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Abstract

Statistical modeling is a key component in the extraction of physical results from lattice field

theory calculations. Although the general models used are often strongly motivated by physics,

many model variations can frequently be considered for the same lattice data. Model averaging,

which amounts to a probability-weighted average over all model variations, can incorporate sys-

tematic errors associated with model choice without being overly conservative. We discuss the

framework of model averaging from the perspective of Bayesian statistics, and give useful formulae

and approximations for the particular case of least-squares fitting, commonly used in modeling

lattice results. In addition, we frame the common problem of data subset selection (e.g. choice of

minimum and maximum time separation for fitting a two-point correlation function) as a model

selection problem and study model averaging as a straightforward alternative to manual selection

of fit ranges. Numerical examples involving both mock and real lattice data are given.

I. INTRODUCTION

One of the central problems in lattice field theory is that of model fitting and parameter

estimation. This problem appears repeatedly in analysis of lattice results, from single two-

point correlators up to joint chiral and continuum extrapolations of results from many

simulation streams. The functional forms which appear in these cases are often notoriously

difficult to work with; the sum of exponentials which models the two-point correlator is

in general quite numerically unstable, and chiral and continuum extrapolations can involve

nonlinear dependence on large numbers of unknown variables.

Making analysis of lattice simulations even more challenging, many of the models appear-

ing require an ever-increasing number of parameters as simulations become more precise.

For example, chiral perturbation theory is an effective theory which will break down at large

masses or momentum scales, and contains (in principle) an infinite number of low-energy

constants. The spectral decomposition of a single two-point correlator also contains (in

principle) an infinite tower of excited states. The Symanzik effective theory describing the

appearance of lattice artifacts similarly contains an organized but infinite number of terms.

∗ Email: wjay@fnal.gov
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These contributions are typically dealt with by truncating the model, and often the data as

well. However, this can lead to subtle dependence in the results on the analyst’s choice of

fit range and number of terms included in the model.

This is not to say that lattice theorists are unaware of these potential sources of systematic

error. The effects of model truncation and data truncation can be estimated by studying

the variation of quantities of interest as the range of data included is varied, or additional

model terms are added. However, the often-adopted approach of taking the full difference

between these variations as a systematic error is somewhat crude and likely to be overly

conservative in many cases.

In this paper, we describe the technique of Bayesian model averaging as an alternative

approach to these systematic errors, and outline its potential applications in the analysis of

lattice simulation results. This approach allows for fully rigorous estimation of probability

distributions for parameters of interest by combining results from several models. All models

must reduce to a common model containing the parameter(s) to be estimated, but there is

no other requirement that they be nested models. (For a continuum extrapolation of a

matrix element e.g., the reduced model can be simply be a single constant parameter, the

value of the matrix element in the continuum limit.)

Bayesian model averaging is somewhat well-known in the statistical literature [1–5], al-

though it is most often used in the context of linear models. Here we place no such restriction,

giving formulae which can be used for arbitrary nonlinear models.1 In general, the model

probability weights required for model averaging are complicated integrals, but we will give

approximate formulae which may be used with sufficient sample sizes. As we will show,

combining statistical results obtained with a set of models {M} relies on the estimation

of the model weight, pr(M |D). We will also argue that the commonly-used procedure of

applying cuts to the data can also be understood as a model selection problem. Our key

result is that, at leading order in the data sample size N , the model weight can be estimated

by the Akaike information criterion (or “AIC”), modified with a penalty term for cutting

away data points:

pr(M |D) ≈ exp

[
−1

2

(
χ2

aug(a?) + 2k + 2Ncut

)]
(1)

(this is Eq. (44), simplified for the case of uniform model priors). Here χ2
aug(a?) is the

1 Appendix C defines the distinction between linear and nonlinear models.

3



standard best-fit augmented chi-squared [6] (see Eq. (28) below), k is the number of fit

parameters, and Ncut is the number of removed data points as defined in Section IV.

Our work is partially inspired by the Bayesian approach to effective field theory advocated

by Schindler and Phillips [7]. Other examples of using weighted averages over models and

Bayesian ideas in lattice analysis include [8–15]. We believe that our treatment is the first

attempt to lay out the procedure rigorously and in a fully Bayesian framework for a lattice

field theory audience.

An outline of the paper is as follows. In Section II, we describe the basic Bayesian

framework for model averaging and derive formal results for model-averaged expectation

values. Section III specializes to the case of least-squares fitting and derives an approximate

formula for the model probabilities which are needed for model averaging. Section III C gives

a numerical example of model averaging applied to mock data. In Section IV, we discuss

the common problem of data subset selection, reframing it as a model variation problem in

order to apply model averaging. Section IV A shows an example application to the common

task of fitting a two-point correlation function and demonstrates the effectiveness of model

averaging as a replacement for choosing cuts on the data. We make some concluding remarks

in Section V. A detailed discussion of bias correction in the estimation of model probability

is given in Appendix A. Appendix B and Appendix C describe some technical details related

to the chi-squared function and linear vs. nonlinear models.

II. BAYESIAN FRAMEWORK

The basic analysis problem is as follows: we wish to describe a dataset D using a base

model M0 in order to determine the value of one or more common parameters {ac}. In the

example of a continuum extrapolation, M0 could simply be the value of a specific matrix

element in the continuum limit.

In estimating the parameters {ac}, we are often led to consider several extensions of the

base model M0 which contain various unphysical or uninteresting terms, like lattice artifacts

or undetermined excited states. This extends our study to a space of models {M}, but our

basic interest is still in estimation of the parameters of M0. All of the models in {M} must

contain M0, in the sense that marginalizing over additional parameters {am} reduces them

to M0. (Note that the set {am} implicitly depends on the choice of model M .)
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It is important to note that the base model M0 itself does not necessarily have to be

contained in the set {M} of models that are actually fit to the data. As a simple example,

in a continuum extrapolation it is certainly not necessary to include the continuum-only

model M0 (without any lattice spacing dependence) in the set of fits. Indeed, a continuum-

only model would surely describe the data poorly in this example.

To obtain the marginal probabilities for the common parameters, we marginalize over

both models and additional parameters [7]:

pr(ac|D) =
∑
M

∫
dam

pr(D|a,M)pr(a|M)pr(M)

pr(D)
. (2)

where “pr” denotes a probability distribution, and the set of all parameters {a} is the

union of {ac} and {am}. In principle, this formula assumes that all parameters {a} are

dimensionless. In practice, we will be interested in model weights which will depend only

on ratios of probabilities, so any units will tend to cancel.

