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Two-moment neutrino transport methods have been widely used for developing theoretical models
of core-collapse supernova (CCSN), since they substantially reduce the computational burden inher-
ent in the multi-dimensional neutrino-radiation hydrodynamical simulations. The approximation,
however, comes at a price; the detailed structure of angular distribution of neutrinos is sacrificed,
that is the main drawback of this approach. In this paper, we develop a novel method by which
to construct angular distributions of neutrinos from the zero-th and first angular moments. In our
method, the angular distribution is expressed with two quadratic functions of the neutrino angle
in a piecewise fashion. We determine the best parameters in the fitting function by comparing to
the neutrino data in a spherically symmetric CCSN model with full Boltzmann neutrino transport.
We demonstrate the capability of our method by using our recent 2D CCSN model. We find that
the essential features of the angular distributions can be well reconstructed, whereas the angular
distributions of incoming neutrinos tend to have large errors that increase with flux factor (κ). This
issue originates from the insensitiveness of incoming neutrinos to κ, that is an intrinsic limitation
in moment methods. Based on the results of the demonstration, we assess the reliability of ELN-
crossing searches with two-moment neutrino transport. This analysis is complementary to our
another paper that scrutinizes the limitation of crossing searches with a few moments. We find
that the systematic errors of angular distributions for incoming neutrinos lead to misjudgements
of the crossing at κ >∼ 0.5. This casts doubt on the results of ELN-crossing searches based on
two-moment methods in some previous studies.

I. INTRODUCTION

High fidelity neutrino transport is an essential ingredi-
ent to develop theoretical models of core-collapse super-
nova (CCSN). The exact description of neutrino radiation
field requires evolving the neutrino distribution function
in six-dimensional phase space, i.e., solving Boltzmann
equations. Although taking such an ab-initio approach in
multi-dimensional (multi-D) CCSN models is still a sig-
nificant challenge, considerable progress has been made
in the last decades [1–5] (see also a recent review in [6]).
On the other hand, various approximate methods have
been used in many neutrino-transport solvers, to reduce
the computational cost and to avoid some intrinsic com-
plexities in treatments of radiation-hydrodynamics with
full Boltzmann neutrino transport (see e.g., [7–12]). One
of the popular approaches is the so-called two-moment
method, in which the transport equation is integrated
over solid angle in neutrino momentum space. The equa-
tions for the zero-th and first angular moments are solved
under given a closure relation for the higher moments
[13–19] (see also [20] for rank-3 closure relations). Al-
though the detailed profile of neutrino angular distribu-
tions is abandoned, it is much numerically cheaper than
that solving Boltzmann equations, and it leads to a realis-
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tic solution if the closure relation can be given accurately.
For these reasons, many modern three-dimensional (3D)
CCSN models have been developed with moment meth-
ods [21–32].

On the other hand, the detailed information on neu-
trino angular distributions is mandatory to develop reli-
able models of CCSNe. It has been suggested that an-
alytical closure relations fail to capture some intrinsic
properties of neutrino angular distributions [2, 3, 5, 33].
It should be also mentioned that the full information on
neutrino angular distributions is required to compute re-
action kernels on some neutrino-matter interactions such
as non-isoenergetic scatterings on electrons/positrons
[10, 34], and nucleons [35], and some thermal processes as
pair and bremsstrahlung reactions [36, 37]. Furthermore,
the detailed structure of angular distribution has been of
great interest very recently in the context of fast-pairwise
collective neutrino oscillations in CCSNe [38–69]. It is
attributed to the fact that the so-called ELN(Electron-
neutrinos Lepton Number)-crossing, in which energy-
integrated angular distributions of electron-type neutri-
nos (νe) and their anti-partners (ν̄e) are crossing in mo-
mentum space, seems to be a crucial condition to trig-
ger neutrino flavor conversions. Searching the ELN-
crossing requires information on full angular distributions
of neutrinos, implying that multi-angle neutrino trans-
port is mandatory. As mentioned above, however, avail-
able multi-D CCSN models with full Boltzmann neutrino
transport are limited by a computational burden, and
most of multi-D CCSN models have been developed with
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approximate neutrino transport. For these reasons, al-
ternative ways determining the possibility of fast flavor
conversions are highly in demand.

Two interesting methods, by which to determine the
occurrence of fast flavor conversions in the neutrino data
computed with approximate neutrino transport, have
been proposed in the literature. The first one is the so-
called zero mode search, in which linear stability analysis
of flavor conversions is performed with a condition that
the wave number in the corotating frame is zero [45]. In
this case, the required moments in the dispersion rela-
tion are only the zero-th, first, and second ranks, indi-
cating that two-moment methods (with a closure rela-
tion) are capable of providing the required information
on the diagnosis. This method was applied to assess the
possibility of fast flavor conversions in two sophisticated
3D CCSN models [70], and they revealed that the fast
conversions likely occur in the proto-neutron star (PNS)
convective layer [54]. The same approximate method
was also applied in simulations of another phenomena:
remnants of binary neutron star mergers very recently
[71]. Another novel method was proposed in [58]; the oc-
currence of ELN-crossings is analyzed by introducing a
new positive function, F , which is a polynomial of direc-
tional cosines for the direction of neutrino propagation
(µ). The ELN angular distribution (G(µ)) is integrated
with F(µ), the result of which can be written in terms
of the angular moments of ELN. The ELN-crossing is
diagnosed by comparing the sign of the two integrated
quantities between with and without the weight function.
In [59], this method was applied to the same Garching
3D CCSN models [70], and they found positive sign of
ELN-crossings in both pre-shock and post-shock regions.
They also applied the same method not only νe and ν̄e
but also heavy leptonic neutrinos (νµ, ντ , and their anti-
partners) in [60], and they suggested that the occurrence
of ELN-crossing is a generic feature in CCSNe.

