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We revisit the impact of early dark energy (EDE) on galaxy clustering using BOSS galaxy
power spectra, analyzed using the effective field theory (EFT) of large-scale structure (LSS), and
anisotropies of the cosmic microwave background (CMB) from Planck. Recent studies found that
these data place stringent constraints on the maximum abundance of EDE allowed in the Uni-
verse. We argue here that their conclusions are a consequence of their choice of priors on the EDE
parameter space, rather than any disagreement between the data and the model. For example,
when considering EFT-LSS, CMB, and high-redshift supernovae data we find the EDE and ΛCDM
models can provide statistically indistinguishable fits (∆χ2 = 0.12) with a relatively large value for
the maximum fraction of energy density in the EDE (fede = 0.09) and Hubble constant (H0 = 71
km/s/Mpc) in the EDE model. Moreover, we demonstrate that the constraining power added from
the inclusion of EFT-LSS traces to the potential tension between the power-spectrum amplitudes
As derived from BOSS and from Planck that arises even within the context of ΛCDM. Until this
is better understood, caution should be used when interpreting EFT-BOSS+Planck constraints to
models beyond ΛCDM. These findings suggest that EDE still provides a potential resolution to the
Hubble tension and that it is worthwhile to test the predictions of EDE with future data-sets and
further study its theoretical possibilities.

I. INTRODUCTION

Over the past several years, the standard cosmological
model ΛCDM has come under increased scrutiny as mea-
surements of the late-time expansion history of the Uni-
verse [1], the cosmic microwave background (CMB) [2],
and large-scale structure (LSS)—such as the clustering
of galaxies [3–6]—have improved. Observations have
spurred recent tensions within ΛCDM, related to the
Hubble constant H0 = 100h km/s/Mpc [7] and the pa-
rameter combination S8 ≡ σ8(Ωm/0.3)0.5 [8] (where Ωm

is the total matter relic density and σ8 is the variance of
matter perturbations within 8 Mpc/h today), reaching
the ∼ 5σ and 3σ level, respectively.

Modifications of the low redshift Universe are un-
likely to provide a satisfactory resolution [9–17] to the
H0 tension. Thus, efforts have shifted towards pre-
recombination modifications of ΛCDM [18]. Models
of early dark energy (EDE), in particular, have shown
promise (e.g., [19–26]).

The EDE resolution to the H0 tension also makes
unique predictions for the observed LSS. Recent work
has explored the impact of EDE on weak-lensing obser-
vations [27] and galaxy clustering [28, 29], reporting in-
creasingly tight constraints on the maximum fraction of
the total energy density of the Universe in EDE, fede:
fede < 0.05 at the 95% confidence level (CL) for an EDE
model with three free parameters.1 With such a small

1 EDE models are generally specified by four parameters: fede,

upper limit, these papers claim to have effectively ruled
out the EDE scenario as a resolution to the Hubble ten-
sion.

In this paper, we reconsider the constraints on EDE
from BOSS galaxy clustering observations, analyzed us-
ing the effective field theory (EFT) of large-scale struc-
ture [30–34]. First, using a three-parameter EDE model,
we confirm the results from previous studies [28, 29], and
find that the inclusion of the EFT-BOSS data constrains
fede < 0.053 at the 95% CL.2 However, we disagree with
their conclusions that this upper limit effectively rules
out EDE as a resolution to the Hubble tension. We make
a distinction between the posterior distribution for fede

given a choice of priors and the fact that there are param-
eter values with fede much greater than this limit which
provide a fit to the data that is statistically indistinguish-
able from ΛCDM. In order to demonstrate this, using the
same approach in Ref. [35], we consider a one-parameter
EDE model (1pEDE) in which the only free EDE param-
eter is fede. In this case we find that fede = 0.0523+0.026

−0.036,
with a 95% CL upper limit of fede < 0.107. This choice
of EDE prior provides a proof of principle that there are

the redshift zc at which the maximum of the EDE contribution
to the total energy density occurs, the initial field displacement,
Θi, and the potential’s power-law index around its minimum,
naxion, fixed to naxion = 6 in Refs. [27–29] and in this work. See
Ref. [22] for more details.

2 The upper limit we find is slightly smaller than the one reported
in Ref. [29]. This is most likely due to the fact that our chains
have a more stringent convergence requirement (R− 1 < 0.03).
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EDE parameter values which fit the data well and are
much larger than the previously reported upper limits.
Further exploring this, we find that an EDE model with
fede = 0.09 and h = 0.71 can fit these data as well as
ΛCDM.

