
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Issues of mismodeling gravitational-wave data for
parameter estimation

Oliver Edy, Andrew Lundgren, and Laura K. Nuttall
Phys. Rev. D 103, 124061 — Published 29 June 2021

DOI: 10.1103/PhysRevD.103.124061

https://dx.doi.org/10.1103/PhysRevD.103.124061


The Issues of Mismodelling Gravitational-Wave Data for Parameter Estimation

Oliver Edy,∗ Andrew Lundgren,† and Laura K. Nuttall‡

University of Portsmouth, Institute of Cosmology and Gravitation, Portsmouth PO1 3FX, United Kingdom

Bayesian inference is used to extract unknown parameters from gravitational wave signals. Detec-
tor noise is typically modelled as stationary, although data from the LIGO and Virgo detectors is not
stationary. We demonstrate that the posterior of estimated waveform parameters is no longer valid
under the assumption of stationarity. We show that while the posterior is unbiased, the errors will be
under- or overestimated compared to the true posterior. A formalism was developed to measure the
effect of the mismodelling, and found the effect of any form of non-stationarity has an effect on the
results, but are not significant in certain circumstances. We demonstrate the effect of short-duration
Gaussian noise bursts and persistent oscillatory modulation of the noise on binary-black-hole-like
signals. In the case of short signals, non-stationarity in the data does not have a large effect on
the parameter estimation, but the errors from non-stationary data containing signals lasting tens of
seconds or longer will be several times worse than if the noise was stationary. Accounting for this
limiting factor in parameter sensitivity could be very important for achieving accurate astronomical
results. This methodology for handling the non-stationarity will also be invaluable for analysis of
waveforms that last minutes or longer, such as those we expect to see with the Einstein Telescope.

I. INTRODUCTION

The Advanced LIGO detectors have been regularly de-
tecting gravitational wave signals since 2015 [1], joined
by Advanced Virgo in 2017 [2], and the later addition of
KAGRA in 2020 [3]. The signals observed so far have
been produced by the coalescence of either a binary sys-
tem of black holes (BBH) or neutron stars (BNS). The
gravitational waves emitted contain information we can
infer about the system, such as the mass of each com-
ponent of the binary or their sky position. The signal
is identified through techniques such as matched filter-
ing [4], which determines how closely the observed data
matches with a theoretical waveform model known as a
template. In practice, the output of the matched filter is
calculated for a large bank of templates spanning the pa-
rameter space of expected signals [5]. However, the exact
physical properties and physics of the system must be ex-
tracted using Bayesian analysis [6]; these models evaluate
a posterior probability density function of the unknown
signal parameters that describe a specific model of the
data. While Bayesian analysis is not designed to iden-
tify the template that fits the signal the best, when a
suitable template has been found with matched filtering,
Bayesian methods can obtain the parameter uncertain-
ties more directly than the template search.

A gravitational-wave signal is fully described by 15 pa-
rameters, assuming negligible orbital eccentricity [6, 7];
8 of these are intrinsic to the observed system, including
the mass of each body before coalescence, or their spins,
while the remaining 7 depend on the observer (such as
sky position, or the time tc in the observing frame at
which the coalescence occurred). This means that even
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inference calculations of signals only a few seconds long
are computationally expensive. Although techniques are
being developed to improve processing time (for example,
[8–13]), they are not yet mature. The most widely used
inference codes for gravitational waves are LALInference
[6], Bilby [14, 15], and PyCBC Inference [16]. These, as
well as all other current methods, assume that the in-
strumental noise is both stationary and Gaussian (see,
for example, [6, 16–19]). Note that we define stationar-
ity to mean that the statistical properties of the noise do
not change with time. Signal processing often uses wide-
sense stationarity, where only the mean and covariance
are assumed to be time-independent [20]. The fact that
the statistical parameters of the noise (such as the spec-
trum shape or the intensity) do not vary with time means
the data can be characterised [21]. Consequently, mod-
elling and analysis of the noise in the frequency-domain
can be simplified, which makes evaluation computation-
ally efficient [22].

In reality, the gravitational-wave strain data from the
LIGO and Virgo detectors is not stationary or Gaus-
sian [23–27]. Hence, inference using the appropriate
non-stationary model could not make use of the simpler
form. There have been some methodologies proposed for
handling the non-stationarity. For example, References
[28, 29] propose modelling the noise in a wavelet domain,
where non-stationarity is more simply computed. This
method has proven particularly useful in analysis of data
containing glitches [30]. Other methods include estimat-
ing the variation in detector noise and using it to re-
rank events to reduce the number of false events being
reported [31]), or incorporating the uncertainty in the
measurement of the power spectral density into parame-
ter estimation [32].

Typically, though, the assumption of stationarity and
Gaussianity is taken instead [33], simply as matter of
practicality because it enables a much simpler form for
the likelihood to be used, where the ‘likelihood’ refers to
the model we choose for the data. Given that parame-
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ter estimation is known for its computational cost [6], a
simpler model means that analysis is inexpensive. How-
ever, mismodelling the data in this way will affect the
certainty with which we can estimate parameters from a
gravitational-wave signal, a probability function known
as the posterior. This could mean that uncertainties
for parameters inferred from the system could be much
smaller or larger than they really are. This compromise
on the effectiveness of parameter estimation has already
been explored in Reference [27].

In this paper, we focus on the problems with non-
stationary data and parameter estimation. While pre-
vious work such as those cited above have focused on
handling the effects of non-stationarity, we concern our-
selves with investigating how gravitational-wave analysis
is affected if we do not account for the non-stationarity
of the data. Specifically, our goal is to determine the ef-
fect that non-stationary noise will have on the estimated
parameters, given that the assumed Bayesian model does
not fit the data. This will establish the amount of non-
stationarity which is allowable before the estimated pa-
rameters are significantly affected and it becomes nec-
essary to explicitly account for the non-stationarity. In
Section II, we first give a brief overview of how parameter
estimation works, then consider whether approximating
the data as stationary is a valid assumption to make. In
Section III, we suggest a model of Gaussian data with
which we can determine deviations from stationarity by
considering the covariance matrix. A few examples of
how this might work are given in Section IV.

