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Testing a subset of viable cosmological models beyond General Relativity (GR), with implica-
tions for cosmic acceleration and the Dark Energy associated with it, is within the reach of Rubin
Observatory Legacy Survey of Space and Time (LSST) and a part of its endeavor. Deviations
from GR-w(z)CDM models can manifest in the growth rate of structure and lensing, as well as
in screening effects on non-linear scales. We explore the constraining power of small-scale devia-
tions predicted by the f(R) Hu-Sawicki Modified Gravity (MG) candidate, by emulating this model
with COLA (COmoving Lagrangian Acceleration) simulations. We present the experimental design,
data generation, and interpolation schemes in cosmological parameters and across redshifts for the
emulation of the boost in the power spectra due to Modified Gravity effects. Three preliminary
applications of the emulator highlight the sensitivity to cosmological parameters, Fisher forecasting
and Markov Chain Monte Carlo inference for a fiducial cosmology. This emulator will play an im-
portant role for future cosmological analysis handling the formidable amount of data expected from
Rubin Observatory LSST.

I. INTRODUCTION9

The Vera C. Rubin Observatory Legacy Survey of10

Space and Time (LSST) 1 [1, 2], together with a wide11

range of current and future surveys of the large-scale12

structure (LSS) of the universe, such as DESI [3], Eu-13

clid [4], the Nancy Grace Roman Space Telescope [5] and14

SPHEREx [6], will offer a unique opportunity to test15

our standard cosmological assumptions at an unprece-16

dented level of accuracy. The widely accepted cosmo-17

logical model, Λ Cold Dark Matter (ΛCDM), attributes18

the observed accelerated expansion of the universe [7, 8]19

to the existence of a positive cosmological constant, Λ,20

corresponding to non-zero vacuum energy. This assump-21

tion, combined with the existence of pressure-less cold22

dark matter and gravity described by Einstein’s Gen-23

eral Relativity (GR), has been very successful at fitting24

a large spectrum of cosmological observations [9–14].25

Despite these remarkable observational accomplish-26

ments, ΛCDM has faced several theoretical challenges,27

with the cosmological constant problem [15, 16] arguably28

serving as the primary reason to consider alternative pro-29

posals. Furthermore, as our ability to accurately ob-30

tain the underlying cosmological parameters from late31

and early-time observations increases, attention has been32

drawn to certain tensions between the corresponding ex-33

tracted values of the Hubble constant, H0 [17–20], and34

the amplitude of density fluctuations, σ8 [14, 21–24],35

which could however be attributed to unknown system-36

atics. Combined with the long-term interest in exploring37

∗ The two lead authors have contributed equally to this work.
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deviations from GR in all regimes [25, 26], the above38

motivate introducing large-scale modifications of gravity39

as alternative candidates for cosmic acceleration; such40

theories are called the Modified Gravity (MG) theories41

[27–30].42

In order to be able to evade the existing tight con-43

straints of gravity from observations in the Solar System44

[25, 26], while at the same time producing detectable45

large-scale signatures, viable MG candidates typically in-46

voke “screening” mechanisms [31, 32], which suppress de-47

viations in the high-density regime through novel scalar48

field self-interactions [33–39]. Furthermore, the space of49

all MG parametrizations that lead to second order equa-50

tions of motion, the Horndeski class [40–42] has been51

additionally restricted [43–48] by the simultaneous de-52

tection of gravitational waves and electromagnetic coun-53

terparts by the LIGO/Virgo collaborations [49–53]. A54

detailed discussion of viable MG candidates testable by55

LSST Dark Energy Science Collaboration (DESC) was56

presented in Ref. [54].57

The predicted transition from MG to GR would man-58

ifest itself, by means of the dynamical screening mech-59

anism, in the nonlinear regime of structure formation,60

which will be precisely probed by the Stage-IV surveys61

of the LSS [55]. As a result, these upcoming observations62

will offer a unique opportunity to study the large-scale63

behavior of gravity with unprecedented accuracy. The64

optimal interpretation of the wealth of upcoming data,65

however, is conditional upon our ability to produce effi-66

cient and reliable theoretical predictions of the expected67

observable signatures of MG. In the (quasi-)linear regime68

of structure formation, this can be partially achieved69

through analytical, perturbation theory approaches, such70

as Lagrangian Perturbation Theory (LPT) [56–60]. Un-71

fortunately, these approaches break down on nonlinear72
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scales. Reliable predictions of such small-scale signals73

from MG theories can only be obtained through perform-74

ing full N-body simulations (for a comparison of differ-75

ent codes, see Ref. [61]). These are computationally very76

expensive, particularly in the presence of an additional77

MG-induced force, due to the inherent nonlinearities in-78

troduced by the screening mechanism.79

As a consequence of the substantial computational80

costs associated with performing full N-body simulations81

for MG models, efficient approaches are essential. To82

that end, the hybrid COmoving Lagrangian Acceleration83

(COLA) method was developed in Ref. [62], expanding84

upon the initial ΛCDM implementation of Ref. [63], for85

efficiently simulating the MG classes of chameleon and86

symmetron screening. Utilizing a combination of 2nd or-87

der Lagrangian Perturbation Theory (2LPT) and a pure88

N-body component, the COLA method provides a great89

trade-off between accuracy and computational efficiency,90

that was found to recover the fractional deviation in the91

nonlinear dark matter power spectra with sufficient ac-92

curacy, at only a fraction of the standard computational93

cost. However, many investigations require even faster94

prediction capabilities to enable the exploration of pa-95

rameter space. For example, Markov Chain Monte-Carlo96

(MCMC) inference relies on tens of thousands of model97

evaluations and even the fast COLA approach, which98

takes ∼ 1 hour on a single core for one MG simulation,99

would be too slow to enable such an investigation.100

To provide faster predictions for, e.g., the power spec-101

trum, fitting functions have been used extensively in the102

past (see, e.g., Refs. [64, 65] for fits capturing ΛCDM103

and wCDM cosmologies based on the Halofit approach104

or a halo model-based approach to include baryonic ef-105

fects [66] or physics beyond ΛCDM [67]). However, fit-106

ting functions have several drawbacks. First, the accu-107

racy requirements for ongoing and future surveys of a108

few to sub-percent are very difficult to obtain by a single109

functional form and a set of fitting parameters. Second,110

for models outside the range for which the fit was de-111

rived, no error bounds are available and biases can occur.112

Third, a large range of simulations is needed to enable a113

good calibration of the parameters that describe the fit.114

Overall, it has been shown that even for the relatively re-115

stricted case of wCDM cosmologies, it is very difficult to116

achieve an accuracy of better than 5–10% as pointed out117

in one of the recent Halofit papers [65] and subsequent118

comparisons, e.g., Refs. [68, 69].119

Because of the above shortcomings of fitting functions120

and the need for very accurate and fast predictions, the121

concept of emulators was introduced to cosmology in122

Refs. [70, 71]. It was shown that with a relatively small123

number of high-quality simulations, prediction schemes124

could be built that provide high-accuracy results for,125

e.g., the matter power spectrum and C`s quickly. The126

Coyote Universe project [72–74] then released a stand-127

alone prediction scheme for the matter power spectrum,128

the CosmicEmu, based on a set of highly accurate sim-129

ulations. The work was extended in several ways, in-130

cluding the coverage of a larger k-range and redshift and131

parameter spaces [68, 75]. The emulation concept itself132

has since then become rather popular and was used in133

several studies concerning the matter power spectrum,134

see, e.g. Refs. [69, 76], a range of other summary statis-135

tics, e.g., galaxy power spectra [77, 78], concentration136

mass relation [77], the halo mass function [79] as well as137

comprehensive simulation efforts that extracted a range138

of emulators, such as the AEMULUS project [80–83] and139

DARK QUEST [84, 85].140

In this work we develop a Gaussian Process emulator to141

estimate the fractional deviation of the nonlinear matter142

power spectrum PMG(k)/PΛCDM (k) (also referred to as143

enhancement/boost in the power spectrum or the power144

spectrum ratio) as a function of cosmological parame-145

ters and redshift, based on a set of COLA simulations in146

the MG scenario. Given that our focus is to efficiently147

emulate statistics for MG models that will be testable148

by LSST DESC, our target model needs to be one that149

exhibits a well-studied phenomenology (including exist-150

ing full N-body simulations) and will predict detectable151

deviations in the scales of interest to the survey. For152

this reason our chosen candidate is the f(R) Hu-Sawicki153

model [86], which realizes the chameleon screening mech-154

anism and which we have previously identified as one of155

the prioritized beyond-w(z)CDM candidates testable by156

LSST DESC [54].157

In this paper we discuss the construction of the em-158

ulator that comprises of an experimental design, train-159

ing data synthesis and the statistical techniques to per-160

form interpolation across cosmological parameters and161

redshifts. After training the emulator on the COLA-162

generated dataset, we validate its ability to recover sim-163

ulated test cosmologies within our target range, before164

proceeding to compare its accuracy against results ob-165

tained by full N-body simulations for the Hu-Sawicki166

model. Having quantified its accuracy, we then illustrate167

the capabilities of our emulator, which delivers a massive168

speed-up by 6 orders of magnitude over COLA simula-169

tions, through three essential applications: a sensitivity170

analysis, obtaining parameter constraints through Fisher171

forecasting and MCMC inference. It is worth noting, at172

this point, that efficient predictions for power spectra in173

the Hu-Sawicki MG model have also been recently pre-174

sented in Refs. [87–89], which however relied upon appro-175

priately designed fitting formulas [87] or semi-analytical176

models [88, 89]. In order to overcome the potential lim-177

itations associated with such approaches, as mentioned178

above, we have developed our emulator based directly on179

the simulations, expanding upon the established wCDM180

infrastructure of the CosmicEmu [90]. In addition to en-181

hancing the variety of available predictive tools in the182

community, which is an important endeavor by itself, this183

contribution is novel. While the above techniques probe184

variations of only one of the two parameters of the Hu-185

Sawicki model, our emulator spans its full 2-dimensional186

parameter space, for the first time in the literature.187

Our paper is structured as follows: in Sec. II, we de-188
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scribe the approach to generating our training data set by189