We confirm that the inclusion of the EFT-BOSS data
leads to a tighter constraint on fede, even when con-
sidering the 1pEDE. Further exploration of where this
additional constraining power comes from points to the
potential inconsistency between the value of the scalar
amplitude, As, inferred from the EFT-BOSS data and
from Planck data. The positive correlation between fede

and As then tends to decrease the allowed values of fede.
Since the mismatch in As also occurs in ΛCDM, we argue
that one should be cautious when interpreting constraints
to models beyond ΛCDM obtained by combining Planck
and EFT-LSS data.

Using a similar approach as presented here, a reassess-
ment of weak-lensing observations in the context of EDE
[35] also found that these constraints are not robust to
the choice of EDE priors, and that when the parame-
ter space is reduced to just fede, the constraints relax to
fede < 0.094 at 95% CL. Moreover, the apparent con-
straining power is entirely driven by a ∼ 3σ statisti-
cal inconsistency that is already present between joint
KiDS+Viking+DES data [36] and the ΛCDM model in-
ferred from Planck data, which makes it hard to properly
interpret constraints to beyond-ΛCDM models when us-
ing these data.

This paper is organized as follows: we present the anal-
ysis method in Sec. II; discuss the consequences of the
parametrization of EDE models on the final parameter
inference and propose using only one EDE free parame-
ter in Sec. III; explore the additional constraining power
that the galaxy power spectrum measurements provide
to EDE analyses in Sec. IV; and conclude in Sec. V.

II. ANALYSIS METHOD

We run a Markov-chain Monte Carlo (MCMC) us-
ing the public code MontePython-v33 [37, 38], interfaced
with our modified version of CLASS4. We perform the
analysis with a Metropolis-Hasting algorithm, assum-
ing flat priors on {ωb, ωcdm, θs, As, ns, τreio}; when con-
sidering the three parameter EDE (3pEDE) model we
also vary {log10(zc), fede,Θi} and for the one parameter
model (1pEDE) we fix log10(zc) = 3.569 and Θi = 2.775
(their best-fit values for the 3pEDE using only Planck
power spectra [35]). As described in Ref. [22], we use
a shooting method to map the set of phenomenologi-
cal parameters {log10(zc), fede} to the theory parame-
ters {m, f} (where the shape of the EDE potential is

3 https://github.com/brinckmann/montepython_public
4 https://github.com/PoulinV/AxiCLASS
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FIG. 1. 68% and 95% CL marginalized constraints on the h-
fede plane for different EDE parametrizations and data com-
binations, as described in the legend. ‘(GP)’ denotes an anal-
ysis in which we place Gaussian priors on log10(zc) = 3.5±0.1
and Θi < 3.1 with σΘ = 0.5.

given by V (φ) = m2f2[1 − cos(φ/f)]3). We take flat
priors 0 ≤ Θi ≤ 3, 0 ≤ fede ≤ 0.3 and, since we
are interested in the pre-recombination effects of the
EDE, 3 ≤ log10(zc) ≤ 4.5. Note that the flat priors
on fede and log10(zc) translate into non-flat priors on
the theory parameters {m, f} (see, e.g., Ref. [28]). We
adopt the Planck collaboration convention and model
free-streaming neutrinos as two massless species and one
massive with mν = 0.06 eV [39]. We consider chains
to be converged using the Gelman-Rubin [40] criterion
R − 1 < 0.03. To post-process the chains and produce
our figures we used GetDist [41].

We use the EFT ‘full shape’ analysis of Refs. [32, 33,
42] applied to the pre-reconstructed BOSS galaxy cluster-
ing measurements presented in Refs. [42–44]5, as well as
the post-reconstructed anisotropic BAO measurements
of BOSS DR12 at z = 0.32 and 0.57 [3] which corre-
spond to the LOWZ and CMASS samples. Note that, as
in Ref. [33], we do not use the south galactic cap field of
LOWZ. We include a covariance between the EFT-BOSS
and anisotropic BAO analysis [42]. In the following we
will refer to the joint EFT-BOSS + BAO analysis as
‘EFT+BAO’, the Planck CMB and lensing power spec-
tra as ‘CMB’, the Pantheon type Ia supernova dataset as
‘SNe’, and the big bang nucleosynthesis (BBN) prior on
ωb [45] as ‘BBN’.

