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It is possible to implement a certain form of modified gravity inspired by loop quantization through
non-bijective canonical transformations. The canonical nature might suggest that such modifications
are guaranteed to preserve general covariance. Here, however, we show that a dedicated space-time
analysis is still required, even in the case of a bijective canonical transformation. In addition, a
complete global analysis is presented for a recent proposal of a non-bijective transformation, showing
that it does not preserve general covariance and that the only novel physical effect introduced by
the modification is the presence of certain time-reversal hypersurfaces between classical space-time
regions. These results provide further insights into the physical interpretation of modified dynamics
in models of loop quantum gravity.

I. INTRODUCTION

Models of loop quantum gravity attempt to implement
quantum-geometry effects by using certain modifications
of the classical equations of canonical gravity. The canon-
ical nature, as usual, implies that general covariance is
not manifest and must be tested by dedicated means.
Several no-go results for general covariance and slicing
independence in such models have recently been derived,
using setups relevant for cosmology [1] and black-holes
[2, 3]. The only known way to realize covariance in mod-
els of loop quantum gravity is through a deformed ver-
sion [4, 5] that implies signature change at high density
or curvature when applied to modifications commonly
used in loop quantum cosmology or loop quantum black
holes [4, 6–12]. (Signature change may be avoided in
some cases, but it would require non-standard modifi-
cations such as complex connections [13–16], Euclidean-
type gravity [17, 18] or non-bouncing background solu-
tions [19].)

It is therefore important to explore possible alternative
modifications. In this context, the recent paper [20] sug-
gests to apply a non-bijective canonical transformation
to the classical theory, hoping that the modified model
will be close enough to the classical system to preserve
covariance, yet different enough to be considered a mod-
ification because the transformation is not bijective. As
we will show in this paper, covariance is a subtle issue
even in this case and must be derived. Once this task
has been completed, it can be seen that the modifica-
tions are not compatible with general covariance or slic-
ing independence in a global space-time structure. The
equations suggested in [20] therefore do not show how
models of loop quantum gravity could be made consis-
tent with general covariance, and they do not provide
counter-examples to the no-go results of [1, 2].

Our analysis of general covariance makes use of effec-
tive line elements, as defined in [21]. A proper effective
line element provides a geometrical interpretation of solu-
tions of a modified theory of gravity. For the line element
to have a proper geometrical meaning, it must be invari-
ant under coordinate changes. But modified equations
of a model may well change the gauge transformations

imposed on basic fields, in particular if the model is for-
mulated canonically and does not make use of space-time
tensors. Therefore, the existence of suitable metric com-
ponents constructed from the basic fields of the modified
theory such that they form an invariant line element is,
in general, not guaranteed. Even if metric components
exist, their relationship with the basic fields is usually
modified, compared with the classical relationship, in or-
der to account for modified gauge transformations.

In [20] and elsewhere in the literature, however, the
simple classical relationship between metric components
and basic fields is mistakenly assumed to hold also in the
presence of modifications. A derivation of proper effec-
tive line elements then corrects the resulting understand-
ing of space-time structure, and it reveals the global ge-
ometry implied by solutions of the modified theory. As
a result, solutions of [20] are simply concatenations of
classical space-time regions, separated by time-reversal
hypersurfaces. These hypersurfaces, derived in more de-
tail in Section III B below, are implicitly defined by time
derivatives of canonical fields changing sign in a discon-
tinuous manner. Their presence makes it possible for
extrinsic curvature to remain bounded. However, they
can be defined only using non-invariant quantities, thus
violating covariance on a global level.

In addition to the suggestion made in [20], we will also
consider the case of a bijective canonical transformation.
Such a transformation should, of course, exactly preserve
physical properties of the classical theory, including gen-
eral covariance. Nevertheless, we will see that space-time
structure in such a “modified” canonical theory is non-
trivial and requires a dedicated analysis before physical
conclusions can be drawn. The model therefore provides
an instructive example: Even though it is unable to imply
new physics, a careless analysis might wrongly suggest
new effects such as singularity resolution. These lessons
will then be applied to the model proposed in [20]. They
are also relevant more broadly in a large number of mod-
els of loop quantum gravity in which line elements have
been used for modified theories without confirming their
geometrical validity [3].