first introducing our target MG model, then discussing190

our choices for the experimental design, including cosmo-191

logical parameters and their ranges, and finally describ-192

ing the efficient COLA approach we use to generate the193

simulations. Next, we discuss in Sec. III the details of194

our emulator development. We then proceed in Sec. IV195

to validate the emulator results, before presenting three196

applications in Sec. V. Finally, we conclude and discuss197

future work in Sec. VI. Technical details on Gaussian198

Processes and the emulator design can be found in Ap-199

pendices B and C, respectively.200

II. TRAINING DATA AND DESIGN201

A. Modified Gravity Model202

Theoretical investigations of potential departures from203

Einstein’s GR, as well as of their consequent observa-204

tional implications [25], have been an active research205

topic, particularly in the last two decades, due to their206

potential implications on resolving the mystery of cos-207

mic acceleration [27, 29, 30]. One of the most commonly208

considered classes of MG deviates from GR through the209

addition of a nonlinear function f(R) of the Ricci scalar210

R to the standard Einstein-Hilbert action. These are the211

f(R) gravity theories [91, 92], which are described by the212

following action S:213

S =

∫
d4x
√−g

[
R+ f(R)

16πG
+ Lm

]
, (1)

with Lm denoting the matter sector Lagrangian, G the214

gravitational constant and using units where the speed215

of light in vacuum, c, has been set to unity. The mod-216

ification of the form (1) activates, in principle, a new217

additional degree of freedom in the gravitational sector,218

which could be responsible for driving the cosmic expan-219

sion to accelerate, instead of dark energy [93].220

The most widely-considered model of this type is the221

f(R) Hu-Sawicki model [86], with the functional form:222

f(R) = −m2 c1
(
R/m2

)n
c2 (R/m2)

n
+ 1

, (2)

where in Equation (2) m = H0

√
Ωm, with Ωm the matter223

fractional energy density and H0 the Hubble Constant,224

both evaluated today and n, c1 and c2 are free parameters225

of the model.226

Any well-motivated MG parametrization should have
the flexibility to match the observed expansion history
well-described by ΛCDM, a requirement which gives (for
sufficiently small values of |fR0 |), the following relation-
ship for the background value of the Ricci scalar, R̄:

R̄ = 3ΩmH
2
0

(
1 + 4

ΩΛ

Ωm

)
, (3)

and for the derivative fR = df(R)
dR ,227

f̄R0
= −nc1

c22

(
Ωm

3(Ωm + ΩΛ)

)n+1

, (4)

where ΩΛ is the dark energy fractional density evalu-228

ated at the present time. Through relationship (4), one229

can reduce the number of free parameters of the Hu-230

Sawicki model, which can be fully characterized by the231

pair {|fR0
|, n}. We briefly point out here that in the232

limit of |fR0
| → 0 the background cosmology of ΛCDM233

is recovered. Through an appropriate conformal transfor-234

mation, the model can be cast into a scalar-tensor theory235

(with fR acting as the MG scalar field) [94] that recovers236

GR in regions of large Newtonian potential through the237

chameleon screening mechanism [35, 36].238

The Hu-Sawicki model produces novel, distinct signa-239

tures which are testable by upcoming cosmological sur-240

veys and as a result has been well-explored in the liter-241

ature through full N-body simulations. It is also known242

to be free from any physical instabilities [28]. We fur-243

ther note that, despite the increasingly tight observa-244

tional constraints placed on it over the past decade (see,245

e.g., [92] for a review), the Hu-Sawicki model remains vi-246

able. For all these reasons, it serves as an ideal test-bed247

for investigating cosmological theories of gravity and is248

one of the main candidate models to be considered by249

DESC [54]. The referenced document describes the var-250

ious beyond-w(z) CDM model prioritized for study by251

DESC.252

B. Experimental Design253

Two main criteria govern the choice of the cosmolog-254

ical parameter space covered by our emulator – first, a255

consideration of the computational cost incurred in gen-256

erating a set of COLA simulations, which will determine257

how many models can be reasonably run, and, second,258

an estimate for the emulator’s target accuracy. The ap-259

plication of these two criteria determines how many pa-260

rameters we can afford to include and how broad their261

priors can be.262

Our main interest in this paper is the exploration of263

the two parameters that define the Hu-Sawicki model for264

f(R) gravity theories, {fR0
, n}. We aim to vary these265

parameters over a wide range in order to span a broad266

array of deviations predicted by the model. We choose267

−8 ≤ log(fR0
)≤ −4, (5)

0 ≤ n ≤ 4, (6)

and note that the upper end of the chosen fR0
range268

corresponds to a large modification case in which screen-269

ing is absent, whereas for the low end value, modified270

gravity forces are very strongly suppressed [86, 95]. Most271

studies in the MG literature, e.g., Refs. [87, 89], restrict272

their attention on the subspace of fixed n = 1 and only273

vary fR0
, given that deviations are more sensitive to the274
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latter parameter. In this work, however, we also con-275

sider variations with respect to n, thus allowing a more276

complete theoretical exploration of the Hu-Sawicki model277

parameter space. Given the wide dynamical range of fR0
,278

over-sampling of large parameter values may occur if the279

parameter range is sampled linearly. In order to mitigate280

this problem, we instead use a logarithmic scaling in the281

experimental design.282

Next, we have to decide which additional parameters283

we want to vary for the CDM component of the model.284

We want to focus on the parameters that affect the power285

spectrum the most and at the same time aim to vary only286

a small number of parameters. An increase in the num-287

ber of cosmological parameters varied leads to either a288

less accurate emulator or a much larger number of simu-289

lations needed. It is therefore desirable to keep the num-290

ber of parameters varied small while keeping the needed291

accuracy.292

Figure 10 in Ref. [73] shows a sensitivity analysis for293

the five parameters of the wCDM “Standard Model” of294

cosmology. The image shows the variation of the ra-295

tio of the power spectrum to a model that is evaluated296

at the midpoint of the five Standard Model parameters297

changing one parameter at a time. The baryon density298

Ωb clearly does not have much of an effect on the power299

spectrum ratio, while {Ωmh2, σ8, ns} all show consider-300

able impact on particularly large scales. While the dark301

energy equation of state also leads to considerable varia-302

tions, w is not of interest here as we fix the background303

of a ΛCDM model. We note again that the requirement304

to match a ΛCDM background expansion imposes addi-305

tional restrictions on the parameter space of the model,306

which are reflected in Equations (3) and (4) that we in-307

troduced Sec II A. As we briefly discuss at the end of308

Section IV B, variations of h given current observational309

bounds do not affect the fractional deviation of the non-310

linear matter power spectrum PMG(k)/PΛCDM (k) con-311

siderably. We therefore allow variations of the aforemen-312

tioned additional three parameters for our emulator. In313

future work, the parameter space will be extended.314

We now proceed to set the range for three of the stan-315

dard CDM parameters {Ωmh2, σ8, ns}. We choose the316

same range used as in the Coyote Universe [73] and the317

Mira-Titan Universe simulation suites [96]. Both papers318

provide in-depth discussions about the choices to balance319

broad parameter coverage and achievable accuracy goals320

for the emulator, as informed by contemporary and fu-321

ture cosmic microwave background (CMB) and LSS sur-322

veys. Choosing the same parameter ranges also has the323

advantage that results in the future can be compared to324

the previous work and possibly combined later on. In325

summary, for the three parameters, we choose:326

0.12 ≤Ωmh
2≤ 0.15, (7)

0.85 ≤ ns ≤ 1.1, (8)

0.7 ≤ σ8 ≤ 0.9. (9)