II. DESCRIBING NON-STATIONARITY

A. Extracting Signals from Noisy Data

A signal of known shape h(t) is optimally extracted
from noisy strain data n(t) through a matched filter com-
parison with a number of templates [34]. The mass and
spin of a signal must then be approximately the same as
those that generated the matching template. Once a sig-
nal has been identified with techniques such as matched-
filtering, analysis shifts to estimating the parameters of
the compact-object binaries that generated the gravita-
tional waves.

Methods for inferring details about a system are rooted
in Bayes Theorem, described in Ref [35] as a generalised
technique for understanding a system when working with
incomplete information. Formally, for a set of parameters
θ, we represent this as

p(θ|d) =
p(d|θ)p(θ)
p(d)

, (1)

where we refer to p(θ|d) as the posterior of the data,
p(d|θ) the likelihood, p(d) the evidence, and p(θ) the
prior. The posterior is the probability of obtaining the
parameters θ given the data d(t). The prior p(θ) de-

scribes an understanding of the system and the parame-
ters θ before knowing anything about the data d(t); the
choice of prior is very important, as a poorly chosen prior
will strongly bias the entire parameter estimation and
likely lead to flat posteriors or wildly incorrect parame-
ter estimations [36, 37].

The denominator p(d) is called the evidence, and is
a normalisation factor which can be used to directly
compare one model of the data with another [38]. Be-
cause of the way that Bayesian inference is implemented
in determining the gravitational wave parameters, it is
normalisation-insensitive, and so it is rare to actually
need to calculate the evidence [39, 40]. Note, though,
that this isn’t always true, as the evidence is necessary
in nested sampling, wherein new samples are drawn from
a normalised prior probability (for example, Reference
[41] describes how this is implemented for the dynesty
code).

The likelihood p(d|θ) is the probability of obtaining the
data d(t) observed, given the parameters θ being consid-
ered. In essence, it is the model we choose for the data,
and the part we have most control over.

As stated, the likelihood form L is assumed to be Gaus-
sian of the form

L = e−
1
2 〈n(f)

†|n(f)〉, (2)

where the square brackets denote the inner product aver-
aged over all noise realisations. Note that the full deriva-
tion for this likelihood is described in Reference [34].

With the assumption that the data is a multivariate
Gaussian in the frequency domain, the noise covariance
is diagonal, which we interpret to mean the frequencies
are independent. In the case where the noise is one-
dimensional, the Gaussian likelihood simplifies to

L = e−
1
2n
†(f)S−1n(f), (3)

where S is the noise covariance.

B. Validity of Stationarity Assumption

We must consider whether it is indeed valid to model
the data as stationary. First, we look at a description
of stationary noise. According to Wold’s Theorem [42],
any process X can be represented as the sum of a de-
terministic part D (which we shall ignore here) and a
random part. The random part can then be further de-
composed into a purely random component R convolved
with a purely deterministic process C. For a discrete
dataset sampled at an evenly spaced set of times n, we
have

Xn =
∑
n

Cn−iRi +Dn = C ∗R+D, (4)

where R is completely uncorrelated, so that

〈RiRj〉 = 0 if i 6= j. (5)



3

This form suggests that stationary noise is simply
white noise (R) being acted upon by a filter (C).

Although there is no simple classification of non-
stationary noise [43], there are multiple different models
(see, for example, [42, 44–48]). We concern ourselves with
models that decompose non-stationary noise in a similar
manner to stationary noise in Wold’s Theorem, this time
into a family of non-deterministic stationary processes,
or a family of deterministic non-stationary processes. We
can compare this to the stationary case by now interpret-
ing a time-varying filter to be acting on the white noise.
The motivating example for this and followup work is
non-stationary noise generated as the sum of some sta-
tionary Gaussian noise n1 and a second Gaussian sample
n2 with oscillating amplitude B(t):

n(t) = An1(t) +B(t)n2(t). (6)

This example has been chosen for its simplicity, while also
approximating the behaviour assumed by current LIGO
calibration models: a stationary background noise n1,
and an unpredictable part n2(t) [49]. Similar models have
already been incorporated into parameter estimation [50,
51], with strong agreement to the results of the LIGO
data releases [52, 53]. This indicates that as well as being
a simple representation, the model is also a good fit for
the real interferometer noise.

The assumption of stationarity is often fair to make
providing that the amplitude B(t) evolves slowly in time
or is otherwise small. In the case of ground-based inter-
ferometers, the noise is measured to be nearly station-
ary at least over a period of several seconds around the
same duration as the signals that LIGO is able to detect
[52, 54].

However, Reference [21] have already shown these as-
sumptions of stationarity break down for periods of ∼64
seconds, the timescales needed for the analysis of binary
neutron star mergers. This was further explored in Ref-
erence [27], which showed that parameter estimation will
be noticeably compromised for segments of duration as
small as 128s.

Since we do not have a quantitative knowledge of the
effect of non-stationarity, we cannot know how uncertain
the posteriors might be even for short signals. Therefore,
to understand any impact on parameter estimation, we
present a formalism to describe how non-stationary data
might differ from stationary data.

C. Characterising the Noise

Gaussian noise can be completely characterised by its
mean and covariance [27], where the noise covariance rep-
resents random noise characteristics of the data. We de-
fine n(f) as the discrete Fourier transform of a stretch
of non-stationary noise and we represent it as a complex
column vector n. Note that the noise is Gaussian [21], so

〈n〉 = 0, (7)

where the square brackets denote the ensemble average
over all realisations of the noise.

We define the noise covariance Σ as

Σ = 〈nn†〉, (8)

and in the case of stationary noise, we instead express
the same quantity as

Σstationary = S. (9)

The covariance matrix reduces to a simpler form for
stationary noise. In the frequency domain, the noise co-
variance S becomes a positive diagonal matrix of the form

S =


S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 . . . SN

 , (10)

where N is the number of data points. Since the likeli-
hood is of the form n†S−1n, we only care about values
along the diagonal. This leaves a very simple likelihood
form, as explored in Section III A.