The results of the present paper demonstrate the im-
portance of considering properly defined effective line el-
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ements to express solutions of equations of motion in
modified canonical theories of gravity. They also under-
line the highly non-trivial nature of covariance in mod-
els of loop quantum gravity, which turns out to be vi-
olated even by the minimal modifications suggested in
[20], based on a canonical transformation from the clas-
sical theory.

II. SPACE-TIME ANALYSIS

The aim of this paper is to present a detailed space-
time analysis of the model introduced in [20] and related
examples. Since the model is canonical, we use methods
of canonical gravity; see [22, 23] for details.

A. Variables and transformations

Canonical gravity of spherically symmetric models is
described by line elements of the form [24]

ds2 = −N2dt2 + qxx(dx+Mdt)2 + qϕϕ(dϑ
2 + sin2 ϑdϕ) .

(1)
The spatial part is determined by two functions, qxx and
qϕϕ, depending on the radial position x as well as time
t, while the lapse function N and shift vector M , also
depending on x and t, describe its extension to space-
time. In spherically symmetric models of loop quantum
gravity [25, 26], one usually replaces metric components
with components Ex and Eϕ of a densitized triad, such
that

qxx =
(Eϕ)2

|Ex|
, qϕϕ = |Ex| . (2)

In what follows it will be sufficient to assume Ex > 0,
fixing the orientation of space.
The triad components are, up to constant factors,

canonically conjugate to components of extrinsic curva-
ture, Kx and Kϕ, such that

{Kx(x1), E
x(x2)} = 2Gδ(x1, x2) (3)

{Kϕ(x1), E
ϕ(x2)} = Gδ(x1, x2) (4)

with Newton’s constant G. Extrinsic curvature depends
on time and space derivatives of the densitized triad (as
well as lapse and shift) in a way that may be modified
in models of loop quantum gravity. We will not need the
precise relationships but only use the canonical structure.
Depending on the time gauge, equations of motion for

the basic phase-space variables are generated by com-
binations of the Hamiltonian constraint, H [N ], and the
diffeomorphism constraint, D[M ]. We will not need the
precise form of these expressions either but only refer to
their nature as gauge generators of deformations of spa-
tial hypersurfaces in space-time. These transformations
correspond to classical space-time [27] provided the con-
straints obey Dirac’s hypersurface-deformation brackets

[28], in particular

{H [N1], H [N2]} = −D[Ex(Eϕ)−2(N1N
′

2
−N ′

1
N2)] . (5)

The presence of a phase-space dependent structure func-
tion, Ex(Eϕ)−2, implies that the structure of space-time
is sensitive to modifications of the constraints.

As shown in [29], the structure function can be elim-
inated in an equivalent constrained system obtained by
suitable combinations ofH and D. This construction has
also been used in the recent analysis of [20]. However,
based on [27], the behavior of hypersurface deformations
and therefore of general covariance and slicing indepen-
dence requires a bracket of the form (5) for the generators
of normal deformations of spatial hypersurfaces. Discus-
sions of covariance therefore cannot avoid referring to this
relationship, especially in attempted modifications.

The main ingredient in models of loop quantum grav-
ity is a substitution of (almost) periodic functions of con-
nection or extrinsic-curvature components for the classi-
cal quadratic dependence in the Hamiltonian constraint.
If this substitution is done only in these places, and in
a careful way relating different substitution functions to
one another, the bracket (5) in vacuum is modified by a
new factor of the structure function such that the struc-
ture of space-time is non-classical [30–32]. (See [33, 34]
for an analogous result in the cosmological context.) In
the presence of a scalar field, no such substitution is
known that preserves the form of (5) even if one accepts
modifications of the structure function [35].

The authors of [20] suggest that this difficulty may be
overcome if one uses a canonical transformation instead
of substitution. For the gravitational variables, they pro-
pose to transform from the pair (Kϕ, E

ϕ) to a new pair

(K̃ϕ, Ẽ
ϕ) such that

Kϕ =
sin(ℓK̃ϕ)

ℓ
, Eϕ =

Ẽϕ

cos(ℓK̃ϕ)
. (6)

The pair (Kx, E
x) remains unchanged. There is a similar

transformation for a scalar matter field, which we do not
use explicitly here because (6) is sufficient for a discussion
of space-time structure: The scalar field does not appear
in the structure function of (5).

