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We test the statistical isotropy (SI) of the E-mode polarization of the Cosmic Microwave Back-
ground (CMB) radiation observed by the Planck satellite using two statistics, namely, the α esti-
mator that is derived from the contour Minkowski Tensor (CMT), and the Directional statistic (D
statistic). The α estimator provides information about the alignment of structures and can be used
to infer statistical properties such as Gaussianity and SI of random fields. The D statistic is based
on detecting preferred directionality shown by vectors defined by the field. We compute α and D
statistic for the low resolution component separated SMICA E-mode map of CMB polarization,
and compare with the values calculated using FFP10 SMICA simulations. We find good agreement
between the Planck data and SMICA simulations for both α estimator and D statistic.

I. INTRODUCTION

The ΛCDM model has been very successful at explain-
ing the cosmological observations to date, and is cur-
rently the most widely accepted model of the Universe
[1, 2]. In the ΛCDM model, primordial density fluctua-
tions are assumed to be statistically isotropic (SI). As a
consequence the Cosmic Microwave Background (CMB)
radiation anisotropies are expected to have the same sym-
metry property. Our goal is to test the assumption of SI
of CMB polarization using the observations made by the
Planck satellite [2, 3]. The CMB polarization field can
be split into two components, the curl-free component
called the E-mode, and the divergence-free component
called the B-mode. For this work, we focus on the SI
test of the CMB E-mode polarization, following up our
recent work where we had tested the SI of CMB temper-
ature anisotropy maps [4].

It is important to test SI using different approaches
that are complementary to each other for obtaining ro-
bust constraints. In the literature, various methods can
be found for testing the SI of CMB data. Hajian et al.[5–
7] formulated the BiPolar Spherical Harmonics (BiPoSH)
technique to test the SI of CMB maps. They applied the
BiPoSH technique to the WMAP 3-year data, and found
no significant violation of SI in the temperature maps,
but ' 2σ deviation from SI [8] in the E-mode map. An-
other technique based in harmonic space is the power
tensor method [9], where the eigenvalues of the power
tensor constructed from the coefficients of the spherical
harmonics contain information about the SI of the field.
Using this method, the authors do not find any signifi-
cant deviations from SI in the temperature maps of the
WMAP 3-year data and Planck 2013 data. The authors
also applied the power tensor technique to the Planck
2015 polarization data, and found > 2σ violation of SI in
the multipole range ` = 40− 150 [10]. More recently, the
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method of multipole vectors was applied to the Planck
2015 and Planck 2018 temperature data, and the data
was found to be in good agreement with the assumption
of SI [11]. Eriksen et al. [12] performed a Bayesian anal-
ysis on WMAP 3-year data to find > 2σ evidence for the
presence of a hemispherical power asymmetry in the tem-
perature maps. An alignment of mild significance was
found between the directions of the Planck 2018 CMB
temperature and E-mode dipolar modulation [13], which
is again a large scale effect. Considering all these results,
further investigation of the SI of the CMB fields at large
angular scales is well motivated, and so in this work, we
use low resolution Planck 2018 maps.

Minkowski Tensors (MTs) [14–18] carry information on
the shapes of the structures. In the context of the CMB,
the word structure here refers to hotspots and cold spots
defined by iso-field contours. The α estimator, which is
derived from one of the MTs, the contour MT (CMT) has
been used to test the SI of random fields [4, 18–21]. The
CMT is the tensor counterpart of the scalar Minkowski
Functional (MF) contour length. The trace of the CMT
gives the contour length of the structures. α is sensitive
to the kind of SI violation that affects the shapes and
relative alignment of the hot spots and cold spots in the
field. This method was first applied in [19] to the Planck
2015 data release maps projected stereographically onto
a plane. The authors found no significant violation of SI
in the CMB temperature field, but obtained ' 4σ devi-
ation for CMB E-mode field. Stereographic projection
can introduce numerical error in the alignment of struc-
tures. A new method for the estimation of the CMT that
eliminates projection errors by using field derivatives di-
rectly on the sphere, was developed in [20], and was used
in [4] to test SI in the temperature data of the Planck
2018 data release. The polarization part of the Planck
2018 data has been significantly improved in terms of
removal of systematics, foreground modelling and instru-
mental noise reduction as compared to the Planck 2015
data release [2, 22, 23]. This paper addresses the test
of SI of the Planck 2018 polarization data, in particular
E-mode, using the method of calculation on the sphere.
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To complement our results from CMTs we use a second
test for SI, the Directionality test or the D statistic [24].
It is a statistical test which has been devised to measure
any preferred directionality over the sky. The test follows
a simple formalism, making it numerically inexpensive. It
was first applied in [24] to the COBE-DMR temperature
data. Subsequently, the test has also been applied to
WMAP and Planck 2018 polarization data in particular
to the polarization angle maps in [25] and [26].