There are, however, some caveats in their conclusions.
First, both methods rely on the second moments given
by an analytical closure relation, which would not be
accurate enough to diagnose ELN-crossings, in partic-
ular at the semi-transparent region where neutrinos and
matter are mildly coupling each other. As demonstrated
in some previous studies with full Boltzmann neutrino
transport [48, 49, 52, 53], the occurrence of ELN-crossing
is determined by a delicate competition between νe and
ν̄e angular distributions, indicating that the uncertainty
of closure relations would affect the diagnosis. Another
major concern is the applicability of these approaches
in the region with strongly asymmetric angular distri-
butions. This is the region where the higher moments
play a dominant role to characterize the angular distri-
bution of neutrinos, indicating that the diagnosis with
only a few moments is not reliable1.The crucial concern

1 In our another paper (Lucas Johns and Hiroki Nagakura in prep),

in these methods is that they are not capable of quanti-
fying the reliability of the diagnosis by themselves, which
may be only possible by making a detailed comparison
with full Boltzmann neutrino transport. The computa-
tion is, however, numerically expensive and may be un-
feasible in practice that the Boltzmann simulations are
performed with respect to each time snapshot. This issue
motivates us to develop a new approach.

In this paper, we attempt to construct angular distri-
butions of neutrinos from the zero-th and first angular
moments, and also underline how large uncertainties in-
herent in the approach. It should be mentioned that the
full recovery of angular distribution from a few moments
is, in principle, impossible from a mathematical point of
view. However, we are currently considering a specific
phenomena, CCSN, in which the neutrino radiation field
may have specific trends or there may exist some corre-
lations between full angular distributions and the lower
moments. In this paper we scrutinize them based on the
result of CCSN neutrino data computed by full Boltz-
mann neutrino transport [36]. We note that, in earlier
work of [73], the detailed investigation on neutrino an-
gular distributions has been also made based on CCSN
models with Monte Carlo neutrino transport. However,
the analyses were devoted to provide accurate closure re-
lations for moment methods; hence, the results are not
useful for the purpose of construction of the full angular
distributions. In addition to this, they employ a CCSN
model in [74], which is qualitatively different from the re-
cent ones. For instances, the shock wave in their model
expands rather promptly after core bounce (<∼ 50 ms)
even in spherical symmetry, which is not consistent with
the trend found in recent CCSN simulations; the input
physics was also rather old-fashioned. In this paper, we
revisit the problem with one of the modern CCSN mod-
els, and develop a fitting method for which the distribu-
tion function of neutrinos (f) is reconstructed from the
zero-th and first angular moments. It should be men-
tioned that we make the best parameters publicly avail-
able2, which will be useful to analyze many aspects of
neutrino radiation field in CCSNe.

This paper is organized as follows. In Sec. II, we
outline our basic strategy to construct angular distribu-
tions of neutrinos from the zero-th and first moments.
In Sec. III, we make a correlation-study between some
quantities in neutrino angular distributions and flux fac-
tor (the ratio of the first and zeroth angular moment;
hereafter we denote it as κ), by using a result of neutrino
data with full Boltzmann neutrino transport, the result of
which is used to narrow down the parameter space in our
method. In Sec. IV, we provide the detail of our method,

we show that mis-capturing the ELN crossings occurs only by
changing the treatments of higher moments. See the paper for
more details.

2 The data is available from the link: https://www.astro.

princeton.edu/~hirokin/scripts/data.html
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and then compare the obtained angular distributions to
those of the originals. In Sec. V, we demonstrate how
our fitting data can be applied in multi-D CCSN mod-
els, which shows the strengths and weaknesses in our
method. Based on the consideration, we discuss the ap-
plicability of our method to the ELN-crossing searches.
In Sec. VI we summarize the present study and discuss
how to improve our method towards more accurate as-
sessment of ELN-crossing. We will close the paper by
providing an instruction on how to use our public avail-
able data (that capsulates best fit-parameters) to con-
struct angular distributions of neutrinos from the zero-th
and first moments.

II. BASIC STRATEGY

In this section, we describe the basic strategy of our
method. The detailed procedures and results will be
presented in Sec. IV. We study angular distributions of
neutrinos in post-bounce phase of CCSNe, paying par-
ticular attention to the post-shock region. In this pa-
per, we only focus on the angular profile in µ-space, i.e.,
azimuthal-averaged distribution in momentum space. Al-
though the study of full 2D angular distributions is nec-
essary for completeness, the azimuthal-averaged one is
still informative to consider essential characteristics of
neutrino angular profile. We postpone the study of the
non-axisymmetric features in future work.

As a reference of neutrino radiation field, we employ
our public available CCSN neutrino data presented in
[36], 1D-4x model, in which the neutrino transport is
determined by solving Boltzmann equations in spheri-
cal symmetry and in steady-state under a frozen fluid
background given by [10]. We note that the steady-state
condition with respect to neutrino radiation field is a rea-
sonable approximation at t >∼ 100ms after core bounce,
which we focus on in this paper. The spherically sym-
metric condition also does not compromise the purpose
of this study, since we consider the azimuthal-averaged
distributions. On the other hand, there is a noticeable
advantages in the model; the neutrino transport is solved
with high resolutions in momentum space (see [36] for
more details). This is a beneficial property to capture
detailed features of neutrino angular distributions accu-
rately in particular at regions where the angular distri-
butions are forward-peaked.

We start with defining a normalized distribution func-
tion fn as

fn(µ) =
fax(µ)

f(µ = 1)
. (1)

where fax denotes the azimuthal-averaged angular distri-
bution of neutrinos, i.e.,

fax(µ) =
1

2π

∫ 2π

0

dφνf(µ, φν). (2)

μ
μ 0-1 1

ln f n

aμ + bμ + c2dμ + gμ + h2

Flux factor (κ) is given.

FIG. 1. Schematic picture of the fitting function for angular
distributions of fn. We divide the angular (µ-) space into
the two regions, and fit the natural logarithm of fn with a
quadratic function in a piecewise fashion. The two quadratic
functions are not completely independent each other, since
the angular distribution is continuously connected at µ = µ0.
See text for more details.

where f denotes the neutrino distribution function. As
can be seen in Eq. 1, fn corresponds to the distribu-
tion function normalized by that of neutrinos propagat-
ing outward along the radial direction. We note that the
flux factor (κ) is not influenced by the normalization. It
should also be mentioned that the normalization enables
us to compare the angular profile of all neutrinos (arbi-
trary energy and species at different spatial locations) on
an equal footing. In our method, we first develop a fitting
method with respect to fn at given κ. The free param-
eters are calibrated by the neutrino data of Boltzmann
simulations3. We will capsulate the obtained best-fit pa-
rameters into a table. By using the table, one can obtain
angular distributions of fn (and also fax) from arbitrary
zero-th and first-angular moments.