Expressed in terms of the new variables, the Hamilto-
nian constraint depends on K̃ϕ through a periodic func-
tion, as in standard modifications, while the dependence
of Eϕ on K̃ϕ leads to new modifications in metric func-
tions not considered before. The hope is that these new
modifications may preserve general covariance because
the model is obtained by a canonical transformation from
a covariant theory. At the same time, only a bounded
range of Kϕ is realized for an infinite range of K̃ϕ, which
could introduce new physical effects and help with the
resolution of singularities.
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B. Bijective canonical transformation

The model of [20] is based on a canonical transforma-
tion of the classical theory which is not bijective, and
therefore need not be completely equivalent to classical
gravity. It may therefore be considered a modified version
of spherically symmetric general relativity. The case of a
bijective canonical transformation, by contrast, could be
deemed too trivial to be worthy of attention because it
cannot lead to new physics. It is nevertheless instructive
to see how a dedicated space-time analysis would pro-
ceed if we were faced with a proposed modified theory
without knowing that it is simply obtained by a bijective
canonical transformation from classical general relativity.
The setup is therefore as follows: We are given a canon-

ical theory with canonical pairs (K̃ϕ, Ẽ
ϕ) and (Kx, E

x)
and perhaps some matter fields, as well as a consistent set
of diffeomorphism and Hamiltonian constraints in these
variables. The consistent constraints have been derived
by applying a bijective canonical transformation

Kϕ = f(K̃ϕ) , Eϕ =
Ẽϕ

df/dK̃ϕ

(7)

to the constraints of classical spherically symmetric grav-
ity in canonical form, where f is a monotonic function
such that f(K̃ϕ) ≈ K̃ϕ for K̃ϕ sufficiently small com-
pared with some reference scale. Given these conditions,
f may well be such that the full range of Kϕ is mapped

to a finite range of K̃ϕ in which case the transformation

would be bijective provided the new variable K̃ϕ is always
restricted to this finite range. In spite of the underly-
ing equivalence with classical gravity, one could therefore
claim that consistent constraints imply new physics and
that singularities are resolved because curvature (K̃ϕ) re-
mains bounded, all while preserving general covariance.
More generally, we could assume a bijective 2-variable

transformation

Kϕ = f1(K̃ϕ, Ẽ
ϕ) , Eϕ = f2(K̃ϕ, Ẽ

ϕ) (8)

such that {f1, f2} = G. It would not be straightforward
to reconstruct this transformation if we were just given
the resulting constraints. How would we then spot pos-
sible erroneous claims of new physics and show that the
theory is, in fact, completely equivalent to spherically
symmetric general relativity?
To some extent, the situation is comparable to the task

of telling that a “new” solution of general relativity has
just been obtained from a well-known one by a coordinate
transformation. Like a canonical transformation, a co-
ordinate transformation, if incompletely analyzed, could
also suggest bounded curvature if it maps a finite space-
time region that does not include singularities into a full
infinite range of a new coordinate. In this case, there
are standard methods to analyze the global meaning of
solutions, for instance by checking geodesic completeness
to determine whether an infinite range of some coordi-
nate amounts to an infinite geometric distance, or just to
some finite interval.

At this point, however, the two examples of a canonical
transformation and a coordinate transformation start to
differ conceptually. While any coordinate transformation
preserves space-time structure and covariance, a canoni-
cal transformation need not do so. In particular, a coordi-
nate transformation gives us an unambiguous new metric
to be used for a geometrical derivation. But a canonical
transformation, without further analysis, does not tell us
whether some new field Ẽϕ can indeed be used in a met-
ric component just like the original Eϕ, or whether the
new K̃ϕ is indeed a curvature component with the same
geometrical meaning as Kϕ. At this point, at the latest,
we should become suspicious of claims about eliminated
singularities in a bijectively transformed theory because
a bounded K̃ϕ does not necessarily imply bounded cur-
vature. How do we turn our suspicion into a proof that
the singularity claims are incorrect?