When the noise is non-stationary, we have no robust
method for estimating Σ from the noise power spectrum,
as we would for stationary noise. This is due to the near
impossibility of characterising the data, due to the time
variance of the statistical parameters [21]. As outlined
in Reference [55], if we cannot assume stationarity, the
method commonly used to estimate the power spectral
density is to calculate an off-source estimate, taking a
mean of neighbouring segments, although this method
will be more restrictive when considering the longer data
segments needed to analyse a BNS.

Additional methods for calculating an estimate for the
power spectral density have been proposed. For ex-
ample, References [56–58] discuss the concept of non-
stationarities in detector data evolving the PSD over
time, referred to as PSD-drift. This causes a loss in
sensitivity of the detectors, so correction methodology is
offered by computing a running estimate of all matched
filter overlaps. As Reference [59] notes, by correcting for
PSD-drift, we see a notable difference in estimated pa-
rameters compared to the configurations assuming sta-
tionary data.

Even when the non-stationary covariance Σ can be es-
timated, problems arise because it is not diagonal. This
means the same simplification of the likelihood is not
possible, and so the computation becomes far more com-
plicated.

Using the likelihood given by Equation (3), and know-
ing the form of the noise covariance S, we will now derive
a probe to investigate how greatly parameter estimation
is affected by the non-stationarity of the data.
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III. MEASURING THE EFFECT OF
NON-STATIONARITY

A. Deriving the Covariance Matrix of Waveform
Parameters

We want to determine how greatly the estimated pa-
rameters of a particular waveform will be affected by the
incorrect assumption of stationary noise. The best way
to investigate this would be to derive the covariance ma-
trix of the posterior distribution for the estimated wave-
form parameters, which describes how confidently we can
measure each parameter.

The noise covariance is assumed to be a positive di-
agonal matrix S. The data, in the frequency domain, is
written as a complex column matrix d. We use complex
variables throughout the derivation, because the noise
vector n is complex in Fourier space. We then convert to
a real matrix when we reach the final result (the covari-
ance matrix of the waveform parameters).

We assume that the template is not a perfect fit for
the signal. As in Reference [60], we approximate the
template waveform h as a linear series around the true
signal h0,

h = h0 + ω~θ, (11)

where the ω matrix is comprised of the derivatives of h by

each waveform parameter, and ~θ is the set of parameters

(we will also encounter its Hermitian conjugate ~θ in the
derivation). Note that for simplicity we have only taken
Equation (11) to first-order.

We assume that the signal has been found in Gaussian
data. The corresponding log-likelihood (up to a constant
normalisation) is

(12)Λ ∝ −1

2
(d− h|d− h) +

1

2
(d|d) .

Note that the matrix notation of the noise-weighted
inner product is given by

(a|b) = 4a†S−1b, (13)

so the log-likelihood expression reduces to

Λ ∝ 2
(
d†S−1h+ h†S−1d− h†S−1h

)
. (14)

We decompose the strain data d into the sum of the
signal h0 and the instrumental noise n [27]:

d = n+ h0. (15)

Using this substitution for d in Equation (14), as well
as the expansion (11), the log-likelihood becomes

(16)
Λ ∝ 2

(
n†S−1h0 + h†0S

−1n+ h†0S
−1h0 + n†S−1ω~θ

+ ~θ†ω†S−1n− ~θ†ω†S−1ω~θ
)
.

Maximising Λ with respect to ~θ and its Hermitian con-

jugate ~θ†, we find the following expressions for the param-
eters at the maximum likelihood:

~θml =
(
ω†S−1ω

)−1 (
ω†S−1n

)
,

~θ†ml =
(
n†S−1ω

) (
ω†S−1ω

)−1
. (17)

Note that we interpret ~θml as complex to simplify cal-

culations, hence the presence of ~θ†ml. We convert ~θ into a
fully real matrix in Section III C.

From References [61, 62], we note that

〈~θml〉 = 0, (18)

so long as the template matches the true signal, which
shows that the posterior is still centered around the same
point. Therefore, to linear order at least, mismodelling
the data will only deform the shape of the posterior
(thereby over- or under-representing the confidence con-
tours), but does not cause any bias to the estimated pa-
rameters.

For ease of reading, the ml subscript will be dropped

from ~θ for the rest of the text unless otherwise stated.
By multiplying the two quantities in Equation (17) to-

gether, we create the covariance matrix for ~θ:

〈~θ~θ†〉 =
(
ω†S−1ω

)−1 (
ω†S−1〈nn†〉S−1ω

) (
ω†S−1ω

)−1
.

(19)
As the noise covariance is defined in Equation (8), we

see that the covariance matrix becomes

〈~θ~θ†〉 =
(
ω†S−1ω

)−1 (
ω†S−1ΣS−1ω

) (
ω†S−1ω

)−1
(20)

for non-stationary noise. However, in the case when S
matches the true covariance Σ, then this greatly simpli-
fies. This is the case for stationary noise, because the
quantity 〈nn†〉 = S when averaged over infinite noise
realisations, as stated in Equation (9), resulting in the
familiar

〈~θ~θ†〉 =
(
ω†S−1ω

)−1
. (21)

This result is comparable to the inverse of the Fisher
matrix [63]. We intend to use deviations from the sta-
tionary covariance matrix (Equation (21)) to show how
mismodelling non-stationary data can affect parameter
estimation.

B. Distinction Between ~θ and ~θml

To fully understand the difference between ~θ and ~θml,
we must consider the basis of parameter estimation in
Bayes’ theorem [35], as given by Equation (1).

〈~θml
~θ†ml〉 is the covariance matrix of the parameter set

~θ at the maximum likelihood, averaged over all noise real-

isations. This makes ~θ†ml a point estimate, not a random
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variable; we have sought point values for ~θ which max-

imise the posterior p(~θ|d), and treat the term p(~θ)
p(d) as a

constant. In this way, we do not inject any prior beliefs
about the parameters into the calculation for likely values

of ~θ, and so effectively ignore the prior.