We add that Ωbh
2 = 0.0223 (while we ignore the effects of327

massive neutrinos) and that for the dimensionless Hub-328

ble constant we have chosen h = 0.67. After having de-329

cided on the five parameters and their ranges we have330

to determine the number of simulations needed and pick331

a sampling scheme that allows us to set up a suitable332

parameter sampling design. Past experience has shown333

that roughly 10 simulations per parameter are needed to334

enable the construction of an accurate emulator (target-335

ing few percent accuracy), leading to a set of ∼ 50 COLA336

simulations.337

The next choice to be made concerns the employed338

sampling scheme. For an excellent discussion on dif-339

ferent sampling schemes used in computer experiments,340

the interested reader is referred to Ref. [97]. Ref. [73]341

provides an extensive discussion about different meth-342

ods in the cosmology context. In this paper, we use a343

symmetric Latin hypercube (SLH) design, introduced in344

Ref. [98]. Latin hypercube (LH) sampling schemes are345

statistical stratified sampling methods used to generate346

near-random samples of values from a multi-dimensional347

distribution, such that there exists only one sample in348

each sub-division for each parameter range. Compared to349

a random space-filling scheme, which does not take into350

account the previous sampled points in a new sample-351

point generation, an LH sampling strategy guarantees352

an optimal representation of the variability of parame-353

ters. While sampling on a uniform grid also ensures fair354

representation, the number of required simulations would355

be prohibitively large. The SLH offers a space-filling de-356

sign strategy that allows for flexibility with regard to a357

number of design points and is computationally inexpen-358

sive when optimizing the design itself, when compared to359

other methods such as Orthogonal Array LH implemen-360

tations. The SLH imposes additional, specific symmetry361

requirements compared to other LH designs, as described362

in detail in e.g. Ref. [73]. Ref. [73] provides concrete ex-363

amples to illustrate these symmetries. The symmetry364

imposes a space-filling requirement on the designs con-365

sidered upfront, which carries through to all projections.366

The final choice concerns the proposal distribu-367

tion for the cosmological parameters. We use uni-368

form distributions for the cosmological parameters θ =369

{Ωmh2, σ8, ns, log(fR0
), n} to ensure an unbiased explo-370

ration of parameter space. The 50 cosmological models371

that are chosen using the above prescription are shown in372

Appendix C. In other efforts, the design has been created373

based on posteriors from surveys see, e.g., the AEMULUS374

project [99]. This approach reduces the number of re-375

quired simulations but also restricts the viability of the376

emulator considerably, because of the limited effective377

sampling volume and because of potential biases intro-378

duced by weighted sampling.379

C. COLA Simulations with Modified Gravity380

The signatures introduced by MG models manifest381

themselves in the nonlinear regime of structure forma-382

tion, where the screening mechanism is in full effect, as383
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FIG. 1. Top: ΛCDM matter power spectra for the fiducial
cosmological parameters at z = 0, as obtained by the efficient
COLA method (blue solid line) and CosmicEmu [red dashed
line]. The linear matter power spectrum for the same cosmol-
ogy [green dot-dashed line] is also shown. The shaded blue
region represents the standard deviation obtained from the
2000 available P (k) COLA realizations. Bottom: Fractional
difference between the COLA and the CosmicEmu-generated
power spectra of the upper panel. The shaded gray region
highlights the 4% level of accuracy.

well as in the intermediate quasi-linear scales. As a re-384

sult, perturbation theory approaches fail to capture the385

full picture of structure formation in the presence of a386

modification to gravity, which can only be performed387

through N-body simulations. These are particularly com-388

putationally expensive, due to the inherent non-linearity389

of the scalar-field Klein-Gordon equation. An overview390

and comparison of different full N-body codes in MG can391

be found in Refs. [61].392

Given the substantial computational cost of running393

multiple full N-body simulations to train our emulator,394

we instead utilize the Comoving Lagrangian Accelera-395

tion (COLA) hybridization scheme for efficient simula-396

tions of chameleon and symmetron screening models de-397

veloped in Ref. [62], expanding upon the initial ΛCDM398

implementation of Ref. [63]. Through a combination of399

2nd order Lagrangian PT (2LPT) that evolves the large400

scales and a pure N-body component for integrating the401

nonlinear regime, the COLA approach was found to be402

able to recover the nonlinear dark matter power spec-403

trum (in ΛCDM) using only a few tens of timesteps [63].404

The implementation developed for the f(R) Hu-Sawicki405

TABLE I. Parameters of the COLA MG simulation suite.
Box size, L 200 h−1Mpc
Number of particles, Np 2563

Number of grids, Ng 5123

Initial redshift zi 49
Final redshift zf 0
Number of time-steps, Nt 100
Number of realizations, Nr 1
Dimensionless Hubble constant, h 0.67

model in Ref. [62], which is the one we employ here, was406

shown to successfully model the fractional deviation in407

the dark matter power spectrum, PMG(k)/PΛCDM (k), in408

the nonlinear regime, using an effective “thin-shell” ap-409

proach for capturing the chameleon screening effect that410

was presented in Ref. [100]. The reported accuracy in411

the estimation of this power spectrum ratio was at the412

level of 1 percent, compared against N-body simulations413

at z = 0. Below we summarize the parameters we choose414

for our COLA runs, while more details about the COLA415

MG implementation can be found in Ref. [62].416

Our simulations are initialized using the 2LPT initial417

conditions code (2LPTic) [101] at an initial redshift of418

zi = 49. Given that the effects of MG are assumed to419

be negligible at early times within the context of cos-420

mic acceleration, we use the same set of ΛCDM initial421

conditions for both the ΛCDM and the f(R) runs, as in422

Ref. [62]. For each of the (50+5) cases in our experimen-423

tal design (listed in Table III), the linear ΛCDM matter424

power spectrum is produced with CAMB [102], which is425

used to generate the initial conditions with 2LPTic at426

zi = 49. The COLA simulations are then run using the427

parameters of Table I, for both the ΛCDM and the f(R)428

Hu-Sawicki case with the same initial random seed. At429

each of the 100 timesteps of the simulations, the mat-430

ter power spectra are stored, for both ΛCDM and the431

MG case, with 213 bins equally spaced logarithmically432

in the k-range of (0.03 − −3.5)hMpc−1. The choice of433

100 timesteps is made so that the target redshift range434

of our emulator is adequately spanned using only a single435

run for each case, without at the same time making the436

simulations too time-consuming 2. Furthermore, the high437

number of k bins (nbins = 213) is chosen to guarantee the438

accuracy of the redshift interpolation. Finally, the exact439

same specifications are used in the 2000 simulations we440

perform, each of them for a different randomly chosen441

initial seed, in order to obtain the covariance matrix of442

the ratio for the fiducial cosmology of Section V B.443

Before we discuss COLA’s accuracy in predicting sum-444

mary statistics in MG (the matter power spectrum ratio445

here), which will be addressed in detail in Sec. IV B, we446

start by presenting the ΛCDM benchmark in Fig. 1. We447

2 We should note here that if one wants to make predictions for
an individual redshift, the efficient COLA approach was shown
to work well with much fewer timesteps [62, 63]
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find that the mean of the 2000 COLA-generated ΛCDM448

power spectra for the fiducial cosmology remains consis-449

tent, within ∼ 3%, with the nonlinear CosmicEmu predic-450

tion for the same cosmology down to k ∼ 1hMpc−1. It is451

worth noting that the better agreement compared to the452

initial COLA implementation in Ref. [63], is attributed453

to the fact that we are using about 3 times as many time-454

steps as the runs in that original work, for the reasons455

discussed in the previous paragraph.456

Given that the COLA method is known to per-457

form better at recovering the fractional deviation458

PMG(k)/PΛCDM (k), rather than the power spectrum it-459

self [62], and also because this quantity is much less sen-460

sitive to cosmic variance effects, we choose these ratios461

as our training data in the Gaussian process emulator.462

Modeling this quantity has also been the target of inter-463

est by other studies in the MG literature [89, 103, 104].464

The residual noise in the ratio is later smoothed out using465

a Savitzky-Golay filter, as explained in Sec. III.466

III. EMULATOR DEVELOPMENT467

Based on a carefully chosen design strategy to deter-468

mine a set of training points, a well-matching interpolat-469

ing strategy can be selected in order to estimate the sum-470

mary statistics at intermediate cosmologies. Neural net-471

works [76], polynomial chaos expansions [69] and Gaus-472

sian processes [70–74] have been successfully employed473

to construct emulators for the prediction of astrophysical474

summary statistics. In particular, Gaussian Processes are475

an attractive way of performing machine learning tasks476

with small number well sampled data points. This non-477

parametric Bayesian regression method provides fast, in-478

terpretable and high-fidelity estimations with associated479

uncertainties. For these reasons, we utilize Gaussian pro-480

cesses, along with Principal Component Analysis and lin-481

ear interpolation schemes to construct our emulator.482

A. Gaussian Process Interpolation across483

Cosmological Parameters484

Our emulation strategy for the cosmological param-485

eters θ follows a similar routine employed for the486

CosmicEmu [105] construction, using Gaussian processes487

(GPs) in a representation space [106]. The individual488

steps, including the data pre-processing are as follows:489

1. The individual ratios of the power spectra are noisy490

since we only perform one realization for each indi-491

vidual COLA simulation. Emulators designed di-492

rectly based on this data may pick up undesired493

noise from the data. To avoid this problem, we494

utilize the Savitzky-Golay filter (or savgol filter,495

[107, 108]) to obtain a smoothed power spectrum496

ratio χ(k), as detailed in Appendix A.497

2. A standardization transformation on both498

smoothed power spectrum ratio and cosmological499

parameters is performed, to result in a mean of500

zero and a standard deviation of one for their501

respective distributions:502

θi
′ = (θi − µθi)/σθi , (10)

χ′(k) = (χ(k)− µχ(k))/σχ(k). (11)