C. Effective line elements

A canonical space-time analysis gives us a clear answer
to the questions posed in the preceding subsection. So-
lutions of a modified canonical theory of gravity are not
necessarily geometrical, that is, one cannot simply as-
sume that inserting some Ẽϕ instead of Eϕ in (2) results
in a well-defined space-time line element of the form (1)
with the same lapseN and shift M as used in the relevant
equations of motion. Any line element ds2 = gαβdx

αdxβ ,
by definition, has to be invariant with respect to a com-
bination of coordinate transformations of dxα and gauge
transformations of the canonical metric components.
While dx and dt in (1) still transform like standard

coordinate differentials after applying a canonical trans-
formation such as (6), (7) or (8), the new field Ẽϕ does
not have the same (gauge) transformation behavior as
the classical Eϕ because the transformation depends on
K̃ϕ which, like Kϕ, is not a space-time scalar. Therefore,

using a modified Ẽϕ in qxx for (1) implies that modified
metric components no longer transform in a way dual
to coordinate differentials, and the line element is not
invariant. Geometrical derivations from such an expres-
sion are meaningless because they depend on coordinate
choices. (One could try to modify the transformations of
dx and dt to compensate for the modified gauge transfor-
mations of Ẽϕ, for instance by using non-classical mani-
folds. However, no such manifold structure is known for
the specific modifications discussed here. For the exam-
ple of non-commutative manifolds from the perspective
of hypersurface deformations, see [39].)
As shown in [21], it is sometimes possible to apply a

field redefinition to canonical fields in a modified the-
ory so as to bring their gauge transformations to a form
required for an invariant effective line element. In the
present case, one can use methods introduced in [40] to

find a suitable field redefinition of Ẽϕ, which can be sum-
marized as follows: A field Eϕ that, together with its
conjugateKϕ, appears in the Hamiltonian and diffeomor-
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phism constraints of a canonical theory plays the role of
a metric component as in (2) if and only if the Poisson
bracket of two Hamiltonian constraints equals (5). In
the bijectively transformed theory, however, this bracket
is replaced by

{H [N1], H [N2]}

= −D[Exf2(K̃ϕ, Ẽ
ϕ)−2(N1N

′

2
−N ′

1
N2)] , (9)

or

{H [N1], H [N2]}

= −D[(df/dK̃ϕ)
−2Ex(Ẽϕ)−2(N1N

′

2
−N ′

1
N2)](10)

in the simpler 1-variable transformation. Therefore, us-
ing Ẽϕ in (2) does not yield a legitimate metric compo-

nent, and K̃ϕ is not a component of extrinsic curvature.

In order to derive the correct space-time structure and
a meaningful metric, we should find a suitable function
˜̃Eϕ of Ẽϕ and K̃ϕ in terms of which the Poisson bracket of
two Hamiltonian constraints takes on the classical form

(5). It is easy to see that ˜̃Eϕ = Eϕ is just the classi-
cal field in (9) or (10). Completing this substitution to a
canonical transformation then leads us back to the classi-
cal Kϕ from K̃ϕ, and inserting this transformation in the
constraints tells us that the theory is nothing but classi-
cal. (The canonical conjugate Kϕ of some function Eϕ

on the phase space (K̃ϕ, Ẽ
ϕ) is not uniquely determined

because any function of Eϕ could be added to Kϕ while
maintaining the nature of a canonical conjugate. How-
ever, this freedom is eliminated by the boundary condi-
tion that Kϕ ≈ K̃ϕ for K̃ϕ small with respect to some
scale used in the model.) At this point, we would have
debunked any potential claims of new physics and singu-
larity resolution.

Our example is artificial and deals with a trivial modifi-
cation of classical general relativity. It is nevertheless in-
structive because it shows the importance of a dedicated
analysis of space-time structure in canonical terms. It is
also relevant because arguments comparable to some in-
gredients of our example have often been made in models
of loop quantum gravity. These models deal with actual
modifications of classical gravity and there is a possibil-
ity for new physics to emerge. But also in this case, it is
often, and incorrectly, assumed that some field Ẽϕ that
shows some semblence to the classical Eϕ can be used
to define a meaningful metric component using (2). This

geometrical interpretation is possible only if Ẽϕ is such
that the Poisson bracket of two Hamiltonian constraints
equals (5) where Eϕ is simply replaced by Ẽϕ, without
introducing any multiplicative factor or other modifica-
tions of the structure function. Unfortunately, this condi-
tion is rarely realized in models of loop quantum gravity,
which often do not even check that the Poisson bracket of
two Hamiltonian constraints remains closed after modi-
fications.