If we can carry out the integrals and explicitly construct pr(ac|D), then expectation

values for arbitrary functions of the common parameters ac are immediately available:

〈f(ac)〉 =

∫
dacf(ac)pr(ac|D), (3)

from which we can construct the standard mean, variance, and so forth. However, evaluating

the integrals in the “master formula” Eq. (2) is generally quite difficult, especially in the

context of the complicated non-linear models appearing in lattice analyses.2

For our present purposes, it is more interesting to observe that we can reconstruct the

combined estimate from the individual model fit results. Applying Bayes’ theorem and using

elementary properties of conditional probability gives

〈f(ac)〉M =

∫
dacf(ac)pr(ac|M,D) (4)

=

∫
dacf(ac)

pr(ac,M,D)

pr(M,D)
(5)

=

∫
dacf(ac)

pr(D|ac,M)pr(ac,M)

pr(M |D)pr(D)
(6)

=

∫
dacf(ac)

pr(D|ac,M)pr(ac|M)pr(M)

pr(M |D)pr(D)
(7)

2 Direct Monte Carlo evaluation of such integrals is an intriguing option which deserves more attention

in the context of lattice studies, in which much more complicated integrals are evaluated as a matter of

course. This method seems to have been explored in Ref. [16]. However, we will not pursue this approach

here.
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=
1

pr(M |D)

∫
dacf(ac)pr(ac,M |D). (8)

But now if we marginalize the integral on the right-hand side over the space of models {M},

we just obtain the total, model-independent expectation value for f :∑
M

∫
dacf(ac)pr(ac,M |D) =

∫
dacf(ac)pr(ac|D) = 〈f(ac)〉 . (9)

Thus, we arrive at the relation

〈f(ac)〉 =
∑
M

〈f(ac)〉M pr(M |D). (10)

This is the central formula of interest for purposes of model averaging. It shows that all of the

moments of the fully combined PDF can be obtained as a weighted average over individual

model information, with the weight factors given by the posterior probability pr(M |D)

for each individual model. Due to its role in model averaging, we will refer to pr(M |D)

interchangeably as the “posterior probability” or as the “model weight.” The model weight

itself can be expressed as an integral over the parameter space,

pr(M |D) =

∫
da pr(M, a|D) (11)

=

∫
da

pr(D|a,M)pr(a,M)

pr(D)
(12)

=

∫
da

pr(D|a,M)pr(a|M)pr(M)

pr(D)
. (13)

These probabilities are normalized to unity,∑
M

pr(M |D) = 1, (14)

which follows immediately from the definition of conditional probabilities and the marginal-

ization formula,
∑

M pr(M,D) = pr(D). Another (but perhaps more physical) argument

to obtain the same result is that the expectation of the unit operator 〈1〉 should be unity

independent of model choice.

The formulae presented so far are completely general. However, certain common choices

used for the estimators of the likelihood function and other quantities can introduce bias.

Any such biases should be corrected to guarantee convergence to correct results. We discuss

an important bias correction in detail in Section III A below.
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A. Estimation of model parameters with model averaging

It is instructive to consider what happens to the simple estimate of a model parameter

under the model combination procedure. Suppose we are interested in the single parameter

a0, marginalized over a set of NM models {M}. Using Eq. (10), we find for its mean

〈a0〉 =
∑
M

〈a0〉M pr(M |D) (15)

and variance:

σ2
a0

=
〈
a2

0

〉
− 〈a0〉2 (16)

=

NM∑
i=1

〈
a2

0

〉
i
pr(Mi|D)−

(
NM∑
i=1

〈a0〉i pr(Mi|D)

)2

(17)

=

NM∑
i=1

σ2
a0,i

pr(Mi|D) +

NM∑
i=1

〈a0〉2i pr(Mi|D)−

(
NM∑
i=1

〈a0〉i pr(Mi|D)

)2

. (18)

This result for the variance also appears in the statistics literature [4], and has been used in

the context of lattice calculations in [11, 13]. The first term is simply the weighted average

of the statistical variance over all models. The remaining two terms can then be thought

of as a “systematic error” contribution to the variance of a0 due to model choice. In the

special case of equal model weights, i.e., pr(Mi|D) = 1/NM , the latter contribution can be

thought of as the variance over the space of models, since it reduces to the standard formula

σ2
a0,syst =

1

NM

NM∑
i=1

〈a0〉2i −
1

N2
M

(
NM∑
i=1

〈a0〉i

)2

. (19)

We note that in the general case, this is not the same as the variance computed from the

set of weighted estimates wi ≡ 〈a0〉i pr(Mi|D); such a weighted variance would contain an

extraneous factor of pr(Mi|D) in the 〈a0〉2 term. We also note that taking the full width of

the distribution of results 〈a0〉i, as done in e.g. [17], will give an estimated systematic error

strictly greater than σa0,syst, so that this procedure is a conservative error estimate.

It is illustrative to specialize to the case of considering only two models M1,M2, for which

we have found the weights

pr(M1|D) = 1− p, (20)

pr(M2|D) = p. (21)
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Suppose now that model 1 is strongly favored by the data, so p is small. Expanding the

expectation values above to first order in p, we find:

〈a0〉 = 〈a0〉1 + (〈a0〉2 − 〈a0〉1)p, (22)

σ2
a0
≈ σ2

a0,1
+
[
σ2
a0,2
− σ2

a0,1
+ (〈a0〉2 − 〈a0〉1)2

]
p. (23)

In the limit p → 0 we recover the statistical results of M1, as expected. For small but

non-zero p, the corrections to the mean and variance of a0 due to including M2 are likely to

be small, but it is clear that this depends on how large the difference between the estimates

from M1 and M2 are.

III. LEAST-SQUARES FITTING

The discussion so far has been completely general with regards to the form of the prob-

ability distributions appearing. We now specialize to the most common usage case in the

context of lattice simulations, namely least-squares regression of a model M to some data

set D. The likelihood function pr(D|a,M) is taken to be

pr(D|a,M) =
N∏
i=1

1

(2π)d/2(det Σ)1/2
exp

[
−1

2
χ2
i

]
, (24)

where

χ2
i ≡ (yi − fM(a))TΣ−1(yi − fM(a)) (25)

is the standard chi-square goodness of fit3 involving the data sample yi and the model

function fM(a); we assume the samples are drawn independently from some underlying

distribution. Here d denotes the dimension of a single observation vector yi, and N is

the number of independent observations drawn from the true distribution. The matrix

Σ = 1
N−1

∑N
i=1(yi − ȳ)(yi − ȳ)T is the covariance matrix between the yi.

For the prior distribution, it is standard (and typically justified by the principle of max-

imum entropy [6, 7]) to adopt a multivariate Gaussian form,

pr(a|M) =
1

(2π)k/2(det Σ̃)1/2
exp

[
−1

2
(a− ã)T Σ̃−1(a− ã)

]
(26)

3 This form is standard in the statistics literature. For practical applications, another definition based on

the sample means is generally used, χ2 = (ȳ− fM (a))T Σ−1(ȳ− fM (a)). Up to data-dependent constants,

these two definitions are actually identical; see Appendix B for a derivation.
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=
k∏
x=1

(
1√

2πσ̃x

)
exp

(
(ax − ãx)2

σ̃2
x

)
, (27)

where k is the number of fit parameters in model M , Σ̃ is the prior covariance matrix, and

ã are the prior central values. The second formula holds for the simplified case where the

prior parameter covariance matrix Σ̃ is diagonal with entries σ̃2
x. Below will write χ2

p to refer

to the quantity in the exponent, (a− ã)T Σ̃−1(a− ã).

