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Weak gravitational lensing of the cosmic microwave background (CMB) is an important cosmological
tool that allows us to learn about the structure, composition and evolution of the Universe. Upcoming
CMB experiments, such as the Simons Observatory (SO), will provide high-resolution and low-noise CMB
measurements. We consider the impact of instrumental systematics on the corresponding high-precision lensing
reconstruction power spectrum measurements. We simulate CMB temperature and polarization maps for an
SO-like instrument and potential scanning strategy, and explore systematics relating to beam asymmetries and
offsets, boresight pointing, polarization angle, gain drifts, gain calibration and electric crosstalk. Our analysis
shows that the majority of the biases induced by the systematics we modeled are below a detection level
of ∼ 0.6σ. We discuss potential mitigation techniques to further reduce the impact of the more significant
systematics, and pave the way for future lensing-related systematics analyses.

I. INTRODUCTION

One of the main scientific objectives of upcoming cosmic
microwave background (CMB) experiments is to measure the
gravitational lensing of the CMB photons over a substantial
sky area with the highest precision to date. This will enable us
to better constrain dark energy models and inflation, provide
more information on neutrino masses, and learn more about
the large-scale structure of the Universe up to high redshift.
To achieve this from upcoming observations, it is crucial
to understand how instrumental systematics could bias the
lensing potential reconstruction. This challenge will be more
important for future CMB experiments such as the Simons
Observatory (SO) [1] and CMB-S4 [2], as small systematics
become more significant with higher resolution and lower
noise levels.

The ability to effectively reconstruct the lensing potential
(see [3] for a review) from upcoming ground-based CMB
experiments could be limited by various instrumental
systematics. For example, systematics could induce lensing-
like features in the CMB maps or act to effectively increase
the reconstruction noise. Previous work in the literature
has characterized the influence and potential significance of
several systematics on lensing reconstruction [4–6]. However,
these treatments have mostly used analytic approximations
and idealized scanning strategies, rather than employing
realistic instrument, scans, and modeling of systematics
based on levels observed in real data. Several experiments
have used a simulation-based approach to characterize
residual systematic uncertainties, but focused on the CMB
power spectra [7–9] or to guide the design of future
instruments [e.g. 10]. The POLARBEAR collaboration
has recently used a simulation-based approach to propagate
residual systematics uncertainties in their latest lensing
reconstruction measurements [11].

In this work, we adopt a similar end-to-end simulation
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approach to propagate the most common instrumental effects
related to beam, calibration, pointing and readout electronics
through to a lensing reconstruction analysis for a next-
generation SO-like instrument. We assume a realistic
amplitude for the modeled systematics, as observed in the
current generation of experiments, or as expected for the
next generation instruments given their design specifications.
Our baseline reconstruction pipeline performs a semi-
optimal treatment of noise inhomogeneities induced by
the scanning strategies of ground-based experiments [12],
however it does not automatically mitigate possible residual
systematic biases. Using systematics-free Monte Carlo
(MC) simulations to obtain the noise-debiasing terms for
the CMB lensing power spectrum could lead to biases on
real data. It is therefore crucial to understand the detailed
behavior of systematics-induced biases and their potential
significance for a more accurate lensing reconstruction, and
to design mitigation strategies when required (for example,
by including an accurate model of the most important effects
in the corresponding MC simulations used in the lensing
analysis). In this work, we focus on the CMB lensing power
spectrum reconstruction, and do not consider the impact
on other important analyses such as the delensing of CMB
polarization. A more detailed study may be required for the
delensing analysis, as small systematics-induced map-level
effects could become relatively more important.

This paper is structured as follows. We begin in Sec. II
by describing how we model the instrumental systematics
that we consider, and how these systematics affect the time-
stream data simulations. Sec. III gives a short overview of
the lensing reconstruction pipeline that we use to analyze
our simulations. The systematics-induced biases and their
significance on the CMB power spectra and the reconstructed
lensing power spectrum are shown in Sec. IV. We discuss
possible mitigation strategies in Sec. V, and summarize
our findings and future prospects in Sec. VI. Throughout
this paper we assume a Gaussian unlensed CMB model
corresponding to a fiducial ΛCDM model with Planck-
estimated parameters [13], and inhomogeneous but pixel-
uncorrelated instrumental noise (e.g. neglecting 1/f noise
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from the atmosphere or from instrument electronics). We
also do not attempt to model systematics that couple to
foregrounds, and consider an experiment which is insensitive
to the CMB temperature monopole and dipole. For the
scanning strategy considered here, the latter are largely
removed by the filtering usually employed on real data to
handle slowly varying correlated (1/f ) noise induced by the
atmosphere.

II. INSTRUMENTAL SYSTEMATICS SIMULATIONS

Due to the time dependency of the data acquisition chain
of CMB experiments, the most accurate and natural way to
include the effects of instrumental systematics is to inject
them at the raw time-ordered data (TOD) level. For this
purpose, and to construct sky maps from the simulated TOD,
we use the public Python package s4cmb1 [14]. This
software, which is derived from the POLARBEAR data
analysis systematics pipeline, has been used to perform a
preliminary systematics study for SO [10, 15, 16], and to
explore the effects of systematics on B-mode measurements
on real data [7, 17]. Injecting systematics directly into the
simulated detector-by-detector TOD allows us to explore a
wider set of systematics in a more realistic way than other
possible treatments of systematics (such as effective induced
map-domain systematics), and includes their variation across
the focal plane of the instrument.

We start by converting noise-free and beam-free CMB
temperature and polarization realization maps, s =
{T,Q,U}, to TOD based on instrument specifications.
The instrument (white) noise n, instrument beam b, and
systematics, are then injected into the TOD, which is then
converted to temperature and polarization maps following
a scanning strategy’s pointing model. We can write the
generated data time stream dt for a specific time sample t as

dt = Tt +Qt cos(2ψt) + Ut sin(2ψt) + nt, (2.1)

where ψ is the polarization angle of the detector with respect
to the sky coordinates, Tt, Qt and Ut are the T,Q,U Stokes
parameters of the CMB observed in the sky direction where
the telescope is pointing at given time t, and n is the
instrument noise. At this point we define the CMB signals
to already be affected by the instrument beam and systematic
effects. The instrument noise, which is not affected by the
beam, may also be affected by some systematic effects such as
gain variations. Throughout, we hereafter drop the t subscript
for convenience. The way in which the systematics we
model affect the TOD is shown individually in the following
subsections.

The generated TOD with systematics is then converted
into three temperature and polarization flat-sky maps using
a binned map-making process; rewriting Eq. (2.1) in vector

1 Available at: https://github.com/JulienPeloton/s4cmb/.

notation,

d = As+ n, (2.2)

where A is the pointing matrix of the scanning strategy, the
reconstructed sky maps ŝ are the generalized least square
solution of Eq. (2.2) [18, 19],

ŝ =
(
A>N−1A

)−1
A>N−1d, (2.3)

where N is the time-domain instrument noise correlation
matrix that we assume is diagonal and proportional to the
noise variance of the TOD (and the same for all the detectors).
In the following we will use a pair-differencing approach,
where we map independently the half sum and half difference
of the TOD from a pair of detectors within a focal plane pixel
that observe the sky with orthogonal polarization angles [20].
This is a commonly-used strategy to isolate the polarized
and unpolarized components of the signal while minimizing
the mixing between the two. Mixing between intensity
and polarization is particularly dangerous for polarization
measurements from the ground, for which any leakage of the
unpolarized signal is dominated by the strong atmospheric
emission. We do not use any filtering during the map-making
process to avoid the need to correct the reconstructed lensing
potential power spectrum by additional MC corrections due
to filter-induced biases. While some filtering procedures [19,
21] or other map-making-stage modifications [22–24] may
mitigate some systematic effects, in this work we only
demonstrate to leading order the potential lensing biases
which may result from systematics alone.

We use the process described above to obtain three groups
of simulations:

1. MC simulations: systematics-free simulations which
are obtained using our default instrument specifications
and scanning strategy. These make up different
simulation sets used for calculating different debiasing
terms for the lensing reconstruction analysis. In total,
we use 576 MC simulations. Their allocation to the
different debiasing terms is described in Sec. III.

2. Systematics-free “data” simulations: 10 simulations
similar to the MC simulations, but using a specific set
of 10 CMB + noise realizations. These simulations
are used for a systematics-free lensing reconstruction
analysis for comparison.

3. “Data” simulations: same as group 2, but with the
effect of systematics. Each considered systematic
has its own set of 10 “data” simulations from which
we reconstruct the lensing potential. The averaged
reconstructed lensing power spectra of this set are
compared to the same power spectra obtained from the
systematics-free “data” set.

To simulate realistic observations, we use an existing
scanning strategy in s4cmb, the “deep patch” scan, for all
simulations. This simulates observations covering ∼5% of
the sky, which is consistent with the plan of the deepest
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CMB observations of SO and CMB-S4 [25, 26]. The
specific scanning strategy we adopted throughout this work
is composed of 12 individual constant elevation scans (CESs)
having a unique scanning pattern, as shown in Fig. 1.
Future surveys dedicated to CMB lensing science will
typically cover a much larger sky area (∼ 50% of the
sky). However, our specific choice of scanning strategy is a
good compromise that allows us to perform rapid simulations
relatively inexpensively numerically. As we will discuss later
on, the amount of cross-linking of the scans is a crucial factor
affecting the impact of several instrumental systematics.

The normalized hit count map of the full 12-day scan is
shown in Fig. 2. This “weights” map is used throughout
the lensing analysis as a baseline for the anisotropic noise
covariance map. A hit, or sample, is acquired every 1/15
seconds with a telescope’s constant azimuth speed of 0.4◦/sec
at an elevation of 5,200 meters for an observatory located
in the Atacama plateau (which is the SO location). Since
we simulate only 12 days of observations, which is only a
fraction of a CMB experiment’s full multiyear run, the effects
of systematics which are expected to average out with time
will be larger than in reality. Our bias estimates from these
systematics should therefore be closer to an upper bound for
what a similar experiment might observe in reality.

1 2 3
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FIG. 1. Sky coverage of each constant elevation scan (CES) of our
scanning strategy. Each of scans 2-11 simulates ∼ 4 observation
hours while scans 1 and 12 simulate ∼ 5 hours. In each CES, all
detectors in the focal plane operate at the same time. The color map
shows the number of observations per pixel in the scanned regions.
Blue areas are observed less, and red areas are observed more times.
The sub-panels of this figure cover the same area of Fig. 2, where we
show the full composition of the scans.

While our chosen scanning strategy is commonly employed
by ground-based CMB experiments, other scans may be more
optimal for mitigating systematics [27]. We focus on the
scan defined above to characterize any lensing biases, so we
can understand in a baseline configuration which systematics
may be important for upcoming CMB experiments, and
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FIG. 2. The full normalized hit count map composed of the different
CESs from Fig. 1. This hits map is the baseline for constructing
the anisotropic noise covariance map which is used in the lensing
reconstruction filtering processes. Blue areas are observed less, and
red areas are observed more times. The resolution of the maps is 1.7
arcminutes and the total sky area observed is ∼5% of the full sky.

hence require more detailed study. Using a simple scan
also avoids underestimating biases due to the choice of a
specific more-complex scanning pattern that may not actually
be implemented by future experiments.