III. POLYMERIZED MODELS

In the case of [20], it is clear that the bracket of two
Hamiltonian constraints remains closed after applying a
non-bijective canonical transformation. Moreover, the
modification is non-trivial because the canonical trans-
formation used in this case, given by (6), is not bijective.
As seen in the preceding subsection, however, a dedicated
space-time analysis is necessary to interpret the theory
even in the case of a bijective transformation. It should
then certainly be performed also in the non-bijective case,
but this has not been attempted in [20]. It is therefore
unclear whether physical statements suggested there are
correct.
The modified theory has Hamiltonian constraints such

that

{H [N1], H [N2]}

= −D[cos2(ℓK̃ϕ)E
x(Ẽϕ)−2(N1N

′

2
−N ′

1
N2)] . (11)

with a modified structure function, obtained by simply
applying the canonical transformation to (5). Since the
modification introduces new zeros of the structure func-
tion at ℓK̃ϕ = 1

2
(2n + 1)π with integer n, it eliminates

some contributions of the diffeomorphism constraint from
the right-hand side. The presence of structure func-
tions implies that generators of hypersurface deforma-
tions form a Lie algebroid [36–38] over phase space, label-
ing independent contributions from the constraints. New
zeros in the structure function introduced by the trans-
formation mean that the algebroid gains new Abelian
subalgebroids by restriction to the zero-level sets of the
structure function. The algebraic structure is therefore
inequivalent to its classical form. (The authors of [20]
claim that the modification “preserves the constraint al-
gebra,” which presumably refers to a partial Abelianiza-
tion of the generators as in [29]. However, as shown in
[35], such a reformulation of the constraints is not suffi-
cient for a discussion of general covariance and space-time
structure.)
An algebraic structure inequivalent to that determined

by the classical constraints implies that its relationship to
standard hypersurface deformations is not obvious. Co-
variance is therefore non-trivial in the modified system.
The non-bijective nature of the canonical transformation
employed now to obtain the modification is precisely the
reason why there are additional zeros in the modified
structure function of hypersurface-deformation brackets.
According to [20], the non-bijective nature of the trans-
formation might provide a chance for the modified theory
to describe new physical effects, but it is also the rea-
son why covariance is no longer obvious even though the
modification has been obtained by canonically transform-
ing a covariant theory. (The claim “It has the advantage
that it is a canonical transformation from the original
variables. That means that it preserves the constraint
algebra and the covariance of the theory, which previous
choices did not.” of [20] is therefore unjustified.) In the



5

presence of modified hypersurface deformations with an
inequivalent algebraic structure, covariance has to be de-
rived by a careful analysis of generic solutions and their
geometrical meaning, using effective line elements.

A. Local solutions

Local solutions for Ẽϕ and K̃ϕ can be derived with-
out explicitly solving modified equations of motion be-
cause they can simply be obtained by applying a local
(in phase space) inverse of the canonical transformation
(6) to a classical solution in canonical form. Starting at
small ℓKϕ for the classical solution, any modified local

solution K̃ϕ remains valid until ℓKϕ reaches the values

±1, the local extrema of sin(ℓK̃ϕ) where the canonical
transformation is no longer invertible.

If one were to solve modified equations directly for
(K̃ϕ, Ẽ

ϕ), starting with some initial values, it would be

possible to cross regions where ℓK̃ϕ = ± 1

2
π, again cor-

responding to the first local extrema of sin(ℓK̃ϕ) close
to small ℓKϕ. Such an extension of the local solution is
no longer a simple local inverse of the canonical transfor-
mation, and presumably gives rise to “novel phenomena”
that are, according to [20], introduced by the modifica-
tion.

However, a solution in the range where ℓK̃ϕ > 1

2
π (the

case of ℓK̃ϕ < − 1

2
π being analogous) and ℓK̃ϕ < 3

2
π, can

again be interpreted as a local inverse of (6), but one that
makes use of a different branch of the arcsine compared
with the initial region at |ℓK̃ϕ| < 1

2
π. The canonical

transformation therefore provides a classical analog in
any range of ℓK̃ϕ that excludes the values 1

2
(2n+1)π with

integer n. While the analogous Kϕ is always bounded

thanks to (6), there is no upper limit on ℓK̃ϕ beyond
which classical analogs would no longer exist.