The most straightforward fitting-formula may be a
polynomial of µ or the orthogonal functions such as Leg-
endre polynomials. Their best-fit coefficients in the poly-
nomial for given κ can be determined so as to minimize
the errors from the collected angular distributions of fn
with the same κ in the Boltzmann simulation. This ap-
proach is, however, not appropriate for CCSN neutrinos,
since the required degree of polynomials hinges on the
asymmetry of neutrinos. This leads to the need of unaf-
fordable number of polynomials to capture the strongly
forward-peaked angular distributions, i.e., the resultant
fitting data will be enormous. This suggests that more
appropriate fitting methods need to be considered.

One may wonder if employing specific functional forms
alleviates the problem (see e.g., [73]). It should be noted,

3 We refer angular distributions of neutrinos from the Boltzmann
data for different energy (5 MeV to 50 MeV, which covers the
typical energy range in the semi-transparent region between PNS
and the stagnated shock wave) and different species of neutrinos
(νe, ν̄e and other heavy leptonic neutrinos) in post-shock region.
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however, that the feature of the angular structure is
strongly restricted, which may lead to large systematic
errors. We, hence, do not employ such a specific func-
tional form, but rather adopt a polynomial fitting ap-
proach. It should be mentioned that we avoid enormous
degrees of polynomials by adopting a piecewise-fitting
prescription. The essence of the fitting function is sum-
marized in Fig. 1. We separate the µ-space into the two
regions by µ0, and fit the natural logarithm of fn with
a quadratic function at each region. The two quadratic
functions are not independent each other, since we im-
pose a condition that they are continuously connected
at µ0. We note that µ0 is also a free parameter in our
method, which also depends on κ. The best-fit parame-
ters are searched so as to minimize the error of recon-
structed angular distribution of fn from those in the
Boltzmann simulation (see below for more details). As
we shall see in Sec. IV, the piecewise fitting method is
capable of reproducing the result of the Boltzmann sim-
ulation with the affordable number of parameters even in
cases with strongly forward-peaked angular distributions
(κ ∼ 1).

In the fitting, we have seven parameters, a, b, c, d, g, h,
and µ0 (see Fig. 1), which need to be determined to each
given κ. In the following sections, we describe how to de-
termine them by using the neutrino data of Boltzmann
simulation. Before moving on to the detail, we take a bit
detour to a correlation-study between angular distribu-
tion of fn and κ in the next section. As we shall show
in Sec. IV, the result of this correlation-study plays an
important role to narrow down the parameter space in
our method.

III. CORRELATIONS

The angular profile of neutrinos is dictated by the
interplay between neutrino-matter interaction and neu-
trino advection. Neutrinos interact with matter through
neutral- and charged current reactions during the prop-
agation, which isotropize neutrino angular distributions.
On the contrary, neutrino advection in space breaks the
symmetry, in which the shape of asymmetry depends on
the spatial geometry of the matter distribution. We note
that the matter distribution of CCSNe is roughly spheri-
cally symmetric and the baryon density decreases mono-
tonically with radius. By virtue of the simple geometry,
the neutrino radiation field monotonically changes from
isotropic to forward-peaked distributions towards low op-
tical depth, and the transition can be characterized solely
by κ. This fact motivates us to search correlated quanti-
ties in angular distributions of fn to κ.

There are three quantities catching our attention. The
first one is fn at µ = −1. We compute them in the neu-
trino data of Boltzmann simulations, which are displayed
as a function of κ in Fig. 2. We fit the fn at µ = −1 by a
decic function of κ; the best-fit function is plotted with
a black line in the same figure. More specifically, the
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FIG. 2. Cyan-dots represent fn at µ = −1 of our CCSN neu-
trino data computed by full Boltzmann neutrino transport
(1D-4x model in [36]), which are displayed as a function of
flux factor (κ). The black line represents the best polyno-
mial fitting function with respect to the natural logarithm of
fn. The coefficients are summarized in Tab I. The region sur-
rounded by red and blue lines corresponds to the dispersion
of the correlation, and we use them in the discussion of the
reliability for ELN-crossing searches based on two-moment
neutrino transport (see Sec. V for more details).

fitting function can be expressed as

ln fn|µ=−1(κ) =

10∑
s=0

asκ
s, (3)

where the coefficients as are provided in Table I. We
find that fn at µ = −1 has a very strong correlation to
κ in the region of κ <∼ 0.5. This is attributed to the
fact that the first moment is determined by the competi-
tion between the populations of outgoing- and incoming
neutrinos in these opaque regions, indicating that κ is
sensitive to the angular profile for incoming neutrinos.
At κ >∼ 0.5, however, the correlation becomes weak with
increasing κ; indeed, the red and blue lines (which repre-
sent the approximate fitting functions for the upper and
lower range of the correlation, respectively) deviate from
the black one. This is attributed to the fact that the
first moment at large κ is characterized only by outgo-
ing neutrinos. This is natural, since the neutrino angular
distribution is forward-peaked. The uncertainty of fn at
µ = −1 is, however, not a crucial issue to capture the
essential characteristics of overall distribution. On the
contrary, it is a crucial one to assess the ELN-crossing,
the detail of which will be discussed in Secs. IV and V.

Next, let us pay attention to the angular (µ-direction)
gradient of fn at µ = −1, since it potentially has a corre-
lation to κ in optically thick region. In the region of small
κ, the neutrino angular distribution is nearly isotropic,
implying that the gradient of fn should be small. In the
region of κ ∼ 1, on the other hand, the incoming neutri-
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TABLE I. The best-fit coefficients (decic function) capturing
the correlation between fn at µ = −1 with κ. We note that
the fitting is carried out with respect to the natural logarithm
of fn (see the text for more details).

rank value rank value

0 0 6 −2.200× 104

1 −5.964 7 3.880× 104

2 −7.926 8 −4.101× 104

3 1.767× 102 9 2.388× 104

4 −1.572× 103 10 −5.901× 103

5 7.619× 103 - -
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FIG. 3. Same as Fig. 2 but for the angular gradient of ln fn
at µ = −1. The fitting coefficients are summarized in Tab. II.

nos are determined by cumulative neutrino emissions and
back-scattered neutrinos during the neutrino-travel from
the outside. This suggests that the angular dependence
of incoming neutrinos is mild compared to the outgo-
ing neutrinos (forward-peaked distributions). It should
also be pointed out that the gradient has less influence
on characterizing the angular distribution at large κ (see
Sec. IV for more details), indicating that it can be chosen
rather arbitrarily as long as it is much smaller than that
in the outgoing direction.