The standardized power spectrum ratio χ′(k) is re-503

scaled using the mean µχ(k) and standard devia-504

tion σχ(k). The mean and standard deviations are505

computed collectively for all the 50 cosmological506

models. Similarly the individual cosmological pa-507

rameters θi are re-scaled to θi
′ by their means µθi508

and standard deviations σθi .509

3. A Singular Value Decomposition (SVD) is per-510

formed on the smoothed and normalized power511

spectrum enhancement χ(k, θ) for dimensionality512

reduction. This is a generalization of eigenvalue513

decomposition to any rectangular matrix, whereby514

a matrix is factorized into a set of orthonormal vec-515

tors. Equation (12) below shows the decomposition516

to the basis φm(k) and weights wm(θ) of the repre-517

sentation, truncated at nw eigenvectors:518

χ′(k, θ′) =

nw∑
m=1

φm(k)wm(θ′) + ε. (12)

The excess information that is not captured by this519

decomposition is represented by ε. The Principal520

Component Analysis (PCA) of the power spectrum521

enhancement reveals that a total of nw = 6 eigen-522

vectors successfully capture over 99.99 percent of523

the variance in the data, effectively allowing us to524

truncate the expansion without significant loss of525

information. In addition to dealing with a reduced526

dimension (from nbins = 213 to nw = 6) of eigen-527

vectors, this also enables orthogonality in the in-528

terpolation space, i.e., the new basis φm(k) that529

maximizes variance is an uncorrelated representa-530

tion of χ′(k, θ).531

4. The weights wm(θ) corresponding to nw = 6 trun-532

cated orthogonal bases φm(k) are then modeled as533

functions of the input parameters θ. This local in-534

terpolation in parameter space is made using multi-535

variate Gaussian Process regression applied to the536

weights of the Principal Component bases, as ex-537

plained in Appendix B.538

Configuration of the covariance function and de-539

termination of the associated hyperparameters are540

the key components for learning the correct GP fit.541

We choose a popular Matern-5/2 kernel [109], and542

check for robustness of the emulator accuracy with543

different choices of covariance functions. We search544
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for the best combination of hyper-parameters of the545

GP using a fast gradient-based optimization called546

Adagrad [110].547

The four steps above are applied to all the 100 snap-548

shots, resulting in a suite of 100 emulators for smoothed549

power spectrum deviations. For any new cosmological550

parameters θ, the trained GP generated 6 corresponding551

weights, and these are multiplied by the PCA basis vec-552

tors to generate new power spectrum enhancement values553

with the k-range of the emulator.554

B. Redshift Interpolation555

The sampling for the redshifts coverage is treated sepa-
rately from the sampling of the cosmological parameters.
The cosmological parameter values are generated using
an SLH design to ensure representation across the five
dimensional parameter space. In contrast, the COLA
snapshots are all created at the same redshifts between
zi = 49 and zf = 0 with linear spacing in corresponding
scale factors. Due to this difference in the training sam-
pling, we do not employ the same interpolation scheme
for all the parameters. Instead a separate interpolation
routine is executed between the outputs of independent
GP emulators. Equation (13) shows a simple linear in-
terpolation for an intermediate redshift z when emulator
results at two nearest redshifts z− and z+ are calculated
from the previous section:

χemu(k; θ, z) = χ(k; θ, z−)

+
z − z−
z+ − z−

(χ(k; θ, z+)− χ(k; θ, z−)). (13)

With our emulator suite for 100 individual redshifts,556

a simple linear interpolation works within one per-557

cent accuracy for the redshift interpolation when the558

closest two emulators are used for a given cosmol-559

ogy. Although this requires two independent GP eval-560

uations and PCA reconstructions, this final emulator561

χemu(k,Ωm, σ8, ns, log(fR0
), n, z) is found to be robust562

and fast.563

IV. EMULATOR ACCURACY AND564

VERIFICATION565

The accuracy of our emulator is determined by two566

factors. First, limitations of the underlying simulations567

lead to irreducible errors. We have chosen to use La-568

grangian Perturbation Theory for the cosmological sim-569

ulations over a computationally expensive full N-body570

alternative. This choice restricts the accuracy of the em-571

ulator on small scales. Second, an error arises due to the572

limited number of training samples and the nature of the573

sampling and interpolation schemes.574

We study these effects by carrying out two types of575

verifications. For the first test we compare the emulator576

TABLE II. Cosmological parameters for the six additional
COLA test simulations.

Model Ωmh
2 ns σ8 log(fR0) n

T00 0.125 0.957 0.860 −6.667 0.000
T01 0.136 1.023 0.833 −4.000 2.133
T02 0.150 0.970 0.820 −6.133 3.200
T03 0.132 0.890 0.793 −5.867 2.933
T04 0.129 0.983 0.807 −6.400 3.733
T05 0.127 1.050 0.740 −4.267 0.267

against a set of six additional COLA simulations that577

are not part of the design. This allows us to evaluate the578

accuracy of the emulator construction itself. The second579

test utilizes three state-of-the-art N-body simulations for580

beyond ω(z)CDM cosmologies and we compare the emu-581

lator performance directly to the measurements from the582

simulations. This test allows us to evaluate the overall583

performance of the emulator, including both errors from584

the limited simulation accuracy and the emulator con-585

struction itself.586

We restrict the emulator predictions to k ≤ 1hMpc−1.587

This choice is mainly driven by the accuracy of the588

COLA simulations. As shown in Fig. 1, the COLA ap-589

proach is in very good agreement with measurements590

from high-resolution N-body simulations, represented by591

the CosmicEmu result, out to k ∼ 1hMpc−1. At this592

point, the COLA power spectrum starts to deviate from593

the CosmicEmu result and underpredicts the power spec-594

trum at the few percent level. Restricting our emulator595

out to this k-range therefore seems well justified. In ad-596

dition, beyond k ∼ 1hMpc−1 other effects, like bary-597

onic physics become more and more important (see, e.g.,598

Ref. [111] for a recent discussion of the effects of baryonic599

physics on the power spectrum).600

A. Comparison with COLA Simulations601

In this section we show the comparison of the emulator602

with COLA results. Our trained emulator is tested on603

parameter values within the limits of our SLH design,604

but not at the exact cosmologies used to construct the605

emulator.606

In Fig. 2 we show the predictions of the emulator com-607

pared to an additional test set of six COLA simulations.608

The power spectrum ratios for the additional cosmolo-609

gies (T00 − T05, parameters are given in Table II) are610

randomly chosen within the allowed parameter ranges611

specified in Equations. (5) – (9). The gray lines in the612

figure show all power spectrum ratios used to build the613

training set. The lower panel in the figure shows the rel-614

ative error of the emulator output to the corresponding615

COLA results. The relative difference is within 5% for616

our six test models. Sub-percent level accuracy is ob-617

served for models with fR0
< 10−5. The variation in618

accuracy corresponds to the sampling density of power619

spectrum ratios in the training set. For instance, the620
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FIG. 2. Test of the emulator accuracy for additional cos-
mologies. Top: Power spectrum ratios PMG(k)/PΛCDM (k)
for the six testing COLA simulations at z = 0, T00−T05, are
compared to the corresponding emulator results, E00−E05.
Training cosmologies, M00 −M49, are shown in gray. Bot-
tom: Relative error of the emulator prediction compared to
the COLA simulations. For the models with large values for
fR0 (T01 and T05) the emulator deviates by up to 5%. The
models with fR0 < 10−5 are predicted at sub-percent accu-
racy (corresponding zoom-in panel shown at the top).

