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The waveform templates of the matched filtering-based gravitational-wave search ought to cover wide range
of parameters for the prosperous detection. Numerical relativity (NR) has been widely accepted as the most
accurate method for modeling the waveforms. Still, it is well-known that NR typically requires a tremendous
amount of computational costs. In this paper, we demonstrate a proof-of-concept of a novel deterministic deep
learning (DL) architecture that can generate gravitational waveforms from the merger and ringdown phases of
the non-spinning binary black hole coalescence. Our model takes O(1) seconds for generating approximately
1500 waveforms with a 99.9% match on average to one of the state-of-the-art waveform approximants, the
effective-one-body. We also perform matched filtering with the DL-waveforms and find that the waveforms can
recover the event time of the injected gravitational-wave signals.

I. INTRODUCTION

Since the first detection of gravitational waves (GW)[1],
numerous GW events have been captured by ground-
based GW detectors, the Advanced Laser Interferometer
Gravitational-wave Observatory (aLIGO) [2] and Virgo [3].
The sources of all events turned out to be compact binary co-
alescences (CBCs), the collision of two dense objects such as
black holes (BH) or neutron stars (NS) — mostly from binary
black holes (BBH), 47 out of 50, and partially from binaries
containing at least one neutron star [4].

For the type of GW progenitors, template-based GW search
is one of the most efficient approaches because the gravita-
tional waveforms from binary mergers can be modeled pre-
cisely by multiple methods, e.g., post-Newtonian (PN) for the
inspiral phase, numerical relativity for the merger phase, and
perturbation theory for the ringdown phase. The template-
based search utilizes the matched filtering method [5], which
essentially computes the cross-correlation between template
waveforms and real GW signal buried in noisy data.

The successful implementation of the matched-filtering-
based search relies on the pre-computed waveform templates.
Numerical relativity (NR) has been considered as the most ac-
curate method for computing gravitational waveforms. How-
ever, obtaining a large number of templates that cover param-
eter space densely enough for the precise matched filtering
search and parameter estimation with NR is not feasible be-
cause of too heavy computational requirements. For example,
NR simulation of the first GW event GW150914 [1] takes 1-2
weeks using tens to hundreds of CPU cores [6]. In contrast, it
takes less than O(1) seconds to generate inspiral waveforms
using post-Newtonian approximations.

Several waveform models approximating NR waveforms
have been proposed to reduce the computational cost with
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reasonable accuracy NR [7–14]. Nonetheless, the physical
parameter spaces where each approximant exactly covers are
different from each other [12, 15]. Therefore, reserving plural
waveform models, complementing each other for various con-
figurations, and saving computing time are crucial for a more
elaborate template-based search. It justifies the further study
of new waveform approximants.

We present a proof-of-concept demonstration of a deep
learning (DL) model for generating gravitational waveforms
from the CBC events covering the late phase of inspiral to
final ringdown phases. For this purpose, we only consider
non-spinning BBH systems for simplicity. Chua et al. [16]
utilize deep artificial neural networks to map the physical pa-
rameters to coefficients of reduced-order bases waveforms.
Williams et al. [17] use Gaussian process regression to ap-
proximate the inspiral-merger-ringdown waveforms from the
BBH. However, the capability of a fully DL-based determinis-
tic approach has not been explored so far for the generation of
the merger-ringdown waveform of CBC1. Hence, we exam-
ine the viability of the deterministic DL model as a merger-
ringdown gravitational waveform model throughout this pa-
per.

While DL models show remarkable performances in a
wide variety of fields such as natural language processing
(NLP) [18, 19], autonomous driving [20], and image classi-
fication [21], most of the models are only capable of handling
fixed-size data once they are trained. However, the model
we shall adopt for this study should be able to cope with
differently-sized data because the length of the waveforms
observable by GW detectors depends on the two factors: (1)
lower-frequency limit of the detector’s sensitivity (around 10
Hz for ground-based detectors) and (2) the masses of the com-
pact binary system [2, 4].

The recurrent neural network (RNN) encoder-decoder-

1 It is known that deterministic models generally show higher accuracy and
performance than stochastic methods as the training data is sufficient.
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TABLE I. Parameters of the waveform in each dataset. Dataset-1 and-2 have different mass ranges, mass ratios, and numbers of samples, as
shown in the table. All the other parameters of both datasets are set to be the same. Note that the waveforms in the datasets are generated in
the time domain with PyCBC and SEOBNRv4.

