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For scalar perturbations of an extreme Reissner-Nordstrom black hole we show numerically that
the Ori pre-factor equals the Aretakis conserved charge. For a family of scalar or gravitational
perturbations of an extreme Kerr black hole, whose members vary only in the radial location of
the center of the initial packet, we demonstrate a linear relation of a generalized Ori pre-factor
— a certain expression obtained from the late-time expansion or the perturbation field at finite
distances — and the Aretakis conserved charge . We infer that it can be established that there is an
Aretakis conserved charge for scalar or gravitational perturbations of extreme Kerr black holes. This
conclusion, in addition to the calculation of the Aretakis charge, can be made from measurements
at a finite distance: Extreme Kerr black holes have gravitational hair that can be measured at finite
distances, and violates the uniqueness theorems. This gravitational hair can in principle be detected

by gravitational-wave detectors.

Introduction and summary. Extreme spherically
symmetric and charged black holes [extreme Reissner-
Nordstrom black holes (BHs), hereafter ERN] have been
shown to carry massless scalar hair that can be mea-
sured at future null infinity (#*) [1]. This scalar hair
is a certain quantity s[¢)] which is evaluated at .#* and
which equals the Aretakis charge, a non-vanishing quan-
tity H[¢)] which is calculated on the BH’s event horizon
(EH, 2 7) but vanishes if the BH is non-extreme.

Since the scalar hair at .71 is intimately related to
the Aretakis conserved charge on J#", one may suspect
that corresponding conserved charges for other fields on
either ERN or extreme Kerr (EK) BHs may also be re-
lated to observable hair at .# T, or be measurable at finite
distances. Specifically, conserved Aretakis charges were
found in ERN, in addition for massless scalar fields [2]
also for massive scalar fields, for coupled linearized grav-
itational and electromagnetic fields [3], for charged scalar
perturbations [4], and in EK for scalar [2], electromag-
netic, and gravitational perturbations [5-7].

Ori showed that the Aretakis charge can also be used
in order to determine a certain pre-factor e[t] in the
late time expansion of scalar field perturbation fields in
ERN as measured at a finite distance [8]. (See also [9]
for more detail.) Here, we first show numerically that
for scalar perturbations of ERN the Ori pre-factor e[y]
equals H[¢], and therefore can be used in order to mea-
sure the Aretakis conserved charge at a finite distance.
It follows that e[t)] can be interpreted as scalar hair mea-
sured outside the BH.

We then go beyond the framework of scalar perturba-
tions of ERN to EK, and show numerically that anal-
ogous pre-factors can be formulated also for scalar and
gravitational perturbations of EK. Since the value of the
Aretakis charge depends on the initial data of the per-
turbation field, it follows that information on the prepa-
ration of the perturbation field can be inferred from the
BH measurements at great distances, in apparent con-
tradiction of the established no-hair and BH uniqueness
theorems [10-12], and specifically their extensions to EK

[13, 14]. That is, we bring evidence that in addition
to the three externally observable classical parameters,
specifically the BH’s mass M, charge ¢, and spin angular
momentum a, it is in principle possible to also detect with
a gravitational-wave detector the gravitational Aretakis
charge of EK.

While the proposed gravitational hair of EK is intrigu-
ing as a counter example for the uniqueness theorem, we
emphasize that EK would require fine tuning to result
from a dynamical process (cf. [15]). However, for nearly
extreme BHs one could identify transient gravitational
hair that would persist for a duration related to its close-
ness to extremality, following which the hair would decay.

Setting up the problem. Following Ori [8] we write the
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in Boyer-Lindquist coordinates, where s is the field’s spin,
¢, m are the spherical harmonic numbers, and the index I
corresponds to the BH type, i.e., I = {ERN, EK}. Here,
el is a generalized Ori pre-factor. The case studied

s,tm
in [8] corresponds to g)lzla}, for which it was found that

€000 = (—4)H 1 M3+ 2¢ [8], where e[i)] is a certain pre-
factor that depends on the initial data (and which is given
explicitly in [8]), and pOE}ZI(\)I =041, ng]’l;”}g =20+ 2, and
OF 85 (0) = 1. The late-time expansion (1) is expected to
be valid for t > r,, where 7, is the tortoise coordinate.
Specifically, we may expect r-dependent correction terms
when this condition is not satisfied. Comparing [1] and
[8] we expect that ef g [¢)] = —4M?H][1)).

