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Prospects for Simulating a Qudit-Based Model of (1+1)d Scalar QED

Erik J. Gustafson
University of Iowa, Department of Physics and Astronomy, Iowa City IA, 52242

We present a gauge invariant digitization of (1 + 1)d scalar quantum electrodynamics for an
arbitrary spin truncation for qudit-based quantum computers. We provide a construction of the
Trotter operator in terms of a universal qudit-gate set. The cost savings of using a qutrit based
spin-1 encoding versus a qubit encoding are illustrated. We show that a simple initial state could be
simulated on current qutrit based hardware using noisy simulations for two different native gate set.

I. INTRODUCTION

Quantum computing offers a natural way to simulate
the dynamics of quantum field theories. While classical
Monte Carlo simulations of lattice gauge theories have
been able to extract static quantities to high precision
[1, 2], classical Monte Carlo simulations encounter prob-
lems with determinations of dynamic quantities due to a
sampling to noise issue known as the sign problem. While
work has been done to begin tackling these problems [3, 4]
using classical computers, quantum computing still offers
another path forward.

Many quantum field theories (QFT) have continuous
symmetries such as quantum electrodynamics (QED)
which has a U(1) symmetry; quantum chromodynam-
ics (QCD), which has a SU(3) symmetry, and Scalar φ4

which has continuous values for the field. While classical
computers can truncate these continuous symmetries to
machine precision, in order to store the values of the
nine matrix elements for a gauge link in QCD to double-
precision would require O(1000) qubits. This is clearly
infeasible for noisy intermediate scale quantum (NISQ)
hardware and in practice truncations of these symmetries
will be necessary. These truncations of field or group
elements can take various forms. The scalar fields in
φ4 can be approximated with even distributions of the
field values and imposing field cutoffs [5, 6]. Compact
QED can be mapped to a Zn or U(1) symmetries [7–14].
The non-Abelian groups SU(2) and SU(3) can be dig-
itized in various ways [15–19]. Other methods such as
imbedding the theory into higher dimensions using quan-
tum link models [20, 21] and D-Theory [22, 23] is also
possible. Since truncations lead to a different theory be-
ing simulated on the computer, understanding how these
truncations distort the physics is an interesting question
but regardless these distortions must be removed [24].
Understanding how to return to the continuous symme-
tries is its own problem [14, 15, 25–30]. Digitizations of
U(1) for quantum electrodynamics typically use Hilbert
spaces that have an odd integer states per site or link [7–
10, 13, 14, 31]; similar issues will arise for SU(3) [15, 17].
Because these digitizations do not nicely map onto Hilbert
spaces of dimension 2n there are states that will not be
used and will complicate the circuit structure.

While simulations of quantum chromodynamics are still
many years off, digital quantum simulations of 1 + 1 and
2 + 1 dimensional field theories are already in progress

[32–43]. Simulations of the transverse Ising model (TIM)
[36, 44–56] and some simpler gauge theories such as the
Schwinger model have been a major focus of qubit based
computers [15, 24, 33, 38, 57]. Compact scalar quantum
electrodynamics (sQED) in (1 + 1)d has implementations
proposed for optical lattices [8, 9]. This model is also
called the Abelian Higgs model, however we will refer to
it as sQED in this work. sQED is a natural first step for
simulations on near term qudit NISQ computers because it
is a (1+1)d gauge theory with a continuous symmetry that
is coupled matter. In addition this theory’s Hamiltonian
can be written in an explicitly local gauge invariant way
[7–10]. The fact that this is a gauge-matter theory and
the algebra for the Hermitian operators acting on the
Hilbert space can naturally be represented by qudits
makes this model amenable to simulations on near term
NISQ computers using qudit-based architectures. This
is not the only model amenable to qudit-based machines;
O(N) spin models and spin-1 Ising models are also possible
[58] as well as (2+1)d U(1) [31, 59, 60]. Some classical
algorithms such as the Tensor renormalization group allow
efficient simulation of (1+1)d U(1) gauge theories [10, 61–
65]; this undermines the possiblity of quantum advantage
with a (1+1)d sQED. However, natural extensions given
in [31, 66] may be an avenue where quantum advantage
can be demonstrated. In this case (1+1)d sQED would
be a necessary stepping stone to these richer problems.
Simulations of dynamics for sQED would be timely given
the recent interest in algorithms [67–74], testing [75–78]
and development of qutrit based hardware [76, 79–85].