This article is organized as follows. All the data pre-
processing steps that we follow before applying the SI
tests have been described in section II. Section III
presents the definition of the CMT and α, and D statistic
methods. It also carries a description of how the CMTs
can be estimated from pixelated maps of random fields
on the sphere. In section IV, we discuss how the ad-
dition of a SI white noise component to a non-SI (nSI)
signal map affects the α and D values of the resultant
map, and demonstrate the sensitivity of our methods to
noisy maps. Section V presents the main results of this
paper, comparisons of the α and D statistic estimated
from the Planck Spectral Matching Independent Com-
ponent Analysis (SMICA) E-mode map, with those from
the FFP10 SMICA simulations. Finally, in section VII,
we draw conclusions based on our results.

II. DATA

In this section, we describe the set of observed data
and simulations that we have used for our analysis. We
also define the notations used to denote the various sets
of maps that we work with.

A. Planck data and mask

We use the publicly available Planck 2018 data re-
lease SMICA Q, U maps from the Planck Legacy Archive
(PLA). These maps are provided at a beam resolution of
5′ full-width at half maximum (FWHM) and projected
on HEALPix pixel resolution of Nside = 2048 [3]. These
maps combine multi-frequency sky observations by the
Low Frequency Instrument (LFI, 30 − 70 GHz) and the
High Frequency Instrument (HFI, 100 − 857 GHz). The
HFI has an angular resolution of ≈ 5′ − 10′ FWHM,
while the LFI has a resolution of ≈ 13′− 33′ FWHM. As
Stokes Q and U maps are spin-2 quantities for which
the morphological properties are strongly affected by
masking [27], we choose to convert them into E and B-
mode maps, which are invariant under rotation. We use
“anafast” routine of HEALPix to transform the full sky
Stokes Q and U maps into spherical harmonic coefficients
E`ms and B`ms. We first deconvolve the beam response
of the original SMICA polarization maps from the E`ms
and then convolve the E`ms with a Gaussian beam of 1◦

FWHM in harmonic space. Then we use “synfast” rou-
tine of HEALPix to transform back the E`ms into the

 

FIG. 1. The binary mask used in our analysis at Nside = 128
has an effective sky fraction of 78%.

E mode map at Nside = 128. The smoothing process is
required for reducing the level of noise in the data, since
the reconstructed SMICA E-mode map is noisy at the
original 5′ resolution (see figure 16 of [3]). The pixel res-
olution of the smoothed E-mode map is chosen in such
a way that the effective beam falls over three pixels. We
will refer to the smoothed SMICA E-mode map as the
data E map.

For the analysis of Planck polarization data, the recom-
mended mask is the common polarization mask, which is
available at a resolution of Nside = 2048 and has an effec-
tive sky fraction of 78% [3]. We downgrade the Galactic
component of the polarization mask to Nside = 128 and
we refer to it as the P78 mask. The P78 mask has a sky
fraction of 78%. The binary P78 mask is shown in figure
1.