Variable Dataset-1 Dataset-2
Mass [min, max] [10M�, 40M�] [40M�, 100M�]
Mass ratio [min, max] [1, 4] [1, 2.5]
Number of waveforms(training, validation, test) (12469, 1533, 1512) (12447, 1530, 1523)
sampling rate 4096Hz 4096Hz
Distance 100Mpc 100Mpc
Spin 0 0
Inclination angle 30◦ 30◦

based sequence-to-sequence (seq2seq) model [22, 23] de-
signed for NLP is one of the DL models that can handle vari-
able input/output sizes. This model also has shown outstand-
ing performances in many NLP studies [24–27]. The property
of gravitational waveforms is similar to that of language type
data containing time-ordered words in sentences with differ-
ent lengths. In that sense, we consider seq2seq as the experi-
mental method to generate waveforms and slightly modify the
structure of the model for our purpose.

This paper is organized as follows. Sec. II provides detailed
explanations on the data preparation. In Sec III, the original
seq2seq model, our modified version, and an evaluation met-
ric for the model performance are elaborated. Sec. IV presents
the results of the DL-waveform analysis with GW data and ad-
ditional dataset-size-associated experiments. Finally, we dis-
cuss our results and future research directions in Sec. V.

II. DATA

Since RNN is well-suited to time-series data, we compute
non-spinning BBH waveforms in time-domain for training
dataset using PyCBC [28], a software package for GW data
analysis. For this, we use a variant of effective-one-body
(EOB) approximants, SEOBNRv4 [29], one of the most ac-
curate versions of the approximants used in the GW searches.

For the training of the DL model, adopting waveforms
obtained by NR is more beneficial than using approximants
in the sense of accuracy. However, we find that the num-
ber of publicly available NR-waveforms of BBHs is only
O(103) [30–33]. In specific, the number of non-spinning
BBH waveforms reduces to O(102) [30], so small that it
might cause overfitting of the DL model [34], which infects
the general performance of the model. Thus we use EOB-
waveforms to get a sufficient amount of training samples.

With the software and the approximant, we configure two
datasets whose mass ranges of single black holes are [10M�,
40M�] (dataset-1) and [40M�, 100M�] (dataset-2) to divide
search regions into low- and high-mass regions. Each dataset
is consist of training, validation, and test sub-datasets with re-
spective sample number ratio of 0.8, 0.1, and 0.1. The mass
ratios of the sub-datasets are set differently2. For the train-

2 The mass ratio is defined as m1/m2, and m1 ≥ m2 is assumed by con-
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FIG. 1. The component masses of training (left) and test (right) sub-
datasets in dataset-1 (upper) and dataset-2 (bottom) with the color-
coded chirp mass. While we use a set of fixed mass ratios, m1/m2,
for the training sub-dataset, m1 and m2 are randomly chosen for the
test sub-dataset with the restriction that m1 ≥ m2. The mass ratios
range from 1 to 4 for the dataset-1 and from 1 to 2.5 for dataset-2.

ing and validation samples, we use fixed mass ratios with an
interval of 0.1 (0.05) within the range of [1, 4] ([1, 2.5]) for
dataset-1 (dataset-2). On the other hand, we randomly sam-
ple m1 and m2 in the corresponding parameter space for the
test sub-dataset. In this manner, we can prove that the model
trained with a limited mass ratio samples can be applied to the
ones residing in any regions of the parameter space. Fig. 1
shows the scatter plots of m1 and m2 of training sub-dataset
in dataset-1 and -2 with color-coded chirp masses defined as
Mch = (m1m2)3/5(m1+m2)−1/5. We use the sampling rate,

vention.
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FIG. 2. Examples of input (green dashed; inspiral) and target
(blue solid; merger-ringdown) waveforms drawn with different chirp
masses of the compact binary system. They are computed by us-
ing SEOBNRv4. The upper and lower waveforms depict Mch =
12.87M� and Mch = 16.15M�, respectively. Note that the length
of the generated waveforms changes depending on the mass.

distance, and inclination angle of 4096Hz, 100Mpc, and 30◦,
respectively. The parameters employed for data preparation
are tabulated in Table I.

Following the data generation, the waveforms in dataset-1
and -2 are normalized with the maximum strain amplitude of
each dataset. Since the diverse range of samples may cause bi-
ased results [35], data normalization for the differently ranged
dataset is necessary. By normalizing the dataset, the sample
values can be restricted in a comparable range and contribute
equally to the DL model optimization at the beginning of the
training.