5 https://pybird.readthedocs.io/en/latest/

https://github.com/brinckmann/montepython_public
https://github.com/PoulinV/AxiCLASS
https://pybird.readthedocs.io/en/latest/
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III. IMPACT OF EDE PRIOR

The EDE model considered here and in the LSS anal-
yses in Refs. [27–29] is a phenomenological model that
provides a physically consistent evolution of the back-
ground and perturbations of an EDE component which
has a constant background energy density up until some
critical redshift, zc, and then becomes dynamical and di-
lutes, due to the expansion of the universe. After fixing
the shape of the potential, this model is specified by the
standard six ΛCDM parameters plus three EDE-specific
parameters (3pEDE), only one of which, fede, controls
the overall energy density in the EDE.

As fede tends to zero, a change in the other EDE pa-
rameters has no measurable impact on the EDE pre-
dictions. This leads to a prior preference for this re-
gion of the parameter space (i.e., a large prior volume),
as any point corresponds to similar likelihood values,
hence the posterior density will be larger around these
points. This issue arises in any parameterization of the
EDE model since the relation between the phenomeno-
logical and any other parameters (including the theoreti-
cal ones) is bijective, so that there will be some direc-
tion in this other parameter space which corresponds
to fede → 0, again leading to the same prior prefer-
ence. Therefore, upper limits on fede assuming 3pEDE
do not reflect that the same or higher likelihood can be
achieved with a larger fede. In previous work [20–22, 47]
this issue was addressed by including the SH0ES prior,
H0 = 74.03 ± 1.42 km/s/Mpc [46], by placing a non-
zero lower-limit, fede ≥ 0.04 [28], or by imposing nar-
row Gaussian priors on log10(zc) and Θi [29] (denoted
by ‘(GP)’ in Fig. 1). Instead, here we attempt to miti-
gate this by considering a one parameter EDE (1pEDE)
model where we only allow fede to vary.

First, when exploring that 3pEDE with the
EFT+BAO+SNe+CMB datasets, we find posteri-
ors on fede in agreement with Refs. [28, 29]: fede < 0.053
at 95% CL. However, using the same data for the
1pEDE leads to fede = 0.0523+0.026

−0.036 with a 95% CL
upper limit fede < 0.107. Fig. 1 indicates that by
reducing the number of EDE parameters we have
weakened the constraint on fede. Although this effect
may appear counterintuitive (in most cases, having more
free parameters weakens parameter constraints), once
we note that fede is not correlated with the rest of EDE
parameters in the region of interest of the parameter
space, using 1pEDE gives a more direct exploration of
the likelihood dependence on fede. Moreover, from Fig. 1
shows that using narrower priors on log10(zc) and Θi, as
in Ref. [42], is not sufficient to uncover the likelihood’s
dependence on fede. Similar results are obtained with
the implementation of EFT-BOSS from Ref. [28], as
we find that in the 1pEDE model, the combination of
EFT+BAO+CMB leads to fEDE = 0.072 ± 0.034, with
a 95% CL upper limit fede < 0.132.

In order to demonstrate that the EDE model, with
relatively large values of fede and H0, can fit the

EFT+BAO+SNe+CMB data as well as ΛCDM, we
searched for the minimum χ2, fixing H0 = 71 km/s/Mpc
for the 3pEDE model. The differences in the fit, χ2

EDE−
χ2

ΛCDM = 0.12, make the models statistically indistin-
guishable with fede = 0.09 for the EDE– well outside
of the 95% CL posterior distribution. A similar explo-
ration of the constraints using the EFT-BOSS implemen-
tation from Ref. [28] gives χ2

EDE−χ2
ΛCDM = −0.016 with

H0 = 71.94 km/s/Mpc and fede = 0.136.
When claiming to rule out an extension of ΛCDM it

is important to not only rely on the posterior distribu-
tion, but also to establish that the extension leads to a
degradation in the fit to the data compared to ΛCDM.
Otherwise, it means that the posterior distributions are
driven by the choice of priors. As we have shown here,
fede can take on values much larger than the 95% CL
limits obtained using 3pEDE and still provide as good of
a fit to the data.