B. Simulations

We use the Full Focal Plane (FFP10) SMICA Q and
U simulated maps to make a comparison with the results
obtained from the data E map. The SMICA pipeline
processed 1000 CMB-only simulations and 300 noise-
only simulations separately by applying the same fre-
quency weights as derived from the real Planck data [3].
The noise simulations include the instrumental noise and
residual systematics processed through end-to-end simu-
lations. It is very important to account for the residual
systematic effects to test the SI violation of the data E
map at large angular scales. For our purpose, we use
the linear combination of the first 300 SMICA CMB-only
and noise-only simulations. These simulations have the
same beam resolution as the SMICA data Q, U maps.
We perform the same post-processing of the CMB+noise
simulations as we do on the Planck data to produce the
smoothed simulated maps at 1◦ FWHM beam resolution
and Nside = 128. We refer to these as the SMICA simula-
tions. Then we mask all the maps with P78 mask before
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FIG. 2. Top panel: Comparison of the full sky EE power spec-
tra estimated from the data E map (black points) and mean
power spectrum from 300 SMICA simulations (blue line). All
the power spectra are computed from smoothed downgraded
E map (1◦ FWHM beam resolution and Nside = 128) with
apodized P78 mask applied. Bottom panel: The residual E-
mode power spectrum after subtracting the mean simulated
power spectrum, from SMICA simulations from the Planck
EE power spectrum along with 1-σ error bars.

applying our SI estimators.

C. Level of noise in the Planck E map

In this section, we compute the EE power spectrum
of the data and simulations over the masked sky to es-
timate the level of noise in the data E map. For the
power spectrum estimation, we apodized the P78 mask
to avoid power leakage due to sharp mask boundaries.
The P78 mask is convolved with 5◦ FWHM Gaussian
beam to produce the apodized P78 mask. The mask
apodization is chosen in such a way that it smoothly goes
to zero towards the mask edges. The effective sky frac-
tion after applying apodization becomes 71%. We apply
the apodized P78 mask to the data E map at Nside=128
and compute the pseudo EE power spectrum. We then
use the Xpol package [28] to estimate the full-sky EE
power spectrum, corrected for the masking, beam and
pixel window effects. The same procedure has been ap-
plied to the SMICA simulations to compute the simulated
EE power spectrum for a given sky realization. For the
simulations, we calculate the mean EE power spectrum
by averaging the power spectra obtained from 300 sky
realizations. In the top panel of figure 2, we compare
the scaled power spectrum, `(`+ 1)CEE` /2π, where CEE`

is the EE power spectrum, of the Planck data with the
mean from SMICA simulations. In the bottom panel of
figure 2, we show the residual power spectrum, which
represents the difference in the power spectrum of the
data from the mean of the SMICA simulations, with 1-
σ error bars from the simulations. Since maps of the
foreground residuals are not available, and the SMICA
simulations and noise simulations are consistent with the
data at the scales we are probing, we do not consider the
effect of foreground residuals in our analysis. We define
the signal to noise ratio (γ) of the data E map as the
ratio of the root mean square (rms) of the SMICA CMB-
only and noise-only simulations in the pixel space. For
the data E map, γ = 1.04.

III. QUANTIFYING THE SI OF CMB MAPS

In this section, we describe the two statistical estima-
tors that we use to test the SI of the data E map, namely,
α and D statistic. We start with the definitions of the
two statistics and then discuss how they capture the SI
information of a given random field.

A. Contour Minkowski Tensor

First, we give a brief overview of the CMT, and define
the α estimator, which is our primary tool for testing
SI. This technique for testing the SI of a random field
defined on the surface of a sphere was developed in [18].
Let C be a closed curve on the unit sphere. The CMT
associated with this curve, denoted by W1, is defined as,

W1 =
1

4

∫
C

T̂ ⊗ T̂ ds, (1)

where the integral is over C, T̂ denotes the unit tangent
vector to the curve at each point, ⊗ denotes the sym-
metric tensor product of two vectors, and ds denotes the
infinitesimal arc length line element along the curve. The
ratio of the two eigenvalues of W1 represent the isotropy
of the curve C. If C is isotropic, then the two eigenvalues
are equal.