Numerical approach. To test this prediction, and to
set up the framework for generalization to EK and to
gravitational perturbations, we write the 241 Teukol-
sky equation in ERN or EK backgrounds for azimuthal
(m = 0) modes in compactified hyperboloidal coordi-
nates (7, p, 0, @), such that #+ is included in the compu-
tational domain at a finite radial (in p) coordinate [16].



We re-write the second-order hyperbolic partial differen-
tial equation as a coupled system of two first-order hy-
perbolic equations. We solve this system for the scalar
field case by implementing a second-order Richtmeyer-
Lax-Wendroff iterative evolution scheme [17, 18]. For
the gravitational case we implement a sixth-order (in
p) WENO (Weighted Essentially Non-Oscillatory) finite-
difference scheme with explicit time-stepping [6]. These
codes converge with second-order temporally and angu-
larly.

The initial data are compactly supported “truncated”
gaussians with non-zero initial field values on J#*, but
similar results are expected also for other forms of initial
data. Specifically, in hyperboloidal coordinates (p, 7) (see
[17] for definitions), the initially spherical (¢ = 0) gaus-
sian pulse is non-vanishing in the range p/M € [0.95, 8],
has a width of 0.1M and centered close to the BH (at
p/M = 1.0, 1.1, 1.2, 1.3, 1.4 and 1.5 respectively).
(The EH, 57T, is at p = 0.95M for ERN and EK in
these coordinates.) The outer boundary is located at
S =p(FT)=19.0M.

The computations were performed on IBM 32-core
Power9 servers accelerated by Nvidia V100 GPGPUs.
Our resolution for each production run was Ap =
M/6,400, AT = M/12,800, Af = 7/64, which we run
in quadrupole precision (128-bit, i.e., to ~ 30 decimal
digits). The combination of quadruple-precision float-
ing point numerics and the extremely high-resolution re-
sulted in computationally intensive simulations, which
took two weeks for each run to get to t/M ~ 1,600.

Scalar perturbations of ERN. We calculate e [¢] di-

rectly from Eq. (1), and H{'(g [¢] from
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where I = ERN. To determine ef§5[¢] we calculate it
for a set of finite values of the time. Figure 1(a) shows
ego0 (] at a number of time values as a function of the
Schwarzschild coordinate r, for the initial data set for
which the gaussian is centered at p/M = 1.0. Notice
that the numerical constancy of (t/M)?(1 — M/r)y§6h
for small values of r/M suggests that pggy = 1 and

ngo = 2, as expected from [8]. For larger values of r/M

the constant value starts to vary, as expected from the
expansion of [8]. Equation (1) suggests that eg'g[¢](t)
is time dependent, and that when (£/M)?(1—M/r)ig ey
is plotted as a function of inverse time, the value of k£ can
be determined. We see in Fig. 1 that there is indeed time
dependence as expected.

The time dependence of e s [1/](f) is shown in greater
detail in Fig 2, which displays for each initial data set
the values of efg[1](£). We then extrapolate the values
to M/t — 0 by fitting to a linear function and finding
the intercept and the slope to determine ef{y[¢]. The
linearity suggests that k(}if% =1, in agreement with [8].

The values of ef' (5 [¢)] depend on the choice of the ini-
tial data set. In Fig. 3(a) we show (t/M)?(1—M/r)ig oo
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Figure 1: The values of e} ; o[1)](t) as functions of r /M. These
values are shown for the data set for which at the gaussian’s
center p/M = 1.0. Top panel (a): ERN with s = 0, = 0.
Middle panel (b): EK with s = 0,/ = 0. Bottom panel
(¢): EK with s = —2,¢ = 2. The values are plotted for
t/M = 1100 (blue), 1200 (red), 1300 (green), 1400 (cyan),
1500 (purple), and 1600 (black). [For panel (c) the time value
was replaced with 1553.] The function f(t,r) = (t/M)*(1 —
M/r) and the function g(t,r) = M(t/M)%(r/M)*(1 — M/r)5.
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Figure 2: The values of e&%}g [¢](t), normalized by their values
as t — oo, as functions of M/t. These values are shown for
each initial data set, parametrized by the p/M value at the
center of the gaussian packet.

for each initial data set as functions of /M. As the cen-
ter of the initial gaussian packet moves outward (to larger
p values) the value of (t/M)*(1 — M/r)ygy decreases.