The ordinary least-squares likelihood pr(D|a,M) is normalized by the data covariance

matrix and some factors of (2π). Since we are considering only the case of a fixed data

set, this overall normalization is the same for all models and can be ignored here. On the

other hand, we retain for the present discussion the normalization of the prior distribution

pr(a|M), which differs for models with different numbers of parameters.

The best-fit point a? maximizes the above likelihood or, equivalently, minimizes the

negative log-likelihood function

− 2 log(pr(D|a,M)pr(a|M)) = χ2 + χ2
p ≡ χ2

aug. (28)

with the combination of terms defining the “augmented chi-squared” function [6].

A. Bias correction of the model weights

Estimator bias occurs when a sample estimator differs from the “true” underlying pop-

ulation value it is approximating. A common example of such a bias occurs in the naive

estimator of variance for data drawn from an underlying Gaussian distribution. In this ex-

ample, the bias is of order 1/N , where N is the sample size, which means that it will be

automatically removed in the limit of large N .

However, there are also examples of asymptotic biases which do not vanish as N → ∞.

The sample maximum likelihood estimate (MLE) of the log likelihood function, χ2
aug(a?),

suffers from such an asymptotic bias. Roughly speaking, because the MLE maximizes the

sample log-likelihood, it tends to overshoot the true asymptotic value. Fundamentally, this

bias arises not from the choice of the MLE but rather from finite-sample-size fluctuations in

the data itself.

To ensure convergence to the correct asymptotic model weight, we define the bias-
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corrected model weight to be [18–21]

pr(M |D)BC = exp
(
−tr[J−1(a?)I(a?)]

)
×
∫
da

pr(D|a,M)pr(a|M)pr(M)

pr(D)
(29)

where I and J are the sample estimates of the log-likelihood Fisher information matrix

and the (negative) Hessian matrix, respectively. These matrices are defined in Appendix A,

which also gives an informal derivation of the bias correction term, ∼ tr[J−1(a?)I(a?)].

When the model M is correctly specified, i.e. assuming that the “true model” from which

the data are drawn can be described by M , it is straightforward to show (see [19, 20] and

Appendix A) that asN →∞, the matrices I and J become identical, so that J−1(a?)I(a?)→

1, the k×k identity matrix. For lattice gauge theory applications where the theoretical model

rests on a firm physical foundation, the assumption of correct specification is likely to hold,

and the bias correction simply becomes exp(−k), counting the total number of parameters

in the model.

The appearance of the structure tr[J−1I] is closely related to the Akaike information

criterion [22, 23] and its generalization, the Takeuchi information criterion [18]. We discuss

this connection more below.

B. Gaussian approximation

By construction, the sample likelihood pr(a|D) is locally maximized at the best-fit pa-

rameter values a?. Taylor expansion about the best-fit point gives

χ2
aug(a) ≈ χ2

aug(a?) + (a− a?)TΣ?−1(a− a?) + ... (30)

where Σ? is the standard best-fit covariance matrix evaluated at the best-fit point,

Σ?
xy
−1 ≡ 1

2

∂2χ2
aug

∂ax∂ay

∣∣∣∣
a=a?

(31)

This approximation, known in the probability literature as the “Laplace approximation,”

becomes increasingly accurate in the limit of large statistics in the data set D. (For linear

models, as defined in Appendix C, this approximation is of course exact, since the χ2 function

is quadratic in parameters a.) Within this approximation, the integral for model weight

becomes Gaussian and can be evaluated analytically:

pr(M |D) =

∫
da

pr(D|a,M)pr(a|M)pr(M)

pr(D)
(32)
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≈
∫
da

1

(2π)k/2(det Σ̃)1/2
e−χ

2
aug(a?)/2− 1

2
(a−a?)T Σ?−1(a−a?) pr(M)

pr(D)
(33)

=
pr(M)

pr(D)
(2π)−k/2(det Σ̃)−1/2

[
(2π)k/2e−χ

2
aug(a?)/2(det Σ?−1)−1/2

]
(34)

=
pr(M)

pr(D)
(det Σ̃)−1/2e−χ

2
aug(a?)/2(det Σ?)1/2. (35)

Thus, neglecting the term pr(D) which is the same for all models, one finds the following

form for the log-likelihood

− 2 log(pr(M |D)) ≈ −2 log(pr(M)) + χ2
aug(a?) + log det Σ̃− log det Σ?, (36)

Including the bias correction term introduced in Eq. (29) gives the overall result

− 2 log(pr(M |D)BC) = −2 log(pr(M)) + χ2
aug(a?) + log

det Σ̃

det Σ?
+ 2 tr[J−1(a?)I(a?)]. (37)

From Eq. (37), we see that the posterior probability pr(M |D) encapsulates the principle

of Occam’s Razor: models with large χ2
aug(a?) are penalized, but so are models which have a

large number of free parameters. (As discussed above, the final bias-correction term reduces

to 2k asymptotically, where k is the number of parameters.)

Unfortunately, in the presence of any empirical priors and/or models with differing dimen-

sions, an effect known as the Jeffreys-Lindley paradox [24–26] leads to out-sized dependence

on the prior widths that can severely distort the overall results. The presence of the paradox

is linked closely to the use of “empirical priors” which are not based on true prior infor-

mation and can be taken to be arbitrarily wide. Note that for estimation of the best-fit

parameters a? in a fixed model there is no such distortion, and the use of empirical priors

is not problematic. However, when the normalization of the likelihood is important the

paradox can lead to nonsensical results if the prior width is taken to be extremely large.

For the particular case at hand, instead of attempting to confront the Jeffreys-Lindley

paradox head-on, we will instead argue that the effect of the (log det Σ̃ − log det Σ?) terms

will vanish asymptotically and so can be viewed as a 1/N effect in the sample size N . For the

sake of argument, imagine adopting the following cross-validation procedure: partition our

full data set D into a small “training set” DT , and the remaining data Dc
T . Then imagine

first fitting the training set DT to determine a set of fit parameters aT . These results for

aT can then be used to fix priors on a for the fit to the remaining data Dc
T . In practice,

the cost of such a procedure is that it would “use up” the data in DT to fix priors, reducing
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the overall statistical precision of the analysis. However, in the asymptotic limit N → ∞,

both partitions {DT , D
c
T} approach the true asymptotic distribution and will yield exactly

the same fit results. Therefore, in this limit Σ̃→ Σ? and the determinant terms in Eq. (37)

cancel completely.

In other words, this argument establishes that the effect of the determinant terms is

subleading in the asymptotic limit, and they may be dropped even without explicit use of a

cross-validation procedure. In the same N → ∞ limit, the bias-correction term reduces to

twice the number of parameters (see Appendix A), and we recover the well-known Akaike

information criterion (AIC) [22, 23]:

− 2 log(pr(M |D)BC)
N→∞−−−→ AICM = −2 log(pr(M)) + χ2

aug(a?) + 2k. (38)

This is our main result for the bias-corrected model weights in the limit N → ∞. We

advocate use of Eq. (38) in all cases; without a more complete treatment of finite-sample-

size effects, there is no guarantee that inclusion of the determinant terms in Eq. (37) will

improve estimation of the model weights. From this point forward, we adopt the bias-

corrected form as the default choice of pr(M |D) unless explicitly stated otherwise and thus

drop the “BC” subscript.