This paper is laid out as follows. Sec. II discusses the
Abelian Higgs model and its Hamiltonian formulation. In
Sec. III, we discuss the systematic errors introduced by
spin truncation. Sec. IV discusses how the Hamiltonian
can be digitized on qudit base hardware. We walk through
the choice of observable, the methods of state preparation,
and the simulation using a noise model of a qutrit based
quantum computer in Sec. V. Finally, Sec. VI highlights
the results and a road map of future models of interest.

II. MODEL

Following closely [7–10], 1 + 1-d compact sQED with
the magnitude of the scalar field frozen to unity has the
Euclidean lattice action, with similar notation as [7–10]
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is used for consistency,

S = Sgauge + Smatter

Sgauge = − 1

g2asaτ

∑
x

∑
ν<µ

ReTr(Ux,µν)

Smatter = −κs
∑
x

(
φ†xUx,sφx+ŝ + h.c.

)
− κτ

∑
x

(
φ†xUx,τφx+τ̂ + h.c.

)
,

(1)

where κs = R2aτ/as, κτ = R2as/aτ , and R is the radial
scalar field magnitude and is generally allowed to vary but
will be fixed to one in this work. The magnitude of the
scalar field can be fixed by taking the coupling for a (φ†φ)2

term to infinity which will freeze the Higgs mode around
a desired value [8]. Given the fact that (1+1)-d gauge
theories are in general super renormalizable, driving the
quartic coupling to infinity should still leave a continuum
limit. Compact representations of the gauge and matter
fields are used:

Ux,µν = Ux,µUx+µ,νU
†
x+ν,µU

†
x,ν ,

Ux,µ = e−iaµgAx,µ , and φx = eiθx .
(2)

To derive a Hamiltonian representation for the action in
Eq. (1), the gauge and matter fields are expanded using
a Fourier analysis of the Boltzmann weights [7–10, 86]
and then integrated over. This leaves a set of constraints
on the plaquettes rather than the links creating a “dual”
lattice. Then after taking the temporal lattice spacing to
0, we find the following Hamiltonian

Ĥ =
P

2

Ns∑
i=1

(L̂zi )
2 +

Jz
2

Ns−1∑
i=1

(L̂zi − L̂zi+1)2

+
Jz
2

(
(L̂z1)2 + (L̂zNs)

2
)
− µ

Ns∑
i=1

Ûxi

(3)

where,

L̂z|m〉 = m|m〉

Ûx =
1

2
(Û+ + Û−),

and Û±|m〉 = |m± 1〉.

(4)

The coefficients in Eq. (3) are related to the lattice
spacing and gauge coupling P = g2as, Jz = (2R2as)

−1

, µ = 2R2/as.[87] In theory the operators L̂z and Ûx

are infinite dimensional with the values of m in Eq. (4)
ranging from −∞ to +∞. In practice a cut off will be
necessary for implementation on quantum hardware so
that the Hilbert space is finite. In this case the spins
m = −nmax, ..., 0, ...nmax. The following subsections will
highlight the digitization procedure for implementing the
Hamiltonian in Eq. (3) on qudit based hardware as well
as indicating the difficulties of implementation on qubit
based hardware.

III. SYSTEMATIC ERRORS

An important aspect of truncations is examining the
size of the truncation versus the lattice spacing. It should
be unsurprising that truncation effects will become more
significant the closer to the continuum we go. In order to
measure the effectiveness of these truncations we will use
the following quantity

χ =
1

Ns

Ns∑
i=1

Ns∑
j=1

〈Ω|(L̂zi − L̂zj )2|Ω〉, (5)

where |Ω〉 is the ground state This quantity measures how
correlated the fields are at different sites. This measure
is likely more accurate than comparing eigenvalues of
the Hamiltonian because it probes off-diagonal elements
and excited states with respect to the eigenbasis of the
Hamiltonian.