For the instrument specifications, instead of simulating
a full-sized SO-like experiment, which could be a very
numerically expensive task, we consider an instrument with
6,272 bolometers (3,136 detector pairs) distributed over 4
different detector wafers. The way in which detectors are
wired in the focal plane, and the specific readout technology
used in experiments, affect the electronic crosstalk systematic.
We consider two hardware configurations based on fMUX
and µMUX technologies, which we describe in more detail
in Subsec. II G. The square focal plane we consider is 60
cm on the side and has a field of view (FOV) on the sky of
3◦2. The central region of the focal plane is shown in Fig. 3.
Although the total number of detectors and the FOV are
reduced compared to the current SO design, the configuration
is the ballpark expected for CMB-focused frequency channels
of large-aperture telescopes targeting CMB lensing surveys
in the upcoming years. In the absence of specific pointing
or polarization angle systematics, which we describe further
below, each bolometer pair (top and bottom detectors in the
following) in the focal plane has a specific coordinate such
that two detectors within a pair are on top of each other
and have a 90-degree difference in their polarization angle
orientation. The focal plane is cut into four quadrants which
represent a wafer. Within a quadrant, pixels form rows
or columns which correspond to either Q or U modes in
detector coordinates (with a fixed exact 45-degree difference
between them, in absence of polarization angle systematics),
depending on their polarization angle (indicated by the angle
of the markers in the figure). Each quadrant is rotated by 90◦

with respect to the next quadrant. This layout is commonly
adopted in the design of bolometric focal planes to allow an

2 This makes up a subset of the full SO focal plane, which has a field of view
of ∼ 5◦ [28].
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efficient averaging over orientation of angles during the scans.
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FIG. 3. The center of the focal plane model used in the simulations,
projected on the sky. The focal plane is composed of 4 wafers
(illustrated by the dividing dashed gray lines) in which detectors
within a pair (top and bottom, illustrated by the blue and red bars
respectively) are on top of each other. The different marker-pair
angles correspond to pairs belonging to the two polarization modesQ
and U (forming “+” and “×”-like shapes in the figure respectively).
The full focal plane extends to 60 cm on the side.

All other instrument properties we consider are based on the
SO ‘baseline’ large aperture telescope (LAT) specifications
at 145 GHz, described in Refs. [1, 29]. We use a baseline
circularly-symmetric (CS) Gaussian beam with a full width at
half maximum (FWHM) of 1.4 arcminutes. We rescale the SO
baseline noise level to mimic the observations of an SO-like
instrument scanning 5% of the sky with a 20% observation
efficiency for 2.5 years. The corresponding map-domain
white noise is 5.4 (7.6) µK-arcminutes for temperature
(polarization) after 12-days of simulated scanning. Since
the noise in the map is inhomogeneous due to the nature of
the scan, this white-noise level is estimated from the power
spectrum of weighted temperature and polarization noise
maps. It is between the homogeneous noise level expected
for an SO-like experiment observing 5% of the sky for 5 years
(3.5 µK-arcminutes), and the 10µK-arcminutes on 40% of
the sky expected for the baseline SO survey3. While using
CMB maps with relatively low scaled noise may reduce noise-
coupled systematic biases, the relative noise-related errors
will also be smaller in our analysis, so we should still be
sensitive to important effects.

Consistent with the design of SO LAT, our instrument
model does not simulate the effects of a half-wave plate
(HWP). Although a HWP could help to mitigate instrumental
systematics for polarization [30, 31], especially if operated
at cryogenic temperatures, the large-aperture telescopes

3 These estimated values were obtained using the SO noise calculator,
available at https://github.com/simonsobs/so noise models [1], and assume
a 20% efficiency in the observing time.

typically used for lensing surveys do not normally use one
as it is challenging to produce the large-sized plates required,
and the HWP could also produce large unwanted systematics
of its own [32].

The configurations described above are used for all of our
simulations. For each “data” set (apart from the systematics-
free ones) we also include one systematic effect. Below, we
describe how each injected systematic effect is modeled and
how it affects the TOD. The impact of these systematics on the
corresponding CMB power spectra and lensing reconstruction
are discussed in Sec. IV.

A. Beam ellipticity

An ideal bolometer observes a patch of the sky with a
known shape (or beam), usually taken to be a circularly-
symmetric (CS) Gaussian. Realistically, however, a detector’s
beam has some deviation from this symmetric shape. A
realistic beam instead has an approximately elliptical shape
with unequal minor and major axes which have some tilt
angle with respect to the predefined focal plane axes. This
means that realistic detectors do not observe the same sky
area that detectors with circular beams would. When each
beam in an array of detectors has some different deviation
from a CS shape, this can cause “smearing” effects in the
resulting sky map. This could look similar to shearing or
varying magnification expected from CMB lensing, and hence
cause a lensing bias. When producing polarization maps
using pair differencing, if the two beams of a detector-pair
have a different shape there could be a substantial leakage
between temperature and polarization measurements. This
would induce biases both in the maps’ power spectra and in
the reconstructed lensing potential.

The effects of beam ellipticity on lensing reconstruction
have been previously explored analytically [5], and several
methods have been developed for mitigating beam asymmetry
effects in CMB maps [33, 34]. Precise simulations of beam
asymmetry in TOD simulations can be a very numerically-
expensive task. The map of each simulated observation
sample would need to be convolved with a specific pointing-
dependent beam over a 4π solid angle [35]. Since it
is too expensive to perform such convolution on a large
number of samples (in our case, this would be performing
a convolution over 4 × 1010 times for each simulation), we
consider an approximate treatment for simulating the beam-
shape systematic effects as TOD leakage terms following
Ref. [36]. This approach does not account for the effect of
far sidelobes, but these are expected to be more important
for large-scale CMB modes that only have a minor impact on
lensing reconstruction.

Given a temperature sample T in a specific (time-
dependent) position on the sky x and its corresponding beam
b(x), which is not necessarily circular, the observed signal of
this sample is

Tobs(x) ≡ b(x) ~ T (x) =

∫
b(x− y)T (y)dy. (2.4)

https://github.com/simonsobs/so_noise_models
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We can approximate the true beam b(x) as a perturbed CS
Gaussian beam bcs(x− y) with width σFWHM,

b(x) ≈ α0bcs(x) + α1,i
∂bcs(x)

∂xi
+ α2,ij

∂2bcs(x)

∂xi∂xj
, (2.5)

where αi are sets of expansion coefficients for the 0th-,
1st- and 2nd-order derivatives of bcs(x). Eq. (2.4) is then
approximated as

Tobs(x) ≈
∫ [

α0bcs(x− y) + α1,i
∂bcs(x− y)

∂xi

+α2,ij
∂2bcs(x− y)

∂xi∂xj

]
T (y)dy

Tobs(x) = α0Tb(x) + α1,i
∂Tb(x)

∂xi
+ α2,ij

∂2Tb(x)

∂xi∂xj
,

(2.6)

where

Tb(x) ≡
∫
bcs(x− y)T (y)dy (2.7)

is the temperature signal convolved with the CS beam. We
can therefore approximate the observed samples as a map
convolved with a CS beam, Tb, plus leakage terms as shown in
Eq. (2.6). The leakage terms depend on the derivatives of Tb

and on the coefficients αi which are derived from expanding
the perturbed beam b(x) around the CS beam bcs. Instead of
repeating this convolution process for each sample, we can
obtain Tb from convolving our input sky map with the CS
beam and use this map and its derivatives to get the leakage
terms for each observed sample.

Using this treatment, we can analyze how these leakage
terms affect the TOD and the resulting temperature and
polarization signals. The time streams of top and bottom
detectors within a pair (two orthogonal detectors which are
in this case aimed towards the same sky area) can be written
as

dtop = btop ~ [T +Q cos (2ψ) + U sin (2ψ)] ,

dbottom = bbottom ~ [T −Q cos (2ψ)− U sin (2ψ)] ,
(2.8)

where btop and bbottom are the top and bottom bolometers’
beams, respectively, and ψ is the polarization angle. The
temperature and polarization time streams are then given by
the sum and the difference of the pair’s time streams:

d+ = b+ ~ T + b− ~ [Q cos (2ψ) + U sin (2ψ)] ,

d− = b− ~ T + b+ ~ [Q cos (2ψ) + U sin (2ψ)] ,
(2.9)

where

b± ≡
btop ± bbottom

2
. (2.10)

Repeating the beam approximation above for the convolution

terms in Eq. (2.9), we get

d+ = α0(+)Tb + α1,i(+)
∂Tb(x)

∂xi
+ α2,ij(+)

∂2Tb(x)

∂xi∂xj

+ α0(−)Pb + α1,i(−)
∂Pb(x)

∂xi
+ α2,ij(−)

∂2Pb(x)

∂xi∂xj
,

d− = α0(−)Tb + α1,i(−)
∂Tb(x)

∂xi
+ α2,ij(−)

∂2Tb(x)

∂xi∂xj

+ α0(+)Pb + α1,i(+)
∂Pb(x)

∂xi
+ α2,ij(+)

∂2Pb(x)

∂xi∂xj
,

(2.11)

where the coefficients αi(±) correspond to b±, and we define
Pb ≡ Qb cos (2ψ) + Ub sin (2ψ), the polarization field
convolved with the CS beam in analogy with Eq. (2.7), for
convenience. In practice, the αi(±) coefficients are time-
dependent. The time dependency is due to the different
orientation of the expansion basis used for computing their
values and the sky coordinate system at a given observation
time. The difference in orientation can be easily accounted for
by rotating the coefficients computed in Eq. (2.5) by a suitable
angle.

Leakage which results from α0(+) 6= 1, and thus from a loss
of optical power, is usually mitigated during gain calibration
or polarization efficiency estimation. We therefore set α0(+)

to 1 for all detectors to focus on the less trivial leakage
terms, and perform a separate analysis of gain systematics
in a later subsection. When a pair’s beams have the same
shape, even if elliptical, b− = 0 and b+ = btop = bbottom.
In this case, α1(−) = α2(−) = 0, and all T → P and
P → T leakage terms vanish. Any biases in this scenario
are attributed only to T → T and P → P leakages which
depend on the deviation of the elliptical beam b+ from being
CS. When a pair’s beams do not have the same shape, the
T → P and P → T leakage terms do not vanish. This can
induce a significant bias in the polarization maps due to the
large temperature signal amplitude, which can then affect the
lensing reconstruction. We simulate the most general case of
beam asymmetry systematics described above, in which all
leakage terms (apart from the gain-related ones) are injected
into the TOD. To calculate the fitting coefficients αi(±), we
define the CS and the parameterized elliptical beams as

bcs(x) ≡ 1

2πσ2
cs

e
− x2

2σ2cs ,

b(x) ≡ 1

2πσminσmaj
e−

1
2 [σ−1·R(ε)·x]

2

, (2.12)

where

σcs ≡
σFWHM√

8 ln 2
,

σ ≡
(
σmaj 0

0 σmin

)
,

R(ε) ≡
(

cos(2ε) − sin(2ε)

sin(2ε) cos(2ε)

)
, (2.13)

σmaj (σmin) is the size of the semi-major (minor) axis, and R
is a matrix responsible for rotating the ellipse by some angle ε
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between the major axis of beam ellipse and the focal plane’s x
axis. The beam parameters are illustrated in Fig. 4. The minor
and major ellipse axes of each beam deviate symmetrically
from σcs,

σmaj
min

= σcs ±
∆σ

2
, (2.14)

where ∆σ is determined using the ellipticity ebeam definition,

ebeam ≡
σ2

maj − σ2
min

σ2
maj + σ2

min

. (2.15)

min
maj

Top
Bottom
Overlap

(a) CS beams.

Top
Bottom
Overlap

(b) Differential beam
ellipticities.

| y|

| x|

Top
Bottom
Overlap

(c) Differential pointing.