test simulation T01 with log(fR0) = −4 is at the very621

edge of our SLH design used for the training, and the622

T05 model is also close to the edge of the training de-623

sign, with log(fR0) = −4.267. By design, we focus more624

on exploring the modified gravity sector of fR0
< 10−5

625

that corresponds to smaller boosts in the matter power626

spectra. We stress that the required accuracy in the esti-627

mation of the power spectrum is 1-2 percent [112], down628

to k ∼ 1hMpc−1, which we satisfy for most of the target629

parameter space.630

B. Comparison with N-body Simulations631

Next, we present a comparison of the MG emula-632

tor predictions against state-of-the-art N-body simula-633

tions for the Hu-Sawicki model. These are the Ex-634

tended LEnsing PHysics using ANalaytic ray Tracing635

ELEPHANT simulations [113], that were performed with636

a modified version of the RAMSES code, the ECOSMOG637

module [114, 115]. Power spectra at various redshifts638

have been measured for the Hu-Sawicki case of n =639

1 and three variations of |f̄R0
| = {10−6, 10−5, 10−4}.640

We refer to these as F6, F5 and F4, respectively,641

in the following discussion. The simulations evolved642

10243 dark matter particles, in a simulation volume of643

Vbox = (1024h−1Mpc)3 and a ΛCDM cosmology specified644

by the following parameters: {Ωm,ΩΛ, h, ns, σ8,Ωb} =645

{0.281, 0.719, 0.697, 0.971, 0.82, 0.046}. For each model,646

five different random realizations are available. More de-647

tails about these simulations can be found in Ref. [113].648

In Fig. 3, we compare the predictions from our em-649

ulator to the full N-body simulations from Ref. [113]650

for the F4, F5 and F6 cases at three different redshifts:651

z = 0, z = 0.397 and z = 0.5, which span the red-652

shift range in which predicted MG signals are more pro-653

nounced. Furthermore, in order to independently illus-654

trate the accuracy of our training set, we show the ra-655

tio PMG(k)/PΛCDM (k) obtained from COLA simulations656

that we additionally performed, separately from our de-657

sign, for these scenarios. COLA is found to recover the658

simulated ratios at (better than) 1% level of accuracy in659

the (F6) F5 case for all redshifts, in agreement with pre-660

vious findings in the literature [62]. For the F4 model, the661

agreement is still similarly good at z = 0, but worsens662

progressively for higher redshifts, with COLA underes-663

timating the predicted deviation. This behavior is most664

likely attributed to the approximate MG screening imple-665

mentation [100] used in COLA, which is known to under-666

estimate the ratio particularly in cases that deviate sub-667

stantially from GR (such as F4) and at high z. We stress668

that this tendency is not detrimental, since the deviations669

typically predicted by cases such as F4 are of substantial670

magnitude 3, and effectively ruled out by observations671

[92, 116]. We do however choose to include larger values672

of fR0 in our target range, to enable the exploration of673

the linearized regime of the Hu-Sawicki MG models. In674

addition, we also compare a semi-analytical fitting for-675

mula provided by Ref. [87] with our emulator. There are676

two notable differences between our emulator and the fit-677

ting formula. First, the fitting formula was trained on a678

single set of CDM cosmological parameters and a fixed679

n = 1 whereas our emulator is based on the sampling680

given in Equations (5) – (9). Second, the k-range cov-681

ered by the fitting formula extends to k ≤ 10hMpc−1,682

whereas with our emulator is restricted to k ≤ 1hMpc−1.683

Our emulator is found to successfully recover the tar-684

get ratios for F5 and F6 at a very similar level of accuracy685

as the COLA method, for all three redshifts. The pre-686

dictions are accurate even for the F4 corner case. All of687

the above findings are consistent with the levels of ac-688

curacy previously found by the accuracy tests shown in689

Sec. IV A.690

We end this section by clarifying that the COLA and691

full N-body simulations shown in Fig. 3 correspond to692

3 The screening mechanism effectively fails for such large values of
fR0 .
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FIG. 3. Comparison of emulator predictions to our corresponding COLA simulations and the N-body simulations of Ref. [113]
for the F4 (red), F5 (green) and F6 (blue) models, respectively. Each top panel represents a different redshift: z = 0
(left), z = 0.397 (middle) and z = 0.5 (right). Solid lines are from the three N-body simulations, dashed lines are from the
corresponding emulator (with z-interpolation) output, the dotted lines are the corresponding outputs from the semi-analytical
fitting formula given in Ref. [87]

, and the data points are COLA simulations performed for these models. The COLA and N-body runs correspond to a
cosmology of h = 0.697 while the emulator was built using h = 0.67. The ratios of the power spectra are minimally impacted

by these different choices. The bottom panels show the relative differences between the fast approximations (our emulator
and the fitting formula) and the N-body simulations.

h = 0.697, whereas the emulator predictions were gener-693

ated from a COLA training set that assumed h = 0.67, in694

agreement with the Planck constraints [13, 14]. We have695

carefully checked and confirmed that this small inconsis-696

tency leads to negligible errors in the emulated ratio for697

all cases and redshifts of our design. As a result, the di-698

rect comparison in Fig. 3 is indeed meaningful, despite699

the different underlying values of h assumed.700

V. EMULATOR PRELIMINARY701

APPLICATIONS702

We present three preliminary applications for the emu-703

lator developed in this paper. Using the power spectrum704

ratio as the summary statistic we first perform a param-705

eter sensitivity analysis. Second, we use the emulator706

for Fisher forecasting. Finally, results from an MCMC707

run for a fiducial cosmology are shown. The evaluation708

time for an emulator prediction is less than 0.001 seconds709

per computation on an Intel Core i5 Processor, deliver-710

ing a massive speed-up over numerical calculation using711

COLA, which typically takes about an hour on similar712

computational hardware. This is particularly important713

for our third application, where our GP emulator is im-714

plemented in the MCMC likelihood calculation which re-715

quires a very large number of accurate predictions for the716

power spectrum ratio.717

A. Parameter Sensitivity Analysis718

In this section we investigate the effect of different719

cosmological parameters on the power spectrum ratio720

PMG(k)/PΛCDM (k) using the emulator. For this study,721

we choose a base model at redshift z = 0.0. The base722

model is evaluated at parameters shown in Equation (14):723

Ωmh
2 = 0.142,

ns = 0.967,

σ8 = 0.816,

log(fR0) = −5,

n = 1.0.

(14)

We then measure the sensitivity of the power spectrum724

ratio to changes in one cosmological parameter at a time725

while keeping the others at their base values. We stress726

that the MG parameters span a much broader range than727

the ΛCDM parameters and therefore we expect a much728

larger impact on the power spectrum ratio for varying729

log(fR0
) and n. The results are presented in Fig. 4.730

Primarily, and in agreement with the literature [86, 95],731

we observe that log(fR0
) has the highest impact on the732

matter power spectrum ratios, showing up to 40 percent733

variation just around 0.3hMpc−1 / k / 1hMpc−1 for734

the range −6 ≤ log(fR0
) ≤ −4. Larger log(fR0

) results735

in enhancement of the power spectrum ratios, due to the736

progressive weakening of the screening mechanism, and737
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the increase is monotonous across the full range of test-738

ing cosmologies. The analysis also suggests that with739

log(fR0
) > −5 the modified gravity matter power spec-740

trum PMG(k) is up to 50 percent higher than PΛCDM (k).741

This shows that models in this range are disfavored by742

current data, which is consistent with previous studies743

constraining f(R) models using available data sets, see744

for example Refs. [92, 116].745

The second highest contribution to the changes in the746

summary statistic is due to the second Hu-Sawicki MG747

parameter, n. The variation is under 10% from the base748

cosmology for the range 0 ≤ n ≤ 2. However, the peak of749

the departure occurs at slightly larger length scales, be-750

tween 0.1hMpc−1 / k / 0.9hMpc−1. For k / 1hMpc−1,751

larger values of n cause higher suppression of the mat-752

ter power spectrum ratios. This trend reverses beyond753

k ' 1hMpc−1. Unfortunately, there are currently no N-754

body Hu-Sawicki simulations for n 6= 1 available in the755

literature, and thus a thorough comparison on nonlinear756

scales is not possible. Nevertheless, our observed large-757

scale trend seems to be in qualitative agreement with758

the linear considerations in Ref. [86]. Even though we759

do not expect the behavior of the model to be substan-760

tially different for n 6= 1, we defer a detailed study of the761

emulator accuracy for such values to future work, when762

corresponding N-body simulations become available.763

Finally, the relative change of the emulator output764

when varying the ΛCDM parameters is more restricted.765

Both σ8 and ns reveal sub-percent variation within their766

respective ranges of 0.796 ≤ σ8 ≤ 0.836 and 0.937 ≤767

ns ≤ 0.997. Moreover, both their peak departures from768

the base model occur at k ' 1hMpc−1, where the ac-769

curacy of the training COLA simulations with respect770

to full N-body simulations reduces at higher redshifts.771

Also, the variations of σ8 and ns beyond k / 0.1hMpc−1,772

are opposite of each other, i.e, increasing σ8 reduces the773

PMG(k)/PΛCDM (k) ratio, whereas ns has the opposite774

effect. Variations of the final emulator parameter, Ωmh
2,775

lead to a monotonic change in the matter power spec-776

trum ratios, where increasing the values from 0.132 to777

0.152 shows a decrease in PMG(k)/PΛCDM (k). This re-778

duced sensitivity of the ratio with respect to variations of779

the ΛCDM parameters (relative to the response of MG780

parameters) was also found using the fitting formula ap-781

proach in Ref. [87].782

B. Fisher Forecasting783

The likelihood L(χ|θ) is defined as the probability784

distribution function of an observed summary statistic785

χ for a given model with parameters θ. The emula-786

tor output χemu(k; θ) = PMG,emu(k)/PΛCDM,emu(k) at787

a given redshift itself can be considered as the forward788

model in the computation of the likelihood. In the789

case of the observed power spectrum ratio χobs(k) =790

PMG,obs(k)/PΛCDM,obs(k) for a set of cosmological pa-791

rameters θ = {Ωmh2, σ8, ns, log(fR0
), n}, the likelihood792
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FIG. 5. Covariance matrix for the ratio PMG(k)/PΛCDM (k)
obtained from 2000 COLA realizations for our fiducial cos-
mology parameters θfid at redshift z = 0.02 as an example.
The likelihood obtained using this covariance matrix is used
for both Fisher analysis and posterior estimation of the cos-
mological parameters via MCMC sampling.

is computed using Equation (15) assuming it is of a Gaus-793

sian form:794

logL(χ|θ) ∝ −1

2
[χemu(k; θ)− χobs(k)] Ĉij

−1

[χemu(k; θ)− χobs(k)]
T
. (15)

We construct a mock data set for the power spectrum795

ratios with an associated mean, χobs(k), and a covariance796

matrix Cij , which captures the effects of cosmic variance.797

This data set is computed using 2000 COLA simulation798

realizations run at a fiducial cosmology θfid ≡ {Ωmh2 =799

0.142, ns = 0.967, σ8 = 0.816, log(fR0
) = −5, n = 1.0},800

shown in Figure 5. The unbiased estimator for the inverse801

covariance matrix Ĉij
−1 is then computed using Equation802

(16) given by Ref. [117]. This correction accounts for the803

number of COLA simulations used (N = 2000) and the804

size of the data vector D, which depends on our range of805

wavenumbers used in calculating the likelihood:806

Ĉij
−1 =

N −D − 2

N − 1
Cij
−1. (16)