Similar as Fig. 2, we compute the angular gradient of
fn at µ = −1 in our neutrino data of Boltzmann simula-
tion. The result is displayed as a function of κ in Fig. 3
(cyan dots). As expected, the correlation to κ is robust
at κ ∼ 0; the gradient monotonically increases with κ.
We also find that it is saturated at κ ∼ 0.5, and then be
almost flat profile. Although the dispersion is increased
at κ >∼ 0.5, we confirm that the gradient is much smaller
than the average; hence, it is not an issue for the retrieval
of angular distributions from κ. For convenience, we fit
the data by quartic function of µ; the result is shown
as a solid black line in Fig. 3, and the coefficients are
summarized in Table II.

TABLE II. The fitting coefficients (quartic function of κ) to
portray the correlation between the gradient of d ln fn/dµ at
µ = −1 and κ.

rank value

0 0

1 4.179

2 −8.771

3 8.554

4 −3.199

Finally, we investigate on the gradient of fn at µ = 1,
since the correlation to κ can be naturally expected at
κ ∼ 0 and 1. In the region of κ ∼ 0, the gradient should
be nearly zero, the reason of which is the same as that
for the gradient at µ = −1. For κ ∼ 1, on the other
hand, the gradient can be analytically estimated as fol-
lows. We assume that the sharp forward-peaked angular
distribution is expressed with an exponential function,

fn = exp{q(µ− 1)} (q � 1), (4)

where q corresponds to the gradient with respect to the
natural logarithm of fn at µ = 1. We note that the sim-
ple exponential function is not appropriate for incoming
neutrinos. However, this issue can be neglected in this
discussion, since the incoming neutrinos have less influ-
ence on characterizing the gradient of fn at µ = 1. By
virtue of the analytic expression of fn, we can express q
in terms of κ. By taking the limit of q � 1, it can be
approximately written as,

q ∼ 1

1− κ
. (5)

This consideration leads to an important conclusion that
pure polynomial functions are not appropriate to fit the
correlation between the gradient and κ, since the gradient
diverges to infinity as κ approaches unity. We, hence,
develop a hybrid fitting function which combines a cubic
function with Eq. 5 at κ ∼ 1,

d

dx
ln fn|µ=1(κ) =

{
uκ3 + vκ2 + wκ (κ ≤ κm)
1

1−κ (κ ≥ κm)
, (6)

where κm is the junction point for the two functions. In
Eq. 6, we have four free parameters: u, v, w, and κm,
which are determined as follows. First, we impose two
conditions at κm; the zero-th and first derivatives with
respect to κ for the two functions are continuous at κm.
By using the conditions, we can express u and v as a func-
tion of w and κm. Next, we determine w independently
from other parameters; we carry out root mean square
fitting of Boltzmann data at the small κ, in which we fit
the data with the region of 0 ≤ κ ≤ 0.05, and adopt the
obtained coefficient as w. This guarantees that fitting re-
produces the Boltzmann result in the region of small κ.
The rest of free parameters is κm, which is determined so
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TABLE III. The best-fit parameters in Eq. 6 (for the gradient
of fn at µ = 1) to the result of Boltzmann simulation.

coefficients best-fit

u 7.883

v −2.124

w 2.3859

κm 0.6975
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FIG. 4. Same as Fig. 3 but for the angular gradient of ln fn
at µ = 1. Eq. 6 corresponding to the fitting function, and
the best-fit one is displayed with a black line in this figure.
The best-fit parameters (u, v, w, and κm) are summarized in
Tabl. III.

as to minimize the error (summing up the absolute differ-
ence of the gradient between the fitting and the original.)
The best-fit parameters are summarized in Table III and
the resultant fitting function is displayed in Fig. 4. We
confirm that it captures the essential feature of the cor-
relation between the gradient of fn at µ = 1 and κ.

With taking advantage of the three correlations pre-
sented in this section, we develop a method to construct
the full angular distribution of fn from κ. The detail is
described in the next section.

IV. CONSTRUCTION OF ANGULAR
DISTRIBUTION OF fax FROM κ

Let us turn our attention to searching the best-fit pa-
rameters in our method, for which it captures the essen-
tial characteristics of angular distribution of fn obtained
in Boltzmann simulation (see Fig. 1). We note that this
search requires a detailed exploration in seven dimen-
sional parameter space at each κ, indicating that it is
computationally expensive. We alleviate the computa-
tional burden by using the three correlations described
in Sec. III. Below, we spell out explicitly our parameter-
search method optimized by the correlations.

In the region of µ ≤ µ0, we determine values of the
three coefficients in the quadratic function: d, g, and h;
thus, three independent conditions need to be imposed.
The two of them can be given from the correlations de-
scribed in the previous section. The first one is fn at
µ = −1 and the other is its angular (µ-direction) gradi-
ent at the same angular point. Using the polynominal fit
describing each correlation to κ (the coefficients are given
in Tables I and II for the former and the latter, respec-
tively), they can be determined independently and solely
from κ. We can, hence, complete the determination of
the three coefficients by adding one more independent
condition, which is given at µ = µ0 (see below).

In the region of µ ≥ µ0, on the other hand, we use
another correlation discussed in Sec. III, the angular (µ-
direction) gradient of fn at µ = 1, to determine values
of the coefficients, a, b, and c, in the quadratic function
(see Fig. 1). The correlation is expressed with Eq. 6;
hence, the gradient can be computed solely from κ. In
addition to this, fn at µ = 1 is constrained to be 1 from
the definition (see Eq. 1). Hence, as similar to the case
with µ ≤ µ0, we can determine the three parameters by
giving one more condition.