IV. ADDITIONAL CONSTRAINTS ON EDE
FROM GALAXY CLUSTERING

Now that we have seen that the inclusion of the
EFT+BAO data leads to a decrease in the posterior for
the 1pEDE fede (see Fig. 1), it is of interest to establish
where this additional constraining power is coming from.

As a first step, we focus on how EFT+BAO+BBN
constrains EDE and compare this with CMB constraints.
This comparison is informative for two reasons: first to
have a reference to evaluate the constraining power of
EFT+BAO; second, to investigate whether there is a de-
generacy between parameters that can be potentially bro-
ken by the addition of the EFT+BAO likelihood. In all
cases, we add SNe to reduce degeneracies.

We show the marginalized constraints from
EFT+BAO+BBN and CMB separately for both
ΛCDM and 1pEDE in Fig. 2. As expected, for both
data combinations, 1pEDE significantly broadens the
marginalized posterior of h, as well as shifts it towards
higher values. Note that EFT+BAO+BBN+SNe places
significantly weaker constraints on fede than CMB+SNe.

Ref. [29] suggests that the constraining power on EDE
from EFT-BOSS comes from a tight constraint on the
sound horizon at baryon decoupling, rdrag, in a joint
analysis with Planck CMB data. We explore this possi-
bility in Fig. 2, where we show marginalized constraints
for the photon-baryon sound horizon at baryon decou-
pling, rdrag, in the bottom row. The agreement be-
tween the separate EFT-BOSS and Planck constraints
to the 1pEDE (green and red contours) indicates that in
a joint analysis the EFT-BOSS data are not adding fur-
ther information about rdrag and therefore this cannot
be the source of the additional constraining power that
EFT+BAO+BBN sets on EDE.

On the other hand, Fig. 2 shows that for both
ΛCDM and 1pEDE models the EFT+BAO+BBN+SNe
data prefer a significantly smaller value for As than
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FIG. 2. 68% and 95% CL marginalized constraints along with one-dimensional marginalized posteriors for parameters which
correlate with fede. We show results from EFT+BAO+BBN+SNe assuming 1pEDE (green) and ΛCDM (gray), and similarly
but using CMB+SNe (red and blue, respectively). The yellow band shows the 68% (darker)/95% (lighter) CL for h determined
by the SH0ES collaboration [46].

CMB+SNe,6 which may hint at the origin of the
strengthened constraints on fede when including the

6 We also find a relatively small value of ln(1010As) = 2.85+0.18
−0.14

(compared to ln 1010As = 3.041+0.012
−0.0088 for CMB+SNe) when

using the EFT-BOSS implementation from Ref. [28].

EFT+BAO+BBN data. Indeed, As is positively corre-
lated with fede, while EFT+BAO+SNe prefer values of
this parameter lower than CMB+SNe, disfavoring high
values of fede.

We can further test this hypothesis by performing a
‘parameter split’ test (see e.g., Refs. [48–51]). While we
keep the standard ACMB

s parameter to fit the CMB power
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FIG. 3. 68% and 95% CL marginalized constraints along with one-dimensional marginalized posteriors. We show results from
EFT+BAO+SNe+CMB assuming 1pEDE and 1pEDE(Pk) (red and gray, respectively). We also show results from CMB+SNe
assuming 1pEDE in red. The yellow band and blue bands show the 68% (darker)/95% (lighter) CL constraints on h from
SH0ES [46] and on S8 from a combination of weak-lensing measurements (see, e.g., Ref. [27]), respectively. Note that for the
(ωcdm, h) 2D posteriors the ‘LCDM’ (green) and ‘LCDM(Pk)’ (light blue) lie directly on top of one another.

spectra and lensing, we introduce a new parameter, ALSS
s ,

that controls the primordial power spectrum to compute
the galaxy power spectrum. The data sets under scrutiny
will present a tension between them if ACMB

s is statisti-
cally inconsistent with ALSS

s . We mark the cases with
parameter split adding ‘(Pk)’ to the name of the model.

We show marginalized constraints on fede, h and S8

(computed using ‘LSS’ split parameters) in Fig. 3. When
we allow for the parameter split, the constraints on h and
fede are similar to those without including EFT+BAO,
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and ALSS
s < ACMB

s at more than 2σ.7 Note that the same
tension has been reported in Ref. [33]. This demonstrates
that the potential tension between Planck and the EFT-
BOSS data on As, present in both EDE and ΛCDM cos-
mologies with comparable significance, is the main cause
of the gain in constraining power on EDE from the addi-
tion of the EFT+BAO likelihood to the analysis. Inter-
estingly, the S8 marginalized posterior when parameters
are split favors lower values than Planck, being more con-
sistent with a variety of weak-lensing surveys [4, 5, 52, 53]
(shown in the blue bands).