The box size, mass resolution and other simulation807

specifications for these additional COLA simulations are808

the same as the ones listed in Table I. We choose a single809

redshift of z = 0.02 for this analysis.810

The Fisher information matrix assesses how well a cos-811

mological parameter can be inferred from a summary812

statistic. It is defined in terms of the likelihood L of813

the data in the following equation:814
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Fij = −
〈
∂2logL
∂θi∂θj

〉
. (17)

The Fisher matrix can be calculated directly using the815

emulator, either using numerical derivatives, or using the816

analytical derivatives of Gaussian Processes propagated817

through the emulator. We choose the former method818

and calculate the second order partial derivatives numer-819

ically. The corresponding confidence ellipses are shown820

in Figure 6. The numerical derivatives are evaluated with821

multiple step sizes to ensure consistency.822

The Fisher information obtained from the power spec-823

trum ratio analysis reveals correlations between MG824

parameters and ΛCDM parameters. We present re-825

sults using 4 different wavenumber thresholds (kmax =826

0.15hMpc−1, 0.25hMpc−1, 0.5hMpc−1 and 1.0hMpc−1)827

corresponding to increasing scales of nonlinear growth of828

structure. The tightest constraints for forecasts across all829

parameters are achieved when including nonlinear scales830

up to kmax = 1.0hMpc−1, and the constraints weaken831

with decreasing nonlinearity. This is expected, given832

that including more modes gives us increasingly more in-833

formation about the underlying cosmological parameters834

(including the MG parameters), resulting in increased835

constraining power.836

It should be noted that the aim of this exploratory837

set-up is not to perform a thorough study of forecasted838

MG constraints, but rather to highlight the diverse ap-839

plications of our emulator. As a result, these constraints840

only provide an approximate view. For a more realis-841

tic approach, one would need to combine the emulated842

ratio with a prediction for PΛCDM (k) (e.g. from the843

CosmicEmu), as well as fold in prescriptions for the galaxy844

bias and/or redshift-space distortions [60], in order to ob-845

tain a prediction for the observed galaxy power spectrum846

in MG (as for example was done in [87]). This step goes847

beyond the scope of this paper, but will be studied in848

detail in future work. As a consequence, our constraints849

are not directly comparable to the ones obtained by the850

fitting formula approach in [87].851

C. Parameter Constraints Using MCMC852

The speed and precision of our emulator enables quick853

parameter inference using traditional Bayesian inference854

schemes like Markov Chain Monte Carlo (MCMC) meth-855

ods. We illustrate the application of such emulator-based856

posterior estimation for mock data, the same as shown in857

Sec. V B. The Gaussian likelihood is computed via Equa-858

tion (15), using the emulator and the mock covariance859

matrix shown in Fig. 5 from 2000 COLA realizations860

for the fiducial cosmology parameters θfid. Our aim is to861

demonstrate the recovery of the original parameter values862

within appropriate error margins. In addition, the explo-863

ration of the posterior distribution allows us to study the864

covariance between the parameters that arises from the865

data vector and sensitivity of the parameters.866

We execute two MCMC sampling schemes. First with867

fixed values for the ΛCDM parameters at {Ωmh2 =868

0.142, ns = 0.967, σ8 = 0.816}, we evaluate the posterior869

distributions of the 2 MG parameters. The logarithmic870

value for fR0 is chosen to reduce the dynamical range871

of the MCMC sampling, and a flat prior in the range872

−8 ≤ log(fR0) ≤ −4 is selected. For n we also use a873

flat prior within the limits of our experimental design:874

0 ≤ n ≤ 4. While the choice of priors could be more875

stringent, we select such uninformative priors spanning876

the entire parameter range of the emulator in order to877

avoid obtaining prior-dominated constraints for the MG878

parameters. The likelihood L(χ|θ) of the mock data vec-879

tor is computed up to k < 1.0hMpc−1.880

We utilize an MCMC approach to approximate the881

posterior distribution using an affine-invariant ensem-882

ble sampling [118] method implemented in the emcee883

[119] sampler. An ensemble of 300 walkers or Markov884

chains with 3000 evaluations or steps per walker only885

takes about 4000 seconds on a single processor, hence886

enabling quick explorations of the posterior space of the887

parameters of interest. The final constraints obtained888

were θMCMC ≡ {log(fR0
) = −5+0.05

−0.04, n = 1.18+0.20
−0.20},889

as shown in the top panel of Fig. 7, and a recovery890

of parameters within the 2-σ margin of error is found.891

While the 2000 realizations for fiducial covariance ma-892

trix have enabled tight parameter constraints via MCMC893

sampling compared to the broad priors, overcoming the894

offset within 2-σ margin of error from the fiducial targets895

may require further reduction in noise. The emulator896

outputs at the θfid and θMCMC are matched well with897

the PMG(k)/PΛCDM (k) ratio of the fiducial cosmology898

simulations. Moreover, the direction of the covariance899

from the Fisher forecasts in Section V B also matches900

with the contours of the posteriors. The consistent re-901

sults are shown in the bottom left panel of Fig. 7.902

In addition, we also sample the combined posterior dis-903

tribution of the ΛCDM parameters {Ωmh2, σ8, ns} and904

the f(R) Hu-Sawicki model parameters {log(fR0), n} us-905

ing an MCMC approach. The fiducial cosmology θfid,906

the covariance information and the likelihood function re-907

main the same, with a k-range limited to k < 1.0hMpc−1
908

for the computation of the likelihood. The priors are909

again chosen to be flat within the full range covered910

by the emulator. The corresponding posterior distribu-911

tion functions are shown in Fig. 8, along with the tar-912

get cosmological parameters corresponding to the mock913

data set. The final constraints corresponding to the914

MCMC sampling are θMCMC ≡ {Ωmh2 = 0.15+0.01
−0.01,915

ns = 0.91+0.06
−0.04, σ8 = 0.79+0.05

−0.05, log(fR0
) = −5.05+0.05

−0.05,916

n = 1.22+0.25
−0.19}.917

The MCMC sampling of the parameter space is re-918

stricted to the parameter range in our SLH design. Es-919

pecially for Ωmh
2, σ8 and ns, this results in a partial920

coverage of the posterior distribution. This is displayed921

in the individual panels of Fig. 8, where the posteri-922



13

0.75

1.00

1.25

n
s

k < 0.15h/Mpc
k < 0.25h/Mpc
k < 0.5h/Mpc
k < 1.0h/Mpc

0.7

0.8

0.9

σ
8

−5.2

−5.0

−4.8

lo
g
(f
R

0
)

0.12 0.15 0.18
Ωmh

2

0.6

1.2

n

0.75 1.00 1.25
ns

0.7 0.8 0.9
σ8

−5.2 −5.0 −4.8
log(fR0

)

FIG. 6. Confidence ellipses from the Fisher information matrix Fij for the cosmological parameters considered and using
the emulator to provide the power spectrum ratio information. Each panel shows the covariance between the ΛCDM and
MG parameters. The thresholds for the wave-numbers used in the computation of the likelihood, i.e., kmax = 0.15hMpc−1,
0.25hMpc−1, 0.5hMpc−1 and 1.0hMpc−1 correspond to the four 2-σ level confidence ellipses in each panel. The dashed lines
in each panel correspond to the fiducial cosmological parameters θfid.

ors are limited to the parameter range of the emulator.923

These constraints would be tightened using a joint anal-924

ysis (with CMB data, for instance). In this study we925

restrict our attention to explorations of the constrain-926

ing power of PMG(k)/PΛCDM (k) alone, and reserve com-927

bined analyses for future studies. We additionally note928

that MCMC constraints for the HS model were also pre-929

sented in [89, 120], but using the power spectrum. For930

this reason, our results are not directly comparable with931

the ones in these studies.932

The 1, 2 and 3-σ contours for the MG parameters933

{log(fR0
), n} are within the range of our experimental934

design, as seen in both Fig. 7 and Fig. 8. We note that the935

constraints obtained from sampling a parameter space of936

just 2 parameters are tighter than those for 5 parame-937

ters. Posterior estimation restricted to fewer parameters938

removes possible degeneracies, resulting in reduced sam-939

pling space.940

The original parameters corresponding to the mock941

data vectors are recovered in both the sample MCMC942

runs, indicating that the boost in the matter power spec-943

tra is a powerful statistic for constraining MG param-944

eters, especially when coupled with robust emulators as945

presented in this work. In both posterior approximations,946
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FIG. 7. Bayesian posterior distribution for {log(fR0), n} ob-
tained using MCMC sampling. The data vector, emulator
output and likelihood computation are carried out for wave-
numbers k < 1.0hMpc−1. The two shades of red correspond
to 1-, 2-σ confidence intervals of the posterior. Dotted lines
are the target cosmologies of the mock data, log(fR0) = −5
and n = 1. The constraints are obtained from uniform pri-
ors in the ranges −8 ≤ log(fR0) ≤ −4 and 0 ≤ n ≤ 4. The
blue contours are the 1- and 2-σ confidence ellipses from the
Fisher information constraints for the same k-range at the
fiducial cosmology, showing the consistency between the two
applications in space and direction of correlation.