The matching condition for the two quadratic func-
tions at µ = µ0 provides the rest of required conditions
at both regions. In other words, the angular distribution
of fn can be fully determined by giving µ0 and fn(µ0).
We search the best combination of the two parameters,
for which the obtained fn becomes similar to those in the
Boltzmann simulation.

With setting a κ-grid4, we at first collect fn from the
neutrino data of Boltzmann simulation, having the same
value of κ. We note that flux factors extracted from the
Boltzmann simulation are, in general, not on the mid-
point of κ grid; hence, we linearly interpolate them from
the close spatial (radial) points. We then compute the
average of collected fn (fBave

n ) at each µ-cell used in the
simulation. Next, we set trial values of µ0 and fn(µ0).
As mentioned, this determines the all seven parameters
uniquely, i.e., the angular distribution of fn ca be fully
reconstructed, albeit temporally. We then compute the
difference of the reconstructed fn from fBave

n at each µ-
cell. We search the combination of µ0 and fn(µ0), for
which the total difference (summation of the absolute
difference on each µ-cell) becomes the smallest.

As shown above, the dimension of our parameter-
search can be reduced to two, owing to the three cor-
related quantities to κ. It is much less computational
expensive than the original seven dimensional search; in-
deed, we can perform the search on a laptop. Below, the
detail of our searching method for µ0 and fn(µ0) is de-
scribed, which seems to be efficient and stable. First, it

4 We set up a uniform grid of 1000 covering from 0 < κ ≤ 0.93.
From 0.93 < κ < 1, we set another uniform grid of 999. κ = 0.93
corresponds to the threshold flux factor that neutrino data of our
Boltzmann simulation is available (see the text for more details).



7

is naturally expected that the best-fit fn(µ0) would be
close to fBave

n (µ0). It is, hence, enough to search only
in the vicinity of fBave

n (µ0); in other words, fn(µ0) is
almost determined by giving µ0. We also accelerate and
stabilize our method by imposing a reasonable condition:
the best-fit µ0 and fn(µ0) smoothly change with κ. This
condition further narrows down the parameter space; in-
deed, the best fn(µ0) can be easily guessed from that at
nearby κ, which substantially accelerate the convergence
of the search.

We note that the latter condition may result in cap-
turing the local minimum, indicating that there may be
better parameters to reflect the characteristics of fn in
the Boltzmann simulation. In fact, there is no guarantee
that the parameters for the global minimum distribute
continuously with κ. It should be stressed, however, that
the missing of the global minimum does not compro-
mise the accuracy of our method, since the dispersion
of the angular distributions found in Boltzmann simula-
tions overwhelm the discrepancy between the local and
global one (see below for more details). It should also be
pointed out that, this condition makes our method sta-
ble. This is because, if we discard the latter condition,
the best combination of µ0 and fn(µ0) would vary dis-
continuously with a small change of κ, and the obtained
angular spectrum of fn results in large fluctuations with
κ. Furthermore, the smooth change of all coefficients to
κ is convenient for making a data-table, in which the
best-fit parameters (and other useful quantities) for each
κ are capsulated. When we employ the table for CCSN
simulations or other relevant analyses, we will construct
the angular distribution of neutrinos with arbitrary κ.
This indicates that we need interpolations of the angu-
lar distributions from those at the nearest κ-cell on both
sides. The discrete change of the angular distribution,
however, may lead to unphysical outcome. The smooth
condition, hence, plays an important role as suppressing
these artifacts.

There still remain two more things before completing
our method. First, we slightly correct the fitting param-
eters (except for µ0) in the two quadratic functions so
as to ensure that the flux factor computed from the ob-
tained fn exactly matches the given κ. In fact, we only
focus on the deviation from the result of Boltzmann sim-
ulation to determine the parameters. As a result, there
is not guarantee that the reconstructed fn produces the
same κ. It may be, however, no problem to neglect the
discrepancy, since we find that the error is small (< 5%).
This correction is just for the usability of our data-table.

We make an ad-hoc prescription to correct these co-
efficients, in which we change the overall shape of the
angular distribution of fn(µ0) by introducing a scale fac-
tor of η. It is multiplied to all six coefficients (a, b, c, d, g,
and h in Fig. 1); in other words, the angular distribution
is tilted by η. We iteratively search the value of η until
the flux factor computed from the angular distribution of
fn coincides with given κ. The advantage of this method
is that fn at µ = 1 does not change, since the logarithm

of fn at this point is zero. Hence, the condition of Eq. 1,
which will be used to retrieve fax from fn, is not affected
by the correction. It is also deserved to be mentioned
that the matching condition at µ0 is guaranteed, since
the two quadratic functions are changed with the same
scale factor. On the other hand, some correlated quan-
tities to κ (see Sec. III) are slightly influenced by the
correction. However, the impact is tiny; indeed, we con-
firm that the resultant fn sustains the essential trend of
correlations.

As the second remark, let us describe how we deter-
mine the parameters for strongly forward-peaked angular
distributions which the Boltzmann simulation does not
provide. In the neutrino data, we find that the maximum
flux factor is ∼ 0.95 for our considered range of neutrino
energy (5MeV to 50MeV) in the post-shock region. We
also find that the data sample is small around the edge
of the maximum. Thus, we apply our method only to
the region of 0 < κ ≤ 0.93. For 0.93 < κ, we need to
develop a prescription to determine the best-fit parame-
ters, which is described below. First, we assume that µ0

is constant, i.e., it is set as the same value at κ = 0.93,
which has been already determined by our method de-
scribed above. Next, we again introduce a scale factor of
η. We multiply all six coefficients in the two quadratic
functions at κ = 0.93 by η, and iteratively search the
value of η that the resultant fn distribution provides the
same flux factor as given κ (the value at the κ-cell). As
a result, all coefficients can be determined uniquely.

Obviously, it is a makeshift prescription. However, our
prescription is capable of capturing the essential charac-
teristics of very forward-peak angular distribution. For
instance, it is compatible with our argument regarding
the gradient of fn at µ = 1 (see Eqs. 4 and 5); indeed,
we confirm that the prescription provides the consistent
solution with the argument. On the contrary, our pre-
scription is not capable of capturing the detailed angular
structure for incoming neutrinos. As we have already
pointed out, however, the angular distribution of fn at
µ < 0 diverges with increasing κ (see Fig. 2 and also fol-
lowing discussions). This indicates that the fundamental
improvement to our method is required to address the
issue (see Sec. VI for the discussion). We, hence, reckon
that the makeshift prescription does not degrade the ca-
pability of our method.