We have obtained a direct correspondence between lo-
cal solutions in the classical and modified theories. The
next question we have to address is whether physics or
geometry in the modified theory should be based on the
field K̃ϕ and its conjugate Ẽϕ, or on their local classical
analogs Kϕ and Eϕ. This question is relevant for the
application presented in [20], in which critical collapse is
studied numerically by evaluating a “black hole mass.”
Unfortunately, [20] does not specify how this mass is ob-
tained, but presumably it refers to a mass parameter ex-
tracted in the usual way from a line element, constructed
from Ẽϕ rather than Eϕ in the modified theory. We
therefore have to analyze how a meaningful line element
can be obtained in the modified theory. As discussed in
Section II C, a meaningful effective line element requires
specific transformation properties to hold for its coeffi-
cients.

B. Global structure

Using local inverses of the canonical transformation,
we have obtained local solutions in canonical form, re-
sulting in evolutions of K̃ϕ and Ẽϕ depending on some
time coordinate implicitly determined by lapse and shift.
Such a solution of equations of motion in a modified the-
ory is not necessarily geometrical. As in our example
of a bijective canonical transformation, using methods of
[40], a field redefinition of Ẽϕ is necessary before we can
apply effective line elements. Not surprisingly, this field
redefinition is again an application of the canonical trans-
formation (6), mapping Ẽϕ back to Eϕ which clearly has
the correct transformation behavior for a well-defined line
element to result from (2) and (1).

Methods of effective line elements therefore show that
physics and geometry in the modified theory should be
based on the classical analogs found in the previous sub-
section, and not on the modified solutions K̃ϕ and Ẽϕ. In
any region in which (6) is locally invertible, the modified
theory simply describes a transformed version of clas-
sical gravity. Any potential for new physical effects is
restricted to subsets of measure zero in phase space and
(generically) space-time. In order to understand their
meaning, we have to determine how different regions of
classical analogs may be connected in an effective space-
time picture of global form.

So far, we have obtained formal piecewise solutions for
the canonical fields K̃ϕ and Ẽϕ as well as effective line
elements that faithfully describe their geometrical mean-
ing, based on field redefinitions. The final question is how
these piecewise solutions can be glued back together to
obtain a global space-time picture. Such a gluing cannot
be based on classical matching conditions because they
would simply lead to a global classical solution that does
not respect the boundedness of Kϕ implied by (6).

Given a solution for K̃ϕ and Ẽϕ, a classical analog
and an effective line element is obtained by applying the
canonical transformation (6). Since the transformation

is not bijective, different ranges of K̃ϕ may correspond
to the same classical geometry. If we first restrict our-
selves to ranges of K̃ϕ in which the transformation is
invertible, the corresponding phase-space region corre-
sponds, via the effective line element, to a region in space-
time which generically is incomplete because it is cut off
at fixed values of Kϕ. A global solution therefore re-
quires an extension through the hypersurfaces on which
ℓK̃ϕ = 1

2
(2n+ 1)π with integer n.

It is easy to see how different regions are connected if
we first focus on two neighbors, such as the low-curvature
region, called region I where |ℓK̃ϕ| <

1

2
π, and a region II

where 1

2
π < ℓK̃ϕ < 3

2
π. For a transition from region I

to region II to happen, ˙̃Kϕ > 0 when ℓK̃ϕ = 1

2
π, which

by continuity extends to a region around the transition
hypersurface. Since Kϕ is a continuous function of K̃ϕ,
it approaches the same value at the transition hypersur-
face from both regions, given by ℓKϕ = 1. Applying (6),
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we see that the corresponding analog solutions Kϕ be-
have like time reversed versions in a neighborhood of the

transition hypersurface: K̇ϕ = ℓ cos(ℓK̃ϕ)
˙̃Kϕ has oppo-

site signs on the two sides of the transition hypersurface
because cos(ℓK̃ϕ) has opposite signs in the two regions

while ˙̃Kϕ > 0 as we already saw.
For the same reason, Eϕ has opposite signs on the

two sides and, unlike Kϕ, is not continuous because it

goes through infinity if Ẽϕ remains finite. (The classical

equations of motion imply that Kϕ is proportional to Ėx

rather than Ėϕ, such that it may remain regular while Eϕ

grows without bounds.) Therefore, the time derivative of
the absolute value |Eϕ|, which is relevant for qxx in (2),
has opposite signs on the two sides: The second term in

|Eϕ|• = sgn(Eϕ)