A full Bayesian treatment would estimate the entire

distribution for p(~θ|d), treating ~θ as an array of random
variables. Although the inclusion of the prior would more
tightly constrain the covariance matrix, we consider only
the covariance of the maximum likelihood here both be-
cause its inverse is the proper definition of the Fisher
matrix [61], and because the prior doesn’t change consid-
erably in the regime of high signal-to-noise ratio (SNR)
[62]. This last point in particular is important as we
are concerning ourselves with whether analysis of a real
signal is affected by the non-stationarity of the data.

C. Dealing with Nuisance Parameters

To minimise dimensionality during calculations, the
covariance matrix has been treated as complex, but the

parameters of ~θ are real. It is at this point that we de-
compose the complex matrix from Equation (21) into a

fully real matrix, with each column or row representing
a parameter. Since the matrix has been treated as com-
plex, however, there are several rows and columns that
now contain nuisance parameters, which are the imag-
inary counterparts to parameters which do exist in the
waveform. For example, we show in Section IV A by tak-
ing the derivative of the waveform by the phase φ, that
it is simply the complex counterpart to the derivative
by the amplitude A. Similarly, the other parameters of
h(f) have complex counterparts, although these are non-
physical, and not represented in the waveform h(f).

Given that Equation (20) is a covariance matrix, it is
possible to fix these nuisance parameters. This is done
by inverting it into a Fisher matrix, removing the rows
and columns corresponding to these nuisance parameters,
and inverting back to find the new covariance matrix.
Therefore, we are left with a covariance matrix for only
the physical parameters.

For now, let’s only consider parameters A, φ, and tc.
Given we have decomposed the matrix into to be fully
real, we would also need to consider the complex coun-
terpart to the parameters. For φ, that is simply A, as
mentioned above, but for tc, we would need to introduce
an additional nuisance parameter, ξ, which will shortly
be fixed from the covariance matrix.

The log-likelihood would be of a form similar to

(22)

Λ = ~θTC−1~θ

=
(
∆A ∆φ ∆ξ ∆tc

)σAA σAφ σAξ σAtc
σφA σφφ σφξ σφtc
σξA σξφ σξξ σξtc
σtcA σtcφ σtcξ σtctc


∆A

∆φ
∆ξ
∆tc

 ,

where C is our covariance matrix.
We’re not actually interested in the nuisance param-

eter ξ, as it is not a term of the waveform h(f). The
means we know that ξ = 0 in the waveform, and can
be removed from the Fisher matrix by fixing it. This
involves stripping out any row or column that would be
multiplied by ξ. Therefore, Equation (22) reduces to

Λ =
(
∆A ∆φ ∆tc

)σAA σAφ σAtc
σφA σφφ σφtc
σtcA σtcφ σtctc

∆A
∆φ
∆tc

 . (23)

The Fisher matrix used here can then be inverted back
to get the new covariance matrix.

There are other parameters that we want to remove
because they are not useful in the analysis, such as the
phase φ, which tells us no extra information than the
amplitude A. These cannot be treated in the same way
because they are real parameters of h(f) and we do not
know their value to be able to fix them. Instead, we must
marginalise over these parameters, integrating them out
of the probability function. An example of such is given

in Section IV A.

IV. APPLICATIONS

A. 2D Toy Model

We propose a toy model to demonstrate the calcula-
tion and subsequent handling of the covariance matrix
of a waveform’s parameters. Let us now consider the
simplest case, for which we assume that we know all the
parameters of the waveform h(f), except for the ampli-
tude A, and the phase φ. The waveform can now be
described as follows:

h(f) = h0(f)eA+iφ, (24)

where h0 is the waveform of known parameters.
The corresponding derivatives of h(f) by these two pa-

rameters are

∂Ah = h, ∂φh = ih. (25)
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Taking the linear waveform approximation as in Equa-
tion (11), and recalling that ω is the derivative of the
waveform with the parameters, we find an N × 1 row
matrix of

ω =
(
∂~θh
)

(26)

=
(
∂Ah+ ∂φh

)
(27)

=
(
h+ ih

)
, (28)

where N is the length of h.
Using this ω in Equation (21), we re-express the co-

variance matrix as

〈~θ~θ†〉 =
((
h† − ih†

)
S−1

(
h+ ih

))−1
=
(
2h†S−1h+ i

(
����
h†S−1h−����

h†S−1h
))−1

=
(
σ1 + iσ2

)
, (29)

where σ1 = 2h†S−1h and σ2 = 0.
The covariance matrix can be decomposed into a fully

real 2×2 matrix by separating out the real and imaginary
values as follows:

〈~θ~θ†〉 =

(
σ1 σ2
−σ2 σ1

)
. (30)

With the matrix decomposition demonstrated, from here
on σ2 will be explicitly referred to as 0.

The corresponding log-likelihood is

Λ =
(
∆A ∆φ

)(σ1 0
0 σ1

)(
∆A
∆φ

)
. (31)

Note the form of the covariance matrix:

∆A ∆φ
∆A σ1 0
∆φ 0 σ1

(32)

The covariance between ∆A and its complex counter-
part ∆A is 0, while both ∆A and ∆φ have the same
covariance with themselves this is true for all parame-
ters and their complex counterparts.

We can marginalise over any parameter we are not in-
terested in to remove it from the likelihood, and further
simplify the likelihood form for computational efficiency.

We receive the same information from both the ampli-
tude and the phase, so we do not need both. For demon-
stration purposes, we are not interested in the phase of
the gravitational wave, and so marginalise over the pa-
rameter to remove it from the likelihood in Equation (31).
For a Gaussian probability, marginalising over a param-
eter produces an identical result to maximising by that
parameter (up to normalisation), so for ease, we max-
imise by φ instead,

∂Λ

∂∆φ
=

∂

∂∆φ

(
σ1∆A2 + σ1∆φ2

)
= 0. (33)

We can see that ∆φ = 0, and so the simplified form of
the log-likelihood is

Λ =
(
∆A

) (
σ1
) (

∆A
)
. (34)

Interestingly, in this simple case, this is the same result
as if we had fixed φ, but typically fixing a parameter
and marginalising over it would produce very different
matrices. Otherwise, this toy model provides a simple
demonstration of how we can find and then simplify the
covariance matrix for a system. In the next section, we
then show how the covariance matrix might be affected
by non-stationarity in a real-life scenario.