Below, we show some essential results of reconstructed
angular distribution of fn. First, we compare them to the
originals in Boltzmann simulation (see Fig. 5). We select
the cases with four representative κ: κ = 0.3, 0.5, 0.8,
and 0.9. As shown in these plots, the obtained fn suc-
cessfully captures the essential profile in those obtained
from the CCSN simulation, which lends confidence to
our method. It should be mentioned that the dispersion
of angular distribution of fn in the simulation increases
with κ (we note that the scale of the vertical axis is dif-
ferent in the panels), in particular at µ <∼ 0. This trend
is consistent with our argument in Sec. III; fn(µ = −1)
becomes less sensitive to κ at κ ∼ 1. Our result suggests
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FIG. 5. Black lines denotes the reconstructed angular distribution of fn by using our method. Cyan-dots correspond to those
obtained from the neutrino data of our Boltzmann simulation. We compare them in four cases: κ = 0.3, 0.5, 0.8, and 0.9.

that the major drawback in constructing full angular dis-
tributions from zero-th and first moments is to determine
the angular profile for incoming neutrinos at high κ.

It is interesting to compare the non-trivial components
of Eddington tensor computed from the reconstructed fn
to those given by some analytical closure relations. We
select three representative ones: Minerbo [75], Livermore
[76], and Janka [77], see also [15] for their explicit forms.
We show the result of the comparison in Fig. 6. As shown
in the plots, the Eddington tensor obtained from our
method is similar to that given by Minerbo closure re-
lation at κ <∼ 0.3, and then it transits to that given by
Livermore one with increasing κ.

It is deserved to be mentioned that the arbitrary rank
of moments can be computed from the reconstructed fax,
which can be used for computations in neutrino-matter
interactions and neutrino advection. For instance, the
third moment is mandatory in energy-dependent two-

moment neutrino transport, if relativistic effects (such
as fluid-velocity dependence) are taken into account. We
also note that it is possible to use our data to give a clo-
sure relation for multi-D CCSN simulations by carrying
out a coordinate transformation of neutrino momentum
space (see also next section for more details). More de-
tailed discussions and the demonstrations are postponed
in future work.

Before closing this section, let us remark on comput-
ing fax from fn. We integrate reconstructed fn over µ-
direction (from −1 to 1), i.e., compute the zero-th mo-
ment of fn. From Eq. 1, f(µ = 1) can be computed
as,

f(µ = 1) =
N

2π
∫ 1

−1 dµfn(µ)
, (7)

where N denotes the zero-th moment of f . From Eq. 1,
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we can fully recover fax by using the reconstructed fn
and f(µ = 1).

V. DEMONSTRATION

We demonstrate the capability of our method by apply-
ing it to another CCSN model. We employ neutrino data
of a 2D CCSN model [78], in which the neutrino transport
is determined by solving full Boltzmann equations. We
compute the energy-dependent zero-th and first angular
moments by using the distribution function of neutrinos
(f) in the neutrino data. We reconstruct fax (azimuthal-
averaged distributions; see Eq. 2) from the zero-th and
first moments by using our method5, and then compare
the results to the originals.

There are two remarks before moving on the detail of
the demonstration. First, one may wonder if this test is
not necessary, since the capability of our method has been
already tested by comparing the reconstructed fax to that
obtained from a spherically symmetric Boltzmann simu-
lation (see Fig. 5). It should be noted, however, that all
fitting parameters are calibrated with the neutrino data
of the same CCSN simulation, indicating that the con-
sistency between the reconstructed fax and the original

5 In this demonstration, we do not repeat the retrieval procedures
presented in previous sections, but rather use a table, in which
the best-fit parameters are capsulated. As mentioned already,
the data-table is publicly available; hence, this test would be a
good example of how to use it.

may be a trivial result. On the other hand, we employ
an independent CCSN model in this demonstration with
different input physics (neutrino matter interactions [79]
and equation-of-state [80]) and, more importantly, this is
a multi-D model; hence, we can fairly asses the capabil-
ity of our method. Next, let us remark on a treatment of
flux factor. In general, it is defined by the norm of the
first angular moment divided by the zero-th one. In this
demonstration, however, we adopt the radial component
of the first moment. The main reason of the simplicity
is that our method is developed based on a spherically
symmetric CCSN model, indicating that it is not capa-
ble of capturing the angular structure associated with
non-radial fluxes.

We note, however, that there may be a better pre-
scription regarding the treatment of the flux factor in
our method. We adopt the flux factor (following the
definition, i.e., including non-radial components) to re-
construct fax. The obtained angular distribution can be
interpreted as the azimuthal-averaged distribution with
respect to the direction of the neutrino flux. In other
words, the non-trivial (diagonal) components of Edding-
ton tensor obtained by our method can be interpreted
as the eigen-values of the two-rank matrix6. The angu-
lar distributions of neutrinos expressed with angles mea-
sured from the radial direction can be obtained by a co-
ordinate transformation in neutrino momentum space.

6 We note that the Eddington tensor can be always diagonalized,
since it is a symmetric matrix. See also [5] for the detailed math-
ematical property of the Eddington tensor.
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The obtained fax through the coordinate transformation
seems to be more realistic than that computed only by
the radial component of the neutrino flux, since the con-
dition of axial symmetry in neutrino momentum space
would be a reasonable approximation with respect to the
direction of the flux. This treatment may be useful, in
particular for determining a closure relation in multi-
D two moment neutrino transport. It is interesting to
see how the CCSN dynamics is sensitive to the different
treatment of flux factor in our method, although the de-
tailed study is beyond the scope of this paper and will
be addressed in future work.

In the demonstration, we employ a neutrino data at
the time snapshot of 250 ms after bounce. In this time
snapshot, we found strongly asymmetric νe and ν̄e emis-
sions associated with PNS kick [78], which triggers the
occurrence of ELN-crossings at R >∼ 50 km in the north-
ern hemisphere (see [49] for more details). The neutrino
radiation field is, hence, convenient to assess the capabil-
ity of our method for searching ELN-crossings, which is
one of the items to be considered in this paper.