In turn, we divide each waveform into input and target
waveforms: the input with the inspiral phase and target with
merger and ringdown phases, respectively. For the division,
we consider the point that the GW frequency reaches the in-
nermost stable circular orbit (ISCO) frequency [36] as the ter-
mination point of the inspiral phase [37]. The final data point
of the input waveform and the initial data point of the target
waveform are intentionally superposed to check whether the
DL-waveform and given inspiral waveform are smoothly con-
nected. Fig. 2 illustrates examples of input and target wave-
forms with different chirp masses. For the training of our DL
model, we feed the input waveform to the DL model and let
the model recover target waveform.

For divided target waveforms, we illustrate the number den-
sity distributions of waveform lengths in Fig. 3 (denoted by
Lt). As shown in the figure, the distributions are not uniform.
We reckon that this non-uniformity causes Lt-dependent ac-
curacy of the DL model, which will be discussed in Sec. IV A.
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FIG. 3. target waveform length (Lt) distribution of the training sub-
dataset in dataset-1 (thick red) and dataset-2 (thin blue). Note that
the non-uniform distributions are caused by the parameter sampling
and input-target split method described in Sec. II.

III. METHODS

Since the duration of the GW emission within the detector’s
sensitive frequency band varies depending on the component
masses or chirp mass of the binary system, we need a DL
model capable of handling different size data. For this, we de-
sign a DL model with a novel architecture based on seq2seq,
which is built for NLP. In this section, we briefly overview the
original seq2seq model3 and elaborate on our model below.

A. Original Sequence-to-Sequence Model

DL models for NLP take a batch of sentences as inputs
and output transformed sentences. For that, each word in the
sentences should be digitized since machine learning models
work numerically. With the linguistic property that the num-
ber of vocabularies in a specific language is limited to a finite
number, each distinct word can be represented as a vector by
word embedding [38]. Thus, the sentence prediction problem
can be regarded as selecting words from a given dictionary.
The vectorized sentences, however, have different sizes be-
cause every sentence is composed of a different number of
words.

To resolve the issue, the encoder, mapping the variable
size input sequence into a fixed-size vector, is employed in
the seq2seq model. Afterward, the transformed vectors, so-
called representations, by the encoder are transmitted to the
decoder, and it sequentially recovers the variable size target
sentences. In the decoder calculation process, the output at the
previous computing-step is taken as the input of the next step.

3 For more details of the original model, we refer to [22, 23].
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FIG. 4. The schematic workflow of the DDS2S model. The solid black boxes indicate RNN cells. The model sequentially takes S vectors
as input waveforms and attempts to regenerate target waveforms and GO-function, G. The decoders start computation when inputted 〈SOS〉
and retrieve T vectors as output waveforms until the GO-decoder yields a value under 0.5, marked by 〈EOS〉. Note that the decoders use the
output of the previous computing-step as the input at the next computing-step. The detailed structural information of the model is tabulated in
Table. II.

Each sentence is required to end with the end-of-sequence to-
ken (〈EOS〉), and the decoder starts and finishes its computa-
tion by taking and outputting 〈EOS〉. The conditional vector
〈EOS〉 can be defined differently depending on the user’s pref-
erence.

B. Dual-Decoder Sequence-to-Sequence Model

In the work of the original model, Sutskever et al. [23]
were able to construct the 〈EOS〉, the interrupting condition
of the decoder computation, using the linguistic property that
the number of vocabularies is limited. Since the words in the
dictionary can be discretely distinguished, it is clear to set the
condition.

Regarding the GW-data, however, it becomes hazy to es-
tablish a criterion for interrupting the computing-step because
the strain amplitudes of GWs are continuous real numbers:
the number of possible cases is infinite, unlike the words in
a dictionary. Thus, we cannot expect the model to produce
an output that exactly matches a specific number by all digits.
For example, when we set 〈EOS〉 = 0, the model is unlikely
to obtain the exactly matching value in machine precision.

As a strategy for learning this continuous sequence, we de-
sign a modified seq2seq model (DDS2S, Fig. 4) with one en-
coder and dual-decoder, GW- and GO-decoder: the encoder
encrypts input waveforms, GW-decoder recovers target wave-
forms, and GO-decoder predicts the length of the target wave-
forms. While the computational mechanisms of the encoder

and decoders are identical to the ones in the original model,
the approach for handling input and target data is different.

First, the input and target waveforms are divided into the
number of S and T vectors with R elements. When R >
1, the ends of the waveform elements are zero-padded before
division to match the component numbers with the multiples
ofR. The zero-padded lengths of input and target waveforms
can be computed via Ls = SR and Lt = T R 4. Then, the
encoder sequentially takes R elements of input waveforms S
times and encrypts them into fixed-size vectors. The encoder
outputs are transmitted to GW- and GO-decoders.