Finally, Fig. 4(a) shows the values of ef§5[¢)] as a
ERN

function of the corresponding Hp'gq (4] for the differ-
ent data sets. Fitting our numerical data to ef'qh[¢] =
a HEGG[¢] + B we find that o = —4.0024 4 0.0013 and
B = (1.84£9.6) x 10~*, consistently with our expectation.
The Ori pre-factor e equals the Aretakis charge H.
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Figure 3: The values of e ,o[¢](t/M = 1500) as functions
of r/M, shown for each initial data set, parametrized by the
p/M value at the center of the gaussian packet. Left panel
(a): ERN with s = 0, = 0. Center panel (b): EK with
s =0,¢=0. Right panel (¢): EK with s = —2,£=2.
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Figure 4: The pre-factor ei,zyo[w] shown as a function of the

Aretakis charge H!,o[t] for the different initial data sets
(parametrized with p/m at the center of the gaussian ini-
tial packet). Top panel (a): ERN with s = 0,£ = 0. Middle
panel (b): EK with s = 0,¢ = 0. Bottom panel (c): EK with
s=—-2,0=2.

Scalar perturbations of EK. We next extend the anal-
ysis from the case of a scalar field in ERN to scalar
and gravitational perturbations of EK. First, we set up
the initial value problem for scalar field perturbations
similarly as for ERN. We use the expansion (1) as an
Ansatz. The results for the scalar case in EK are shown
in Figs. 1(b), 3(b), and 4(b). These results suggest that
Eq. (1) describes well also the field for this case. Fitting
the parameters to this Ansatz, we find that pgf, = 1
and nf§ o = 2. We also find that O§,(f) = 1. To find
HEEol] we again use Eq. (2) with I = EK. Seeking a
linear relation of the form ef§ o[¢)] = a HEG o[¢] + B we
find that o = —14.13 £ 0.03 and S = —0.048 £ 0.023.
The linear relation of e o[t and HE' o[1)] suggest that

also in this case the Aretakis conserved charge can be
measured at a finite distance, and that a generalized Ori
pre-factor can be used in order to measure it.

Gravitational perturbations of EK. Finally, we consider
EK gravitational perturbations with s = —2 and ¢ = 2.
We write the Teukolsky equation for a Kerr BH with
parameters M, a for the variable ®_5, which is related
to the Teukolsky function WX, in the Kinnersley tetrad
and Boyer-Lindquist coordinates via ® o = (r/ A%) U,
where A = 72 — 2Mr + a®. Since the Weyl scalar i
in the Hartle-Hawking tetrad is related to its Kinnersley
tertrad counterpart, X, via a type-III transformation,
or Y = 4(r? 4+ a2)2 A=29yK [19] and since V¥, = (r —
ia cos §)* K [20] we find that

r(r—iacos0)' i
D= — i, (3)
4(r? + a?)
and use ®_5 with £ = 2, m = 0 and a = M for
1p§12<,270. Note that at great distances, as r >> M,

Bo0 ~ (r/HYi ~ ryf. Therefore, determination
of 1/1113};7270 at great distances allows us to measure di-
rectly the Weyl scalar 1X in the Kinnersley tetrad. Con-
versely, measurement with a gravitational wave detector
at a great distance of ¢f allows us to calculate ™%, if
the distance to the source is known.

We plot ®_, for a fixed p as a function of 4 for a set
of 7 values in Fig. 5. Since our angular resolution is
Af# = 7/64 and our code converges angularly with sec-
ond order, we would expect our angular numerical error
to be (a few)x1073. We find that the angular function
O(h) deviates from sin? § by no more than (a few)x10~3.
Therefore, we could not distinguish numerically between
our numerical function ©(6) and sin? 6.