the chosen prior probability distributions are highly un-947

informative, i.e., they are uniform with coverage of the948

entire training limits. Posterior contours in Figure 7 dis-949

play a shift from the fiducial values, and a partial cover-950

age of posterior distribution is seen in Figure 8. These951

constraints on the cosmological parameters would be im-952

proved either using a tomographic or multi-probe analy-953

sis, along with more realistic data vectors and covariance954

matrices. We reserve these for a future study of model-955

ing cosmological observables and associated forecasting956

in MG scenario.957

VI. CONCLUSIONS958

In this paper, we present an emulator for efficiently959

predicting the enhancements in the nonlinear matter960

power spectrum due to beyond-GR effects. This emulator961

is based on the f(R) Hu-Sawicki model, a MG candidate962

prioritized for further studies in near-future Stage-IV sur-963

veys such as the LSST and Euclid. We aim at simplifying964

the tasks of model selection and cosmological parame-965

ter inference by the use of fast and robust generation of966

the power spectrum ratio PMG(k)/PΛCDM (k). The em-967

ulator provides estimations across the redshift range of968

0 < z < 49, for a combination of cosmological parame-969

ters {Ωmh2, σ8, ns, log(fR0), n}. This way, we enable the970

full exploration of the parameter space that defines the971

Hu-Sawicki model.972

Our emulator is based on simulations produced by the973

efficient COLA method, which effectively captures the974

chameleon screening mechanism through a phenomeno-975

logical thin-shell factor attached to the scalar field Klein-976

Gordon equation. The matter power spectrum ratios ex-977

tracted are computed by running two consistent COLA978

simulations at each training point – one for MG and the979

other for the corresponding ΛCDM scenario, reducing the980

effect of cosmic variance while at the same time high-981

lighting the effects of MG. Our fully trained emulator is982

validated on additional cosmologies within our target pa-983

rameter space and is found to achieve sub-percent levels984

of accuracy for models with fR0
< 10−5 and up to 5%985

agreement when fR0
> 10−5. The computation time is986

less than 0.001 seconds, delivering thus a massive speed-987

up by 6 orders of magnitude compared to the COLA988

simulations.989

In order to explore and validate the diverse capabil-990

ities of our emulator, we further proceed to utilize its991

predictions for three preliminary applications. First, we992

perform a sensitivity study of the target summary statis-993

tic with respect to the variation of the five cosmologi-994

cal parameters. We find that the power spectrum ra-995

tio exhibits the highest sensitivity for the MG parameter996

log(fR0
) followed by the n parameter, in agreement with997

previous studies [86, 95]. Next, we produce constraints998

around a fiducial cosmology using Fisher forecasting as999

well as MCMC parameter inference. The confidence con-1000

tours obtained are consistent between the two methods1001

and also consistent with the corresponding analytical ex-1002

pressions. The emulated ratio is thus found to enable1003

accurate constraints for both MG parameters as well as1004

the values of the background ΛCDM cosmological param-1005

eters.1006

We conservatively limit the use of the emulator to1007

k ≤ 1.0hMpc−1 throughout the analysis of this paper.1008

Our tests shows that the COLA prescription agrees with1009

available N-body simulations within a relative error of 51010

% up to k ∼ 1.0hMpc−1, and hence we advocate the use1011

of this emulator only up to this limit.1012

We also advise the reader to exercise caution in ex-1013

trapolating the emulator beyond the limits of cosmologi-1014

cal parameters and redshifts used in the experimental de-1015

sign. Gaussian Processes, like any interpolation schemes,1016

may give estimates with large extrapolation uncertain-1017

ties beyond the training range. We note again that our1018

tests on additional COLA simulations show that models1019

with log(fR0
) < −5 agree within 1%, while the estima-1020

tion error rises up to 5% for larger values of log(fR0
).1021

We also note that the emulator is trained on one realiza-1022

tion per cosmology, with just 50 training points. With1023

a large training sample with better sampling and larger1024
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FIG. 8. Posterior distribution evaluated from an MCMC sampling for five cosmological parameters. The data vector, emulator
output and likelihood function are computed for wave-numbers k < 1.0hMpc−1. The three shades of blue correspond to
1-, 2- and 3-σ confidence intervals. Dotted lines are the target cosmological parameters of the mock data set θfid. It is very
satisfactory to observe that the target cosmological parameters fit well within the 2-σ confidence intervals, despite the relatively
limited constraining power of the ratio of power spectra when used with no additional cosmological information.

number of realizations per cosmology, the relative error1025

with respect to COLA simulations is naturally expected1026

to reduce.1027

In addition to enabling an efficient exploration of the1028

deviations predicted by MG, our emulator also serves as a1029

stepping stone to allow a broad portfolio of future appli-1030

cations. Through a simple multiplication by the ΛCDM1031

power spectrum (from emulators like CosmicEmu), the1032

emulated power spectrum ratio can straightforwardly1033

provide a prediction for the MG nonlinear matter power1034

spectrum itself. The latter can then also be utilized to1035

incorporate the effects of galaxy bias and Redshift Space1036

Distortions (RSD) in MG (for example as in Ref. [60]),1037

which are crucial for comparing with observations, or to1038

enable obtaining MG constraints from weak lensing cos-1039

mic shear measurements. Such predictions should how-1040

ever take into account the accuracy and sensitivity of the1041

estimators at corresponding length scales, and we reserve1042

this for future studies. Furthermore, the emulator will be1043

a useful standardized routine to be included in the Core1044
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Cosmology Library (CCL 4, [121]) in order to calculate1045

basic cosmological observables, specifically for Rubin Ob-1046

servatory LSST analyses. We also intend in a follow-up1047

work to employ the emulator in providing forecasts using1048

a detailed joint probes cosmological parameters analysis.1049

Last but not least, we plan to expand our emulator’s ca-1050

pabilities in order to incorporate the effects of massive1051

neutrinos, and also to support the more general class of1052

Horndeski MG models prioritized by our collaboration.1053

The necessary modifications to achieve these steps with1054

the efficient COLA approach are already underway. The1055

combined outcome of these efforts will be a diverse set of1056

tools that will allow efficient and reliable explorations of1057

the broad spectrum of beyond-w(z)CDM candidates.1058

It is worth emphasizing the multitude of ways in which1059

our work expands upon the previous ones in the litera-1060

ture. While the matter power spectrum ratio in the Hu-1061

Sawicki scenario has already been modeled using fitting1062

formulas or semi-analytical approaches [87–89], our em-1063

ulator is the first predictive tool purely based on numeri-1064

cal simulations. Not having to rely on a single functional1065

form of the modeled observable, emulators are guaran-1066

teed to maintain consistent levels of accuracy in their pre-1067

dictions across the full target parameter space. Fitting1068

formulas, on the other hand, may have reduced accuracy1069

outside the particular parameter choices used for their1070

calibration, introducing unknown systematic biases to1071

their predictions, even in the less complicated extension1072

of wCDM cosmologies [65, 68, 69]. Furthermore, while1073

previous approaches focused their attention on variations1074

of only one the two MG parameters of the Hu-Sawicki sce-1075

nario, our emulator spans the full 2-dimensional param-1076

eter space of the model, being the first one of its kind in1077

that regard. Last but not least, given the ever increasing1078

interest in testing theories of gravity with cosmological1079

surveys, a wide range of complementary predictive tools1080

available in the community is very desirable. In order to1081

contrast different methods, we compared our predictions1082

against the ones made by the fitting formula approach1083

of Ref. [87] , finding good agreement over the parameter1084

and k-range that can be compared.1085

In this decade, precise cosmological observations1086

will offer a unique opportunity to constrain beyond-1087

w(z)CDM models at an unprecedented level of accu-1088

racy. Emulators like the one developed in this work1089

will be essential and necessary to perform cosmological1090

analyses with accurate and fast theoretical predictions in1091

the nonlinear regime, and to take full advantage of the1092

formidable data expected from Rubin Observatory LSST,1093

DESI, Euclid, SPHEREx and Roman Space Telescope.1094

4 https://github.com/LSSTDESC/CCL

Appendix A: Savitzky-Golay smoothing1095

The Savitzky-Golay smoothing filter [107, 108] per-1096

forms convolution operations on adjacent data points1097

with a polynomial function, which gives us the effect1098

of smoothing the input dataset. The window size and1099

the order of the polynomial are the two parameters that1100

specify the smoothing operation. Equation (A1) shows1101

the value of j-th bin of the smoothed power spectrum1102

ratio χ(k):1103

χ(kj) =

m−1
2∑

i=
1−m

2

Ci
PMG(kj+i)

PΛCDM (kj+i)
. (A1)