Fig. 7 portrays the energy-dependent features of an-
gular distributions of reconstructed fax, focusing on νe.
We display the results at different radii (40, 50, and 75
km from left to right panel) along the same radial ray
with θ = 45◦. As shown in the figure, the reconstructed
fax has a similar profile as that in the original data (ob-
tained from Boltzmann simulation) at R <∼ 50 km. On
the other hand, we find a relatively large systematic er-
rors at R = 75 km, in particular at the region of µ < 0.5.
This trend is consistent with our previous argument dis-
cussed in Sec. IV, saying that our method is not capa-
ble of capturing the angular profile for incoming neutri-
nos accurately in cases with forward-peaked distributions
(the flux factor for 10 MeV neutrinos is roughly 0.8 at 75
km). We also find that other effects (multi-D neutrino
transport and different input physics) seem to slightly
enhance the deviation (see also Fig. 5 for the case of
κ = 0.8).

It should be stressed, however, that the reconstructed
fax captures the essential profile for outgoing neutrinos
regardless of neutrino energy and spatial positions. To
see the trend more comprehensively, we check them for
other neutrino species and at other spatial locations. To
extract the essence, we compute the energy-integrated
angular distribution (Gax), which is defined as

Gax(µ) =

∫
d(
ε3

3
)fax(ε, µ), (8)

where ε denotes the neutrino energy, and we carry out the
ε-integration in the right hand side of Eq. 8 with the unit
of MeV. Following the definition, we compute Gax from
the reconstructed fax at different energies. Figs. 8 and 9
portray the results along the radial ray with θ = 45◦ and
135◦, respectively. We confirm that the reconstructed
angular distributions of Gax(µ) at µ >∼ 0.5 are good
agreement with those obtained from Boltzmann for all
neutrino species and even in cases with strongly forward-

peaked angular distributions7. The accurate reconstruc-
tion of fax for outgoing neutrinos is one of the advantages
in our method.

Finally, let us discuss the reliability of approximate
ELN-crossing searches based on two moment neutrino
transport. In Figs. 10 and 11, we display the angular
distribution of Gax for νe and ν̄e in the same panel. In
the former figure, we select a radial ray with θ = 45◦,
in which ELN-crossings are observed in the original neu-
trino distribution at R >∼ 50 km. In the latter figure, on
the other hand, we select a radial ray with θ = 135◦, in
which no ELN-crossings occur in the entire post-shock
region. At R = 40 km (left panel) where ELN crossings
are not observed in the CCSN model at both θ = 45◦

and 135◦, we confirm that the systematic error of recon-
structed Gax(µ) is very small; consequently, the recon-
structed Gax(µ) of νe and ν̄e do not cross each other,
which is consistent with that in the originals. We should
mention a caveat, however, that Gax at µ = 1 for νe and
ν̄e is very close each other for θ = 45◦ at 40 km, indi-
cating that the small systematic error potentially change
the result. On the contrary, our method provides a ro-
bust assessment for ELN crossing at θ = 135◦ (and 40
km), since the difference of angular distributions of Gax

between νe and ν̄e is much larger than the systematic
errors of the reconstruction.

At R = 75 km and 150 km, on the other hand, we
found a fatal issue; the retrieved angular distributions of
Gax of νe and ν̄e at θ = 45◦ do not cross each other,
whereas those in the original data do (see the middle
and right panels in Fig. 10), indicating that our method
fails to judge the ELN-crossing. The misjudgement is at-
tributed to the fact that the systematic errors overwhelm
the actual difference between νe and ν̄e angular distribu-
tions. It should be stressed that the ELN-crossing in the
original data is so tiny. We note that such tiny crossings
are common in CCSN environment (see, e.g., [49, 56]),
indicating that the small error does critical harm to the
judgement. We conclude that ELN-crossing searches by
our method may be valid only at r <∼ 50 km or κ <∼ 0.5
for the average energy of neutrinos.

To strengthen our statement regarding the limitation
of ELN-crossing searches, we reconstruct Gax(µ) of νe
and ν̄e from different values of parameters in our method.
We change the fitting coefficients for the correlation be-
tween fn(µ = −1) and κ (see Sec. III). We consider the
two cases that represent the dispersion of the correla-
tion (see red and blue lines in Fig. 2). With replacing
the fitting function, we take the same procedure to de-
termine seven free parameters to obtain fn as described
in Sec. IV. The results of retrieved Gax are displayed as
dashed lines in Figs. 12 and 13 (we also show the result
of best-fit parameters with solid lines in the panel as a

7 For instance, the flux factor at R = 150 km for the average energy
of neutrinos (∼ 10 MeV) is larger than 0.9, indicating that the
angular distribution is strongly forward-peaked.
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FIG. 13. Same as Fig. 12 but for θ = 135◦.

reference). As expected, the dispersion of angular distri-
bution of Gax at 40 km is very small, indicating that our
method provides a robust judgement for ELN-crossings.
On the contrary, there are large uncertainties of Gax at
µ = −1 at 75 km and 150 km, which makes the sign of
ELN indeterminate. This is an evidence that the judge-
ment of ELN-crossing in our method is not reliable at
large radii.

The above argument would illustrate a common issue
for other approximate ELN-crossing searches based on
two-moment neutrino transport. It also casts doubt on
the conclusion in [59, 60]. In these studies, they judge
the occurrence of ELN-crossing if there exists F fulfilling
the condition that the product of I0IF becomes nega-
tive (where I0 and IF denote the ELN and that inte-
grated with F , see [58] for more details); in other words,
they judge no ELN crossings only if arbitrary F provides
I0IF > 0. We reckon that this criterion would lead to
an optimistic judgement with respect to the occurrence
of ELN-crossing, and there is a danger that they capture
the spurious crossings8. In fact, our demonstration sug-
gests that it is easy to generate ELN-crossings artificially
at R >∼ 50km by changing fn at µ = −1 within a certain
range of the dispersion (see in Figs. 12 and 13). This fact
urges reconsideration of their conclusions, and it would
be necessary to make detailed comparisons with the re-
sults of multi-angle neutrino transport to substantiate
their claim.