For a smooth random field, denoted by u, excursion
sets consist of points on the sphere where the field has
values higher than some chosen threshold value (ν). The
boundaries of the excursion sets, indexed by ν, form
closed curves. For multiple such curves, W1 can be ob-
tained as the sum over all the curves. To compute W1

numerically for excursion set boundaries at each ν on the
sphere, we can convert the line integral to an area integral
using a suitable Jacobian [29], and express it in terms of
the field and its first derivative components u;θ and u;φ,
where θ, φ are spherical coordinates on the sphere, as
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[4, 18],

W1 =
1

16π

∫
S2

da δ (u− ν)
1

|∇u|

(
u2;φ −u;θu;φ

−u;θu;φ u2;θ

)
,

(2)
where S2 indicates that the integral is over the unit
sphere, da is the area element on the sphere, δ is the
Dirac delta function, and ∇ denotes covariant derivative
on the sphere. Choosing to label the eigenvalues ofW1 as
Λ1 and Λ2 such that Λ1 ≤ Λ2, the alignment parameter,
which we refer to as the α estimator, is defined as the
ratio of the two eigenvalues [18],

α =
Λ1

Λ2
. (3)

By construction, the values of α range between 0 and 1.
For all the structures corresponding to a selected thresh-
old value of the field, the locus curve is defined in [27]
using the mean radial distances of the curves from their
centroid, when the curves are stacked together. α repre-
sents the isotropy of the locus curve formed this way. α
gives a measure of the alignment of the structures in the
level sets, which reflects the SI of the random field. If the
field is SI, then the value of α will be close to unity. The
value of α will shift towards zero for non-SI (nSI) field.
As we work with the field rescaled by its standard devia-
tion, ν represents the rescaled threshold. The calculation
of α using equation 3 is quite accurate and the numerical
error arising from the discrete ν binning approximation
of the δ function is small (see the discussion of eqn. 2.9
in [30]).

We demonstrate α values estimated from SI maps in
figure 3. The top panel shows the distribution of α from
a set of 10000 SI CMB E-mode simulations (Nside = 128
and beam resolution=1◦) drawn from the Planck best-fit
ΛCDM model [31] for the threshold value ν = 0. The
probability distribution function of α follows the Beta
distribution. There is a mild dependency of α on the in-
put power spectrum of the SI signal [30]. The bottom
panel of figure 3 shows the median α and error bars rep-
resenting the 68% limits, calculated from 10000 SI CMB
E-mode simulations over the threshold range between −2
and 2. The error bars are asymmetric and to estimate
them, we first sort the values of α at each threshold in
increasing order. Next, we multiply the total number of
simulations by 0.34 (34%) and get the index of the sim-
ulations, above and below the median, representing the
upper and lower limits, respectively. This is the method
we follow to estimate the error bars on α throughout this
paper.

B. Directionality Test

In this section we will briefly describe the basic con-
cepts behind the preferred directionality test [24–26]. It
is a statistical test defined in the pixel domain to detect
any preferred directionality present in the observed CMB
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FIG. 3. Top panel: A histogram of the α values obtained from
10000 SI CMB simulations for threshold value ν=0. Bottom
panel: Median of α values and 68% limits, obtained from
10000 SI simulations with the Planck best-fit ΛCDM power
spectrum (blue points).

signal. To achieve this goal, a vector at each point in the
sky is defined to capture the directional properties of the
field. For a scalar field u the vector can simply be the gra-
dient of u. The alignment of these gradients towards any
particular direction is quantified by its projection along
that direction of the sky. Mathematically, this can be
implemented by defining a function f for each direction
n̂ in the sky,

f(n̂) =

Npix∑
p=1

wp

(
n̂.~∇up

)2
, (4)

where, p stands for the pixel index of the map and Npix

is the total number of pixels on the map. wp are the
weights for each pixel on the map and are used to cancel
out any false directional signal due to masking [24]. Any
anomalously large or small value of f(n̂) will indicate the
presence of a directionality towards n̂ or −n̂ and if there
is no preferred directionality present in the sky, all the
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values of f(n̂) should be close to each other. This in-
formation is captured by the D statistic which is defined
as,

D =
max[f(n̂)]

min[f(n̂)]
. (5)

D takes real positive values greater than or equal to unity.
For a SI map the values of f(n̂) for different directions
are expected to be close to each other as no particular
direction is favoured and hence D will be close to unity.
So, any nSI feature present in the map will manifest itself
as deviations of D from unity. We compare the D value
of the data with the corresponding values obtained from
SI simulations to detect any violation of SI.