We expect that at small coupling (g2a2s) since the high
spin states are easily excited a larger truncation will
be necessary. Conversely for strong coupling we should
expect that a more coarse truncation will be acceptable.
Fig. 1 shows χ normalized by the untruncated value
as a function of the coupling, g2a2s, for a ns = 4 site
lattice. The supposition posited earlier carries out here.
For couplings on the order of g2a2s ≤ 10−2, nmax > 4 to
effectively capture the physics desired. While for couplings
of g2a2s ≈ 1, a truncation of nmax = 2 appears to be
sufficient. One key feature that is evident is that there
seems to be a stark difference between the spin-1 and
spin-2 truncation at all couplings; this was seen as well in
[88]. The discrepancy is not unexpected, for Zn theories
there is a marked discrepancy between n ≤ 4 and n ≥ 5
accurate representations of U(1) [89].

The key point that should be understood is that in the
strongly coupled regime a spin-2 (qupet) will likely be
sufficient but in the weakly coupled regime a spin-4 to
spin-6 truncation will be necessary to capture the desired
physics. In particular, the limit of g2as → 0 Eq. (3)
becomes that of the O(2) model in 1+1-dimensions. In
this limit the couplings become XY = 1 in units of as = 1.
At this ratio of couplings a nmax = 6 spin truncation is
effective to capture the desired physics [10]. For nearer
term devices a qupet may not yet be feasible but qutrits
are actively being studies. This will provide a good foun-
dation for benchmarking and developing tools for higher
truncations even if it does not accurately represent the
physics of the theory.

IV. ENCODING

A. qudit representation

As previously mentioned, implementation on physical
hardware requires a maximal spin cut off denoted nmax.
For a given maximal integral spin, the operators defined
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FIG. 1. χ normalized by an infinite bound extrapolation as a
function of the coupling and spin truncation for 4 sites.

in Eq. (4) behave as follows,

(L̂z)i,j = (n− i)δi,j (6)

where 0 ≤ i, j < 2n + 1 and Ux can either truncate
at m = ±nmax or have highest and lowest states wrap
around like a Znmax theory.

The Hamiltonian can be separated into two non-
commuting parts. The terms containing Lz and the terms
containing Ux. This spin-nmax system is most naturally
mapped onto a (2nmax + 1)-qudit architecture. A uni-
versal basis for this machine will require a collection of
2nmax + 1 SU(2) rotations that couple the energies levels
together and allow an arbitrary SU(2nmax + 1) rotation.
We can define these operators that compose the SU(2)
sub-algebras as generalizations of the Pauli matrices which
will be defined as X̂a,b, Ŷ a,b, and Ẑa,b. The behavior on
these operators is given by

σ̂xa,b|c〉 =


|b〉 c = a

|a〉 c = b

0 c 6= a, b

, (7)

σ̂ya,b|c〉 =


−i|b〉 c = a

i|a〉 c = b

0 c 6= a, b

, (8)

and

σ̂za,b|c〉 =


|a〉 c = a

−|b〉 c = b

0 c 6= a, b

, (9)

where 1 ≤ a, b, c ≤ 2nmax + 1. We can also define
rotations,

R̂α(a,b)(θ) = eiθσ̂
α
(a,b) , (10)

where α = x, y, z, and a and b indicate the states for the
Pauli sub-algebra to mix between. For an arbitrary spin-
nmax system we can write the operators of Equation (3)
as follows:

L̂z =

nmax∑
j=1

(nmax − j + 1)(σ̂zj,nmax + σ̂znmax,nmax+j) (11)

and

Ûx =
1

2

(
cboundσ̂

x
(1,2nmax+1) +

2nmax−1∑
j=1

σ̂x(j,j+1)

)
(12)

where cbound is 1 if a Zn model is desired or 0 if a U(1)-
truncation is desired.

Time evolution of a state |ψ〉 is carried out via the

traditional operator e−itĤ . In order to implement this
on a quantum computer we need to Trotterize [90] the
Hamiltonian and split it into non-commuting terms:

Ûtr(δt) =
(
e−iδt(U+2Y )/2

∑
(L̂zi )

2

e−iδtY
∑
L̂zi L̂

z
i+1eiδtX

∑
Ûxi

)
.

(13)

A diagram of this circuit for any spin truncation is shown
in Fig. 2. This Trotterization is straight forward; three
types of terms will be present:

1. one qudit rotation e−iδt(U+2Y )/2(L̂z)2

2. one qudit rotation eiδtXÛ
x

3. two qudit rotations eiδtY L
z
iL

z
i+1

The (L̂z)2 rotations are relatively straight forward to
implement:

eiθ(L̂
z)2 =

2nmax∏
j=1

eiaj,j+1θσ̂
z
(j,j+1) (14)

where the aj,j+1 terms are found by solving the linear
equation,

(L̂z)2 = α01 +

2nmax−1∑
j=1

αj,j+1σ̂
z
j,j+1 (15)

for the coefficients αj,j+1 and α0. The values for these
operators are found to scale quadratically with respect to
the spin truncation nmax. With more details provided in
Appendix A.