FIG. 4. Illustration of the beam models and parameters in Eq. (2.12).
Panel (a) shows the two overlapping circularly-symmetric (CS)
Gaussian beams (σmaj = σmin = σcs) of a detector pair. This
represents the beam shape in all simulations apart from the beam
ellipticity and differential pointing “data” simulation sets. Panel
(b) shows the beam ellipticity model we use. In this case, the two
beams of a detector pair have a different ellipticity: σmaj 6= σmin for
each beam, different axes lengths for each detector, and some angle
difference ∆ε also exists between their major axes (on top of the
90◦ orthogonality of the two detectors). Panel (c) shows the same
unperturbed beam shapes as in (a), however in this case each beam’s
center is shifted. This is our differential pointing model, in which the
beam centers of a detector pair are shifted according to Eq. (2.16).

Each detector beam is assigned with a random ellipticity
ebeam and a random ellipticity angle ε. To add a level of
realism to the ellipticity models, we correlate each ellipticity
and angle to the detector’s distance from the boresight
coordinates and polar angle, respectively, by assuming a
2nd degree polynomial that mimics the fact that detectors
observing regions close to the edge of the FOV are subject
to more optical distortions4. The polynomial functions, along
with the beam ellipticities and angles, are shown in Fig. 5. The
ellipticities and angles are drawn from a normal distribution
with mean centered on the respective polynomial function
with 2% and 45◦ standard deviations, respectively. These
dispersion values are consistent with e.g. POLARBEAR [7]
and BICEP2 [37] beam measurements. On top of the
ellipticity angles, which are the same for two detectors in a
pair, a random differential angle ∆ε is also used to perturb the

4 A good demonstration of these correlations is shown in Ref. [28], where a
more comprehensive review of the SO optics can also be found.

beams of all bottom detectors. These angles are drawn from
a normal distribution with a zero mean and a 5◦ width. All
beam parameters are drawn once per simulation and therefore
remain constant in time throughout the simulated observation
period. The relevant derivatives of the temperature and
polarization maps, which are used in the leakage terms, are
obtained using the synfast routine of the HEALPix [38]
package.

In our simulations, we do not model the cross-polar beam
response. This response is expected to be subdominant for
an SO-like instrument based on modern optical coupling
technologies for bolometric detectors and cross-Dragone
telescopes [10, 15]. We also assume that all baseline beams
have a perfect circular shape with a Gaussian radial profile.
In practice, this is an approximation, as diffraction effects
in the optics will cause the beam to decay asymptotically as
∼ 1/θ3, where θ is the angle from the beam peak [7, 39]. Any
characterization of the beam properties in the field through
dedicated calibration observations will naturally include these
effects in the main beam model, and hence include it in
the transfer function used for subsequent steps of the data
analysis. While we do not include diffraction effects in our
baseline beams, we found that when perturbing our elliptical
beams around a beam which includes diffraction tails, the
resulting leakage coefficients αi(±) are similar to those
obtained using the fully Gaussian beam. As such, although
the diffraction tails affect the beam beyond its FWHM scale,
we do not expect these corrections to significantly change our
results for beam-related or other systematics considered in
this work. In general, diffraction tails could be important, as
they allow the telescope to pick up spurious emissions coming
from the ground or other astronomical sources, and would
have to be included in a dedicated analysis of the telescope
sidelobes, which we did not consider in this work.
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FIG. 5. Beam ellipticities and angles of all simulated top (blue
markers) and bottom (red markers) detectors. Each plot shows the
function used as the normal distribution mean for generating the
beam random variables (black lines).

The b± maps are shown in Fig. 6 for a detector pair from
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our simulations. The beam difference b− map for beam
ellipticity has quadrupole-like symmetry, corresponding to the
main leakage terms for this systematic coming from the 2nd

derivative terms. The map-level effects of beam ellipticity for
temperature and polarization are shown in Fig. 7. Compared
to the simulation with CS beams, the residuals seem negligible
relative to the signal amplitudes. Expectedly, the polarization
residuals are larger than those of the temperature due to the
T → P leakage terms.

B. Differential pointing

Another beam-related systematic that we model results
from detectors in a focal plane pixel not being centered on
the same sky coordinates. In other words, the beams of two
detectors in a pair are not aligned in the focal plane reference
frame. When this occurs, the temperature and polarization
maps, which are produced from the sum and difference of
the pair data streams, will be distorted. Typically, this is
mitigated during map-making by considering the mid-point
beam centers as the true center of each beam in a pair. The
residual of this effect can, however, produce smearing features
and T → P leakage in the maps, which could potentially
propagate to the lensing reconstruction. Analytic approaches
for characterizing the differential pointing effects on the
lensing potential were previously explored in Refs. [5, 6].

In our simulations, this systematic effect is modeled by
introducing an offset to the beam-center coordinates of two
detectors within a pair. A different offset is drawn for each
detector pair. For a given pair, the unperturbed pointing
coordinates (x0, y0) in the focal plane reference frame is
shifted by

(∆x,∆y) top
bottom

= ±ρ
2

(cos θ, sin θ) , (2.16)

where ρ ∈ N (15′′, 1.5′′) is the offset magnitude and θ ∈
U(0, 2π) is the offset direction angle with respect to the
horizontal focal plane axis. The magnitude of the ρ that
we use is conservative, as current-generation experiments
with on-chip detectors achieved differential pointing well
below the mean value assumed here [17]. The differential
pointing offset is illustrated in Fig. 4c. Following the previous
sections, the perturbed beams are then used to compute the
coefficients αi for the leakage terms which are injected into
the temperature and polarization time streams as in Eq. (2.11).

The b± maps for the differential pointing systematic are
shown in Fig. 6 for a detector pair from our simulations.
The beam difference b− map has dipole-like features, which
suggests that the main leakage terms for this systematic would
stem from the 1st derivative leakage terms.

The map-level effects of differential pointing for
temperature and polarization are shown in Fig. 7. The
differential pointing residuals for both temperature and
polarization maps are larger compared to the beam ellipticity
residuals. For both of these beam-related systematic effects,
the temperature residuals appear to be nearly spatially
uncorrelated. The polarization residuals in the differential

b +
b C

S

Beam ellipticity Differential pointing

b

0.02

0.01

0.00

0.01

0.02

0.05

0.00

0.05

FIG. 6. Row 1: Difference between b+ maps of the perturbed and CS
beams for the beam ellipticity (left panel) and differential pointing
(right panel) systematics for a detector pair in our simulations. The
deviation from CS is larger for the differential pointing systematic.
Row 2: The b− maps for the beam ellipticity (left panel) and
differential pointing (right panel) systematics of a detector pair
from our simulations. As with b+, the difference between the two
beams within a pair is larger for the differential pointing systematic.
The shape of b− for beam ellipticity (differential pointing) has
quadrupole- (dipole-)like features.

pointing case do not have Q- and U -like features as with the
beam ellipticity residuals.

C. Boresight pointing

The systematics discussed in the previous subsections
involved perturbed models of detector beams. In this
subsection, we describe a systematic effect that is produced
from inaccuracies in the pointing coordinates of the entire
focal plane, or boresight pointing, during scans. The exact
pointing of the telescope needs to be reconstructed from
the position of known sources. The direction in which
the focal plane of a telescope is pointing during a scan
might differ slightly from the pointing direction recorded by
the telescope position encoders. These errors can originate
from wind gusts, temperature changes, temperature gradients
across the focal plane due to heating of the telescope structure,
vibrations due to the motion of the telescope, deformation
of the telescope’s mirror due to its own weight, and more.
The errors due to deformation can mostly be corrected by
estimating the variations of the pointing correction (that
relates the recorded telescope position to the position of
known sources) as a function of time, while other effects can
be assumed as random. We therefore simulate the pointing
errors by perturbing the boresight’s azimuth and elevation
for each sampling, while using their original unperturbed
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FIG. 7. Row 1: White-noise-free temperature (left), Q (middle) and
U (right) maps of a systematics-free “data” simulation. Rows 2-8:
Difference maps of the same realization with and without systematics
for temperature (left column), Q (middle column) and U (right
column). All panels show the middle area of the full simulated box
with dimensions 17× 25.5 deg2.

values in the pointing matrix in the map-making stage. The
azimuth and elevation offsets are drawn from a normal
distribution with a 3 arcseconds mean (a typical precision
of a telescope position encoder) and a variance such that
the total pointing uncertainty is 13 arcseconds and error in
azimuth and elevation are uncorrelated. This pointing error is
about ∼ 10% of the CS beam FWHM we considered in this
work and is consistent with typical results of state-of-the-art
experiments [17].

The map-level effects of the boresight pointing systematic
for temperature and polarization are shown in Fig. 7. Unlike
the previously mentioned systematics, the residuals from
perturbing the boresight coordinates are as important for
temperature as for polarization. The map-level residuals
are small-scale changes arising from a small additional
smoothing-like effect on the maps due to the randomized
pointing. This systematic does not produce any T ↔ P
mixing.

D. Polarization angle

The accuracy of polarization angle measurements is
important to correctly characterize the E and B modes of the
CMB [40, 41]. If the true polarization angles of each detector
deviate from their estimated values, which are used to make
the Q and U maps, E/B mixing is introduced. This not only
contaminates the resulting E and B modes, but also produces
non-zero EB and TB correlations. These correlations are
expected to vanish in cosmological models where parity
is preserved [42–47]. Models that include non-standard
physical mechanisms which manifest on cosmological scales
(such as cosmic birefringence, parity violation) predict the
existence of intrinsic EB or TB correlations that can also get
contaminated by a polarization angle miscalibration [48].

In general, the polarization angles of the top and bottom
detectors can each be different from the expected angle ψ by
a different ∆ψ, such that the time streams of a detector pair
are

dtop = T+Q cos [2 (ψ + ∆ψtop)]

+U sin [2 (ψ + ∆ψtop)],

dbottom = T−Q cos [2 (ψ + ∆ψbottom)]

−U sin [2 (ψ + ∆ψbottom)]. (2.17)

The temperature and polarization time streams are then

d+ = T +Q
cos [2 (ψ + ∆ψtop)]− cos [2 (ψ + ∆ψbottom)]

2

+ U
sin [2 (ψ + ∆ψtop)]− sin [2 (ψ + ∆ψbottom)]

2
,

d− = Q
cos [2 (ψ + ∆ψtop)] + cos [2 (ψ + ∆ψbottom)]

2

+ U
sin [2 (ψ + ∆ψtop)] + sin [2 (ψ + ∆ψbottom)]

2
.

(2.18)

When ∆ψtop = ∆ψbottom ≡ ∆ψ, there is no P → T
leakage. When all detector pairs are perturbed with the same
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∆ψ value, the recovered polarization maps are effectively
equivalent to the true polarization sky signals rotated by a
constant angle ∆ψ. Under this assumption, it is straight-
forward to propagate this systematic effect all the way to
the E and B modes and their power spectra [40]. When
the polarization angle perturbations in the top and bottom
detectors are completely anti-correlated, i.e. ∆ψtop =
−∆ψbottom, the polarization bias becomes an effective gain
error of the size cos(2∆ψtop). In this work, we consider the
most general case, in which both ∆ψtop and ∆ψbottom are
independently drawn for each detector pair, such that both
the polarization and temperature signals are affected by the
perturbed angles.