IV. SENSITIVITY OF α ESTIMATOR AND D
STATISTIC

The α estimator and D statistic are designed for test-
ing the SI of signal dominated maps. The SI property
of noisy maps can be significantly affected by the prop-
erties of the noise. For example, suppose the CMB E
mode signal is nSI, but a dominant SI noise could make
the resultant map SI, and vice versa. Since the data E
map is known to be noisy at the scales we are interested
in, we first check the sensitivity of α and D to pick up
the nSI property of the signal in presence of SI noise. For
this purpose, we make a toy model of nSI map using the
foreground model E mode map at 353 GHz. In the 353
GHz band, thermal dust is the dominating component
and so we use the thermal dust map for our toy model.
We start with the FFP10 thermal dust template Stokes
Q and U maps at 353 GHz, which are publicly available
on PLA. We first convert the full sky Q and U maps to
spherical harmonic coefficients E`m and B`m. We then
deconvolve the input map pixel window and beam func-
tions from the E`ms and apply a bandpass filter f` given
by,

f` =


0 if ` < 35

cos2
(
π
2 ·

(40−`)
5

)
if 35 ≤ ` ≤ 40,

1 if ` > 40.

(6)

Next, we use the HEALPix routine “smoothing” to apply
a Gaussian smoothing of 1◦ FWHM in harmonic space,
and reproject the E mode map at Nside=128. To this
dust E map (d), we add varying levels of SI white noise
(n), to produce the noisy nSI maps. We choose to work
with 1◦ FWHM Gaussian smoothed nSI maps as they
mimic the smoothing present in the data E map.

The rms amplitude of the dust map is dominated by
regions close to the Galactic plane having high standard
deviation values. For the calculations in this section, we
use a mask which excludes the regions having standard
deviation (computed over lower Nside = 16) higher than

a selected threshold value of 6µK. We will refer to this
mask as the dust mask, which has a sky fraction of 60%.
We add different levels of noise to the input nSI map by
varying the ratio of rms amplitude of the d map and n
map in the pixel space defined as,

γ =
σd(nSI)

σn(SI)
. (7)

For our analysis, we choose nSI maps having γ values,
γ= 2, 1 and 0.5, in addition to the case where no noise is
added. Figure 4 displays the noisy nSI maps alongside an
SI realization with the same underlying EE power spec-
trum, for the dust-only case, and with the three other
selected γ values. We note that the addition of noise
leads to an increased number of small scale grainy struc-
tures, while leaving the large scale patterns intact. We
then mask these maps with 5◦ FWHM Gaussian apodized
dust mask, and use the Xpol package [28] to estimate the
full-sky EE power spectra. With these power spectra as
the inputs in HEALPix, we generate SI simulations for
each of the selected levels of γ. Figure 5 displays the
power spectra of the noisy nSI dust maps (points), mean
from 1000 corresponding SI simulations (solid lines), and
added noise (dashed lines) for the three different γ ra-
tios. The power spectra extracted from the SI maps, and
from noisy nSI dust maps, overlap. As expected, we can
see that with increasing levels of added noise, the power
spectra become dominated by noise at small scales.

In the following subsections we compare the results for
the α estimator and D statistic using the noisy nSI maps
with the corresponding SI simulations, which have the
same EE power spectrum. In each case, the noisy nSI
maps, and the SI simulations, are masked with the dust
mask before applying the α estimator and D statistic
techniques. The goal of this exercise is to demonstrate
the sensitivity of the α estimator and the D statistic.