Subsequently, the GW-decoder regenerates R elements of
target waveforms at every computing-step throughout the T
step5. The generated waveforms are stacked in the order of
computing-step and compared with the target waveforms to
calculate the error function. As the error function of the GW-
decoder, I, we use the sum of mean-squared error and nega-
tive cosine similarity;

I(g, t) =
1

T
Σi(gi − ti)2 −

g · t
||g|| ||t||

, (1)

where g and t are respectively the generated and target wave-

4 Note that Ls and Lt are the lengths of input and target waveforms without
zero-padding asR = 1.

5 The total computing-step multiplied by R and waveform length are com-
patible concepts, and one can convert them into the duration of GW by
multiplying the inverse of the sampling rate, 4096Hz.
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forms; T is the number of vectors for the given target wave-
form; || · || is L2 norm.

Lastly, we establish the GO-function to endow the GO-
decoder the capability to estimate the length of the target
waveform. When the given target waveform consists of T
vectors, we can set the integer condition, C, for progressing
from computing-step τ to τ + 1 as follows: 1 for proceeding
and 0 for breaking.

Cτ =

{
1, if 1 ≤ τ < T − 1

0, if τ ≥ T .
(2)

We may use the set of Cτ to train GO-decoder, but the dis-
crete values and rapid decrease of C from τ = T −1 to τ = T
are inappropriate for the training of the DL model. Thereby,
we define GO-function, G, approximating the integer C val-
ues with a smooth decreasing pattern near τ = T and use
the function to compute the mean-squared error with the GO-
decoder outputs. The GO-function and the error function, J ,
of the GO-decoder are described below.

Gτ =

{
1− 0.5 (τ/T )

α
, if 1 ≤ τ ≤ T − 1

0, if τ ≥ T ,
(3)

J (o,G) =
1

T
Σi(oi − Gi)2, (4)

where oi is the output of GO-decoder. Fig. 5 presents how
the curve of the G varies according to different αs. As the α
is getting bigger, the GO-function approximates the C values
more accurately. On the contrary, we find that the rapid de-
crease of G near τ = T hinders the training of the DL model
when the α is too high. We empirically determine α of 5 for
the training of the model.

The final loss for the training is the sum of the error func-
tion of GW- and GO-decoders, namely I + J . The model is
trained by adjusting its parameters in such a way the error is
minimized.

We apply the Sigmoid to the output layer of the GO-
decoder since the GO-function should output values from 0
to 1. Then, we have given output values rounded to either 0
or 1. The computation continues when the rounded value is
1 and stops otherwise. Hence, the GO-decoder output below
0.5 serves as 〈EOS〉 in our case. For this reason, we define G
to have a slightly higher value than 0.5 at τ = T − 1 because
we expect the model to stop calculating at τ = T . For the
DDS2S model, we newly define zero vectors withR elements
as a start-of-sequence token (〈SOS〉), which is inputted at the
start of decoder computation.

Among the prominent RNN cells, we choose Gated Re-
current Unit (GRU) [22] for the encoder and both decoders
because the setting with GRU showed higher accuracy and
faster training than Long-Short Term Memory [39, 40], an-
other well-known RNN cell. A fully connected layer is placed
at the end of the decoders’ hidden layers to convert hidden
states to vectorized outputs with R components. We use the
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FIG. 5. The GO-function, G, with several values of α in greyscale.
The red dashed-line depicts how the integer condition, C, changes
according to the computing-step. As the value of the α increases, the
function approximates the C values more accurately. We also draw
the horizontal blue dotted-line at 0.5, the condition of interrupting
decoders’ computation.

hyperbolic tangent as the activation function for hidden layers
of each RNN cell of encoder and decoders.

For the model structure, we find an empirically optimal
model configuration varying the number of neurons in hid-
den layers (hereafter, hidden neurons) based on the overlap to
a reference waveform, which we will discuss in the following
sub-section. The information on the network configurations
and hyperparameters of the optimal model is summarized in
Table II.

C. Overlap

We use overlap to assess the DL-waveforms’ accuracy. The
normalized overlap,M, of the DL-waveform g and the target
t can be computed as

M≡ (g|t)√
(g|g)(t|t)

, (5)

where (g|t) =
∫∞
−∞ g̃(f)t̃∗(f)df . g̃ and t̃ are the Fourier

transform of g and t, respectively, and asterisk mark (*) is
complex conjugate. Note that M becomes 1 for the perfect
match and 0 for the perfect mismatch between g and t.