More generally, simply dropping the determinant terms from Eq. (37) gives the Takeuchi

information criterion (TIC) [18]. However, as discussed in Appendix A, the TIC form of

the bias correction is only necessary in the case of model mis-specification. For models that

obviously fail to describe the data, the χ2
aug term in either information criterion will dwarf

the size of the bias correction, so the distinction between TIC and AIC is most important

in cases where little information is available about the true model. In the present context,

strong physical motivation often exists for trusting the correctness of the models in use. We

therefore advocate the use of the AIC for general model averaging purposes in lattice gauge

theory.

C. Practical example: polynomial data

To demonstrate the method and some key features, we begin by considering a simple toy

model. We begin by specifying a quadratic “model truth” polynomial function,

F (x) = 1.80− 0.53
( x

16

)
+ 0.31

( x
16

)2

. (39)
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m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

a0 1.640(20) 1.725(41) 1.861(65) 1.903(95) 1.88(11) 1.87(11)

a1 -0.170(72) -0.96(30) -1.42(81) -1.1(1.2) -0.9(1.3)

a2 0.80(30) 1.9(1.9) 0.3(4.3) 0.08(4.40)

a3 -0.8(1.2) 1.9(6.4) 1.3(6.8)

a4 -1.4(3.2) 0.3(7.3)

a5 -1.0(3.9)

χ2
aug 31.53 25.97 18.76 18.4 18.22 18.15

p-value 0.01 0.04 0.22 0.24 0.25 0.25

AICm 33.54 29.98 24.76 26.4 28.22 30.16

pr(M |D) 0.01 0.04 0.56 0.25 0.10 0.04

Table I. Individual best-fit results and associated quantities for N = 160. The model-averaged

value for the intercept is 〈a0〉 = 1.867(89).

A set of N mock data samples are generated for x ∈ {1, 2, ..., 16} by taking the model

truth for each point and adding Gaussian noise η(x), uncorrelated in x with mean zero and

standard deviation σ = 1.0. The resulting mock data y(x) = F (x) + η(x) are plotted in

Fig. 1 (top panel) for the choice N = 160; we will also study the N -dependence.

We take as our space of model functions polynomials labeled by their degree m,

fm(x) =
m∑
j=0

aj

( x
16

)j
. (40)

with 0 ≤ m ≤ 5. We take the flat prior pr(m) = 1/6, corresponding to minimal prior knowl-

edge about the functional form of the model (except that it is polynomial.) All parameter

priors are taken to be Gaussian with mean 0 and width 10 (the parameters are, essentially,

unconstrained.)

The results of the fits to individual models as well as the model-averaging results are

shown in Fig. 1 (bottom panel) and in Table I. Note that although all models with m > 2

provide a good description of the data in terms of χ2, the bias-corrected model probability

estimated through the AIC places relatively more weight on the simpler models, with the

maximum probability assigned to the correct choice m = 2. The model-averaged result is

consistent with model truth and has slightly larger uncertainty than the individual fit to the
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Figure 1. Top: synthetic data (green points) for the given quadratic “model truth” function (black

curve) plus Gaussian noise, with noise sample size N = 160. Bottom: fit results for degree-m

polynomial models (blue circles), compared to the known value a0 = 1.8 (black dashed line). The

model-averaged result (red open square) obtained from the weighted average of the blue fits is shown

at m = 0. The lower inset shows the standard p-value (blue dashed line) and the model weight

calculated from the AIC (orange solid line). Comparison of these curves shows the “Occam’s razor”

effect, with the AIC penalizing fits with roughly equal goodness of fit but more fit parameters.

correct model m = 2.

As noted, the results so far use a fixed sample size of N = 160. We repeat the test as

described above with several values of N ∈ [20, 640], showing the final estimated result for

a0 using various procedures in Fig. 2. The result of the model averaging procedure using the
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AIC is seen to be consistent with model truth in all cases, with an error that is uniformly

smaller than the more conservative procedure of taking the full variation of the mean over

all models with p > 0.1 as a systematic error. The AIC model-averaged error is larger

than the error on the “quadratic fixed” result using the known true quadratic model; this

is to be expected, as using model averaging rather than a fixed model necessarily builds in

an additional systematic error due to model uncertainty (see the discussion in Sec. II A.)

Although in this simple example the true model is known exactly, we emphasize that this

situation is rare, and in the absence of such exact knowledge the use of fixed-model fits can

result in underestimation of parameter errors.

Omitting the bias-correction term and averaging using only the χ2 results to estimate

model probability (the “naive” estimate) also tends to give slightly larger error than model

averaging using AIC, but the results remain consistent with the correct answer. In the

absence of the bias correction, the likelihood of the models with m > 2 is overestimated.

However, because those higher-order polynomial models include the m = 2 model within

their parameter space, they tend to estimate the correct value of the intercept a0 on average.

As a result, there is no bias introduced into the mean result for a0 when using biased model

probabilities in this particular example. However, the error bar is slightly overestimated

when using the naive estimator.

IV. DATA SUBSET SELECTION AS A MODEL VARIATION PROBLEM

A routine part of modeling lattice Monte Carlo data is data subset selection, i.e., choos-

ing a “cut” on the data beyond which the model is not applied. A canonical and simple

example is fitting a two-point correlation function C(t) to extract the ground-state energy.

The full model expected to describe this correlation function involves an infinite tower of

exponentials,
∑∞

i Aie
−Eit. In practice, one truncates the sum after a finite number of terms

and then selects a minimum value tmin below which the data are simply ignored. Choosing

the precise value of tmin is generally done by hand.

Although this process is typically thought of as data selection problem, it can easily be

reformulated as a model selection problem. In the previous example, the justification for

ignoring data below tmin is partially one of expediency. If we are only interested in the first

few states, it suffices to look at times with t ≥ tmin where they dominate. Times below tmin
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Figure 2. Scaling of various estimates of the intercept a0 vs. the data sample size N . The

true value (dashed line) is a0 = 1.8. The blue circles (model average using the AIC) show good

consistency with both the model truth and with the estimates using the correct quadratic model

form (red squares). Using the full-width difference between all models with fit p-value greater than

0.1 as a systematic error (orange crosses) tends to give larger uncertainty than the AIC model

average. Finally, averaging using a “naive” estimate of pr(M |D) which omits the bias-correction

term (silver triangles) does not directly lead to bias in the estimation of a0, but also gives slightly

larger uncertainty due to overweighting of more complicated models as discussed in the text.

will be heavily contaminated by contributions from the higher excited states, and little to

no information about the first few states is lost by ignoring them.

Based on this observation, we can define a joint model that describes the full data set.