We model differential polarization angle perturbations by
drawing a different value for ∆ψ from N (−1.1◦, 0.5◦) for
each detector in each detector pair. This perturbation level
will be referred to as “setup A” throughout the paper. The
perturbation values for this setup are consistent with the
polarization angle errors measured by POLARBEAR and
BICEP2 prior to applying a polarization angle self-calibration
procedure (see [49, 50] and discussion around Eq. (5.3) in
Sec. V). Other experiments, such as ACTPol and SPTpol,
have reported lower mean values for the polarization angle
errors consistent with ∆ψ ∼ 0.5◦ [51, 52]. Although we do
not consider this case in detail for estimating lensing biases,
we give a comparison between setup A and an ACTPol-like
setup with ∆ψ drawn from N (−0.5◦, 2.0◦) (“setup B”) in
Secs. IV B and V.

The map-level effects of the polarization angle systematic
for temperature and polarization are shown in Fig. 7. The
small temperature residuals are the P → T leakage induced
by the differential polarization angles within a detector pair.
These residuals also show the scanning strategy stripes due
to its correlation with the polarization angles. Because this
systematic effectively rotates the polarization maps, the Q
residual map mostly consist of U features, and vice versa.

E. Gain drifts

In this and the next subsection we discuss detector-level
systematics which relate to the TOD gains. During an
observation run, various internal or external factors could
change the measured bolometer gain that calibrates the raw
data to physical units: local temperature gradients across the
focal plane could induce gain drifts for each detector pair until
a gain recalibration is performed; external heating of the entire
focal plane or a coherent change of the detectors’ optical
loading could cause a coherent gain drift for all detectors. In
our simulations, we model these gain drift effects as a function
of time using a linear drift model,

g(t) = 1 + ∆g
(t mod tR)

tR
, (2.19)

such that after each time interval tR the gain is recalibrated
back to unity. This assumes that the gain calibration procedure
restores a perfect calibration relative to the input map. As
such, we assume potential effects due to bandpasses can

be characterized with a sufficient level of precision. In
Subsec. II F we also consider a related effect in which
the recalibration produces some gain mismatch between the
detectors in a pair, producing an inter-calibration problem.
We consider a retuning interval of ∼ 1.2 hours, and draw
the gain perturbation variable ∆g for each pair (and once
for each drifting duration) from a normal distribution with a
zero mean and a 0.05 width. Although the retuning interval
can be optimized depending on the exact scanning strategy,
we use a value similar to those employed for observations
performed from the Atacama plateau with a similar scanning
strategy [53].
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FIG. 8. Illustration of the linear gain drift model during the course
of CES 1 from Fig. 1 for two detector pairs (green and blue lines).
Recalibration occurs 4 times during each CES, shown by the dashed
red lines. For this CES, which lasts ∼ 5 hours, recalibration occurs
every ∼ 1.25 hours. For the shorter CESs, recalibration occurs
roughly every hour. This illustration shows the incoherent gain drift
of two detector pairs. In our coherent gain drift simulations, the green
gains are identical to the blue gains, and represent the drift of all
detector pairs.

This gain drift model, which is illustrated in Fig. 8,
simulates the effect of incoherent gain drifts between detector
pairs. As mentioned before, another possibility is a coherent
gain drift across the focal plane. We therefore produce
an additional simulation set for this effect. We consider
these two extreme gain drift scenarios instead of simulating
a local (on the focal plane) drifting model to demonstrate how
different drifting scenarios affect the lensing reconstruction.
For coherent gain drift, the same random variable ∆g is used
for all detector pairs for each drifting duration, but is different
after each recalibration. This type of drift is similar to that
illustrated in Fig. 8, but with the gains of both pairs (and all
other pairs in the focal plane) being the same in each drifting
period.

Since gain is a multiplicative parameter for the time-stream
signal and noise,

dtop = g [T +Q cos (2ψ) + U sin (2ψ) + n] ,

dbottom = g [T −Q cos (2ψ)− U sin (2ψ) + n] ,
(2.20)

we can estimate its average effect on the 2-point and 4-
point correlation functions, which we define later in Sec. III,
analytically.
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The map-level effects of the incoherent and coherent gain
drift systematics for temperature and polarization are shown
in Fig. 7. Expectedly, the incoherent gain drift residuals
are much smaller compared to the coherent drifts. This
happens because when different pairs have a different drift,
the systematic effect averages out quickly for a sky area
which is observed by multiple pairs over time. Coherent
drift biases take a longer time to average out. As such, their
residuals leave large-scale areas which are affected by an
incorrect calibration. The resulting patterns depend on the
scanning strategy, sampling frequency, and gain recalibration
frequency. Longer observations using the same basic scan,
but a more frequent recalibration strategy, would change these
patterns and reduce the residual amplitude.

F. Calibration mismatch

Another gain-related systematic effect results from an
inaccurate gain inter-calibration process between two
detectors in a given pair. During an observation run, gains
are usually calibrated back to unity multiple times. This
recalibration process could potentially produce some level of
differential gain, or calibration mismatch, if the new gains
of a detector pair are not equal. In this case, each detector
gain has some deviation from unity. This gain offset can be
different after each gain recalibration. We simulate this effect
by symmetrically offsetting the top and bottom gains g of
each detector pair such that

gtop(t)− gbottom(t) = 2εg(t). (2.21)

We model this systematic effect symmetrically so that only
the leakage terms in the temperature and polarization time
streams depend on the gain mismatch level, and the overall
absolute calibration of the T , Q and U Stokes parameters is
not affected. This is consistent with the choice made in the
previous sections where we assumed absolute calibration and
polarization efficiencies effects can be correctly measured or
calibrated on other external data sets such as e.g. Planck.
A different gain offset εg is applied after each calibration
and for each detector pair. The modified gains of a detector
over time are illustrated in Fig. 9. We use the same
probability distribution as before, N (0, 0.05), to draw a
different offset εg for each detector pair. This distribution
is a conservative estimate of possible gain systematics as
current generation of experiments have demonstrated the
feasibility of minimizing differential gain effects if reliable
inter-calibration sources are available. POLARBEAR, for
example, estimated the upper limit of these effects to be
. 0.3% [17], while SPTpol constrained them to be ∼ 1%
prior to any marginalization [54].

Using this calibration mismatch model in Eq. (2.20), a
detector pair’s TOD are

dtop = (1 + εg) [T +Q cos (2ψ) + U sin (2ψ) + n] ,

dbottom = (1− εg) [T −Q cos (2ψ)− U sin (2ψ) + n] ,

(2.22)

and the corresponding sum and difference time streams read

d+ = T + εg [Q cos (2ψ) + U sin (2ψ)] ,

d− = εgT +Q cos (2ψ) + U sin (2ψ),
(2.23)

such that T → P and P → T leakage terms depend on
the gain offset parameter. We expect the former leakage
term to be more significant than the latter given the lower
amplitude of the polarization signal, and that cross-linking
during observation runs will reduce overall leakage in both
d+ and d−.
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FIG. 9. Illustration of the calibration mismatch model during the
course of CES 1 from Fig. 1 for top (blue) and bottom (green)
detectors within a pair. As with the gain drift model which is
illustrated in Fig. 8, recalibration occurs 4 times during each CES,
shown by the dashed red lines. For this CES, which lasts ∼ 5 hours,
recalibration occurs every ∼ 1.25 hours. For the shorter CESs,
recalibration occurs roughly every hour. Unlike the gain drift model,
here each calibration process adds a symmetrically gain distortion
between the two detectors in a pair.

The map-level effects of the calibration mismatch
systematic for temperature and polarization are shown in
Fig. 7. Expectedly, the temperature residuals are smaller
compared to the polarization residuals. As this effect produces
T/P mixing, the temperature residual map has features
similar to the spatial distribution of the polarization signal,
and vice versa for the polarization maps, where the residual
amplitude is ∼ 10% of the input map. As with the other gain-
related systematics, this effect is also expected to average-out
with more frequent calibrations, more detectors, and longer
observation time.

G. Crosstalk

The last systematic effect we explore in this work is due to
the experiment’s electronic readout systems. Modern CMB
experiments typically employ bolometric detectors operating
in cryogenic environments. They adopt complex multiplexing
technologies to simultaneously read out signals from many
bolometers on a single readout line. This capability is
required to minimize thermal losses in the cryostat that
hosts the focal plane. Due to the complexity of readout
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technologies in cryogenic environments, the readout device
can introduce a mixing of the electric signals of bolometers
transported on the same readout line, an effect which is
called electric crosstalk [55]. We give baseline results for
a readout electronic setup similar to the one employed in
µMUX technologies, where all 1,568 bolometers in a wafer
are multiplexed together in a single SQUID (superconducting
quantum interference device; used to read out the signal from
the transition-edge sensors). Future experiments such as SO
are expected to adopt a µMUX technology and therefore
have a readout scheme close to the one we simulate [56].
We also consider an alternative setup with 7 frequency-
domain multiplexers (fMUX) with 4 SQUIDs per fMUX,
and 28 detector pairs per SQUID. This is the reference
technology for several current generation of experiment
such as POLARBEAR-2/Simons Array and SPT-3G [57,
58], and has also been discussed in the context of future
experiments [10]. The results we obtain with this setup are
similar to those presented in the following.

The effect of crosstalk is such that the acquired raw TODs
dt at a given time are in reality a linear combination of the
true sky measurements of each detector ddet

t acquired at the
same time. This can be characterized by the crosstalk leakage
matrix L as

dt = (1 +L)ddet
t , (2.24)

where 1 is the identity matrix. To identify the signal di ∈
ddet
t from each detector i, each detector carrier is modulated

to a different readout frequency fi for detectors that are all
wired together within a SQUID. A realistic representation of
the element i, j of the leakage matrix is then

Lij =
kij

(∆fij)
2 , (2.25)

where kij is a leakage coefficient, and the leakage depends
on ∆fij , the location-dependent frequency spacing between
bolometers i and j in the focal plane [55]. We set kii =
0 to avoid additional gain miscalibration, and the resulting
time-stream leakage then attenuates with a constant power
of 2 with respect to ∆f . While there are a large number
of possible modulation schemes, we use a simple linearly-
spaced modulation. The readout frequencies of all bolometers
within a SQUID form an arithmetic progression between a
minimal and a maximal frequency fmin and fmax based on
the detector’s sequential placement order in rows within the
SQUID. In this case, ∆fij ≡ (fmax − fmin) /nMUX for
two consecutive detectors i, j where nMUX is the number of
bolometers connected together within a SQUID. While this
modulation model is not optimized, as bolometers which are
physically near do not have the maximal possible frequency
difference within the specific frequency range, the leakage
amplitude proved to be dominated by the overall hardware
settings (for instance resistance and induction in the readout
system) such that optimizing the modulation pattern is less
important. We also use nMUX as the leakage radius so that all
the bolometers within a SQUID are affected by crosstalk to
achieve realistic and conservative results.

The off-diagonal leakage coefficients kij for detectors
within a SQUID are drawn once for each simulation (so that
the crosstalk leakage matrix remains constant during the full
observation time) from a normal distribution with a −0.03%
mean and a 0.01% width [10]. These values are consistent
with the current capabilities of the readout technologies
considered for SO and CMB-S4 instruments [56, 59]. The
modulation frequency range is set between fmin = 4 GHz and
fmax = 8 GHz for µMUX and fmin = 1 MHz and fmax = 5
MHz for the fMUX setup, which are typical values for these
technologies. A block of the full simulated crosstalk leakage
matrixL is shown in Fig. 10. Leakages beyond the correlation
radius represent the SQUID-to-SQUID crosstalk. Since this
effect is subdominant, and laboratory measurements usually
only provide an upper limit for it, these leakage values are
drawn from a Gaussian distribution with zero mean and 0.01%
width [10].
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FIG. 10. The simulated (log) crosstalk leakage matrix L for a
subsection of the simulated detectors, given the fMUX setup. The
axes correspond to a detector’s placement order across the focal
plane. The leakage coefficients for detectors which are wired
together in the same SQUID are obtained using the power-law
leakage term in Eq. (2.25). Leakage decreases as a function of
frequency-distance between bolometers. The leakage appears as
noise for bolometers that are sufficiently separated in frequency
space. This intra-SQUID noise level is also the stochastic SQUID-to-
SQUID crosstalk leakage. Diagonal elements are by default set to 1
to avoid inducing systematics that are corrected during the calibration
of the bolometers. For this fMUX setup, the figure shows 6 SQUIDs
in a wafer, for which bolometers placed at the largest separation
distance in frequency space (the top-right and bottom-left corners
of each SQUID block) start having crosstalk levels which resemble
the overall SQUID-to-SQUID levels. For the µMUX setup, a similar
plot would show more intra-SQUID correlations, as there are more
detectors within a SQUID. However, due to the frequency spacing
choice, most of the additional correlations would be lower than our
SQUID-to-SQUID levels.