We calculate ™% , ;[¢] directly from Eq. (1), and mo-

tivated by [3], we calculate H™J, ;[¢] by

8
H5alo] = g [
(Note that t4 decays to 0 at late times on J#1.) We
only calculate here the real part of 14: Because of the
linearity of the Teukolsky equation we can always per-
form a Wick rotation, and obtain commensurate results
for the imaginary part.

The results for the Weyl scalar 1, are shown in
Figs. 1(c), 3(c), and 4(c). Again, we find that the Ansatz
(1) describes the field behavior well. Fitting the parame-
ters to this Ansatz, we find that p®§, o = 5 and TLIEI;Q’O =

6. Seeking a linear relation of the form €%, [¢] =

a HES ) 5[] + B we find that @ = —729.7 + 0.6 and
B = —6.3+0.3. The linear relation of e, ([¢] and

HEY, o[¢)] suggest that also in this case the Aretakis con-
served charge can be measured at a finite distance, and
that a generalized Ori pre-factor can be used in order to
measure it. We summarize our results in Table I.
Discussion. The values for the Ori pre-factor, and
therefore also for the Aretakis charge — when compared

8, ®_o dS). (4)
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Figure 5: The relative difference of the Weyl scalar 14 (nor-
malized by its maximal value) and ©(0) = sin? 0 as a function
on the polar angle 6 at a fixed value of p/M = 2 for four differ-
ent time values, t/M = 1,050 (dotted), 1,150 (dash-dotted),
1,250 (dashed), and 1,350 (solid). On the scale shown these
plots cannot be resolved.

1z Lslelpln[e@)]  « | 8 |
ERN|0[0[[1]2] 1 |-4.0024 +0.0013|(1.8 £ 9.6) x 10~*
EK |0 1 | —14.1340.03 | —0.048 +0.023
EK |-2|2[|5/6]sin®0] —729.7+0.6 —6.3+0.3

Table I. The parameters used in the expansion (1), and
the fitted parameters «, 8 in the linear relation eIS,,_;’O[w] =

a Hy g olY] + B.

between members of the same initial data family which
differ from each other just by the distance of the center
of the initial packet — are suggested by our results to be
universal, i.e., they depend only weakly on the spin of
the field and on whether the BH is ERN or EK (Fig. 3).

The linear relation of the Ori pre-factor and the Are-
takis conserved charge for either scalar or gravitational
perturbations of EK suggests that we could make mea-
surements at a finite distance and conclude that the BH
has a conserved charge, and therefore establish also that
it is an extreme BH. Moreover, by using the (numerically
determined) value of the parameter « (or, in the case of
scalar perturbations of ERN; its analytical value) we can
calculate the value of the Aretakis charge. If the mea-
sured quantity appears to behave as for an ERN or EK

for some time, and then decays as for a non-extreme BH
(i.e., it is a transient behavior), we can establish that it
is a nearly extreme BH (see also [21], where relevant time
scales are ~ (a few) x 102M). Since the value of the Are-
takis charge depends on the perturbation field (cf. Fig. 3),
and this value can be found from observations at a finite
distance, this is a procedure for detecting gravitational
hair of EK.

Extreme Kerr BHs that are perturbed gravitationally
have hair, and this determination and also the calcula-
tion of the strength of the hair can be made at finite
distances by measuring the Weyl scalar 14 directly from
the gravitational wave strain. Specifically, gravitational
wave detectors can be used to measure this gravitational-
field hair of extreme black holes.

This apparent contradiction of the uniqueness theo-
rems pertains to extreme BHs, which require fine tuning
of the astrophysical processes that created them. The
uniqueness theorems assume stationarity, which is vio-
lated on s#* because of the growth of certain transverse
derivatives associated with the Aretakis phenomenon.
We comment that the Aretakis phenomenon occurs only
in perturbed extreme BHs, and those are characterized
by decaying external fields, consistently with the unique-
ness theorems, qualitatively similar to sub-extremal BHs.
Despite the decay of external perturbations, the con-
served Aretakis charge can be measured at a great dis-
tance, thus manifesting the time dependence of trans-
verse derivatives along #%. Realistic BHs are more
likely to be nearly extreme, and therefore would present
transient hair that could in principle be detected by
gravitational-wave detectors.

Work on higher-¢ modes and non-azimuthal (m # 0)
modes is currently underway. Measurement of gravita-
tional hair of EK at . awaits further work.
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