First, select a subset of the data and imagine fitting the model of choice M to this subset

as usual. Second, imagine fitting the remaining data to a “perfect” model with zero degrees

of freedom. For example, the “perfect” model could be a polynomial with degree equal to

Ncut, but in principle other functional forms will also work. Because the “perfect” model has

zero degrees of freedom, there exists a solution for its parameters for which the differences

between the model and the sample means vanish exactly.

To give an explicit construction, we first define a partition P of the data vectors into

yi = (ycut
i , ykeep

i ), where ykeep
i are the subset to be modeled and ycut

i are the cut data. We
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then define the corresponding partitioned model gM(a, P ) as

yi − gM(a, P ) =

yi − ȳ
cut, yi ∈ ycut

i

yi − fM(a), yi ∈ ykeep
i ,

(41)

where ȳcut is the sample average of the ycut
i . The partition-dependent log likelihood is then,

dropping constant terms that do not change with fixed data set D,

−2 log pr(D|a,M) =
N∑
i=1

χ2
i (P ) =

N∑
i=1

(yi − gM(a, P ))TΣ−1(yi − gM(a, P )) (42)

=
N∑
i=1

(ykeep
i − fM(a))TΣ−1

P (ykeep
i − fM(a)) + (const) (43)

where Σ−1
P is the submatrix of the full inverse data covariance matrix Σ−1 which corresponds

to the data subset ykeep
i . All other terms involving the cut data contain the expression

ȳcut − gM(a, P ) at least once and therefore vanish identically by construction, even in the

presence of off-diagonal correlations between ykeep
i and ycut

i .

Since matrix inversion does not generally commute with subspace projection, the matrix

Σ−1
P typically differs from (ΣP )−1, the inverse of the covariance sub-matrix. However, in

practical lattice applications (ΣP )−1 is often used as an approximation to Σ−1
P ; the difference

between these matrices is given by terms that are suppressed whenever long-range (i.e.,

further off-diagonal) correlations are generally smaller than short-range ones. An obstruction

to using Σ−1
P directly is that finite-sample estimates of the full covariance matrix Σ−1 are

typically ill-conditioned. Therefore, in what follows we will use (ΣP )−1.

The result of this construction is that the contribution from the “perfect” model describ-

ing the data outside the chosen subset is ∆χ2
aug = 0. However, there remains a bias-correction

term which accounts for the Ncut additional model parameters used to describe the cut data

ycut
i . The bias correction is still necessary because although the “perfect” model exactly de-

scribes the data sample as given, the values of the perfect model parameters will fluctuate as

additional data is added. The difference between the perfect model parameters at finite sam-

ple size and their asymptotic values leads to a bias correction as described in Appendix A.

We emphasize that the bias correction term itself does not vanish since the individual terms

χ2
i (a) do not vanish identically for the perfect model, only the sum. Thus, the overall model

probability for the joint model is easily seen to be obtained from the modified expression

AICM,Ncut = −2 log(pr(M)) + χ2
aug(a?) + 2k + 2Ncut, (44)
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where χ2
aug(a?) is evaluated only for the model M and for data within our selected subset.

The result Eq. (44) depends only on quantities that may be estimated from the subset

model fit, and on counting factors. As a result, in practice we do not need to construct the

“perfect” model at all. We note that a similar penalty term for removal of data points was

also proposed in [14] in a frequentist context.

Although we were motivated by the example of a two-point correlator where the data

are cleanly divided into two subsets along a single dimension, the argument above holds for

arbitrarily complex subdivisions of the full data set. Whatever subset of the data we choose

to fit explicitly to model M , the joint model which also describes the remaining data will

contribute an additional factor of 2Ncut to the information criterion. We can also consider

a set of models {M} and perform ordinary model averaging over the joint space defined by

{M} and the parameters that uniquely define a data subset.

A. Practical example: Synthetic correlation functions

To test the data subset selection procedure, we set up another toy-model example resem-

bling a two-point correlation function, following the example description above. The “model

truth” in this case is a two-state exponential,

F (t) = 2.0e−0.8t + 10.4e−1.16t. (45)

To generate synthetic data, we add correlated Gaussian noise η(t) with mean zero and

variance 0.09. The noise is added fractionally to the data, i.e., the synthetic data are

generated according to the formula y(t) = F (t)(1 + η(t)). The correlation matrix of the

noise takes the form ρt,t′ = ρ|t−t
′|, i.e. equal to 1 on the diagonal and decreasing according

to a power law as the temporal separation between points increases, similar to a real QCD

correlation function. We fix the numerical correlation coefficient ρ = 0.6. N mock data

samples are generated for t ∈ {0, 1, ..., 31}.

Additional trials in which the above parameters have been varied were also tried, including

using uncorrelated Gaussian noise instead of correlated. No qualitative difference in the

outcome of the tests was observed with these variations.

For this test, we consider a single model which consists of a single exponential term,

f(t) = A0e
−E0t. (46)
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This model is fit to all data in the range [tmin, 31]. We consider all values of tmin from 1 to

28, with the goal of using model averaging with Eq. (44) to obtain a combined result for the

ground-state energy E0.

The results of four independent trials following the above procedure with N = 500 are

shown in Fig. 3. Excited-state contamination, i.e. the influence of the second exponential

state which is not present in our fit model, is clearly visible at low tmin. In each case, excellent

agreement of the model-averaged result with model truth is seen. As in the polynomial

example, the bias-corrected model probability is seen to weight simpler models more strongly,

which in this case means favoring fits that cut away less of the data.

In Fig. 4, we repeat the above exercise while varying the sample size N , once again over

the range N ∈ [20, 640]. The results of model averaging using the AIC, i.e. using Eq. (44),

show good consistency with the known result. Although the error of the model-averaged

result is generally somewhat larger than the error for using a single fixed choice of tmin, the

latter has an unaccounted-for systematic error due to model truncation. (Indeed, if we do

not adjust tmin as N → ∞, we expect the result for E0 to become incompatible with the

correct ground-state energy, as the contamination from the second state will eventually be

resolved in a large enough sample.)

On the other hand, the error on the model-averaged result is generally much smaller than

the more conservative full-width estimate, resulting from taking the full variation of mean

results over all models with p > 0.1 as a systematic error as in the polynomial example

Section III C. In contrast to the polynomial example, here omission of the important bias-

correction term in the AIC (i.e. dropping the Ncut contribution to model weight) causes a

drastic inflation of the error in the averaged result for E0. Once again, the interpretation

is that omitting the bias correction causes overestimation of the likelihood for the more

complicated models, in this case models with larger tmin. These models generally give

results for E0 consistent with the correct answer, but with much larger errors, and the

model-averaged result is altered accordingly.
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Figure 3. Fit results for the ground-state energy with true value E0 = 0.8 (black dashed line), with

the data cut away below tmin (blue points). The model-averaged result (red open square) shows

good agreement with model truth in all cases. The lower inset shows the standard p-value (blue

dashed line) and the model weight calculated from Eq. (44) (orange solid line). The four subfigures

represent four random draws of correlated Gaussian noise, but are otherwise identical.
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Figure 4. Scaling of various estimates of the ground-state energy E0 vs. the data sample size N .