It has also been argued (e.g., Ref. [34]) that when EFT-
BOSS is combined with Planck CMB measurements in-
ternal degeneracies are broken leading to an additional
constraint on ωcdm. However, Figs. 2 and 3 that Planck
show that constraints on all of the ΛCDM parameters,
except for As, in the EDE model are in statistical agree-
ment with those from EFT-BOSS.

V. CONCLUSIONS

EDE proposes a promising extension to ΛCDM to re-
solve the H0 tension and, as any other model, requires
strong and robust evidence to be ruled out. While at
first sight, LSS observables such as galaxy clustering and
weak lensing might seem to provide such evidence, there
are two main aspects of current LSS data that challenge
this conclusion.

First, the EDE parametrization presents an increas-
ingly large prior volume as fede → 0, since in this limit
the likelihood becomes completely insensitive to varia-
tion in the other two EDE parameters. In the posterior
distribution, this significantly favors low values of fede,
independently of the likelihood. Therefore, given that
fede and the other EDE parameters are uncorrelated in
the region of the parameter space of interest, by keeping
fede as the only free parameter (our 1pEDE model), we
produce posteriors that more directly samples the likeli-
hood. We have shown that in this case, the constraints
on fede weaken significantly.

Second, we have also identified the origin of the addi-
tional constraining power provided by the EFT+BAO
likelihood to a joint analysis. It is the small tension
between Planck and EFT+BAO inferred values of As
(the latter favoring a lower value), together with the
positive correlation between fede and As, which places
stronger constraints on fede. We have demonstrated this
by performing a ‘parameter split’ test, allowing As for
the LSS data to vary independently of As for the CMB
power spectra and lensing. Given the tension between
EFT+BAO and Planck data, even when analyzed using

the ΛCDM model (see Fig. 3), one should be cautious
when interpreting constraints to models beyond LCDM
using a joint analysis.

Our results point out that, given the discussion above,
there is not enough evidence to rule EDE models out.
First, as shown in Fig. 2, EDE, with fede > 0, can provide
a good fit to Planck and BOSS galaxy power spectra,
separately. Second, the EDE cosmology with non-zero
fede can provide as good of a joint fit to Planck and
BOSS galaxy power spectra as ΛCDM. For example, we
find that when fixing H0 = 71 km/s/Mpc in the 3pEDE
model, χ2

EDE − χ2
ΛCDM = 0.12, with fede = 0.09.

Even though our analysis has been done exclusively
with a particular EDE model, our conclusions apply more
broadly to any extension to the ΛCDM model whose
main impact is to increase the pre-recombination expan-
sion rate due to a material with significant internal pres-
sure support. The parameter controlling the size of such
an increase will have a positive correlation with As (in
order to fit CMB measurements) and will therefore be
impacted by the EFT-BOSS data in a similar way (e.g.,
Refs. [47, 54]).

Although current observations do not provide strong
evidence for or against EDE models, forthcoming CMB
and LSS experiments are expected to be precise enough
to resolve this ambiguity. As discussed in Refs. [22,
28, 55], CMB-S4, Euclid/DESI-like spectroscopic galaxy
surveys, and James Webb Space Telescope observations
of galaxy abundances and clustering, should be able to
definitively probe these predictions, and future spec-
tral distortion measurements may test the high values
of ns required by EDE [56]. Moreover, EDE might en-
tail unique predictions regarding the production of chiral
gravitational waves, scalar, and possibly vector perturba-
tions [23, 57, 58], or have impact in the neutrino mass [25]
or cosmological light scalar fields [59]. Our work shows
that, contrary to the claims that the EDE model has
been ‘ruled out’, the analysis of the various predictions
of EDE with future data is still warranted.
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7 Fig. 2 shows that the only two parameters which may be in
tension between the CMB and LSS data are As and ns. We
ran a second split analysis, allowing both parameters to take

on different values and found ALSS
s /ACMB

s = 0.768+0.070
−0.081 and

nLSS
s /nCMB

s = 0.984+0.037
−0.032, showing that the value of ns is con-

sistent between datasets at well within the 1-sigma limit.
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