B. Visualising the Effect of Non-Stationarity

Although we have described the effect of non-
stationarity in a theoretical capacity, we have yet to vi-
sualise it. To demonstrate, we shall compare the ide-
alised stationary Gaussian model against two different
non-stationary models which we name Model A and B.
Model A localises the non-stationary noise over a short
period of time, whereas the non-stationarity in Model B
is present over the entire dataset and hence models an
extended period of non-stationarity.

For Model A, we have generated Gaussian data as de-
scribed by Equation (6), with the time-varying amplitude
B(t) set to 0 at all times except for a period of 8 seconds
centred around a time t0:

B(t) =

{
Tukey(α = 0.5) t0 − 4 < t0 < t0 + 4

0 otherwise.
(35)

In the latter instance, the amplitude will describe a
Tukey window with the shape parameter α = 0.5. The
window was specifically chosen to last 8 seconds because
it exceeds the length of the majority of signals measured
by LIGO to date. Therefore, we will be able to deter-
mine whether the non-stationarity would have an effect
on signals of comparable length.

In the case of Model B, the amplitude B(t) described
in Equation (6) is sinusoidal, oscillating at 3.2 Hz.

These models were chosen as simplified approximations
to real phenomena seen in the LIGO interferometers. A
short period of stationarity as seen in Model A is compa-
rable to a short burst of non-stationarity that is created
by environmental events such as thunderstorms. Model B
is instead an approximation for extended periods of non-
stationarity, analogous to microseismic ground-motion
[64]. The realistic counterparts are never expected to
become as extreme as the models described here, which
were chosen to make the effect of non-stationarity on pa-
rameter estimation suitably explicit. Additionally, due to
the very different forms of noise that we have created, it
is not appropriate to compare the results of Model A or B
with the other, but only against the stationary Gaussian
model.

These three data samples (the stationary Gaussian
noise, and Models A and B) will be 40 seconds long.
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(a) Stationary Gaussian noise.

(b) Gaussian noise with an 8-second Tukey window applied
at 16 to 24 seconds.

(c) Gaussian noise with an oscillating amplitude of 3.2 Hz.

FIG. 1: Strain plots for three artificially generated
timeseries over entire 40-second sample.

This is considered a suitable duration to produce reliable
results, and not too long a duration to not be relevant to
the shorter data segments analysed by inference codes.

The data and time-frequency spectrograms for one
sample of each type of noise have been plotted in Fig-
ure 1 and Figure 2 respectively.

Model A is almost identical to the stationary noise in
both of these plots, except for the spike in power created
by the Tukey window. This is exactly as we would ex-
pect given the noise is the sum of two separate Gaussian
timeseries for this period (n1(t) and n2(t) in Equation
(6), where the contribution of n2(t) is 0 for the rest of
the time due to the amplitude B(t)).

The power spectra for each of these models was taken
using the Welch method. Consequently, this means that
the spectra we have calculated correspond to the sta-
tionary part of the spectrum. The standard procedure in
searches is to estimate the power spectrum from longer
stretches of data using the median [17]. This difference
shouldn’t change our conclusions, as they are comparable
spectra for when the size of the non-stationarity is small,
as is the case here.

(a) Time-frequency spectrogram of stationary Gaussian
noise.

(b) Time-frequency spectrogram of Gaussian noise with an
8-second Tukey window applied at 16 to 24 seconds.

(c) Time-frequency spectrogram of Gaussian noise with an
oscillating amplitude of 3.2 Hz.

FIG. 2: Time-frequency representation for three
artificially generated timeseries using the Q-transform
[65]. Note that all plots have been restricted to the
period between 10 and 30 seconds to better highlight
the oscillating peaks in plot c.

When comparing the power spectra to each other (see
Figure 3), the curve for Model A is very similar to the
stationary Gaussian case. This is expected, as the power
of the 8 seconds of non-stationarity would be washed out
by the remaining 32 seconds of stationary Gaussian data.

While the spectrum for Model A has on average 2.8
times the power of the stationary Gaussian model, the
spectrum for Model B has on average 13.3 times more
power, an entire order of magnitude higher than the sta-
tionary Gaussian model. This is because the amplitude
B(t) extends over the entire 40-second sample, rather
than a fraction of the entire duration. This means that
the excess power will not be washed out by the stationary
part.

So far, this has been a very qualitative review of the
differences between these models. To get a better un-
derstanding of the deviations from stationarity, we then



8

FIG. 3: Power spectrum comparing 40-second samples
of stationary Gaussian noise (blue), Gaussian noise
made non-stationary by a Tukey window (orange), and
Gaussian noise made non-stationary by an sinusoidal
modulation of 3.2 Hz (green).

calculated the noise covariance for each of these models
using the formalism described by Section III.

According to Equation (8), the noise covariance is cal-
culated as the inner product of the noise n with its Her-
mitian conjugate n† averaged over infinite noise realisa-
tions. Here we are realistically limited to 10,000 real-
isations. The resulting covariance matrices have been
plotted in Figure 4, limited to the 50 Hz around 256 Hz
for both x- and y-axis to better showcase the diagonal
and non-diagonal terms.

The stationary Gaussian model is a diagonal line of
constant value, with every off-diagonal term on average
100 times smaller than the diagonal terms. This is as
we predicted in Equation (9), and we would expect the
off-diagonal terms to be exactly zero if we were able to
average over infinite noise realisations, rather than the
10,000 we were realistically limited to. The difference be-
tween Model A and the stationary Gaussian noise model
is evident by the thicker width of the leading diagonal.