The L̂zi L̂
z
i+1 term is also relatively straight forward as

well and involves solving a similar set of equations. This
operator can be written for arbitrary n as,

e−iθL̂
zL̂z =Csum

2nmax−1∏
i=1(

2nmax−1∏
j=1

Rz;tj,j+1(θβj)

)
Csum.

(16)
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e�i�t(U+2Y )L̂z

e�2i�tY L̂z⌦L̂z

ei�tXÛx
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FIG. 2. Quantum circuit for Utr(δt) defined in Eq. (13).

The t on single qutrit rotations indicates they are applied
on the target qutrit of the Csum gates. This coupled
LzLz rotation then can be written in terms of at most
2nmax + 1 two-qudit gates and 4n2max one qudit diagonal
rotations which are expected to be relatively noiseless
[80]. The Csum operator is a generalization of the CNOT
gate and shifts the state |a〉 to |a+ 1〉; it is given by

Csum =

2nmax+1∑
k=1

|k〉〈k| ⊗ X̂ k, (17)

where

X̂ =

2nmax+1∑
k=1

|k〉〈mod2nmax+1(k + 1)|. (18)

The Ûxi rotations can be implemented in one of two
ways. The naive way is to Trotterize the components of
Ûx,

eiθÛ
x

≈ eiθcboundσ̂
x
(1,2nmax+1)

2nmax∏
j=1

eiθσ̂
x
(j,j+1) , (19)

which results in 2nmax + 1 single qudit rotations. A
slightly more complicated but exact way involves finding

the set of rotations {Rα(a,b)(θj)} which implement eiθÛ
x

.

This is relatively simple and tractable for most qudit
based architectures because it involves diagonalizing a
2nmax + 1 dimensional matrix where nmax will be less
than 12 for any approximation of U(1). This will require
at most (2nmax + 1)2 − 1 rotations. In the case where
cbound = 1 this involves constructing a generalization of
the Hadamard gate to a qudit [80, 83],

Ĥ =

2n∑
k=0

2n∑
j=0

|k〉〈j|ei(k+j)π/(2n+1). (20)

B. spin 1: Qubit vs. Qutrit

Up until this point the work has been generalized to
qudits. While high spin truncations are needed to simulate

actual quantum electrodynamics [7, 10], qudits become
more difficult to control the more states that are included
[68, 74]. From this point on we will specialize to the spin-1
truncation through out this work and set cbound = 0. The
fundamental operators from the Hamiltonian defined in
Eq. (3) L̂z and Ûx. For a spin-1 (3 state) truncation the

L̂z operator is defined as

L̂z =

1 0 0
0 0 0
0 0 −1

 (21)

and can be embedded into a two qubit Hilbert space with
the following encoding:

L̂z = (Ẑ2 + Ẑ1 ⊗ Ẑ2)/2, (22)

where the Ẑi correspond to the Pauli-z matrix on qubit i.
By extension, the operator (L̂z)2 is given by

(L̂z)2 = (1 + Ẑ1)/2. (23)

Similarly the Ûx operator is given by

Ûx =
1

2

0 1 0
1 0 1
0 1 0

 , (24)

and can be embedded into the Hilbert space of two qubits
with the follwing linear combination of tensor products

Ûx = X̂1 ⊗ (1 + X̂2 + Ẑ2)/2

+ Ŷ1 ⊗ Ŷ2/2.
(25)

The Trotterization can be broken up into the the two
one-qutrit rotations,

e−iδt(U/2+Y )(Lzi )
2

and eiδtXU
x

, (26)

and the two-qutrit rotation,

eiδtY L̂
z
i L̂

z
i+1 . (27)

In the case of physical qutrits, since both of the single
qutrit rotations are an element of SU(3) they can easily
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FIG. 3. circuit for eiθL̂
z⊗L̂z using a qubit embedding.

be broken up into 8 rotations [91] defined in Eq. (10) as
follows:

V̂ =eiα1σ̂
z
01eiα2σ̂

y
01eiα3σ̂

z
01eiα4σ̂

y
02

eiα5σ̂
z
01eiα6σ̂

y
01eiα7σ̂

z
01eiα8σ̂

z
12 ,

(28)

where V̂ is an arbitrary SU(3) rotation.
Using this Euler decomposition we find that these op-

erators can be written with the following rotations,

e−
iδt(U+2Y )

2 (L̂z)2 =Rz0,1(−δt(U/6 + Y/3))

Rz1,2(δt(U/6 + Y/3)),
(29)

and

eiδtXÛ
x

=R̂y0,1

(
− π

4

)
R̂y0,2

(π
4

)
R̂z0,1

(δtX√2

2

)
R̂y0,2

(
− π

4

)
R̂y0,1

(π
4

)
.

(30)

Given the native gate set of [80, 83], these two rotations
together can be implemented in at most 15 one-qutrit
rotations and likely fewer depending on the angles in the
of the σaby rotations; while the implementation of [77] can

implement this with at most 5 rotations for the Ûx term
and 2 for the (Lz)2 term, the extra gates from [80] come
from the non-continuous parameterization of the X and
Y rotations. Given that σabz rotations are done virtually
they are effectively noiseless and at most only 8 noisy
gates are present.

The two qutrit Lz ⊗Lz rotation is implementable with
3 controlled sum gates,

Csum =
∑
k=0

2|k〉〈k| ⊗ (X01X12)k, (31)

and 4 single qutrit σz rotations. This implementation is,

eiθL
z⊗Lz = CsumR

z;t
0,1(2θ/3)Rz;t1,2(θ/3)

CsumR
z;t
1,2(2θ/3)Rz;t0,1(θ/3)Csum.

(32)

The controlled sum is a generalization of the qubit-CNOT
gate to qudit based architecture [92] and is realizable
on current qutrit based hardware [80, 83]. The t on the
single qutrit rotations indicates that they are applied on
the target qutrit of the Csum gate.

In the context of the implementing on physical qubits,
the Ux operator will require 3 CNOTs to implement [93].

The L̂z ⊗ L̂z term will require approximately 16 CNOTs
to couple the all the 2-, 3-, and 4-qubit rotations (shown
in Fig. 3)

At this point, it is clear the qutrit formulation clearly
is better than the qubit formation because of the reduced
number of entangling gates but a qubit formulation is
possible. The circuit depth in the qutrit formulation is
6 two-qutrit gates deep per Trotter step, while the qubit
formulation is 19 CNOTs deep per Trotter step.

gate qubit encoding qutrit encoding

type 1 qubit 2 qubit 1 qutrit 2 qutrit

Ûx 15 3 5 0

(L̂z)2 1 0 2 0

L̂z ⊗ L̂z 4 8 4 3

TABLE I. Gate costs assuming native Qiskit gates compared
to decompositions shown in Eqs. (29), (30), and (32)

V. SIMULATION

A. State Preparation and Time Evolution

We will work in a regime g2a2s = 5 and ns = 4. In this
regime the ground state accurately represented by the
iterative tensor product of the lowest eigenstate of the
matrix

A =
1

2

g2a2s + 1 −2 0

−2 0 −2

0 −2 g2a2s + 1

 , (33)

where we have set Y = 1/2 and X = 2. The lowest energy
eigenstate of this operator can be written

|Ψ0〉 =
1

N

(
|0〉q + b|1〉q + |2〉q

)
,

(34)
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FIG. 4. Overlap of the state |1...1〉q and exact ground state
|Ω〉 as a function of lattice size (2 ≤ ns ≤ 9) and coupling
strength g2a2s.

where

N =
√

2 + b2

and

b =
g2a2s + 1−

√
(g2a2s − 1)2 + 32

4
.