VI. SUMMARY

In this paper, we develop a novel method by which
to construct neutrino angular distribution in momentum

8 One may think that the spurious crossings never occur in their
method as long as F is positive (see also [58]). However, the
statement is only true if the full angular moments of neutrinos are
considered. If we truncate the angular moments at a certain rank
(as we do in the two-moment method), it potentially generates
spurious crossings.

space from the zero-th and first angular moments. In our
method, we employ two quadratic functions in a piece-
wise fashion to determine the angular (µ-) distribution,
and the seven free-parameters are determined by refer-
ring the neutrino data of a spherically symmetric CCSN
simulation with full Boltzmann neutrino transport [36].
To narrow down the parameter-space, we search corre-
lated quantities in the angular distribution of neutrinos
to a flux factor (κ). By using the results of correlation,
we determine the best parameters that minimize differ-
ences between reconstructed angular distribution of neu-
trinos and those of the original. We extend our method
with a makeshift but appropriate prescription to cover
the cases with strong forward-peaked angular distribu-
tion (κ >∼ 0.9) where the Boltzmann simulation can not
provide the accurate data. Consequently, we determine
the all of the free parameters to arbitrary κ; i.e., we
complete the construction of a data-table capsulating all
best-fit parameters. We note that other useful quantities
(such as non-trivial components of Eddington tensor) are
also included in the file.

By using our method, we demonstrate reconstruction
of fax by using the neutrino data from one of the most
recent 2D CCSN model with full Boltzmann neutrino
transport [78]. We assess the capability of our method
by comparing the reconstructed fax to the originals. The
demonstration lends confidence to our method; indeed,
essential features of the angular distributions, in partic-
ular for outgoing neutrinos, can be well reconstructed,
which is the strongness in our method. On the other
hand, we also underline the weakness in our method;
the large systematic errors emerge in the angular distri-
butions for incoming neutrinos, and it increases with κ.
This issue is critical for ELN-crossing searches; indeed,
our method fails to capture the crossings at κ >∼ 0.5 (or
R >∼ 50 km) for the CCSN model. We also find that all
approximate ELN-crossing searches based on two mo-
ment neutrino transport would miss the judgement at
κ >∼ 0.5, since the systematic errors in the reconstructed
fax would overwhelm the actual difference of angular dis-
tribution between νe and ν̄e; indeed, ELN-crossings in
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CCSN environments are usually very tiny. Our result
suggests that the jugement of ELN-crossings based on
other approximate prescriptions with two moment neu-
trino transport is not accurate at R >∼ 50 km or κ >∼ 0.5.
It should also noted that we assess the applicability of
ELN-crossing searches with two-moment methods by
using a different approach (Lucas Johns and Hiroki Na-
gakura in prep), and the conclusion is consistent with our
finding in this paper.

We note that this study gives a hint of how to improve
the accuracy of ELN-crossing searches with approxi-
mate neutrino transport. As described above, the biggest
uncertainty in our method is to construct angular distri-
butions for incoming neutrinos. This indicates that the
accuracy of ELN-crossing may be substantially improved
if we can correct them appropriately. We reckon that the
ray-tracing method may be convenient for the purpose.
The essential idea is as follows. After obtaining fax by
using the present method, we perform a ray-tracing com-
putation to determine f(µ = −1), i.e., we solve geodesic
equations for incoming neutrinos along each radial ray9.
In the ray-tracing simulation, we need to compute the re-
action kernels of neutrino-matter interactions, that can
be preliminary evaluated by using the reconstructed fax.
Once the ray-tracing computation is over, we then re-
place f(µ = −1) and assess the ELN-crossing by using
Gax(µ = 1) and the renewed Gax(µ = −1) (see Eq. 8).
We note that the occurrence of ELN crossing can be ap-
proximately judged by checking only the sign of ELN at
µ = −1 and 1 in most of the situation. In fact, the
number of ELN crossings found in previous CCSN sim-
ulations is usually one (although there may be exceptions
[60]), indicating that the two signs become opposite each
other in this case. This study is currently underway, and
the results will be reported in our forthcoming paper.

Let us close this paper with giving a recipe of how
to construct angular distributions of neutrinos from the
zero-th and first angular moments with using the data-
table that capsulates all necessary items for the compu-
tation.

1. Compute flux factors (κ) of neutrinos from the
zero-th and first angular moments. If the neutrino
transport is solved with energy-dependent schemes,
it would be preferred to compute κ at each neu-
trino energy10. It may be useful to compute κ
from the energy-integrated (or average-energy) mo-
ments11, although the reconstructed angular distri-
bution may be less accurate than that integrated

9 In our method, we only solve the geodesic equation along the
radial ray of different solid angle, which is much computationally
cheaper than full Boltzmann neutrino transport, indicating that
it would be feasible.

10 As a reference, we refer the readers to see Sec. V: how our method
can be applied in multi-D CCSN model.

11 This is essential if the neutrino transport is solved under the gray
approximation.

from the energy-dependent distributions. We note
that there are two options to compute κ in the
energy-integrated case; one is computed from the
number density (zero-th moment) and number flux
(first moment), and the other is computed from
energy density (zero-th moment) and energy flux
(first moment). The choice depends on the pur-
pose of the analysis; for instance, the former choice
(number density and flux) would be appropriate for
ELN-crossing searches.

2. Extract the seven parameters characterizing the
normalized angular distribution of fn (see Eq. 1 for
the definition of fn) from the data-table. See also
Fig. 1 for the definition of each parameter. We note
that κ listed in the table is discretized. This implies
that it is necessary to carry out an interpolation so
as to construct an angular distribution matching
with the given κ12. Let us provide an example. We
take the free parameters at neighboring κ-cells on
both sides of the given κ, and then reconstruct their
angular distributions of fn. We then obtain fn at
given κ by interpolating linearly between the two
distributions at each angular point (µ). We note
that

∫
dµfn is also listed in the data-table; hence,

this value should be also interpolated, which will
be used in the next step.

3. By using the N (the zero-th angular moment of f)
and

∫
dµfn, we compute f(µ = 1) from Eq. 7.

4. We then compute the azimuthal-averaged angular
distribution of neutrinos (fax) by using the ob-
tained f(µ = 1) and fn from Eq. 1.
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