The true value (dashed line) is E0 = 0.8. The blue circles (model average using the AIC) show

good consistency with the model truth and generally comparable error to fitting with fixed tmin (red

squares). Using the full-width difference between all models with fit p-value greater than 0.1 as a

systematic error (orange crosses) tends to give significantly larger uncertainty than the AIC model

average. Finally, averaging using a “naive” estimate of pr(M |D) which omits the bias-correction

term (silver triangles) also leads to significantly larger uncertainty due to overweighting of more

complicated models as discussed in the text.

B. Practical example: QCD correlation functions

1. Masses from a two-point correlation function

We now consider the example of model averaging applied to a pion two-point correlation

function from a real lattice QCD calculation. This correlator has been used in published work

by the Fermilab Lattice and MILC collaborations [27]. The underlying gauge-field ensemble

used has a lattice spacing of a ≈ 0.09 fm and a pion mass of about 215 MeV. In this example,

the correlation function was constructed using staggered fermions and corresponds to a pion

with energy Eπ ≈ 300 MeV.

The results of our procedure are shown in Fig. 5. The top pane shows the effective mass

and the final result of model averaging, which is consistent with by-eye expectations.4 The

oscillations in the effective mass are a familiar feature of staggered two-point correlation

4 The effective mass of a correlation function C(t) is defined by meff(t) = logC(t)/C(t+ 1).
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functions with nonzero momentum. The middle pane shows intermediate results for the

ground-state energy E0 from individual fits.5 The green band indicates the model-averaged

result for the points shown. For clarity of presentation, the results in the middle pane are

from fits with (1 + 1) states only, i.e., 1 decaying state and 1 oscillating state. We also

tried fits including (2 + 2), (3 + 3), and (4 + 4) states. The only qualitative difference from

including more states is that good fits are obtained for smaller tmin. The model average is

unchanged. The bottom pane shows the model weights for the fits with (1 + 1) states. As

expected, the weights peak in the middle and taper off at both ends. When tmin is small,

the fit quality rapidly declines due to contributions from excited states. When tmin is large,

Eq. (44) disfavors cutting too aggressively. In the intermediate region, the model weights

fluctuate visibly with respect to ttmin. This behavior is related to the fact to the that model

weights of Eq. (44) exhibit discrete jumps as Ncut ∈ Z is varied. Although the total χ2

is also expected to change by roughly one unit when a degree of freedom is removed, the

precise value of course depends on the details of the data. Given the form of Eq. (44), there

is no reason to expect that model weights should be a smooth function of Ncut for a finite

data sample. Overall, the model-averaged result agrees with intermediate results that went

into the analysis of Ref. [27] to better than 1σ [28].

2. Matrix elements from three-point correlation functions

Model averaging also shows promising results for extraction of more complicated matrix

elements. In this example, we test the extraction of a K → π transition matrix 〈π|J |K〉,

again using correlation functions that were a part of published work by the Fermilab Lattice

and MILC collaborations [27]. In this case, the underlying gauge-field ensemble has a lattice

spacing of about 0.12 fm, with pion and kaon masses of about 220 and 515 MeV, respectively.

Staggered fermions were also used for these correlators. The calculation occurs in the rest

frame of the kaon. The pion momentum has been adjusted to be near the point of zero recoil,

q2 ≡ (pK − pπ)2 ≈ 0. The methodology for extracting these matrix elements is complicated

but relatively standard within the lattice community. The desired matrix element is the

result of a joint correlated fit to two- and three-point functions. In order to visualize the

5 The ground-state energy E0 comes from the first term in the spectral decomposition, Eq. C3. Incidental

technical complications related to staggered fermions and oscillating states are discussed in Ref. [27],

where this data was originally used (cf. their Eq. 2.6).
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Figure 5. Model averaging results for a pion two-point correlation function using staggered

fermions. Top: The effective mass in lattice units and the final result of model averaging. The

oscillating contributions are from the opposite-parity states associated with staggered fermions.

Middle: Individual fit results for the ground-state energy E0 in lattice units together with the

result of model averaging. Bottom: Model weights for the individual fits.
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result, it is standard to construct a ratio R(t, T ) of two- and three-point functions whose

asymptotic plateau is proportional to the bare lattice matrix element. Here T denotes the

location of the sink operator which couples to the kaon. In conducting such a fit, the analyst

is faced with several choices: the number of states in the pion channel (n+ n), the number

of states in the kaon channel (m+m), and the fit window t ∈ [tmin, T − tmin]. We refer the

reader to Ref. [27] for additional details about fits like these.

Fig. 6 shows the result of model averaging for the matrix element. We adopt a flat

prior model weight pr(M) = C for all choices of (m + m) and (n + n), which drops out of

the model average. The top pane shows the ratio R(t, T ) for two different sink locations

alongside the result of model averaging. The middle pane shows intermediate fit results

and the model average. The particular choices made for each of the fits is displayed along

the horizontal axes, with the fit window displayed on top and the number of states on the

bottom. For instance, the leftmost point used (n+ n) = (3 + 3) states for the pion channel,

(m+m) = (3+3) states for the kaon channel and a fit range window t ∈ [3, T−3]. Finally, the

bottom pane gives the model weights. In this case, all the results displayed give consistent

results, and the weight of the leftmost fit is essentially unity. This is Occam’s razor, as

encoded by Eq. (38), at work. For matching results, the model with the fewest parameters

and most data should be preferred. The model-averaged result, once appropriately converted

into a form factor, agrees to better than 1σ with the published result of Ref. [27]

This example suggests another important application of the framework we are describing.

A complete analysis of a lattice matrix element might consider a more general set of fits, e.g.,

with different numbers of decaying and oscillating states in each channel or with different

tmin cuts for the source and sink. Scanning over all possibilities can easily produce tens or

hundreds of individual fit results. Finding an objective selection criterion for choosing a

best-fit result can be difficult. The model weights in Eq. (37) and Eq. (38) offer a potential

solution to this problem, particularly when used in conjunction with expert knowledge and

the usual careful thinking.

V. CONCLUSION

We have presented a Bayesian approach to the problem of model averaging. The sta-

tistical methods we describe apply very generally, though our examples have focused on
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Figure 6. Model averaging results for a matrix element associated with a K → π transition form

factor. Top: A ratio of two- and three-point correlation functions (whose plateau is proportional

to the matrix element 〈π|J |K〉) and the final result of model averaging. Middle: Individual fits

together with the result of model averaging. Bottom: Model weights for the individual fits.
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practical problems in lattice gauge theory. The context for regression problems is rather ex-

ceptional in many lattice studies, since the models often rest on firm theoretical foundations.

For instance, multi-exponential fits to correlators are based on the spectral decomposition,

which only requires the existence of a positive-definite transfer matrix. Effective field theory

governs extrapolations to the chiral, continuum, or heavy-mass limit. If a model fails to

describe the data, the simulation itself is rightfully viewed with additional scrutiny. Hy-

pothesis testing is typically less important than reliably extracting the values of parameters

capturing the physics of interest. When predictions from nested models (say, the NLO ver-

sus NNLO predictions from effective field theory) differ slightly, it is important to be able to

produce a final number with associated statistical and systematic uncertainties. Bayesian

model averaging is an attractive approach to problems like these.