To understand the effect of crosstalk on the time streams,
we follow the toy model of Ref. [10]. For an experiment with
only two detector pairs, the (crosstalk- and noise-free) time
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stream d of each detector is

di = T1 + P1

dj = T1 − P1

} Pair1

dk = T2 + P2

dl = T2 − P2

} Pair2 ,

(2.26)

where we assume that both in-pair bolometers point to
the same direction n̂r so that Tr ≡ T (n̂r) and Pr ≡
Q(n̂r) cos(2ψr) + U(n̂r) sin(2ψr) for r ∈ {1, 2}. The
induced crosstalk leakage in each time stream is then

dleak
i = Ljidj + Lkidk + Llidl

dleak
j = Lijdi + Lkjdk + Lljdl

dleak
k = Likdi + Ljkdj + Llkdl

dleak
l = Lildi + Ljldj + Lkldk,

(2.27)

with no summation, such that the resulting temperature and
polarization time-stream leakages are

dleak
+ =

1

2
[Lji + Lij ]T1 +

1

2
[Lji − Lij ]P1

+
1

2
[Lki + Lkj + Lli + Llj ]T2

+
1

2
[Lki − Lkj + Lli − Llj ]P2,

dleak
− =

1

2
[Lji − Lij ]T1 −

1

2
[Lji + Lij ]P1

+
1

2
[Lki − Lkj + Lli − Llj ]T2

+
1

2
[Lki − Lkj − Lli + Llj ]P2.

(2.28)

A joint calibration of detectors within a pair should cancel the
in-pair leakage terms, in which case Lij = Lji = 0 for i, j
within a detector pair. The leakage terms then become

dleak
+ =

1

2
[Lki + Lkj + Lli + Llj ]T2

+
1

2
[Lki − Lkj + Lli − Llj ]P2,

dleak
− =

1

2
[Lki − Lkj + Lli − Llj ]T2

+
1

2
[Lki − Lkj − Lli + Llj ]P2.

(2.29)

Since T � P , the dominant temperature leakage term is
T2 → T1. The multiplicative factor of T2 in this leakage
term is negative, as crosstalk coefficients are mostly negative,
which results in a decreased temperature power. This would
also be the case if the in-pair leakage elements of Eq. (2.28)
are not nullified. The polarization biases are not easily
estimated given the analytic leakage terms above. They
depend on the specific simulated crosstalk leakage matrix and
how it is coupled to the effective cross-linking with which a
given sky pixel is observed. In our simulations, we keep the
in-pair leakage terms for completeness, and comment on their
significance in Subsec. IV B.

The map-level effects of the crosstalk systematic for
temperature and polarization are shown in Fig. 7. Both
temperature and polarization residual maps have smoothed
features of the base maps, with amplitudes consistent with
the induced leakage level of -0.03%. Future experiments
will employ dichroic detectors sensitive to multiple CMB
frequencies at the same time, where crosstalk in the
electronics will in practice generate crosstalk between the
sky signal (and between its different components) at different
frequencies. We did not consider this effect in this work and
defer its study to future work.

Lastly, we note that other non-crosstalk-related electronic
effects that are related to the readout chain may also introduce
systematics that affect the low frequency part of the TOD.
Detectors coupled to circuits with large time constants or
data acquisition chains having a non-linear analog-to-digital
(ADC) response in the electronics might distort the signal
along the scan direction. It has been shown that both of
these effects can be particularly complicated to deal with
in the case of past experiments. Therefore, they should be
given serious attention in the analysis of real data. Planck,
for example, accounted for ADC non-linearities and time-
constant effects in the data analysis, but showed that the
major residual contamination induced by both of these effects
have an important impact on the largest angular scales ` .
200 [60, 61]. These scales carry a limited weight in the lensing
reconstruction, and we not to investigate them in this work.
Furthermore, the typical time constants of modern detectors
have a lower amplitude compared to that of Planck [62]
so their impact on future CMB experiments should be less
severe.

III. LENSING ANALYSIS

We reconstruct the lensing potential of each simulation
from the different “data” simulation sets. We perform a flat-
sky quadratic estimator (QE) lensing reconstruction using the
pipeline presented in Ref. [12]. After performing the standard
quadratic estimator lensing reconstruction, this analysis also
includes a filtering step applied to the reconstructed lensing
field, which is designed to approximately minimize the
corresponding power spectrum errors. The filtering is based
on a patch approximation, which considers small patches
within the observed area to have homogeneous noise with
an effective lensing reconstruction response. This approach
was shown to deliver an approximately optimal estimate
of the lensing power in the presence of smoothly-varying
inhomogeneous noise. We use one set of 10 systematic-free
simulations to obtain an averaged reconstructed lensing power
spectrum, and then repeat this calculation with sets of 10
simulations with the same CMB and noise realizations but
including the effects of one of the systematics discussed in
Sec. II.

The lensing reconstruction stages are as follows. First,
each simulation from a given set is optimally filtered
using the inhomogeneous noise maps for temperature and/or
polarization N (constructed from the pixel weights shown in
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Fig. 2, withN−1 set to zero in unobserved pixels),

X̄ ≡
(
bCfidb> +N

)−1
X

=
(
Cfid

)−1
[(
Cfid

)−1
+ b>N−1b

]−1

b>N−1X,

(3.1)

where

X ∈


T T

(E,B) P

(T,E,B) MV

(3.2)

is a vector of the CMB maps, b is the transfer function
(a CS Gaussian beam with σFWHM width) and Cfid is a
set of fiducial lensed power spectra which were obtained
from camb5 [63]. Eq. (3.1) is solved using the multi-grid-
preconditioned conjugate gradient method [64–68]. Then, the
filtered simulations from each “data” set are used to estimate
φ̂(x), the unnormalized QE, using

φ̂(x) =
1

2
X̄>

δCXX

δφ(x)
X̄, (3.3)

whereCXX is the covariance of the mapX [69]. This QE is
biased by non-zero average values of statistical anisotropy in
the map (due to e.g. sky masking and noise anisotropy). This
mean field (MF) bias, 〈φ̂〉MC, is subtracted from the lensing
estimator φ̂. The unbiased, and unnormalized, QE is then
converted to the convergence estimator

κ̂L ≡
(
φ̂L − 〈φ̂L〉MC

)
× 2

L(L+ 1)
. (3.4)

This is then filtered using the effective patch-approximated
response Rκ

eff, the reconstruction noise Nκ
0,eff (see Ref. [12])

and a fiducial κ spectrum Cκκ
fid , to define

κ̂filt ≡ Cκκ
fid

(
Cκκ

fid +Nκ
0,eff

)−1
(Rκ

eff)
−1
κ̂. (3.5)

The QE is also normalized in this step using the effective
response. This additional filtering is specifically performed
on the convergence (κ) map and not directly on φ̂ as the κ
reconstruction is approximately local in real space and has
approximately white noise. The (noise biased) lensing power
spectrum is then obtained from the filtered κ maps,

Cφ̂1φ̂2

L ≡ 4

fA,LnLL2(L+ 1)2

∑
` in L bin

κ̂filt
1,`

(
κ̂filt

2,`

)∗
,

(3.6)

where nL is the number of modes on the flat sky assigned to
lensing multipole L in our simulation maps6 and

fA,L =
∑
p

fp

(
Rκ,pL
Rκ,fid
L

)2

(3.7)

5 https://camb.info/.
6 In a full-sky analysis, nL = 2L+ 1.

is the required normalization for our analytic patch
approximation estimator [12]. fp is the fraction of the map
area in patch p. The MF is calculated twice, from two sets
of 48 MC simulations. The subscripts of κ and φ in Eq. (3.6)
indicate the MF set which was used to debias each estimator.
Each MF estimate has independent MC noise, so the lensing
power spectrum calculated from a pair of MF-subtracted QEs
has no MC noise biases. We do not include systematics in the
MF simulations during the analysis, but we comment on this
possibility in Sec. V.

Since the lensing power spectrum estimator is a 4-point
correlation function, it has a disconnected bias arising from
the correlation of Gaussian fields,Nφφ

0,L. There is an additional
bias term, Nφφ

1,L, resulting from connected contractions that
are not proportional to the lensing spectrum at L. Both
terms can be modeled analytically to correct the obtained
lensing power spectrum [70, 71], although calculating a
realization-dependent Nφφ

0,L and a Nφφ
1,L term using the

patch approximation corrects the reconstruction biases more
optimally. We subtract an estimate of Nφφ

0,L from each
power spectrum estimate, with the respective realization-
dependent estimate (RD)Nφφ

0,L obtained from a set of 480 MC
simulations [66, 67],

(RD)N φ̂φ̂
0,L =〈
− Cφ̂φ̂L

[
X̄MCφ11

, X̄MCφ22
, X̄MCφ22

, X̄MCφ11

]
− Cφ̂φ̂L

[
X̄MCφ11

, X̄MCφ22
, X̄MCφ11

, X̄MCφ22

]
+ Cφ̂φ̂L

[
X̄MCφ11

, X̄dat, X̄dat, X̄MCφ11

]
+ Cφ̂φ̂L

[
X̄dat, X̄MCφ11

, X̄MCφ11
, X̄dat

]
+ Cφ̂φ̂L

[
X̄dat, X̄MCφ11

, X̄dat, X̄MCφ11

]
+ Cφ̂φ̂L

[
X̄MCφ11

, X̄dat, X̄MCφ11
, X̄dat

]〉
MCφ11 ,MCφ22

(3.8)

where X̄dat is the vector of our “data” simulations and the
1 and 2 subscripts refer to the matching CMB and lensing
potential realizations of a given MC simulation. Using the
realization-dependent debiasing term rather than a general
MC Nφφ

0,L is crucial, as it automatically mitigates systematic
biases that arise entirely from small changes to the noise and
CMB power spectra that enter the disconnected bias. We show
the differences between (RD)Nφφ

0,L from “data” simulations
with and without systematics in Sec. IV B.

The debiased lensing power is then

ĈφφL ≡ C
φ̂1φ̂2

L − (RD)N φ̂φ̂
0,L. (3.9)

We do not debias the reconstructed power using (MC)Nφφ
1,L

as this term would vanish when differencing power spectra
with and without systematics (because our MC simulations
are systematics-free).

Lastly, all 10 power spectra from each set are averaged and
compared to the averaged systematics-free power spectrum

https://camb.info/
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to assess how the systematics affect the reconstructed
CMB lensing power spectrum. We perform temperature-
only (T), polarization-only (P) and minimum-variance (MV)
temperature+polarization lensing reconstructions for each
“data” set to show how the systematics bias different
estimators. The resulting systematic effects on lensing
reconstruction are shown and discussed in the following
section.