(35)

The subscript q indicates these are represented in the
qutrit state values rather than the L̂z spin values. The
overlap of the state

|Γ〉 =

4∏
i=1

(|Ψ0〉)⊗ (36)

as a function of the couplings and lattice sizes is shown
in Fig. 4. We will demonstrate measuring the correlator,

C = 〈Γ|eitĤ Û−1 e−itĤ Û
+
1 |Γ〉. (37)

In order to measure this correlator, we need to be able
to prepare the states |Γ〉 and Û+|Γ〉. This is relatively
straight forward to accomplish. The state |Ψ0〉 in Eq.
(34) can be prepared from the state |0〉q with two one
qutrit rotations,

V̂g = R̂y1,2(−ρ2)R̂y0,1(ρ1) (38)

where ρ1 = arccos(−1/N ) and ρ2 =

arcsin(−1/
√
N 2 − 1). Preparing the super posi-

tion of |Ψ0〉 and 1
N ′ Û

+|Ψ0〉 is slightly harder. Using an

ancilla, 2 Csum gates, and 7 one qutrit gates, we can
prepare this superposition of states

|ψ〉 =
1√
2

(
|Ψ0〉|0〉a +

1

N ′
(|1〉+ a|2〉)|1〉a

)
. (39)

The circuit, V̂prep, which constructs this state is shown
in Fig. 5.

After this it is relatively straight forward to measure
the correlator. The Trotterized time evolution operator
from Eq. (13) is applied to the working qubits followed by
C†sum controlled on the ancilla to the first qutrit. Then
by measuring the σ̂x0,1 on the ancilla and the states on the
working qubits we extract the real part of the correlator.
If σ̂y0,1 is measured on the ancilla, then the imaginary part
of the correlator is extracted instead. Diagramatically
this circuit is shown in Fig. 6. The correlator is then
given by the following quantum operations

C = (〈|Ĉ†(σ̂x0,1)aĈ|〉+ 〈|Ĉ†(σ̂x0,1)a(Ẑ2)Ĉ|〉

+ i〈|Ĉ†(σ̂y0,1)aĈ|〉+ 〈|Ĉ†(σ̂y0,1)a(Ẑ2)Ĉ|〉)/2,
(40)

where |〉 represents the state |0000〉 ⊗ (|0〉a + |1〉a). The

operator Ẑ2 can be applied classically after measuring the
qutrit state by apply a −1 to any measurement of the
first working qutrit that is in the state |2〉.

B. Noisy Emulations

While many noise channels are available such as decay
channels that correspond to spontaneous decays from
higher excited states [94] and Pauli channels [95] which
correspond to “bit” flips, phase flips. Here we use the
following Pauli channel noise model for qutrit,

E(ρ; q) = (1−
∑
i<j

∑
α

(pαi,j)
q)ρ

+
∑
i<j

∑
α

(σαi,j)
qρ(σαi,j)

q,
(41)

where α = x, y, z, (i, j) indicates the mixing between
qutrit states |i〉 and |j〉, pαi,j is the probability of such
error occurring, and q indicates which qutrit to apply the
noise operation on. This noise model is inspired by the
way the fidelities of [83] are reported. This should not be
surprising as it looks like an extension of the qubit version
of a Pauli noise model used by many [45, 50, 51, 96]. The
two qutrit noise model is easily extendable from this using
a tensor product of all the Pauli terms for the two qutrits.

Simulations using the noise model described in Eq.
(41) are discussed here. The probabilities for the Pauli
errors used are listed in Table II which were found for
a recent randomized benchmark for a Transmon based
qutrit system [83]. The noise model was applied assuming
that Rx, Ry and two-qutrit rotations are noisy and that
Rz rotations are noiseless [80].
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FIG. 5. Quantum circuit that creates the initial state, |Ψ0〉|Ψ0〉|Ψ0〉(|Ψ0〉|0〉a + 1/N ′Û+|Ψ0〉|1〉a). H0,1 is the Hadamard gate on

the (0,1) subspace of the ancilla qutrit, V̂g is defined in Eq. (34). The angles for gsa2s = 5 are ω1 = −0.65273, ω2 = −1.43696,
ω3 = 1.7837 and ω4 = 2.65568.

FIG. 6. Circuit for measuring the correlator. The real part is
found by measuring σ̂x0,1 on the ancilla and the occupations
on the on the first qubit. While the imaginary part is found
by measuring σ̂y0,1 on the ancilla instead. The boxed region

will be defined as the operator Ĉ.

Term (0, 1) (0, 2) (1, 2)

one qutrit term 0.00038 0.00143 0.00068

two qutrit term 0.003 0.003 0.003

TABLE II. Pauli errors for one and two qutrit Pauli terms.
The two qutrit term applies to each element of the Pauli noise
channel, i.e., each σαi,jσ

β
k,l has that probability of occurring.