From the grid-search described in Appendix A, we choose
an empirically optimal model configuration, maximizing the
minimum overlap of the model’s output waveforms. Provid-
ing accuracy, we use the setup with 256 hidden neurons and
R = 1. Henceforward, we shall only discuss the results of
the model with 256 hidden neurons and R = 1. The detailed
explanation can be found in Appendices A and B.
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TABLE II. Detailed structure of the DDS2S model.
Encoder GW-Decoder GO-Decoder

RNN cells GRU GRU GRU
The number of RNN cells S T T
The number of input layers 1 1 1
The number of hidden layers 4 4 4
The number of output layers - 1 1
The number of input neurons R R 1
The number of hidden neurons 256 256 256
The number of output neurons - R 1
Activation function of input layers Tanh Tanh Tanh
Activation function of hidden layers Tanh Tanh Tanh
Activation function of output layers - - Sigmoid
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FIG. 6. Density heatmap of overlap according to target waveform lengths, Lt, for the dataset-1 (left) and 2 (right). We draw the vertical axes
of the two plots in the same range and scale. For clear contrast, we leave the regions with no samples empty at the bottom of the plots. As
shown in the plots, overlaps of all the DL-waveforms are higher than 0.990. Besides, the averages of the waveforms from both datasets are
over 0.999. However, a few shortest and longest samples have smaller overlap values. Considering the relatively small number of the shortest
and longest waveforms in the training sub-dataset (Fig. 3), it implies that the non-uniformity of the sub-dataset is related to the locally different
accuracy of the DL model.

IV. RESULTS

A. Waveform Validation

The Fig. 6 depicts the overlap density heatmap between the
DL-waveforms and corresponding target EOB-waveforms of
the dataset-1 and 2. All of the DL-waveforms are in excel-
lent agreement with their target waveforms in both cases as
the minimum value of overlaps is higher than 0.9906. Fur-

6 For comparison, the authors of Ref. [41] have shown that the overlap be-
tween numerical and their phenomenological waveforms ranges from 0.95
to 0.99. On the other hand, Ref. [42] have shown their model results in the
overlap ≥ 0.99.

thermore, the mean overlaps of waveforms from both datasets
are higher than 0.999, indicating less than 0.1% average error.

However, as we can see from the figure there are several
outliers whose overlaps are substantially smaller than the ma-
jority. We explore the dependence of the overlap on the target
waveform length to track down possible reasons for relatively
poor overlap cases. The heatmap shows the distribution of the
overlaps concerning the length of the target waveforms. The
overlap of dataset-1 (dataset-2) tends to decrease at the short-
end and long-end of the target waveform length, i.e., Lt <∼ 100
or Lt >∼ 250 (Lt <∼ 400 or Lt >∼ 600). As shown in Fig. 3, the
training samples in the range of 100 <∼ Lt <∼ 250 of dataset-1
and 400 <∼ Lt <∼ 600 of dataset-2 dominate the number dis-
tribution of the target waveform length. It can be attributed to
the fact that the model is more likely to weigh the majority of
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(a) Best case of dataset-1,M = 0.999
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(b) Best case of dataset-2,M = 0.999

200 300 400 500

−0.5

0.0

0.5

input target generated

265 270 275 280

L

−0.50

−0.25

0.00

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze

d
h
(t

)

(c) Worst case of dataset-1,M = 0.991
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(d) Worst case of dataset-2,M = 0.991

FIG. 7. The input (green dashed), target (blue solid line with dots), and DL- (red solid) waveforms from dataset-1 (left column) and dataset-
2 (right column) with the amplified images of connection points. The horizontal and vertical axes indicate the length of the waveforms in
sampling unit and the normalized strain amplitude of the GWs, respectively. We only show a hundred sampling units of input waveforms in
the plots for clear visualization. The top and bottom panels are the waveforms with the highest and lowest overlap cases, respectively.

the training sub-dataset.

We also visually inspect the agreement between the DL-
waveforms and target waveforms. Fig. 7 shows the best and
worst overlap cases of the DL-waveforms. The overlaps of the
best cases for both datasets areM = 0.999. The time-series
of the DL-waveforms matches well with the target waveforms.
For the worst cases, the overlaps of the two datasets are both
0.991 (Fig. 7 (c) and (d)). We see that there exist small dis-
continuities between the DL- and input waveforms as shown
in the lower panel of the figure. We may resolve the discon-
tinuity by post-processing or letting the DL model generate
the whole waveform in the inspiral-merger-ringdown phase at
once. We leave this issue to future work.