IV. SYSTEMATICS BIASES

A. CMB power spectrum biases

We start by examining the effects of the systematics
described in Sec. II on the temperature and polarization power
spectra C`. Apart from providing a good consistency check,
these power spectra can help us understand the nature of
some of the induced lensing biases and hence suggest possible
mitigation techniques.

We first calculate the pseudo power spectra C̃`s of the flat-
sky maps using the discrete 2D Fourier components of the
weighted temperature or polarization maps, a`,

C̃` ≡
1

n`b2`

∑
` in ` bin

a`a
∗
` , (4.1)

where n` is the number of modes on the flat sky assigned
to the multipole ` in our simulation maps. To obtain an
unbiased estimate of C` we then deconvolve the effect of
the sky mask using the MASTER approach, using a pure
estimator to avoidE/B mixing [72] in the polarization field as
implemented in the publicly available code NaMaster7 [73,
74] (for the lensing reconstruction, our first optimal filtering
step optimally suppresses E/B mixing variance as the filter
includes the full noise and mask inhomogeneity, so no further
E/B projection is required). The fractional differences
between C`s of maps with and without systematics are shown
in Fig. 11. These power spectra were computed from noise-
free simulations in order to highlight the impact of the
systematics on the signal.

The fractional differences in the power spectra due to
beam ellipticity, differential pointing, and boresight pointing
systematics have a similar shape to a beam transfer function,
especially for the temperature and E-mode spectra. The
B-mode spectrum residual shapes for beam ellipticity and
differential pointing are affected by leakage from T and E,
which are large relative to the B-mode power amplitude,
and causes them to have a somewhat different shape. In
practice, the effects of these systematics, combined with the
scanning strategy, produce a modified smoothing to the map
which is not corrected by the CS beam transfer function b`
used for constructing the power spectra (in our beam-related
systematic analyses, the reference beam window function

7 https://github.com/LSSTDESC/NaMaster

does not account for these beam-like effects, nor do we
include any beam uncertainties in the analysis). For the beam
ellipticity and differential pointing systematics, this bias stems
from the leakage terms of Eq. (2.11) which are coupled to b+.
The increase of power observed at small scales induced by
the beam ellipticity systematic is consistent with the fact that
an elliptical beam, whose axes are given by Eq. (2.14), has
effectively a smaller average width than a circular Gaussian
beam of width σcs (the average width of the elliptical beam is
taken as√σminσmaj ).

The boresight pointing systematic smoothing stems from
the nature of the systematic itself: jitters during an observation
run induce additional smoothing in the map. Fig. 11 also
shows the fractional differences for 3, 6, 9 and 12 days of
observation. For these three systematics, the biases remain
relatively constant in time and do not average out. The beam
ellipticity systematic produces the smallest biases compared
to the other systematics we simulate. The lensing bias induced
by these effective beam mismatches is largely corrected at
the lensing reconstruction step by (RD)N0,L, as we show in
Sec. V. Using a beam window function with an effective
width tailored to each of these systematics in the lensing
reconstructing analysis should also mitigate most of their
biases that originate from differences in power (see Sec. V).

The polarization angle biases are quite substantial for the
polarization power spectra. These biases are characterized
well by the analytic approximations [40] for an effective
constant angle perturbation ∆ψ,

CẼẼ` = cos2 (2∆ψ)CEE` − sin2 (2∆ψ)CBB` ,

CB̃B̃` = sin2 (2∆ψ)CEE` + cos2 (2∆ψ)CBB` ,
(4.2)

where Ẽ and B̃ are the perturbed polarization modes. From
these equations, we see that the large CBB` bias is mostly the
CEE` power spectrum, scaled by a constant which depends on
an effective polarization angle error, while the CEE` bias is an
effective gain which also depends on this error, as the B → E
leakage term is sub-dominant. As the analytic approximations
describe these biases well for an effective ∆ψ despite each
detector having a different polarization angle error, they may
be used to sufficiently mitigate these biases (see Sec. V for
more details on this bias mitigation).

The incoherent gain drift biases evidently decrease with
increased observation time. The power spectra from the full
12 observation days have a negligible bias relative to the C`
amplitudes for temperature and polarization. For the coherent
gain drift, however, more frequent gain calibrations are
required for the biases to average out, or a longer observation
time that improves the overall cross-linking. While a long-
lasting coherent gain drift induces relatively significant biases,
the majority of this effect would be identified and mitigated
during early stages of an experiment’s data analysis prior to
the lensing reconstruction. For example, it is possible to
correct for this bias during the map-making stage using the
signal variations of bolometers inside the cryostat that are
not coupled to the optical chain, as those are insensitive to
the sky signal. Our estimates for this systematic effect are
therefore pessimistic. Both of these gain systematics have a

https://github.com/LSSTDESC/NaMaster
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FIG. 11. The fractional differences between the T (red lines), E (blue lines) and B (purple lines) power spectra C` with and without
systematics in the multipole range 40 < ` < 3000. The bright to dark curve shades correspond to observation times of 3, 6, 9 and 12 days
respectively. Curves were smoothed with σ` = 5 to highlight the bias differences for different observation times. For temperature, C` is
mostly signal-dominated, while for the B-mode it is noise-dominated. Noise becomes dominant for the E-mode spectrum at ` & 2000.

relatively constant amplitude effect on the spectra across the
considered `-range, as expected from the mean gain described
in Subsec. II E.

For the calibration mismatch systematic biases, while these
also decrease with longer observation times, they continue to
be significant for the polarization spectra after 12 observation
days. Expectedly, the temperature power spectrum biases are
small, as they stem from P → T leakage which is small
compared to the temperature power amplitude. The T → P
leakage, however, is quite substantial, especially for the mid-
`-rangeB-mode power spectrum. As theB-mode spectrum is
noise-dominated at ` > 1000, the large bias in that multipole
range is not very significant.

As seen in Fig. 11, crosstalk is the only systematic for
which the temperature biases are higher than the polarization
biases. Excluding the in-pair leakage terms of Eq. (2.28) in
both temperature and polarization time streams results in a
∼ 30% bias decrease. Since the overall leakage is already
quite negligible, we reconstruct the lensing potential from

systematics which include the in-pair leakage terms. As
discussed in Subsec. II G, the temperature power spectrum
bias is negative. For our specifications the resulting
polarization power spectra have additional power.

B. Lensing power biases

As there are various ways in which the lensing power can
be used for constraining cosmological observables, it is useful
to show the significance of the systematics-induced lensing
biases in several ways. We first demonstrate how significant
these biases are with respect to the lensing power spectrum.
The fractional differences between the averaged reconstructed
lensing power from simulations with and without systematics
for T, P and MV reconstructions are shown in Fig. 12.

All bias amplitudes are below the 5% level compared to
the lensing power, with most under 0.5%. These levels are
generally consistent with their expected values from the C`-
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squares) lensing reconstructions. The reconstruction noise dominates
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reconstruction. The 13 bin widths are log-spaced between 10 and
1000.

level biases. The main difference between the C` and the ĈφφL
biases is in their shapes. Beam-like C` biases appear as a
bias on the φ power spectrum amplitude. This is expected
to be roughly constant on large scales, as the φ̂ estimator
is normalized using biased fiducial CMB power spectra, so
the resulting ĈφφL have a different amplitude. Moreover, for
beam-like systematics the MV reconstruction biases appear to
be bounded by the T and P biases. The most significant bias
of these cases comes from the boresight pointing systematic,
which is at a 1% level for an MV reconstruction. As with the
power spectra, the beam ellipticity biases on the reconstructed
lensing power spectra are negligible.

The polarization-only lensing reconstruction is most
problematic in the presence of unmitigated polarization angle

errors. From our pessimistic probability distribution for ∆ψ,
the resulting amplitude of polarization-only lensing biases is
up to ∼ 5% for L < 1000. MV reconstruction benefits from
the low P → T leakage, and the bias levels remain below
∼ 1.5% for the same multipole range.

The gain-related systematics biases are randomly scattered
around zero with varying levels of significance. As with
the C`, the most prominent bias is that of the coherent gain
drift. Its temperature-only reconstructed power is ∼ 5%
higher compared to the systematics-free reconstructed power
in the signal-dominant multipole range, although with a large
uncertainty. Its MV reconstruction bias is . 2.5%.

For crosstalk, while the reconstruction biases are
consistently below 0.3%, the MV reconstruction proves
to be the least biased over the signal-dominated L-range.
This is most likely due to the opposite signs of the biases in T
and P reconstructions, which seems to cancel in the combined
reconstruction.

The only systematics for which the MV biases are the
smallest of the three are incoherent gain drift, calibration
mismatch and crosstalk.

Another way to quantify systematic-induced lensing biases
is by performing a likelihood analysis to estimate their
detectability in the lensing spectrum. Although significance
values estimated from our 12-day scaled-noise simulations
are not expected to correspond to what an experiment with
a realistic observing time would see, they provide a useful
reference point. We use the simplified log-likelihood

lnL = −
∑
Lbin

A2
(
Ĉφφ,syst
Lbin

− ĈφφLbin

)2

2σ2
ĈφφLbin

, (4.3)

where Ĉφφ,syst
Lbin

and ĈφφLbin
are the reconstructed lensing power

spectra with and without systematic effects, respectively, in a
specific multipole bin Lbin. The parameter A is the amplitude
parameter for the bias with uncertainty σA, which quantifies
how significant the bias is compared to the reconstructed
lensing power error bar σĈφφLbin

. The second derivative of L

with respect to A is the inverse variance of A, σ−2
A , such that

σA =

∑
Lbin

(
Ĉφφ,syst
Lbin

− ĈφφLbin

)2

σ2
ĈφφLbin


− 1

2

. (4.4)

A constant bias for which σA < 1 will be detectable by
more than 1σ, and vice versa. The values of σ−1

A for the
different systematics are shown in Table I. For the study-case
we considered, the only systematic that can be detected by
more than 1σ is the polarization angle systematic. For this
systematic, the unmitigated polarization-only bias detection
level is the highest, however including the temperature map in
the analysis significantly reduces the bias significance. Only
the boresight pointing, coherent gain drift and polarization
angle systematics produce biases with detection levels above
0.5σ. Unlike the polarization angle systematic, for coherent
gain drift the highest bias detection level occurs when using
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the temperature map alone to reconstruct the lensing potential,
while for polarization angle this is the case for only for the
polarization-only reconstruction.

For differential beam ellipticity, we found that the leakage
reduced to significantly below the detection level, mainly
due to the number of bolometers used. An experiment with
the same beam width and only 10-100 detectors, or larger
beam-width and similar number of detectors, would be more
affected by this systematic.

Apart from the polarization angle systematic, the biases
resulting from our coherent gain drift model also seem to be
relatively problematic for SO and future CMB experiments.
This is not the case for the incoherent drift, mainly because
scanning the sky repeatedly with a large number of detectors,
each of which has a different gain drift, helps to average
out the effect. Performing gain calibrations at shorter time
intervals, or observing each sky area more times, may mitigate
some of the effect of coherent drifts. On the other hand,
experiments using a scanning strategy with less cross-linking
may find a larger effect.

Systematics T P MV

Beam ellipticity 0.06 0.00 0.01

Differential pointing 0.27 0.09 0.28

Boresight pointing 0.52 0.20 0.52

Polarization angle 0.05 2.20 0.60

Incoherent gain drift 0.36 0.05 0.04

Coherent gain drift 0.56 0.28 0.64

Calibration mismatch 0.38 0.11 0.09

Crosstalk 0.11 0.06 0.03

TABLE I. Detection significance of systematics biases with respect
to the lensing power uncertainty for T, P and MV reconstructions.
The values in the table are calculated using Eq. (4.4). The
values are color-coded from most significant biases (darker red)
to less significant (lighter red). The detection significance for the
polarization-only reconstruction beam ellipticity bias is∼ 1×10−3.
Assuming that all the biases are independent, the combined bias is
measured with a ∼ 0.9σ significance for MV and T reconstructions.