A. α estimator

Figure 6 presents the results for the α estimator ap-
plied on the noisy nSI dust maps with three different
γ ratios of 2, 1 and 0.5 along with the no noise case.
In each panel, the black points represent α values for the
noisy nSI dust map, while the blue crosses with error bars
represent the median and 68% limits from 1000 SI sim-
ulations generated from the same underlying EE power
spectrum as the noisy nSI dust map computed over the
apodized dust mask. The addition of noise increases the
α values of the resultant map and makes it effectively
SI, even though the original signal of our interest is nSI.
The value of α at any threshold depends on the num-
ber of structures present in the field at that threshold.
Due to this, and combined with the fact that we have
a single realization of the observed CMB sky, the values
of α for individual thresholds fluctuate about their ex-
pectation values. Thus, combining the information in α
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FIG. 4. Visualization of the noisy dust maps (left panels)
and corresponding SI simulations (right panels). From top to
bottom, the panels display the maps with only dust, and those
with added noise having γ ratios of 2, 1 and 0.5, respectively.

values over a threshold range rather than looking at in-
dividual thresholds provides a much better statistic for
inferring the property of SI. The spread of α about the
corresponding median value is relatively low (high sta-
tistical significance) for thresholds close to 0, and it in-
creases as we move away from 0 on either side. This is
because at large |ν|, most of the structures are isolated lo-
cal maxima or minima, and get easily washed out due to
downgrading [4]. For our analysis, we choose the thresh-
old range ν = −2 to +2. We compute the correlation
between different threshold values from −2 to +2 using
SI simulations and SMICA simulations, and find that the
α values are uncorrelated between two nearby threshold
values in both cases.

To quantify the consistency between the data and the
simulations, we use the p-value statistic, which requires
no assumptions regarding the shape of the probability
density distribution of α. For α, the p-value at each
threshold is defined as the probability of obtaining α
values lower than the data at that threshold, based on
the simulations. Here, the simulations refer to the 1000
SI simulations with the same EE power spectra as the
noisy dust maps. We use the “combine pvalues” routine
from the scipy package [32], with the Fisher method [33],
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FIG. 5. Beam deconvolved EE power spectra for the noisy
dust maps (points), mean of 1000 SI simulations (solid lines)
and added SI white noise (dashed lines). The maps having
only the dust component and those with added noise having
γ ratios of 2, 1 and 0.5, are shown in purple, red, blue and
black colours, respectively.

to obtain a single combined p-value for the noisy nSI
dust map, in the threshold range −2 to +2. The Fisher
method, constructs a test statistic using the logarithms
of each of the p-values. When the individual p-values
are independent of each other, the test statistic has a
χ2 distribution and a single p-value for the distribution
can be estimated. In our case, the nearby thresholds are
not correlated and hence the Fisher method is suitable
for providing a combined estimate of the p-value. For no
noise case and γ=2, the noisy dust maps strongly dis-
agree with the corresponding SI simulations. For γ=1,
the combined p-value for the noisy dust map based on
the SI simulations is 0.0002, which means that the cor-
responding noisy dust maps are not consistent with SI.
Although the black points are consistent with the blue
error bars for a lot of the thresholds, it is important to
note that the black points are consistently lower than the
blue crosses for almost all thresholds. This leads to small
p-values at all the thresholds resulting in a very small
combined p-value and inconsistency between the noisy
dust map and SI simulations, where a simple comparison
with the error bars would suggest that the noisy dust map
is consistent with the SI simulations. The combined p-
value captures the information regarding the data points
being systematically lower than the simulations, which
would otherwise be missed by a simple comparison of er-
ror bars. As we increase the level of noise in the map
(or decrease the γ ratio) to γ=0.5, the combined p-value
increases to 0.41, indicating that the noisy nSI dust map
becomes consistent with the SI simulations.
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respectively.