B. Injection Test

Next, we attempt to use the DL-waveform templates in
simplistic search of parameters, i.e., m1, m2, and the event
time of the simulated GW signals. To replicate practically
used waveform templates, we hybridize inspiral SEOBNRv4-
waveform and merger-ringdown DL-waveform by simply
concatenating the two waveforms. One may implement so-
phisticate hybridization of waveforms, but it is beyond the
scope of this work. We perform parameter grid-search in-
stead of Markov Chain Monte Carlo, typically executed for
the parameter estimation of GWs [43], due to the practical
difficulty of plugging a new waveform model in the existing
parameter estimation code [44]. For the computation of SNR
and the search of the events, the matched filtering engine of
PyCBC [45] is used.
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To simulate the observation data embracing a GW signal,
we use the LIGO-Hanford O1 data provided by GW Open
Science Center7. We randomly select a 32-second segment
from the data without any known GW signals and inject a
SEOBNRv4-waveform into the center. While we use five sets
of different injection parameters and distances, we fix the in-
clination angle to 30◦for simplicity. The configuration setups
of the tests are tabulated in the first three columns of Table III.

By performing the parameter grid-search for multiple in-
jection waveforms, we retrieve injection parameters in all ex-
aminations within the 90% confidence interval. We first de-
fine the search parameter sets, (m1, m2) on regularly-spaced
grid of the parameter space. Then, we construct the full IMR
waveform templates by hybridizing the inspiral waveform and
the merger-ringdown DL-waveform using SEOBNRv4 and
DDS2S, respectively, for the parameter sets. Across the pa-
rameter sets, we compute SNR by matched filtering with
each waveform template using PyCBC on the simulated data.
Assuming the likelihoods of the parameter sets are propor-
tional to the SNR, we estimate the probability density func-
tion (PDF) of the parameters. Then, we marginalize the PDF
with respect to each parameter and acquire the median as the
best-fit parameters with their 90% confidence interval. Subse-
quently, we repeat the entire process with different combina-
tions of injection masses and distances. The best-fit parame-
ters with confidence intervals and their SNRs are summarized
in the last two columns of Table III.

The best-fit parameters and the high SNR region emerge
around the chirp mass contour line of the injected signal.
Since the chirp mass of GW is governed by the frequency and
frequency derivative [46], and its SNR depends on frequency
evolution [47], the SNR of GW again relies on the chirp mass.
It is well-reflected in the example contour map of the signal
with m1 = 35M� and m2 = 20M� (Fig. 8).

Using the best-fit parameters found from the grid search, we
perform event time searches and find the SNR peak at where
we inject the signals. We illustrate SNR time-series of the
above example case in Fig. 9. As can be seen in the figure, the
peak SNR occurs at the center of the data segment, where we
have injected the simulated signal.

It is known that the systematic error from waveform ap-
proximants is independent of SNR, while the statistical error
due to noise roughly scales as 1/SNR. One can readily expect
that the systematic error could dominate in higher SNR sig-
nals. Cutler and Vallisneri [48] have presented rigorous com-
putation of the systematic errors in parameter estimation us-
ing 3.5PN (post-Newtonian approximation of order 3.5) wave-
forms for inspiral signals of massive black hole binaries. They
have shown that the magnitude of the systematic errors from
3.5PN waveforms withM > 0.9999 commensurate with the
SNR ∼ 1000 statistical errors. Motivated by this, we roughly
estimate the impact of systematic error of our DL-based wave-
form on the parameter estimation by repeating the grid-search
of parameters as described above with varying SNR of the

7 https://www.gw-openscience.org/archive/O1/
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FIG. 8. Filled contour map of SNR in the parameter space for the
injection signal with m1 = 35M� and m2 = 20M�. Each of the
red star and blue plus markers indicates injection and best-fit param-
eters. The black dashed line is a contour with the level of injection
chirp mass. The best-fit parameters and the high SNR region arise
in the vicinity of the contour line. Although our parameter space is
restricted with the condition m1 ≥ m2, the filled contour map is
reflected on the slope of 1 line for aesthetic visualization.

injected signal. By comparing the systematic error with the
statistical errors of the same parameter as increasing the SNR
of the injected signal, we find that the magnitude of the sys-
tematic error becomes comparable to the 1-σ statistical error
at SNR ∼ O(10) in our DL-based waveform approximant.8

C. Performance Dependence on the Dataset Size

We inspect the dependence between the accuracy of the
DL model and the number of waveforms in the training sub-
dataset. The test is performed to explore the viability of ap-
plying the proposed model to NR-waveforms, in which only
a few thousands exist [30–33]. We generate four reduced
datasets with half and the tenth number of waveforms in the
original training data of dataset-1 and -2, maintaining the
number of waveforms in the validation and test data.