Model B also has a diagonal line of constant value, in
addition to off-diagonal lines. It is these lines that repre-
sent the deviation from stationarity, with their distance
from the central diagonal line related to the amplitude
B(t). The rest of the values are approximately zero.

While it isn’t immediately apparent in the plots shown,
there is not just one set of off-diagonal lines created by
the non-stationarity. The values of the first pair of lines
off the central diagonal line are about a third of those
on the central diagonal. The second set is just visible in
Figure 4c, with the values close to a tenth of those on
the leading diagonal. Values in the other sets of lines
are so small as to not be discernible from the zero values.
The magnitude of the values and the distance of the lines
in relation to the leading diagonal is related to strength
of the non-stationarity. In Figure 4c, that refers to the
frequency at which B(t) oscillates.

In Section II C, we stated that Gaussian noise can be
completely characterised with its noise covariance, and it
should now be apparent that the off-diagonal terms are
how the non-stationarity manifests in the noise covari-

(a) Noise covariance for Gaussian data.

(b) Noise covariance for Gaussian data with an
8-second Tukey window applied at 16 to 24
seconds. Features to be noticed are several sets of
off-diagonal lines clustered very close to the
leading diagonal.

(c) Noise covariance for Gaussian data with an
oscillating amplitude of 3.2 Hz. Features to be
noticed are the two sets of off-diagonal lines,
where the second set is only just visible.

FIG. 4: Noise covariance for three artificially generated
timeseries. Note that data has been whitened and
rescaled so that all values are between 0 and 1, for
better comparison. We further restricted the colour axis
to only values between 0 and 0.4, to better highlight the
off-diagonal terms in plot c.
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ance matrix. It is these non-diagonal terms that prevent
us from assuming a simpler likelihood form. However,
by knowing the noise covariance, we can calculate the
extent that we will mismodel the data. As such, just by
knowing Σ, we have a great description of the data. Un-
fortunately, estimating Σ accurately is very difficult; we
have tried to minimise variance in the data by taking the
average over 10,000 realisations of the noise, but this is
obviously not possible for real noise.

We now look at the discrepancies in the covariance
matrix of gravitational-wave waveform parameters that
we might expect to see for mergers when we incorrectly
assume a stationary noise covariance matrix.

C. The Effect of Non-Stationarity on the
Covariance Matrix of a Short Gravitational-Wave

Signal

We model a waveform with parameters purposefully
chosen to be similar to GW150914 [66], with SNR set
to 15. This is because the waveform is short in duration,
and representative of the signals that LIGO can currently
detect. That means we can show how uncertain the pa-
rameters of signals we currently observe will be given the
non-stationarity is not accounted for.

The covariance matrix for the waveform parameters
shows how confidently we can measure each parameter.
We will compare the covariance matrix of the waveform
parameters for Model A and Model B with the station-
ary Gaussian model. This was chosen as the reference
because stationary Gaussian noise perfectly matches the
likelihood form used, and so the posteriors will take on
their true form.

The waveform model we have chosen to use is the Tay-
lorF2, as defined by Reference [19], in which the signal
h(f) is of the form

h(f) = f−
7
6 eA+iψ(f), (36)

where to 1.5PN,

ψ(f) = 2πftc + φc −
π

4

+
3

128
(πMf)

− 5
3

(
1 +

20

9

(
743

336
+

11

4
η

)
(πMf)

2
3

− 4 (4π − β) (πMf) + 10ε

(
3058673

1016064
+

5429

1008
η

+
617

144
η2 − σ

)
(πMf)

4
3

)
.

(37)

While we are using parameters for a binary black hole
here, we believe that the TaylorF2 can be used to suffi-
ciently show the impact that non-stationarity can have
on parameter estimation. We are not comparing different
waveform models, but instead are comparing the effects
of non-stationary noise models with a stationary noise
model, using the same waveform throughout.

For simplicity, we reduce the TaylorF2 waveform to a
form that only uses parameters A, φ, tc, and M. With
the exception of the chirp massM, each of these param-
eters are linearised, and so their corresponding values
in the covariance matrix can be interpreted easily. The
mass component can also be linearised by defining

λm =
3

128
(πMf0)

− 5
3 . (38)

This is the chirp time, the time it takes the waveform to
go from f0 to coalescence. Hence, we can re-express ψ(f)
as

ψ(f) = 2πftc + φc −
π

4
+ λm

(
f

f0

)− 5
3

(1 + . . . ) . (39)

Using this waveform and the noise covariance matrices
just found (and plotted in Figure 4, the covariance ma-
trix of the parameters can be calculated using Equation
(20). The fractional difference between the covariance
matrices of these two models and the stationary Gaus-
sian covariance matrix are shown in Tables I and II. Note
that the cross-terms of ∆A and ∆φ will always be 0 as
the parameters are complex counterparts. We also reit-
erate that it doesn’t make sense to compare the results
of Model A directly with the results of Model B because
they are very different models of noise to each other.

The fractional differences in each value of the covari-
ance matrix in Table II are fairly consistent, and rela-
tively small. As the non-stationarity extends over the
entire sample, that means the extra power is also spread
over the sample, and so does not greatly compromise pa-
rameter estimation results for a short signal.

Conversely, Model A was chosen to have the non-
stationarity focused into a single section of the data, cen-
tered around the coalescence of the waveform. Bearing
in mind the short duration of the waveform being con-
sidered, this effectively means we have twice as much
stationary noise around the waveform than for the sta-
tionary Gaussian model. This is reflected by the fact the
values of the covariance matrix in Table I are in general
four times as large as for the stationary Gaussian model.
This would mean that modelling this data as stationary
Gaussian would produce much less confident posteriors
than if the correct likelihood form was used.

One final point to note with Tables I and II is the
presence of several values of the covariance for which the

TABLE I: Fractional difference between the covariance
matrix of Gaussian noise with an 8-second Tukey
window, and stationary Gaussian noise.

