

Here, we choose ε = 0.03, in correspondence with Fig. 1,
and also ε = 0.005. As we will show, the latter choice marks
the threshold for detectability of sGB phase modifications, for
many low-mass BH binary systems. We use the explicit re-
sult of [24] for the scalar charges, valid to first order in the
coupling. As we are mainly interested in the behaviour of the
theory at high curvature regimes (i.e. low BH masses), we
choose a total mass of m = 15M� and vary the individual
BH masses for mass ratios q = 1, 1/2, 1/4. For the binaries
with q = 1, the scalar radiation is very small, as S− vanishes
in this case.

The GB corrections to the inspiral phase evolution are de-

termined by the GB coupling parameter α = εm2, which
also sets the scalar charges. For instance, the threshold (15)
indicates that for a relatively large ε, those systems with
1/2 ≤ q < 1 are DD when they enter the LIGO band. Yet
for small ε, having a DD regime and transition to QD in the
ground-based detector bands requires low mass ratio binaries
with individual BHs as light as 2M�. This means that for
such small couplings, binary BHs are typically QD systems
in the ground-based detector bands, yet mixed binaries may
have a DD regime. For example, in the case of 15M� BH
binaries with ε = 0.1, the q = 1/2 system is a DD inspiral
that transitions to the QD regime, and the q = 1/4 case is DD
throughout the entire inspiral.

In Fig.2, we show the phase evolution of binary BHs in
EdGB gravity as compared to the corresponding phase in GR
to 3.5PN order, for the aforementioned choices of ε. To isolate
the GB effects, we also compare the phasing with that of GR
to 1PN order. The upper frequency bound is chosen as fmax =
2(63/2πm)−1 ≈ 586 Hz and to simplify the comparison, all
phases are aligned with the 1PN equal-mass phase in GR at
the minimum frequency limit. These systems represent the
most relevant regime for the majority of binaries observable
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with the current detectors LIGO/Virgo/KAGRA.
We only show the EdGB phase evolution as the phase dif-

ference between the ssGB and EdGB theories is relatively
small compared to the overall phase evolution. This is to
be expected as we are using a first order approximation to
α0
A. We note here that for q 6= 1 binaries, this difference is

within the limit of detectability once having ε > 0.1 ,i.e., for
ε = 0.01 the phases differ by O(10) GW cycles.

As shown in Fig. 2, the sGB phases are always less than
their 1PN GR analogue, decreasing the overall phase of an
equal-mass BH binary by ∼ 322 GW cycles if ε = 0.03, and
by∼ 9 GW cycles if ε = 0.005. As can be seen from the plot,
this phase difference increases significantly for q 6= 1 bina-
ries, which also emit energy through scalar dipole radiation.
Overall, decreasing the value of ε results in smaller deviations
from the GR phase. For very small values of the coupling pa-
rameter (not shown here) such as ε = 0.001, the change in
number of GW cycles of binaries with q < 1/2 is of the order
of several cycles, making the GB effects still within the limit
of detectability.

Conclusions. We have studied GWs from BH binary
inspirals for gravity theories with higher-curvature correc-
tions characterized by the coupling of the GB invariant to a
scalar field. We have computed novel signatures from non-
linear curvature corrections to 1PN order beyond the lead-
ing quadrupole emission in the gravitational waveform, and
to 0.5PN order in the scalar waveform, in addition to scalar
effects considered in previous work [23]. We provide ready-
to-implement 1PN inspiral GW templates. By deriving the
SPA gravitational phase and evaluating it for examples of BH
binaries in ssGB and EdGB theories, we show that the inspi-
rals are accelerated compared to 1PN GR case, with the devi-
ation being strongly dependent on the coupling parameter of
the theory.

Our results are not restricted to specific choices of the cou-
pling function nor to the weak coupling limit. In particular,
they allow to investigate a wide class of sGB gravity includ-
ing those that yield spontaneously scalarized BHs [15, 16], a
truly nonlinear effect that is suppressed by a weak coupling
treatment. Thus, our work lays the foundation to explore dy-
namical scalarization or descalarization of BH binaries [32]
during the early inspiral.

Our results provide a critical first step towards construct-
ing inspiral-merger-ringdown GW templates at high curva-
ture regimes and provides a useful benchmark for numeri-
cal relativity simulations of the merger phase [43]. By fur-
ther showing that the scalar-charge induced dipole radiation
as well as the higher curvature effects are potentially observ-
able in A+LIGO/Virgo/KAGRA sensitivity bands, we provide
the baseline for more extensive parameter estimation studies,
which we leave for future work, for both ground-based and
multi-band GW observations.
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