We find that one-tenth of the original size is enough to reach
the required accuracy of M ≥ 0.99. The model is trained
more than five times with each reduced training data. It turns
out that the minimum and average values of overlap are higher
than 0.990 and 0.999, equivalent to 1.0% and 0.1% error, re-
spectively, for all DL-waveforms of the trained model from
each run. The mean values for the averaged overlaps and min-
imum overlaps from more than five individual runs are tabu-
lated in Table IV. We also present the results of Sec. IV A for
comparison in the last column. The relative dataset size in the

8 Note that our approach for finding the SNR level where the two errors
become similar is not rigorous. For a more in-depth exploration of the
systematic errors, refer to [48].
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TABLE III. Summarized results of the injection tests. The best-fit parameters and their SNR for the injected signals are computed by PyCBC
matched filtering engine with DL waveform templates. We establish template waveforms by hybridizing inspiral SEOBNRv4 and merger-
ringdown DL waveforms. The m1 and m2 are given in the unit of the solar mass. I, M, and R indicate inspiral, merger, and ringdown phases,
respectively.

Template approximant Distance (Gpc) Injection (m1, m2) Best-fit (m1, m2) SNR

EOB (I) + DL (MR)

1.6 80.0, 65.0 80.1+13.7
−14.5, 61.7+18.3

−16.4 14.5
1.5 70.0, 60.0 73.9+16.5

−16.9, 58.6+16.6
−14.4 13.0

0.8 35.0, 20.0 33.1+5.6
−6.8, 21.5+9.0

−8.4 12.7
0.7 30.0, 25.0 31.6+6.3

−7.0, 22.7+8.6
−8.3 15.3

0.6 25.0, 20.0 28.3+8.0
−8.4, 18.9+7.1

−6.6 15.7
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FIG. 9. SNR time-series computed by matched filtering engine
of PyCBC and best-fit DL-waveform template of Fig. 8. The in-
jected signal is the SEOBNRv4-waveform (m1 = 35M� and m2 =
20M�). Here, we initialize the start time of the injected signal to 0,
marked by the red dashed line. Note that the SNR peak occurs at the
injection time.

TABLE IV. Accuracy variation of the DL model according to dataset
size. We also show the results of Sec. IV A in the last column of
the table for comparison. The mean values for the minimum and
average overlaps from more than five individual runs for each dataset
are summarized in the table. The value of the relative dataset size is
the ratio of the number of waveforms between the reduced training
sub-dataset and the sub-dataset introduced in Sec. II.

Relative dataset size 0.1 0.5 1
Minimum overlap (dataset-1) 0.991 0.990 0.991
Minimum overlap (dataset-2) 0.990 0.990 0.991
Average overlap (dataset-1) 0.999 0.999 0.999
Average overlap (dataset-2) 0.999 0.999 0.999

table means the ratio of the number of waveforms in the train-
ing data to the number of waveforms in the original training
data. The result shows that reducing the number of waveforms
down to 1000 for the training hardly affects obtaining the de-
sired accuracy. Hence, we advocate that the application of the
DDS2S model to NR-waveforms is feasible.

V. SUMMARY AND DISCUSSION

The efficiency of matched filtering for searching GW sig-
nals buried in noisy GW data has been proved by recent suc-
cessful detections of GW signals. Although NR can increase
the accuracy of template waveforms, expensive computational
costs of running NR limit the use of it for the generation of a
sufficiently large number of template waveforms. This draw-
back of NR eventually led to the use of approximate wave-
forms for the matched filtering instead. Motivated by such
difficulties, we have examined the DL method for the genera-
tion of template waveforms with much smaller computational
costs but comparable accuracy to NR.

To study the feasibility of this consideration, we have im-
plemented the DDS2S model. The encoder-decoder structure
is capable of handling the variable sizes of different wave-
forms, and the dual-decoder structure enables the model to
control the continuous real-numbered sequences.