Our chosen parameters for modeling the calibration
mismatch are relatively pessimistic, as most CMB experiment
have a lower gain uncertainty. While this systematic
can potentially be a problem, it is evident that for our
specifications, especially the number of detectors and
scanning strategy, even this pessimistic case does not affect
our reconstructed lensing power spectra in an important way.

Decreasing the gain uncertainties by a factor of 10 to ≈ 1%

compared to the baseline case shown here would lead to CφφL -
level biases lower than ∼ 0.1% for all three reconstruction
setups and detection levels of 0.18 (T), 0.01 (P), and 0.03
(MV). A moderate improvement compared to the pessimistic
case we assumed should thus already be sufficient to mitigate
this bias to an acceptable level, although a more realistic
scanning time may also be sufficient.

Our crosstalk simulations use realistic but relatively
pessimistic parameters. Excluding in-pair leakage terms,
which can be usually corrected when performing in-pair gain
calibrations, reduces the C` bias levels by 30%. Optimizing
the frequency spacing of the different bolometers can also
be achieved to establish lower leakage levels. Since the
overall bias levels we show are very low, we did not perform
further optimization to our crosstalk modeling. Increasing the
crosstalk leakage coefficient distribution’s mean and width by
a factor of 10, the C` bias levels also increased by a factor of
10, although the significance stays below∼ 1σ. This suggests
that controlling the crosstalk leakage levels to about −0.3%
is sufficient for the purpose of lensing reconstruction. This
crosstalk level is higher than the expected performance of
future-generation instruments based on µMUX technologies.
We therefore conclude that crosstalk is not expected to
become a major systematic for lensing. Moreover, since
crosstalk is constant in time (as it mainly depends on the
wiring of the electronics), it should be possible to account for
its potential biases, at least partly, in the simulations used to
evaluate the mean field of the quadratic estimator if needed
(see Sec. V for more details). For the most extreme scenarios,
the crosstalk leakage matrix can be estimated from dedicated
calibration data and used to correct for its effect at the time-
stream level prior to the map-making step, but at the cost of
inducing correlated noise [75].

The last thing we consider for characterizing systematics-
induced lensing biases relates to the lensing curl signal. The
CMB photon deflection field d is a vector field defined on
the sphere, and as such it can be written as a combination
of a gradient and a curl-like mode, d = ∇φ + ?∇Ω,
where φ is the lensing potential and Ω the curl potential8. In
addition to biases in the lensing potential power spectrum,
we also tested whether instrumental systematics produce
a non-zero lensing curl signal. While cosmological curl
signal is already expected to be non-zero from second-order
lensing effects [76–79], these would remain undetectable
in the curl power spectrum for the foreseeable future. As
for the lensing potential, the lensing curl mode can also
be reconstructed using the quadratic estimators [80]. We
use a pipeline analogous to the one described in Sec. III
for φ, but using the lensing response functions relevant to
Ω. We found that the only systematic which produces a
significant non-zero lensing curl signal is the polarization
angle miscalibration. The resulting curl signal, shown in
Fig. 13, manifests more significantly at large scales, for L .

8 We recall that in two dimensions and in the flat sky approximation ?êx =
êy and ?êy = −êx
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FIG. 13. Top: The lensing curl signal induced by the polarization
angle systematic for a polarization-only reconstruction. For setup A
(∆ψ ∈ N (−1.1◦, 0.5◦), blue line), this signal is detectable by just
over 2σ at L . 50. For setup B (∆ψ ∈ N (−0.5◦, 2.0◦), red line),
this signal has . 1σ detection level for L > 40. The polarization
angle shift of setup A was used as a baseline in the lensing biases
analysis. Bottom: CẼB̃` power spectra of one simulation induced
by a miscalibration of the polarization angles of the detectors for
setup A (blue) and setup B (red). The darker solid lines for each
power spectrum show the power spectra corresponding to the best
fit value of ∆ψ obtained by fitting the analytic approximation of
Eq. (5.3) to the simulated CẼB̃` and assuming the theoretical E and
B power spectra expected from the underlying cosmological model.
The recovered effective values of ∆ψ for each fit deviate from the
mean of the input error by up to ∼ 6%.

50. When the polarization angle perturbations are drawn from
the less pessimistic distribution of setup B, this signal is less
prominent and remains below detection levels. This suggests
that having a non-zero curl signal could be a useful tool
for diagnosing problems with the calibration of polarization
angles.

V. MITIGATION TECHNIQUES

Systematics mitigation can generally be performed at
different levels, from instrument planning through data
collection to the final analysis stage. In this section, we focus
on mitigation techniques performed at the analysis stage.
This is mainly motivated by the results of our work, which
demonstrate that our realistic and conservative assumptions
on instrument specifications already yield relatively small bias

levels.
Before discussing analysis-level mitigation techniques, we

first briefly discuss how an experiment’s scanning strategy
affects systematic biases. Some systematic biases are
automatically mitigated by scanning the same region of the
sky from different directions. Each time a given sky pixel
is observed by a different detector pair, the final map value
in the pixel is less sensitive to systematic variations between
detectors (as well as a reduced instrument white-noise level).
Observing the same sky area with the same detector pair also
contributes toward mitigation, as a given detector pair may
also have systematics that vary randomly in time. This is
important when an experiment plans its scanning strategy, as
there is a trade-off between repeated observation of specific
areas in a given time frame, and using the same given time
frame to scan more areas of the sky at the expense of reduced
cross-linking.

In our simulations, we modeled observations over a
relatively small sky patch, within which most CESs had some
overlapping region. For the systematics that do not depend
on properties of the instrument that are constant in time,
we found that the process of repeated observation over the
same area reduces most of the biases in the CMB maps and
power spectra, which in turn also reduces the biases on the
lensing reconstruction power. A scanning strategy can also be
devised to mitigate specific systematic biases. For example,
differential pointing and differential gain systematics can be
mitigated by introducing a boresight rotation to the scanning
strategy [27]. It may also be possible to mitigate differential
pointing effects by knowing analytically how the scanning
strategy couples to the pointing signal [81]. To avoid
experiment-specific conclusions, in this work we adopted the
most conservative approach and did not try to implement
scans that are optimized to mitigate systematic effects (as
done for several instruments); most of the biases we find are
in any case only of marginal importance. Below, we also show
that the differential pointing and polarization angle biases can
be mitigated also at the analysis stage. Mitigation at the
analysis stage may be more generally applicable, as it does not
depend strongly on a given experiment’s scanning strategy or
other specifications.

As for mitigating systematic biases at the analysis stage, we
first discuss techniques that are potentially helpful at the map-
making level. Solving Eq. (2.2) can be done more optimally
by including deprojection terms in the signal vector, or by
employing filters to mitigate unwanted signal contaminants.
In our efforts to mitigate some of the gain drift biases,
we tried using a simple deprojection technique to solve
for an additional gain which contaminates the polarization
maps [49], but depends only on the sky pointing. This is done
by solving for an additional sky component G which enters
the polarization time stream as

d− = G+Q cos (2ψ) + U sin (2ψ) . (5.1)

Our simulated gain variation is not constant in time, so this
deprojection model did not mitigate any of the biases we
observe. Using different deprojection methods, such as those
using template fitting [82] or solving for additional degrees
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of freedom that mimic leakages that depend on cos (2ψ) and
sin (2ψ) may help mitigating gain or beam-related biases [81],
at the cost of an increased noise in the final map.

Mitigating systematic biases on the lensing power spectrum
specifically can also be achieved by calculating cross-spectra.
Reconstructing the lensing potential using different pairs of
maps from different observation runs, frequencies, detector-
pair sets, or other data splits, and using these to calculate
cross-power spectra, could help in averaging out systematic
effects, as each map is affected differently by random
systematics and the size of the connected bias terms may
be substantially reduced [83]. The resulting power spectrum
might be less affected by the systematics, but its uncertainty
is likely to increase due to the estimator being less optimal, as
well as potentially more issues with missing pixels and other
issues affecting map-making using less data.

The lensing reconstruction analysis could also adopt some
mitigation techniques. Due to the strong dependency of a
lensing reconstruction analysis on the experiment forward
modeling through MC simulations, the most direct way of
mitigating most biases is by modeling the systematics in the
MC simulations used to obtain the debiasing terms, namely
MF, (RD)Nφφ

0,L and (MC)Nφφ
1,L. In our analysis, the only

similarities between the MC and “data” simulation sets are
the instrument specifications and scanning strategy. Investing
resources into more precise modeling of systematics in the
MC simulations could reduce their impact on the lensing
reconstruction if they are partly simulated. However, not all
systematics can be accurately simulated, and some parameter
uncertainty in the systematic modeling would not mitigate
lensing reconstructions biases entirely. Since the detection
level of the systematics-induced lensing biases shown in
this work are already low, we do not explore this method
of mitigation. We do, however, compare between the MF
debiasing terms with and without systematics to understand if
any systematics-induced biases may be mitigated by including
systematics in the MF simulations.

Including systematics in the MC simulations will only give
a non-zero contribution to the mean field in specific cases,
e.g. where the amplitude of the noise mean field is affected
by systematics, or where systematics-inducing parameters are
known (e.g. the actual beam ellipticities or the crosstalk
scheme). Systematics leading to a specific spatial pattern that
depends on the specific actual realization or time variation
of random variables would average to zero if only random
realizations can be simulated. To test whether modeling
randomized systematic effects in the MF simulations might
help, we use random variables with the same parameter
distributions as with the “data” sets. The fractional differences
between the cross-MF power spectra CMF1MF2

L with and
without systematics and the lensing power spectrum are
shown in Fig. 14. The resulting biases are all consistent
with zero, meaning that including a level of variance in the
systematics modeling in the MF simulations may not improve
the lensing reconstruction. Planck showed that for their
specifications (e.g. beam size and scanning strategy) the
known beam ellipticity was also negligible when calculating
the MF [84] over the multipole range we consider. We have

shown that systematic effects from the narrow beams that we
considered are relatively negligible for lensing reconstruction,
so we do not attempt to model them in the MF simulations.
The polarization angle and coherent gain drift systematics
are more important, but including these systematic effects
in the MF simulations with parameter uncertainties similar
to those used in the “data” simulations did not result in
bias mitigation. We did, however, find that including the
polarization angle systematic in the MF simulations when
reconstructing the curl lensing signal successfully mitigated
the signal to undetectable levels.
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FIG. 14. The fractional differences between ∆CMF1MF2
L and

Cφφ,theoryL . ∆CMF1MF2
L is the difference between the MF cross-

spectra calculated using simulations with and without systematics for
T (purple circles), P (pink triangles), and MV (green squares) lensing
reconstructions.

The other debiasing term, (RD)Nφφ
0,L, already responds

to the “data” CMB power spectrum amplitude and shape,
and mitigates (to leading order) some of the biases that
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affect the connected reconstruction noise. The fractional
differences between (RD)Nφφ

0,L for a given realization for
“data” simulations with and without systematics are shown
in Fig. 15. The calibration mismatch systematic bias is
largely mitigated by the (RD)Nφφ

0,L subtraction, especially for
polarization-only reconstruction; its lensing power spectrum-
level biases are less than 0.5% of the lensing power
spectrum amplitude while its (RD)Nφφ

0,L amplitude is about
1% higher than the systematic-free (RD)Nφφ

0,L amplitude. The
(RD)Nφφ

0,L amplitude is also affected by the biases of the other
systematics, however their lensing spectrum biases remain
large compared to the systematics-free spectrum. The largest
(RD)Nφφ

0,L amplitude deviation results from the polarization
angle and coherent gain drift systematics. While the use
of this debiasing term does help with decreasing the lensing
spectrum bias, it does not necessarily mitigate it to negligible
significance levels.