The results of noisy emulations of the observable C are
shown in Fig. 7 for Trotter step size δt = 0.39 (additional
simulations at δt = 0.235 and 0.31 are shown in Appendix
B). These steps sizes were chosen because they balanced
the Trotter fidelity with the emulated noise in the gates to
allow time dynamics to be observed. While the computer

tested in [83] had the controlled sum (Csum) as the native
two-qutrit gate, we also consider a case where a e−iθL

z⊗Lz

rotation can be used as a native gate assuming the same
Pauli errors.

A clear feature is that the native LzLz rotation allows
for a 8 to 9 Trotter steps before the gate noise completely
suppresses the signal while the native Csum allows for 4
to 5 Trotter steps before the signal is lost. This suggests
that near term qutrit based machines such as those tested
by [80, 83] may be able to simulate short term dynamics
of this model and allow for early benchmarking of a more
complicated field theory than the transverse Ising model.

VI. CONCLUSIONS

This work has shown how to implement the Abelian
Higgs model on a qudit based digital quantum computer
with a strong focus on qutrit which will be available in the
near future. The qudit encoding for the Trotter operators
requires a depth of 4nmax+2 entangling gates per Trotter
step; this is certainly an improvement of qubit encodings
and is demonstrated explicitly for the case of qutrits. We
show how to measure a two point correlation function and
demonstrate that a few Trotter steps are feasible using
current estimates for the Pauli channel noise on transmon
qutrits [83]. If entangling gate errors can be achieved that
are of the same magnitude as the two-qubit engangling
errors on current hardware we expect that it may be
possible to measure two point correlation functions for a
spin-1 trunctation.

Simulations of this model on qutrit based quantum com-
puters would be an significant step toward real time sim-
ulations of quantum electrodynamics and other field the-
ories with continuous or larger symmetry groups. These
simulations will help pave the way toward understand-
ing the dynamics from an ab initio perspective inelastic
scattering processes. In addition this model has natural
extensions to formulations of Abelian field theories in
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FIG. 7. Noisy Emulation of the real part of the Correlator C defined in Eq. (37) for Trotter step size, dt = 0.39. Two different

native gate sets were used: native e−iθL
z⊗Lz plus one qutrit rotations from Eq. (10) and native Csum plus one qutrit rotations

from Eq. (10). Only statistical errors are shown.

(2+1) [31] and (3+1)-dimensions [66].
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Appendix A: Rotation Decompositions

The coefficients aj,j+1, bj,j+1, and cj,j+1 scale according
to the following equations,

aj,j+1 =
2

3
j +

2

3

bj,j+1 = −j2 − 4

3
j − 1

3

cj,j+1 =
1

3
j3 +

1

2
j2 +

1

6
j.

(A1)

Using Eq. (A1), we can find an closed form expression
for the angles αj,j+1,

αj,j+1(n) =
2j + 2

3
n2 − 3j2 − 4j − 1

3
n

+
2j3 + 3j2 + j

6

(A2)

angle aj,j+1 bj,j+1 cj,j+1

α0,1 2/3 -1/3 0

α1,2 4/3 -8/3 1

α2,3 2 -7 5

α3,4 8/3 -40 / 3 14

α4,5 10 / 3 -65 / 3 30

α5,6 4 -32 55

α6,7 14/3 133 / 3 91

α7,8 16/3 -176/3 140

α8,9 6 -75 204

TABLE III. Angles αi,i+1 for the e−iθ(L
z)2 rotations to provide

rotations up to a spin truncation n = 9. There is an anti-
symmetry of the angles after passing the α(n−1)/2,(n−1)/2+1

where the angles are then follow the reverse pattern and
are negative, e.g. for n = 1 α0,1 = −α1,2, and for n = 2
α0,1 = −α3,4 and α1,2 = −α2,3.

Appendix B: Additional Correlators

Here we show the noisy simulations of the time evolution
of C for 2 additional Trotter steps, δt = 0.235 and δt =
0.31. These Trotter step sizes were chosen because they
are highly faithful as demonstrated in Fig. 8. In addition
we can see a signal for these smaller Trotter step sizes
using both native gate sets.



9

t
0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
Re

[
(t)

]
t = 0.235

exact
trotter

CSUM
LzLz

0 1 2 3 4 5
t

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

t = 0.31

FIG. 8. Time evolution of the correlator C for 3 different Trotter step sizes, δt = 0.235 (left), δt = 0.31 (center), and δt = 0.39
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