The individual convolution coefficients Ci are defined1104

by the analytical expression given in Ref. [107]. Within1105

every window, a polynomial (of order p) is fitted, which1106

provides a smoothing effect of the input dataset. The1107

window size m is the number of data points chosen for1108

individual regression.1109

The tuning of the two free parameters m and p de-1110

pends on the largely on the type of data and the desired1111

level of smoothing. These parameters are hand-tuned for1112

smoothing the power spectrum ratios, and checked for1113

consistency with various choices of smoothing filters and1114

window sizes. As the ratio of window width to polyno-1115

mial order, m/p increases the amount of smoothing in-1116

creases. First, the window width was appropriately tuned1117

to be effective against the noise and is set to be m = 511118

points. For this window width, a third order polyno-1119

mial (p = 3) is fitted. A polynomial of order p > 3 would1120

closely follow the undesired noise resulting from the single1121

realizations of the COLA simulations. For a given poly-1122

nomial order, decreasing the window length has a similar1123

effect, i.e., while the bias decreases (the smoothing func-1124

tion closely follows the raw data power spectrum ratios1125

from the COLA simulations), the estimation variance in-1126

creases, resulting in an over-fitted smoothing function.1127

Smoothing near the boundaries requires additional1128

considerations. The data points at the edges cannot be1129

placed at the center of a symmetric window, hence the1130

Equation (A1) is applied for m−1
2 ≤ j ≤ nbins − m−1

21131

only. We use a separate treatment for smoothing at the1132

boundaries, where the polynomial fitted to the windows1133

near the edges of the data is used to evaluate the first and1134

the last m/2 smoothed outputs of χ(kj). The effect due1135

to the edge effects is less significant at low-k boundary1136

(i.e., k < 0.17hMpc−1) since the raw PMG(k)/PΛCDM (k)1137

is less noisy. On the higher end, this near-boundary ef-1138

fects smoothing at k > 2.35hMpc−1. Since our emulator1139

outputs are restricted to k ≤ 1hMpc−1, this does not1140

effect our estimations directly. However, the consistency1141

of the smoothing results across all the 213 bins (up-to1142

k = 3.5hMpc−1) is considered whilst tuning the free-1143

parameters.1144

https://github.com/LSSTDESC/CCL
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Appendix B: Gaussian Processes1145

A parametric regression task [122] involves an estima-1146

tion of finite number model parameters that fit the data.1147

For n training targets {y1, . . . , yn} at training locations1148

{x1, . . . , xn}, one may define a polynomial regression re-1149

lationship and estimate the finite number of polynomial1150

coefficients. With a frequentist approach, point estimates1151

of these parameters can be estimated. Alternatively,1152

a Bayesian approach treats these model parameters as1153

probability distributions which are to be inferred using1154

the training points. With these either a point estimation1155

or distribution of a test target y∗ can be made at a new1156

location x∗.1157

In contrast, Gaussian process [109] regression is a non-1158

parametric approach i.e., one finds a distribution of possi-1159

ble functions f(x) that are consistent with observed data.1160

GPs are remarkably good Bayesian tools that perform1161

regression tasks with associated uncertainties. Although1162

the inference is fast, computational cost of GP regression1163

can be very expensive and grows cubicly with the training1164

set size and dimension. Due to this constraint, dimen-1165

sionality reduction is usually performed on the training1166

data, as is the case with our approach of building the1167

emulator. We employ a data reduction technique called1168

Principal Component Analysis (PCA) to reduce compu-1169

tational expenses during GP training. With a PCA de-1170

composition (in Equation 12), the bases φi(k) are inde-1171

pendent of the cosmological parameters, and only the1172

weights wi(θ) are used in GP interpolation. Thus the1173

training locations are the set of parameters θ (tabulated1174

in Appendix C) where 50 COLA simulations are com-1175

puted, and the training targets are the corresponding1176

weights wi(θ).1177

With GP, we first assume that the joint probabil-1178

ity distribution p (f(x1), . . . , f(xn)) are jointly Gaussian1179

with mean µ(x) and covariance K, where the elements1180

Kij = k(xi, xj) with k(xi, xj) being the covariance ker-1181

nel. For simplicity, the GP prior can be defined using a1182

zero mean and covariance as p (f(x)) = GP (0,K). In our1183

emulator construction, the weights are essentially sam-1184

pled from this distribution, i.e., wi(θ) ∼ GP (0,K), where1185

the covariance K = k(θ, θ′).1186

The kernel function k is usually selected depending1187

on how smooth the function is expected to be. One1188

popular choice is the squared exponential or the Radial1189

basis function kernel: kRBF (x, x′) = σ2 exp
(
− (x−x′)2

2θ2

)
1190

with hyperparameters
(
σ2, θ

)
corresponding to the pro-1191

cess variance and lengthscale, respectively. These hyper-1192

parameters can be inferred based on the maximum like-1193

lihood or other more Bayesian techniques. Once opti-1194

mized, the GP model has learned a distribution of func-1195

tions that fits the training data.1196

Using the GP assumption that our data can be rep-1197

resented as a sample from a multivariate Gaussian dis-1198

tribution, the above definition can also be extended to a1199

hold-out target y∗ at a new location x∗ in terms of the1200

trained covariance K. The joint probability of training1201

targets y and test targets y∗ shown on Equation (B1) is1202

also a Gaussian Process:1203

p(y, y∗) = N
(
0,

[
K KT

∗
K∗ K∗∗

])
. (B1)

The covariance K is obtained by Kij = k(xi, xj) is the1204

matrix we get by applying the trained kernel function to1205

our training values, i.e., the similarity of each observed1206

x to each other observed x. K∗ = k(xi, x∗) shows the1207

similarity of the training values to the test value whose1208

output values were trying to estimate. K∗∗ = k(x∗, x∗)1209

gives the similarity of the test values to each other.1210

The desired posterior of our prediction is the condi-1211

tional probability distribution the test target p(y∗|y).1212

This is finally derived using the joint probability distri-1213

bution in Equation (B1) using marginalization:1214

p(y∗|y) =
p(y, y∗)

p(y)
= N

(
K∗K

−1y,K∗∗ −K∗K
−1KT

∗
)
.

(B2)
Hence the mean of our estimation at new test location1215

is simply given by µ(y∗) =
(
K∗K

−1y
)
, and the uncer-1216

tainty of this prediction is σ(y∗) =
(
K∗∗ −K∗K

−1KT
∗
)
.1217

In the prediction phase of our emulator, this mean and1218

variance for the predictive weights wi∗(θ∗) are calculated1219

for any new set of cosmological parameters θ∗. Since the1220

form of K is already determined from training points us-1221

ing hyperparameter optimization, the GP prediction is1222

simply matrix operations. This makes GP inference ex-1223

tremely fast and easily parallelizable.1224

Appendix C: Parameters of COLA simulation1225

Table of all parameters of each COLA simulation.1226
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TABLE III. Cosmological parameters of the all the COLA simulations in the suite. 50 training (M00-M49) cosmologies are
tabulated.

Model Ωmh
2 ns σ8 log(fR0) n

M00 0.142 1.038 0.818 −6.367 1.878
M01 0.152 0.911 0.884 −7.102 2.286
M02 0.154 1.034 0.778 −6.612 0.816
M03 0.135 0.891 0.827 −4.245 1.061
M04 0.141 0.952 0.724 −4.980 1.224
M05 0.149 0.964 0.896 −4.490 2.041
M06 0.146 0.928 0.769 −7.184 1.633
M07 0.139 0.977 0.851 −7.265 0.327
M08 0.124 0.960 0.765 −4.327 3.429
M09 0.151 0.874 0.757 −6.939 1.388
M10 0.138 1.030 0.892 −5.878 3.347
M11 0.146 0.956 0.814 −4.408 0.082
M12 0.143 0.981 0.871 −4.163 3.592
M13 0.144 0.854 0.741 −6.694 0.898
M14 0.141 0.887 0.847 −6.857 4.000
M15 0.139 0.850 0.806 −6.286 2.449
M16 0.150 1.042 0.720 −5.551 2.531
M17 0.154 0.895 0.863 −7.347 1.796
M18 0.147 1.021 0.712 −7.918 3.837
M19 0.131 0.903 0.700 −5.224 3.510
M20 0.127 0.985 0.761 −5.959 0.735
M21 0.130 1.017 0.810 −7.429 1.306
M22 0.120 0.932 0.867 −6.531 0.980
M23 0.122 0.907 0.798 −4.000 0.245
M24 0.149 1.001 0.855 −6.204 1.143
M25 0.126 0.899 0.745 −5.796 2.857
M26 0.153 0.993 0.802 −8.000 3.755
M27 0.155 0.968 0.733 −5.469 3.020
M28 0.145 0.883 0.790 −4.571 2.694
M29 0.148 0.915 0.839 −6.041 3.265
M30 0.144 0.997 0.900 −6.776 0.490
M31 0.128 0.879 0.888 −4.082 0.163
M32 0.121 1.005 0.737 −4.653 2.204
M33 0.125 0.858 0.880 −6.449 1.469
M34 0.136 1.050 0.794 −5.714 1.551
M35 0.134 1.013 0.753 −5.143 0.000
M36 0.131 1.046 0.859 −5.306 3.102
M37 0.132 0.919 0.729 −7.837 0.408
M38 0.129 0.944 0.786 −7.592 3.918
M39 0.137 0.870 0.708 −6.122 0.653
M40 0.124 1.026 0.843 −5.061 2.612
M41 0.151 0.940 0.835 −7.673 0.571
M42 0.136 0.923 0.749 −4.735 3.673
M43 0.129 0.972 0.831 −4.816 2.367
M44 0.126 0.936 0.704 −7.510 1.959
M45 0.134 0.948 0.876 −7.020 2.776
M46 0.140 1.009 0.773 −7.755 2.939
M47 0.121 0.866 0.822 −5.388 3.184
M48 0.123 0.989 0.716 −4.898 1.714
M49 0.133 0.862 0.782 −5.633 2.122
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