Two key practical results are the model-averaged mean and variance, Eq. (15) and

Eq. (18); the general result Eq. (10) allows for averaging of arbitrary expectation values

of functions of fit parameters. These formulae rely on the model weights pr(M |D). In gen-

eral, the model weights are defined through complicated integrals. However, analytic results

are available in the Gaussian approximation, which is exact for linear least-squares fitting.

For nonlinear least-squares fitting, the approximation is expected to become increasingly

good for larger data sets.

For a fixed dataset with no cuts, Eq. (38) is the final expression used to construct the

model weights used in the examples. Since this expression is computable just using the

familiar augmented χ2 and the number of parameters in the model, it is easy to include

and test in existing lattice analyses. However, it relies on taking an asymptotic limit in the

sample size, and it would be interesting to study improved estimators at finite sample size

in future work.

A particularly nice application of these ideas is data subset selection, which we recast

as a model variation problem. The basic observation was to reinterpret cuts on the data

as additional model parameters, leading to a model weight given by Eq. (44). The model

averaging approach gives a straightforward way to replace the common practice of tuning

such data subset cuts by hand.

Broadly speaking, perhaps the most attractive feature of Bayesian model averaging is the

natural appearance of Occam’s razor. The model weights appearing in Eqs. (38) and (44)

favor models which use the fewest parameters while describing the most data. Inclusion
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of an asymptotic bias correction to the estimated likelihood, which yields the AIC as a

model-selection criterion in the limit of large sample size, is crucial to the occurrence of this

effect.

Although this technique allows the data to remove much of the subjectivity from analyses

including model variations, this does not extend to the choice of the model prior weights

pr(M). In the absence of specific and strong beliefs about particular models, we advocate

for the use of a flat prior, i.e. weighting all models equally in the pr(M). In all of the

practical examples shown in the text, this is precisely what has been done. In particular, we

emphasize that one should not attempt to impose parsimony through the model priors by

overweighting models with fewer parameters; this principle (i.e. Occam’s razor) is built-in

to the bias-corrected model weights as we have discussed.

An interesting direction to explore in future work would be to study improved estimators

at finite sample size, rather than relying on the asymptotic result to estimate the model

weights. This will necessarily involve careful treatment of the covariance matrix terms in

Eq. (37). It would also be interesting to explore direct Monte Carlo evaluation of the

integral in Eq. (29), although the bias correction should be studied carefully in the context

of whatever specific approach is used. Studying the interplay of model averaging with

resampling methods such as jackknife and bootstrap, commonly used in lattice analyses,

would likely be a useful extension of this work.

It is worthwhile to compare Bayesian model averaging to another commonly-used tech-

nique in lattice data analysis, the empirical Bayes method [6, 15, 16]. In this approach, the

number of fit parameters is increased until the description of the physics of interest (e.g. the

ground state in a two-point correlation function) becomes stable. Empirical (data-driven)

priors are used for the additional fit parameters, which are generally treated as nuisance

parameters. The use of the empirical Bayes method provides an alternative to model aver-

aging with fixed data as presented in Section III C. However, data subset selection can be

used in conjunction with empirical Bayes modeling, and may be particularly useful for more

complicated analyses where comparison of discrete model choices is required.

Within the lattice community, the empirical Bayesian method is most widely developed

and applied in the analysis of correlation functions. The usual empirical Bayesian methods

also extend gracefully to “effective field theory fits” [7], where power-counting arguments

furnish firm theoretical motivation for imposing order-unity priors on certain coefficients.
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In such cases, one can simply add terms until the parameters of interest stabilize. However,

for more generic fits (e.g., when the correct power-counting scheme is not a priori obvious),

adding a large number of terms may destabilize the fit and inject undesirable noise into the

results. The generality and flexibility of model averaging makes it an appealing tool for

analyzing difficult problems like these, particularly in conjunction with existing methods.

Overall, we emphasize that the empirical Bayesian and model averaging techniques are

complementary.

A. Practical suggestions and warnings

Model averaging has performed well for us in many test cases. However, as with any

statistical tool, the techniques we describe should not be used blindly. In particular, model

averaging should not be used as a substitute for plotting data and fits and thinking carefully

about the results [29].

A basic assumption underlying this technique is that only statistically correct results are

included in the model average. Including results for fits that fail to converge numerically,

for example, will likely result in incorrect answers. Incomplete treatment of autocorrelation

effects in the data will similarly yield invalid statistical estimates and thus invalid model-

averaged results.

The model weights of Eq. (38) and Eq. (44) are useful beyond model averaging à la

Eq. (10). For instance, many lattice calculations oblige the analyst to make many choices

beyond tmin. In this situation, the model weights can help guide the decision about which,

say, dozen fit results (out of potentially hundreds) are most promising for further inves-

tigation and scrutiny using more familiar and established techniques. Model selection is

equivalent to model averaging in the limit that a single model has very high probability of

correctness; this situation can naturally emerge from the data analysis, as in the example

shown in Fig. 6.

Model averaging may be especially useful in the context of fitting models that contain

discrete degrees of freedom that are not amenable to standard numerical minimization pro-

cedures. For example, a multi-exponential model
∑∞

i Aie
−Eit in which the sign of the

amplitudes Ai is a priori unknown could be studied with improved numerical stability by

fixing the signs of all included amplitudes one by one, and then averaging together the
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results.

In certain cases, we have found that the systematic errors due to model truncation or

variation can be significantly overestimated by more conservative methods. Revisiting old

lattice analyses which are limited by systematic errors related to model variation may be

worthwhile. On the other hand, in our tests we have found excellent agreement between cor-

relator fits with few states and those with many states; the combination of model averaging

with few-state fits as a method could reduce problems related to numerical convergence and

reduce the computational cost of fitting.
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Appendix A: Calculation of asymptotic bias for model weights

In this appendix we derive the asymptotic bias of the log-likelihood. The form of the

bias is well known in the statistics literature, and it appears in the Takeuchi Information

Criterion (TIC), a generalization of the well-known Akaike Information Criterion (AIC).

What follows is not a tight mathematical proof, but rather an informal derivation designed

to illustrate how the bias term arises. For technical details, we refer interested readers to

the extensive original literature [18–21]. Our presentation follows closely the introduction

of Ref. [30], which is particularly accessible.

The maximum likelihood estimator (MLE) a? is a consistent estimator of the asymp-

totic or “true” â. However, the estimated log-likelihood function evaluated at a? is not a

consistent estimator of the expected log-likehood function. Roughly speaking, because the

MLE maximizes the estimated log-likelihood, it tends to overshoot the population expected

log-likelihood.

Consider the log-likelihood

logL(x; a) = log
N∏
i=1

L(xi; a) =
N∑
i=1

logL(xi; a), (A1)

where L(xi; a) is the likelihood for a single sample xi evaluated with model parameters a.