(

˙̃Eϕ

cos(ℓK̃ϕ)
+ ℓ

Ẽϕ

cos2(ℓK̃ϕ)
sin(ℓK̃ϕ)

˙̃Kϕ

)

∼ ℓ
sgn(Eϕ)

cos2(ℓK̃ϕ)
ẼϕKϕ

˙̃Kϕ (12)

is dominant near the hypersurface and enjoys the re-
quired sign property. The geometry in region II can
therefore be interpreted as a time-reversed classical so-
lution compared with the time direction in region I. (It
is not necessarily a time reversal of the same solution
as in region I because Eϕ is not continuous across the
transition hypersurface.)
Applying this result to all transitions, we see that a

global solution of the modified theory is a concatenation
of infinitely many classical regions with alternating orien-
tations of time. In each region, the geometry is indistin-
guishable from a classical solution. The only new physics
therefore resides in the time reversals, which make it pos-
sible for Kϕ to remain bounded.

C. Non-covariance

In each local region, the geometry is coordinate and
slicing independent provided the changes of coordinates
and slicings are sufficiently “small” such that they do not
leave the range of Kϕ relevant for the region. (We can
apply slicing independence only in the classical analogs,
where the correct version (5) of hypersurface deforma-
tions holds.) Globally, space-time in this model could be
covariant only if the reversal surfaces were covariantly de-
fined, but this is not the case: They refer to fixed values
of ℓKϕ = ±1, and Kϕ is not a space-time scalar.
Choosing a different slicing in a classical analog in gen-

eral shifts the positions of time reversal surfaces. A com-
plete solution for K̃ϕ and Ẽϕ therefore violates slicing
independence, even after it has locally been mapped to
a suitable effective line element. For instance, in a vac-
uum solution there would be no time reversals outside the
horizon in a Schwarzschild slicing, but there are other ex-
terior slicings in which ℓKϕ can be large and trigger time

reversal in the modified geometry. Even with minimal
modifications introduced by the model, general covari-
ance is violated.

IV. CONCLUSIONS

We have presented a detailed analysis of space-time
structure in models obtained by bijective or non-bijective
canonical transformations of classical gravity. Although
the bijective case is completely equivalent to classi-
cal gravity, a space-time analysis is non-trivial because
the equivalence may be hidden if complicated canonical
transformations are applied. Our discussion showed that
basic fields of a modified theory, in general, cannot be
identified directly with metric components that play the
same role as their classical counterparts.

While such a model would be considered trivial from
the perspective of modified gravity, it is nevertheless in-
structive because it highlights the subtle nature of space-
time structure in canonical theories. In particular, the
importance of identifying suitable metric components or
effective line elements constructed from the basic fields
of a canonical modified theory remains highly relevant
if the theory is genuinely modified. The non-trivial na-
ture of such identifications has often been overlooked in
models of loop quantum gravity.

We applied our detailed construction of effective line
elements that consistently describe the space-time geom-
etry of solutions to the modified theory introduced in
[20]. This model uses a non-bijective canonical transfor-
mation and is therefore inequivalent to classical gravity.
However, we have shown that the only new physical ef-
fect is the introduction of time-reversal surfaces connect-
ing classical space-time regions. This observation cor-
rects the claim “As [the canonical transformation] is not-
invertible in the whole of phase space it still allows to
have the usual novel phenomena that loop quantizations
introduce in regions where one expects general relativ-
ity not to be valid, like close to singularities.” made
in [20]. Locally, general relativity is valid in all regions
of the modified theory, without any novel phenomena
that have been claimed previously in loop quantizations.
Our constructions also show that effective geometries de-
scribed by the model depend only on the local extrema
of the function Kϕ(K̃ϕ). The specific sine function, usu-
ally motivated by expressions of holonomies used in loop
quantum gravity, does not matter at all.

Even though the modifications are obtained by a
canonical transformation of a covariant theory, their
global solutions violate covariance precisely at those
places where “novel phenomena” happen. This outcome
heightens the covariance crisis of loop quantum gravity:
Even a minor modification of the classical equations, in-
spired by loop quantum gravity but implemented by a
canonical transformation, is in conflict with the require-
ment of general covariance.
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