B. D statistic

We analyze the sensitivity of D statistic on the noisy
dust nSI E maps by comparing the D value obtained
from noisy dust maps with the corresponding values ob-
tained from 1000 SI simulations having the same EE
power spectrum. For a statistically significant detection
of SI violation, we compute the p-value from the noisy
dust maps. For D statistic, the p-value is defined as the
probability of obtaining D values higher than the data,
based on the simulations. In this case, the simulations are
the corresponding 1000 SI simulations. Figure 7 presents
the results from D statistic for γ= 0.5, 1 and 2. The dust
maps with no added noise and those with added noise
having γ=2 and 1, strongly disagree with the SI simula-
tions. At γ=0.5, the p-value is 0.009, and the noisy dust
map is statistically consistent with SI, within the 99.7%
limits. The small p-value for D at γ=0.5 suggests that
D is more sensitive than α at detecting the type of nSI
signal present in our toy model map.

From these results, we demonstrate two salient features
of D statistic. First, D is quite robust in detecting low
signal-to-noise nSI signal even in the presence of SI white
noise. However, D statistic sensitivity towards detect-
ing the SI violation fails for very low γ value (γ < 0.5).
Secondly, as the level of the SI noise is increased in the
original dust nSI map, the noisy maps become consis-
tent with SI. We expect the D value closer to unity for
SI signal and much higher values for nSI signal. For SI
simulations, we find that the distribution of D is almost
identical for different γ values. However, for the noisy
nSI dust maps, the D value, decreases with the decrease
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FIG. 7. Comparison of D from noisy dust E maps and the
corresponding 1000 SI simulations for three values of γ: 2
(magenta), 1 (black) and 0.5 (blue).

in γ. In no noise case, the D value from the nSI dust
map is 1.64, making it difficult to plot alongside the D
values from the other maps.

Both our techniques, α estimator and D statistic are
sensitive enough to pick up the nSI of the signal from
noisy maps up to γ=1. For the data E map, the value
of γ is marginally greater than 1 over the masked region.
Based on the toy model, we expect to detect the SI vio-
lation (if any) present in the CMB E-mode polarization
using α and D.

V. RESULTS

We carry out our stated goal of testing SI using data E
map in this section. We compare the values of α and D
statistics obtained from the Planck data with the SMICA
simulations.

First, we check the consistency of α values computed
from the data E map with those obtained from the 300
SMICA simulations, which also include instrumental sys-
tematics effects already added to the noise component,
as mentioned in section II B. We compute α from the
smoothed maps at Nside = 128 after applying P78 mask.
The results of our analysis of the SI of the E-mode maps
are presented in figure 8. The α values computed from
the data E map are represented by black points. The
blue crosses with error bars represent the median α and
68% limits from 300 SMICA simulations. We find that
the combined p-value for the data E map based on the
300 SMICA simulations is p = 0.54, indicating that the
data E map is statistically consistent with the SMICA
simulations.

Next, we present the SI results obtained using the D
statistic. In order to check whether the CMB E-mode is
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FIG. 8. α values from the data E map (black points) and
median of α from 300 FFP10 simulations (blue crosses).
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FIG. 9. The D value obtained from data E map (dashed
vertical line) and the histogram of 300 SMICA simulations
(blue colour) computed over the masked sky.

SI or not, we have compared the D statistic results from
the data E map and SMICA simulations. The specifi-
cations of the data E map and SMICA simulations are
described in section II. We apply P78 mask to the Planck
data and the simulations and the results of the D statis-
tic over the masked sky are presented in figure 9. The
p-value measured from the data E map based on the 300
SMICA simulations is p = 0.23. Our D statistic results
do not detect any SI violation in the data E map. This
result concurs with earlier work done in [26], where the
authors have implemented D statistic on the CMB po-
larization angle map.

Our analysis using the α estimator andD statistic show
that the data E map is statistically consistent with the
SMICA simulations. As the input CMB E-mode signal
in the SMICA simulations are SI, we conclude that the

CMB E-mode is statistically consistent with the SI ap-
proximation. This conclusion is supported by our demon-
stration in section IV that the α estimator and D statistic
are sensitive enough to pick up nSI signal in the presence
of SI noise for γ up to 1. For the data E map, the ef-
fective γ is slightly greater than 1. Hence, if there is a
violation of SI in the CMB E-mode, similar to the one
present in the filtered dust E-mode map used in section
IV, we expect to detect it using the α estimator and D
statistic. It is important to note that the SMICA simula-
tions used in this work to test the SI of the CMB E-mode
contain only the CMB signal and the noise contributions
propagated through the SMICA pipeline, with no resid-
ual foreground contamination. Hence, the non-detection
of SI violation in the data E map may be interpreted as
evidence against significant levels of residual foreground
contamination.