We also have examined the applicability of the waveforms
by computing the overlap with EOBNR-based waveforms and
performing the injection test. The accuracy of the DL-based
waveforms is found to be better than 99.9 % in most com-
binations of the masses, while a small number of outliers
with overlap as small as 0.99 exists. In the injection test, we
have recovered the event time of waveforms injected into real
noise data with the conventional matched filtering engine of
PyCBC.

We have found that the method generating merger-
ringdown waveforms using the inspiral waveforms needs to
be improved. For example, we have seen that discontinuities
occurred between input and output waveforms, as shown in
Fig. 7, although the minimum overlap of DL-waveforms to the
EOB-waveform was higher than 0.990. To avoid this issue, we
may take a new strategy of generating a full IMR waveform.
However, the main goal of this paper is to demonstrate the fea-
sibility of adopting DL to model the merger-ringdown wave-
forms. Hence, we leave the implementation of a DL model
generating the full waveforms to future work.

Regarding the speed of waveform generation, the DDS2S
model has an advantage over other waveform approximants
when computing a batch of multiple waveforms simultane-
ously. For computing a single waveform, EOB is faster than
the DDS2S model, typically taking O(10−2) seconds using
a modern CPU core. However, the DDS2S model generates
∼ 1500 waveforms using pre-generated inspiral waveforms
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in O(1) seconds using NVIDIA GeForce GTX 1080, while
EOB took O(10) seconds. The disparity arises since the DL
models are specialized for batch computations, which process
multiple data at once.

The DDS2S model has been built to learn how to predict
the output waveforms only from the given input waveforms
without any specific physical information of the source binary
system. Thus, we can readily extend this work to various sys-
tems of interest.

For a more precise description of realistic physical binary
systems, we need to have waveform models for more com-
plex binaries: a wider range of the mass ratios, the spin of
each component, eccentricity of the orbits. GWs from un-
bound orbit such as hyperbolic and parabolic encounters are
also of great interest. Lastly, it is worthwhile to mention that
recalibration of full IMR waveforms to increased amounts of
NR waveform data is in progress in the community. [49]

Our approach described in this paper can potentially be
applied to more complex systems described above because
DDS2S only depends on training data, not any assumptions or
approximations on which other waveform models are based.
Moreover, we have observed that ∼ 1000 training waveforms
are sufficient for the model to reach the expected level of ac-
curacy in Sec. IV C. Thus, as long as there is a sufficiently
large number of training waveform samples for any systems
or NR are given, DDS2S can be trained to generate accurate
waveforms in principle.
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Appendix A: Empirically Optimal Number of Hidden Neurons

We investigate the influence of the hidden neurons on the
accuracy of the models; 64, 128, and 256 hidden neurons.

Accuracy-wisely, we find that the model with 256 hidden
neurons is most suitable amid the tested cases. To compare
model accuracy according to the number of hidden neurons,
minimum and average overlap between DL-waveforms and
corresponding target waveforms are computed. Table A.1
summarizes the minimum and average overlaps of the mod-
els for dataset-1 and -2. The minimum overlap values of each
model from dataset-1 (dataset-2) are 0.984, 0.990, and 0.991
(0.977, 0.989, and 0.991) in the increasing order of the model
size. All of the average overlaps are the same as 0.999, except
the case of the smallest model with dataset-2, whose overlap
is 0.998 (overlaps of 0.999 and 0.998 are equivalent to 0.1%
and 0.2% errors). Namely, the model with 256 hidden neurons
shows the highest accuracy.

TABLE A.1. Minimum and average overlap values of the test sub-
dataset in dataset-1 and -2 according to models with the different
number of hidden neurons.
The number of hidden neurons 64 128 256
Minimum overlap (dataset-1) 0.984 0.990 0.991
Minimum overlap (dataset-2) 0.977 0.989 0.991
Average overlap (dataset-1) 0.999 0.999 0.999
Average overlap (dataset-2) 0.998 0.999 0.999

Appendix B: Computing Time and Accuracy Variation of The
Model According ToR

We examine how the number of elements R in an RNN
cell affects the model in the aspects of computing time and
accuracy. Table B.2 tabulates the typical elapsed time with a
minimum overlap of each case on dataset-1 and -2. Although
the model can speed up by increasingR, the accuracy expense
renders the model inapplicable for practical use.

TABLE B.2. Computation time and overlap variation with respect to
the number of elements,R, in a RNN cell.

R T1 T1500
Minimum overlap

dataset-1 dataset-2
1 O(10−1) O(1) 0.991 0.991
10 O(10−2) O(10−1) 0.913 0.910

100 O(10−3) O(10−2) 0.823 0.805
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