∆A ∆φ ∆λm ∆tc
∆A 4.008 0.0 4.008 4.007
∆φ 0.0 4.008 -0.5674 -4.401

∆λm 4.008 -0.5674 4.007 4.007
∆tc 4.007 -4.401 4.007 4.001
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fractional difference is negative. This does not mean that
the non-stationary noise produces a more accurate pa-
rameter in these cases. Recall that the covariance matrix
predicts how well we can measure a parameter, and that
the posterior is only correctly found when the likelihood
form matches the data. Equation (18) tells us that the
posterior will still be centered around the same point, so
any mismodelling will only come from the width of the
posterior. That means that the best estimate we will get
of the parameters will come from stationary Gaussian
data, and the non-stationary models will mean the un-
certainties of the parameters could be overestimated or
underestimated. The negative values correspond to an
underestimate of the uncertainties.

We have shown that modelling non-stationary data as
stationary will always affect the confidence with which
parameters are estimated. However, in cases where the
non-stationary extends over the entire noise sample but
is relatively small in amplitude, the extent to which short
BBH-like signals are under- or overestimated is mini-
mal. The same cannot be said for a loud spike of non-
stationarity as in Model A. The limit at which a model
can no longer be approximated as stationary is a topic
of future research interest. We also reiterate that these
results were generated as the average of 10,000 realisa-
tions of noise; when considering real interferometer data,
we would only be able to use one sample, and so would
expect the non-stationary results to be even worse, as the
off-diagonal terms of the noise covariance will not average
out.

D. The Effect of Non-Stationarity on the
Covariance Matrix of a Long Gravitational-Wave

Signal

The majority of signals detectors currently observe are
only a few seconds long. This means that extended pe-
riods of non-stationarity should not cause a significant
problem. However, it will become increasingly important
to handle the effect of non-stationarity when detectors
such as the Einstein Telescope begin observing. These
are expected to detect much longer signals [67], which
put stringent requirements on stationarity. The analy-
sis problems inherent to the Einstein Telescope are well
documented (for example, [67–69]).

We look now at how a longer signal might be affected

TABLE II: Fractional difference between the covariance
matrix of Gaussian noise with an oscillating amplitude
of 3.2 Hz, and stationary Gaussian noise.

∆A ∆φ ∆λm ∆tc
∆A 1.32 0.0 1.299 1.35
∆φ 0.0 1.32 1.147 1.018

∆λm 1.299 1.147 1.27 1.342
∆tc 1.35 1.018 1.342 1.332

by the non-stationarity by comparing the covariance ma-
trices seen in Tables I and II, but now considering a sig-
nal modelled after GW190814 [70]. This model was cho-
sen due to the large mass difference and relatively small
masses resulting in a merger of duration of tens of sec-
onds. The effect of the mismodelling would be even more
significant in an even longer signal, like we would see from
a BNS-like object. However, we cannot inject a BNS-like
signal into 40 seconds of data, as the signal is of a similar
duration, and we would experience wraparound effects in
the frequency-domain that would in turn distort the re-
sults. On the other hand, analysing data longer than 40
seconds would be both a challenge computationally, and
make the results more difficult to compare to the shorter
signal.

Just as we saw in Section IV C, both the short period
of non-stationarity in Model A and the extended period
of non-stationarity in Model B have a detrimental effect
on the estimated parameters of the waveform. An in-
teresting comparison would be between Tables I and III,
and II and IV. This would allow us to compare how much
more greatly affected a long signal would be affected by
non-stationarity than a shorter signal.

For Model B, the fractional difference in covariances
for GW190814 are approximately the same as for the
GW150914-like signal, with the greatest difference being
the increase in the magnitude of the cross-terms (such
as for ∆A∆λm). For Model A, the majority of the co-
variances are slightly smaller, but still the same order
of magnitude. The greatest discrepancy comes from the
underestimate of the ∆φ∆tc term. This arises from the
length increase of the signal, which now coalesces in the
centre of the Tukey window, but the inspiral starts before
the window, transitioning between two radically different
forms of the noise. We expect to see even greater discrep-
ancies with the stationary model when we consistently
observe longer signals, a problem that has already been
identified for LISA [58], for which antenna repointing will
create data gaps during the observation of signals. The
assumption of stationarity in these periods will lead to
parameter estimation biases.

TABLE III: Fractional difference between the
covariance matrix of Gaussian noise with an 8-second
Tukey window, and stationary Gaussian noise for a
GW190814-like object.

∆A ∆φ ∆λm ∆tc
∆A 3.362 0.0 0.7657 4.073
∆φ 0.0 3.362 -5.171 -21.54

∆λm 0.7657 -5.171 1.956 3.907
∆tc 4.073 -21.54 3.907 4.001
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E. Variation of the Fisher Matrix Over Time

Perhaps one of the most surprising things seen when
comparing the results in Section IV C and IV D is the
decrease in magnitude of the covariance matrix values as
the waveform duration increased. This is because we cal-
culate the quantity ω†S−1ω, a Fisher matrix, and must
invert it to find the covariance matrix. In the process of
inverting the matrix, terms of the matrix are affected by
the mass components, which are larger for larger values
ofM. If we were to instead look at the Fisher matrix, we
would not see the influence of these mass components on
the other values. As a corollary, by comparing Fisher ma-
trices, while we could evaluate the difference in measur-
ability of the different parameters for the non-stationary
noise models compared to the stationary noise model,
it would not help us understand how greatly under- or
overestimated the parameters might be, and an under-
standing of both is useful.

Because of the non-stationarity of the data, we do ex-
pect to see the exact values of the Fisher matrix vary
with tc. To explore what extent the values vary with
time, we have calculated the Fisher matrix at different
values of tc for three different waveforms of decreasing
total mass. The corresponding values of one parameter
of these Fisher matrices, the amplitude-amplitude term
FAA, has been plotted in Figure 5.

In the case where the noise is stationary Gaussian, the
value of FAA is roughly constant regardless of the wave-
form, as we would expect, with the small fluctuations we
do see arising from the fact we could only average over
10,000 realisations of noise, rather than infinite.