As an alternative to full modeling of systematic effects in
the MC simulations, some biases can be mitigated by using a
different fiducial beam in the lensing reconstruction analysis.
We have shown in Subsec. IV A that the main beam ellipticity,
differential pointing and boresight pointing systematics biases
appear as a change in the effective beam model. In practice,
the beam model is often determined by dedicated observations
of point sources [39, 49, 75]. These empirical measurements
include the same observational systematics, so the effective
beam model determined from them should already mitigate
some of the beam-like effects to some extent.

To test how well an effective beam can mitigate the
lensing systematics we, performed lensing reconstructions
which included an effective beam. We corrected our baseline
Gaussian beam, which has a width σFWHM, by a correction
beam with width σcorr. The value of σcorr was obtained from
fitting the CTT` fractions with and without systematics to an
effective circular Gaussian beam model. The total width of
the effective beam, σeff, is then given by

σ−2
eff ≡ σ

−2
FWHM + σ−2

corr. (5.2)

More generally, one could define an effective beam transfer
function as a general function of `, but using the simple
Gaussian model already captures the main systematic effect.

Boresight pointing jitters are expected to be well captured
by an effective beam. We find that the correction determined
from the power spectrum gives an effective beam correction
σcorr that matches the input pointing distribution width very
well (13 arcseconds, matched to about 0.4%). Applying
this effective beam lowers the lensing bias detection levels
to 0.06 (T), 0.001 (P), 0.07 (MV). The boresight pointing
jitters are not correlated to the scan in the basic model we
considered, and do not depend on detector-level properties,
which makes this effect simple to mitigate. The main effect
should be included automatically in beam measurements from
point sources. In more realistic cases, pointing errors might
be correlated to the motion of the telescope, or through
systematic errors in the pointing solution that relate the
recorded position of the telescope encoder to the true sky
position. Such correlations could introduce larger biases in
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FIG. 15. The fractional differences between (RD)Nφφ
0,L with and

without systematics for T (purple lines), P (pink), and MV (green
lines) lensing reconstructions for a given CMB+noise realization
“data” simulation.

lensing reconstruction as they could mimic correlated shifts
on the sky, however they are hard to model and quantify in
advance as they are highly instrument-dependent. A similar
mitigation strategy could, however, reduce the overall effect.
An effective beam transfer function known to at least 10-
20% precision should be sufficient to mitigate the boresight
pointing bias effectively.

Differential pointing produced an effective-beam like
effect, but also T → P leakage. This systematic is mainly
due to distortions in the focal plane and in the telescope
mirror, so the effect is coupled to the scanning strategy
and overall cross-linking of different pixels. Employing an
effective beam in this case can only partly mitigate the effect,
since it would not correct T → P leakage. The beam
correction is also likely to be less well captured by point-
source beam measurements, since point source scans are
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usually different than the scanning strategy used for CMB
observations. If the leakage corrections can be constrained
or measured well enough from calibration observations, and
they are relatively stable in time, it may be possible to
propagate them through simulations to define an effective
transfer function that would mitigate most of the effect. We
found that by using the effective beam determined from
the power spectra, the differential pointing bias detection
significance levels decrease to 0.03 (T), 0.02 (P) and 0.01
(MV). These residual detection levels are consistent with the
biases expected from having only the leakage terms involving
b− of Eq. (2.11) that give rise to T ↔ P leakage in the
data simulations. Using an effective beam should therefore
remove the majority of the differential pointing bias, as the
T ↔ P leakage biases are subdominant. The fitted correction
width σcorr deviates from the mean of the differential pointing
distribution, 15 arcseconds, by about 12%.

The beam ellipticity bias mainly originates from the b+
leakage terms; removing the b+ terms results in biases which
are ∼ 2 orders of magnitude smaller, so the majority of this
bias is also corrected by an effective beam. Measurements
of the beam transfer function from calibration observations
should be sufficient to capture the majority of the ellipticity
systematic and correct for it. However, there may be some
deviations between the “true” and measured beam shapes due
to the coupling to the scanning strategy.

To assess how accurately the effective beam needs to be
known, we used a beam correction width reduced by a factor
of 2 from the best value to correct for the differential pointing
bias. This lead to a reduction of the bias detection levels by
about a factor of 2 compared to using no effective beam. For
boresight pointing, the effective beam is likely to be measured
better than this, as calibration observations are expected to
estimate the correct beam shape for this systematic quite well;
however, our results suggest that even an approximate beam
model may be sufficient to substantially reduce the lensing
biases.

The most common method for mitigating polarization angle
systematics is by fitting the resulting non-zero EB cross-
spectrum to the analytical expression [40],

CẼB̃` =
1

2
sin (4∆ψ)

[
CEE` − CBB`

]
, (5.3)

where X̃ is a polarization field affected by the polarization
angle systematic for a constant angle shift ∆ψ. To test
the effectiveness of this mitigation method, we fitted the
resulting EB power spectrum, shown in Fig. 13, to the
analytic formula of Eq. (5.3) using the theoretical E and B
power spectra to obtain the effective angle ∆ψ, and used it
to rotate the input Q and U maps for the lensing analysis.
Although this method approximates the systematic to be a
global map-level effect, while the systematic is in practice
injected at the per-detector level, it corrects for most of the
effect and considerably mitigates both the lensing biases and
the curl signal to undetectable levels. After mitigation, the
lensing bias detection levels reduce to 0.04σ (P) and 0.03σ
(MV). This mitigation does not affect the already-negligible
bias detection levels for a temperature-only reconstruction

significantly. We note that this mitigation strategy makes
assumptions on the underlying cosmology, i.e. CẼB̃` = 0
in absence of systematics. This suggests that it could also
unwantedly remove any signals which are caused from other
sources, such as cosmic birefringence. As this systematic
produces a lensing curl signal, which could potentially also
be coupled with cosmic birefringence, it may be possible
to include the curl signal as an additional diagnostic tool
to break the degeneracy between systematic-induced and
cosmologically-induced rotations.

Gain systematic effects can also be mitigated to some
extent, following the common practice of most CMB ground-
based experiments, by cross-correlating the resulting maps
with external data sets such as the Planck maps [7, 85–87].
This calibration can help correct an overall mean gain error,
however position-dependent gain variations may still remain
after this absolute gain calibration.

In this work, we have we used QEs to assess the effect of
instrumental systematics on the lensing reconstruction. Other
reconstruction methods could have different sensitivities to
these effects, and some may be able to mitigate systematic
effects, at least partially. For example, one could in theory
produce a bias-hardened reconstruction which is less sensitive
to various systematic effects by construction [88]. Methods
which avoid the need for reconstruction bias subtraction [89]
may also be less sensitive to instrumental systematics, as
they do not need to accurately model systematics that affect
debiasing terms that are no longer needed. Performing a
lensing reconstruction from split data may also prove to be
useful against systematics biases, as different data points
are affected differently by systematics (and uncorrelated
instrument noise) such that their effect on the lensing
contractions may average out [83]. Nonetheless, the lensing
pipeline we used proved to perform well against these biases,
as most of their effects could be corrected directly by (RD)N0

subtraction, by implementing an effective beam in the lensing
analysis, or by rotating the polarization maps prior to the
lensing analysis.

VI. CONCLUSIONS AND FUTURE PROSPECTS

In this work, we explored how various instrumental
systematics affect the lensing reconstruction power spectrum.
We reconstructed the lensing potential from CMB simulations
that include realistic levels of contamination due to different
instrumental systematics expected for an SO-like instrument,
and assessed the significance of the resulting biases. We
showed that for the instrument specifications and scanning
strategy we used, most of the systematics we considered will
have a relatively small effect on lensing reconstruction for
upcoming CMB experiments, with significance levels of up to
0.5σ, apart from the boresight pointing, polarization angle and
coherent gain drift systematics, which produce biases with
> 0.5σ significance levels when left unmitigated. We also
investigated whether these instrumental systematics produce
a lensing curl signal, and found that when not calibrating for
polarization angle errors the signal can be detectable. All of
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the significance levels we have presented in this work might
be somewhat different for a full observation run, especially for
gain drifts and calibration mismatch where the biases average
out with time. Systematics that appear in the maps’ power
spectra as an effective beam are also likely to be substantially
mitigated once the beam is empirically calibrated.

Future CMB experiments, such as CMB-S4, which will
produce CMB maps with even lower instrument noise, may
be more sensitive to these systematics, as their lensing
reconstruction noise level is expected to be even lower.
A more accurate quantitative assessment of the impact of
instrumental systematics on lensing reconstruction for a given
experiment depends on the details of its scanning strategy,
focal plane configuration and instrument properties. These
can only be characterized in their full complexity during
the observational campaign. As such, the absolute value
of the systematics we explored may differ from the results
presented in this work. Nonetheless, our results are a useful
guide toward identifying the most relevant potential problems
and planning the lensing analysis for upcoming ground-based
CMB experiments.

Throughout this work we made various simplifications and
assumptions, which should be investigated more carefully
in the future. Modeling multi-frequency bolometers would
allow for a more robust estimator, with some handle on
frequency-dependent systematics and foregrounds. However,
having more than one band potentially increases the range
of possible systematics, and some small systematics could
become relatively more important due to the process of
foreground cleaning. We also neglected any foreground
residuals in the post-cleaning CMB maps and any systematics
that may couple to bright foreground emission. Another
effect which may be crucial for upcoming ground-based CMB
experiments is correlated noise. When observing the sky
from the ground, the resulting time streams are contaminated
by atmospheric emission. This could have a significant
impact on the resulting CMB maps, which could then bias
the lensing reconstruction. Residuals from various correlated
noise cleaning methods could also negatively affect the
lensing reconstruction. Additional filtering on the map level
could improve the reconstruction accuracy from correlated-
noise-contaminated maps [90], however a full optimization
analysis for such methods has not yet been performed.
Exploring systemically how filtering affects lensing biases
specifically would require implementing a more sophisticated
map-making method than the one we used here [91], and
simulation tests would require realistic atmospheric noise
simulations [92].

Apart from modeling different systematics, testing how
the biases change for different scanning strategies could also
be useful for planning optimal scans for future experiments.
Many instrumental systematics effects are mitigated when the
same area of the sky is scanned multiple times from different

angles during several observation runs. Since scanning more
area of the sky is also beneficial to reduce cosmic variance,
performing an optimization analysis to understand how this
interplay affects systematics could be key for future CMB
experiment planning.

Another important aspect of CMB lensing is the ability
to delens CMB maps with high precision. Systematics may
affect a delensing analysis somewhat differently, and some
may even prove to be relatively more important for delensing
rather than for the lensing power spectrum. Performing
a delensing analysis using CMB maps which include
systematics would be the next step toward a comprehensive
investigation on the effects of systematics on lensing-related
analyses.

So far, our results show a promising future for lensing-
related CMB cosmology. We have demonstrated that most of
the systematics we considered should be relatively negligible
for an SO-like experiment, especially when using many more
detectors compared to our analysis and observing more sky
area and for longer times, or could be mitigated effectively.
Within the limitations of our work, we conclude that the
upcoming generation of instruments such as SO should be
able to deliver the lensing science case they target.
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