VI. DISCUSSION

We have applied the α estimator and the D statis-
tic methods to the low resolution component separated
SMICA E-mode map from the Planck 2018 data release,
to test for any deviations from SI. We find that the data
is consistent with the assumption of SI. Previously, the
authors of [19], found a 4-σ deviation from SI in the
Planck 2015 E-mode data. They compared the Planck
2015 component separated E-mode maps with the 44GHz
and 70GHz simulations. While it is not ideal to com-
pare the component separated maps with individual fre-
quency simulations, the authors at the time were limited
by the availability of FFP simulations processed through
the same component separation pipeline. The stereo-
graphic projection can introduce errors in the computa-
tion of α and this error was estimated and was shown
to go as high as 24% in Table 2 of [19]. Our analysis
is an improvement over the results in [19], in two ways.
Firstly, we use the method of computing α directly on
the sphere, avoiding the errors arising due to the stere-
ographic projection. Secondly, we use the SMICA simu-
lations, which are better suited for comparison with the
component separated data maps, than the individual fre-
quency simulations. The SMICA simulations which we
use in our analysis, also have reduced noise levels and
better modelling of systematics as compared to the cor-
responding simulations in the 2015 release.

VII. CONCLUSIONS

The α estimator and D statistic provide independent
tests of the SI of random fields in real space. For a given
random field, α quantifies the level of alignment of struc-
tures in the level sets of the field. How far α lies away
from unity towards zero, quantifies the level of alignment
of the structures in the field, and hence is a measure of
the deviation from SI in the field. Similarly, for D statis-
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tic the preferred directionality in the field is measured in
terms of the alignment of the gradient vectors defined for
the field. For an SI map the D value should be close to
unity. Deviation from unity signifies the presence of sta-
tistical anisotropy. For a pixelated map, α is never equal
to one even for an SI map. For this reason, we compare
the α values computed numerically from observed maps
with those computed from SMICA simulations which are
SI. In this work, we have applied the CMT and D statis-
tic techniques to the data E map. We compare the α and
D statistic values computed from the data E map with
those computed from SMICA simulations. The main re-
sults of the data analysis are as follows:

• We find that the data E map is statistically consis-
tent with SMICA simulations based on the results
obtained using the two estimators - α and D statis-
tic. Since the input CMB E-mode signal in SMICA
simulations are SI, we can conclude that the CMB
E-mode polarization is statistically consistent with
SI approximation.

• We test the sensitivity of the α estimator and D
statistic for low signal-to-noise case. We add dif-
ferent levels of SI white noise to a nSI dust signal
map and check the level of noise at which our two
estimators are sensitive enough to pick up the in-
put nSI dust signal. We find that with the addition
of SI white noise to the original nSI signal, the re-
sultant map becomes SI for very low noise levels
(γ < 1). For data E map, the signal-to-noise ratio
in the map space is marginally greater than 1. Our
SI estimators are sensitive enough for the level of
noise present in the data E map.
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Appendix A: D statistic analysis of SMICA noise

simulations

Here we present the D statistic analysis of the SMICA
noise-only simulations. Since the SMICA noise-only sim-
ulations include the residual systematics which may have
a preferred direction, we expect the D statistic to pick
this up. We apply the same post-processing to the noise-
only simulations as we applied to the data in section
II A, to produce noise-only simulations at Nside=128 with
Gaussian beam smoothing of 1◦ FWHM. Next, we apply
the binary P78 mask to these simulations and then run
the D statistic analysis on them.

The median of D values from the 300 noise-only sim-
ulations is 1.281 ± 0.014. We compare this value with
those obtained from the SI simulations shown in figure
7, and find that there is no overlap between the two. We
conclude that the SMICA noise-only simulations have di-
rectionality, based on the D statistic.
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