At times before and after the Tukey window is ap-
plied to Model A (16 < tc < 24s), the values of FAA
are comparable to the stationary Gaussian noise model,
because it simply is stationary Gaussian noise at these
times. In the period when the Tukey window is applied,
the values of FAA are still roughly constant for all wave-
forms, although the values are much smaller. This is
consistent with the assertion that the increased level of
noise in the Tukey window means that the parameters
are less measurable. We also note that the line corre-
sponding to Merger 3 (between masses m1 = 9.25M�
and m2 = 8.0M�) has a greater offset than for the other
two mergers. The longer waveform of Merger 3 averages

TABLE IV: Fractional difference between the
covariance matrix of Gaussian noise with an oscillating
amplitude of 3.2 Hz, and stationary Gaussian noise for
a GW190814-like object.

∆A ∆φ ∆λm ∆tc
∆A 1.234 0.0 1.965 0.8001
∆φ 0.0 1.234 -1.838 1.885

∆λm 1.965 -1.838 1.219 -0.1868
∆tc 0.8001 1.885 -0.1868 0.3767

(a) Values of FAA at times tc for three waveforms injected
into Gaussian data.

(b) Values of FAA at times tc for three waveforms injected
into Gaussian data with an 8-second Tukey window applied
at 16 to 24 seconds.

(c) Values of FAA at times tc for three waveforms injected
into Gaussian data with an oscillating amplitude of 3.2 Hz.

FIG. 5: Values of FAA for different values of
coalescence time tc for three waveforms where only their
total masses are varied. Note that masses are in terms
of solar mass. The tc range for c is displayed from 4 to
16s, to better showcase the effect of the entire Tukey
window.

over more time, and so the Fisher matrix values shift in
time.

The sinusoidal modulation is visible in the results for
Model B. We can quite clearly see here that the pa-
rameters become more measurable (the values for FAA
spikes) whenever the oscillating amplitude is at a mini-
mum. Again, we can see a difference caused by the du-
ration of the signals; in this case, the very short duration
of Merger 1 means that the signal is either entirely in or
outside the spikes of non-stationarity, but the longer sig-
nals will extend outside of the spikes, and so the values
of the Fisher matrix will average out in time. While not
as tightly spaced as for the stationary Gaussian model,
all the values are in the same order of magnitude, and so
are still comparable to each other.
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The non-stationarity described here is far more ex-
treme than we would expect to see in real experiments,
chosen instead to demonstrate the effect on the waveform
parameters. Even so, the comparable measurability of
the waveforms shows that the estimation of the param-
eters depends very strongly on when the merger takes
place relative to the noise, more than the properties of
the waveform itself.

V. CONCLUSION AND FUTURE WORK

We have undertaken one of the first analytical studies
of the effect of mismodelling gravitational-wave strain
data as stationary in parameter estimation. We estab-
lished that mismodelling the data in this way will not bias
the parameters, but will affect the width of the posterior.
This means that there will be an under- or overestimate
of the parameter credible intervals.

We demonstrated a methodology for investigating the
effect of non-stationarity through calculation of noise co-
variance Σ, and the covariance of the waveform param-
eters. Using this methodology, we showed any form of
non-stationarity will affect the results of parameter esti-
mation, but the credible intervals are more greatly mis-
represented when the non-stationarity increases the am-
plitude of the noise, rather than the form of the non-
stationarity itself; Reference [71] described similar results
for given SNR. The effect non-stationarity has on param-
eter estimation is more pronounced in the case when the
signal itself is longer and extends over several forms of the
noise, as parameters become harder to measure, as sig-
nified by the decrease in magnitude of the Fisher matrix
values. This indicates that non-stationarity is a partic-
ular obstacle in reliably estimating the parameters of a
BNS. Additionally, if we continue to assume the noise is
Gaussian, all we need to know about the noise is the ma-
trix Σ, since this square matrix completely characterises
the data, with any non-stationarity manifesting in off-
diagonal terms.

Now that a method for determining the covariance of
stationary and non-stationary Gaussian noise has been
determined, we believe there is merit in creating a mea-
sure of the effect of non-stationarity by comparing co-
variance matrices. We propose such a metric would con-
cern deviations from the expected stationary Gaussian
covariance we have obtained from the method above,
with the main aim of establishing the point at which
non-stationarity becomes a problem.

We believe it would be possible to predict the extent to
which the posterior will be over or underestimated, and
so a formalism to account for this without significantly
increasing computational cost should be possible to in-
clude in parameter estimation codes. Until a method for

handling the non-stationarity is developed, the incorrect
credible intervals could also be a limiting factor of astro-
nomical observations using gravitational waves, not least
of which being an estimation of the Hubble parameter.
For example, Reference [72] proposes that gravitational-
wave events can be used to obtain a measurement of H0

with an uncertainty of only a few percent; the methodol-
ogy outlined in our paper could be applied to ensure that
the confidence intervals are not being underestimated.
We would also be concerned that incorporating the un-
certainty of the PSD-measurement as suggested by [32]
would only serve to compromise the H0 measurement.
Our methodology could also be particularly important
when detectors such as the Einstein Telescope begin ob-
serving, as these are expected to detect much longer sig-
nals [67], which put stringent requirements on stationar-
ity.

One of the major issues we foresee with this work is
the calculation of Σ. Therefore, it would be useful to
delve into methods for estimating 〈nn†〉 on average to
accurately find Σ in realistic data.

Another avenue to consider is that real noise is not
only non-stationary, it is also non-Gaussian, but mod-
elled as stationary Gaussian for the same computational
efficiency reasons as mentioned in III A. Although the
effect that the non-stationarity has on the posterior is
being examined through the method in this paper and
any followup work, the same method cannot be used for
non-Gaussian data owing to the different form the likeli-
hood takes. Instead, we see the need for future work to
develop suitable techniques to measure the effect on pa-
rameter estimation of mismodelling non-Gaussian data.

From this work, it would be possible to determine
how non-ideal a dataset can be without compromising
parameter estimation, create a robust measure for the
extent to which these datasets are affected, and investi-
gate whether current inference codes can be modified to
account for the effect without greatly increasing compu-
tational cost.
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