The sample and population expectation values of a function g(x) are defined according to

EN [g(x)] =
1

N

N∑
i=1

g(xi) ≡ 〈g(x)〉N (A2)

Ez[g(z)] =

∫
dz f(z)g(z) ≡ 〈g(z)〉z , (A3)

where f(z) is the population distribution from which the samples {xi} are presumed to be

drawn. Because a? and â maximize their respective log-likelihoods, they are solutions to the

usual equations:

〈∂a logL(x; a)〉N |a=a? = 0 (A4)

〈∂a logL(z; a)〉z|a=â = 0. (A5)

Note that, for a fixed number of samples N , a? is a fixed number. The sample Fisher

information matrix IN and the negative sample Hessian matrix JN are defined as

IN,xy(a) ≡ 1

(N − 1)

N∑
i=1

(
∂ logL(xi; a)

∂ax

)(
∂ logL(xi; a)

∂ay

)
(A6)
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=
1

4(N − 1)

N∑
i=1

(
∂χ2

i

∂ax

)(
∂χ2

i

∂ay

)
, (A7)

JN,xy(a) ≡ − 1

N

N∑
i=1

∂2 logL(xi|a)

∂ax∂ay
=

1

2N

N∑
i=1

∂2χ2
i

∂ax∂ay
. (A8)

The final equalities are valid for the special case of least-square fitting, where−2 logL(x; a) =

χ2 (cf. Section III for additional notation). Similarly,

Ixy(a) ≡ Ez
[
∂ logL(z; a)

∂ax

∂ logL(z; a)

∂ay

]
(A9)

Jxy(a) ≡ −Ez
[
∂2 logL(z; a)

∂ax∂ay

]
. (A10)

With Eq. (A1) and Eq. (A2), the total log-likelihood can be written as logL(x; a) =

N 〈logL(x; a)〉N . The bias in the log-likelihood is defined as the difference between its

estimated and expected values,

b(a?(x)) ≡ N 〈logL(x; a?(x))− 〈logL(z; a?(x))〉z〉N . (A11)

We are interested in the behavior of this bias in the limit of many samples, N → ∞.

To emphasize the dependence on the data, we have written a? = a?(x). To evaluate the

bias explicitly and resolve the mixed expectation value, it helps to add and subtract terms

judiciously:

b(a?(x)) =N
(
〈logL(x; a?(x))〉N − 〈logL(x; â)〉N

)
+N

(
〈logL(x; â)〉N − 〈logL(z; â)〉z

)
+N

(
〈logL(z; â)〉z − 〈〈logL(z; a?(x))〉z〉N

)
.

(A12)

This trivial rewriting pays immediate dividends. The first and third terms involve matching

expectation values at nearby points and are amenable to Taylor expansion. As we will argue

shortly, the second term vanishes.

Before evaluating each term, we quote a useful technical result due to White [31]. The

necessary regularity conditions for this result, which White calls the “usual maximum like-

lihood regularity conditions,” are stated carefully and at length in Ref. [31].

Theorem 1. Asymptotic Normality. Given White’s regularity conditions, the difference

(a? − â) is asymptotically normally distributed with mean zero and width C(â),

√
N(a? − â)

N→∞∼ Normal(0, C(â)), (A13)

33



where

C(â) = J−1(â)I(â)J−1(â) (A14)

CN(a?) = J−1
N (a?)IN(a?)J−1

N (a?) (A15)

is a product of (inverse) Hessian and Fisher matrices. Moreover, CN(a?)
N→∞→ C(â) element

by element.

Now we turn to the evaluation of Eq. (A12), beginning with the first term. Expanding

around the MLE point a? gives

N (〈logL(x; a?(x)〉N − 〈logL(x; â)〉N) = −N
2

〈
(â− a?(x))

∂2 logL

∂a∂a′
(â− a?(x))

〉
N

(A16)

N→∞−→ +
1

2
tr
[
I(â)J−1(â)

]
. (A17)

In the first equality, the linear term vanishes by the definition of a?, Eq. (A4). The second

line follows from the asymptotic normality of
√
N(a?−â) and the fact that−∂2 logL

∂a∂a′
converges

to J in probability. The final line also uses a standard result about expectation values of

random quadratic forms,

E[εTAε] = tr[ΣA] + µTAµ, (A18)

where ε is a random variable with mean µ and covariance Σ.

The second term in Eq. (A12) vanishes. To see this, first observe that both terms are

evaluated at the same fixed parameters â, which remain unchanged by the limit N → ∞.

Next, note that the estimated log-likelihood converges point-by-point to the asymptotic

distribution. Therefore, the difference vanishes in this limit. This argument fails when the

MLE a?(x) is involved, since a?(x) depends on the data and thus itself moves with N .

Finally, we consider the third term, which contains population expectation values. In

this case it is useful to expand around â, since the linear term will vanish by Eq. (A5):

N
(
〈logL(z; â)〉z − 〈〈logL(z; a?(x))〉z〉N

)
(A19)

= N

(
〈logL(z; â)〉z − 〈〈logL(z; â)〉z〉N +

1

2
〈(a? − â)J(â)(a? − â)〉N

)
(A20)

= N

(
〈logL(z; â)〉z − 〈logL(z; â)〉z +

1

2
〈(a? − â)J(â)(a? − â)〉N

)
(A21)

=
N

2
〈(a? − â)J(â)(a? − â)〉N (A22)
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N→∞−→ 1

2
tr
[
I(â)J−1(â)

]
. (A23)

The final line follows from the asymptotic normality of
√
N(a? − â) and the formula for

random quadratic forms. Combining results for all three terms, we see that

b(a?(x))
N→∞−→ +

1

2
tr
[
I(â)J−1(â)

]
+ 0 +

1

2
tr
[
I(â)J−1(â)

]
(A24)

= tr
[
I(â)J−1(â)

]
(A25)

As indicated, this result is evaluated at the (unknown) parameters â. However, since the

sample IN(a?) and JN(a?) are consistent estimators of I(â) and J(â), the bias may be

evaluated using them instead [20, 21, 30].

For the sake of concreteness, the proof sketched here has used the MLE a?. However,

a similar bias term is expected to be present quite generally. For instance, Theorem 2.1

of Ref. [21] proves the existence of bias for a more general class of estimators. Roughly

speaking, the bias arises from finite-sample-size fluctuations in the data and not from the

choice of the maximum likelihood estimator itself. Due to the generality of this bias term, we

include the correction in the general formula Eq. (29) and not only in the following Gaussian

approximation.

So far the discussion has been for general log-likelihoods. Now we specialize to the case

of least-square fitting, where −2 logL(x; a) = χ2(x; a). Taking χ2(x; a?) 7→ χ2(x; a?) +

2 tr[IN(a?)J−1
N (a?)] as in Eq. (37) removes this bias.

In most cases of interest in lattice gauge theory (spectral decomposition of correlation

functions, effective theory descriptions of the chiral-continuum limit, etc.), the correct model

for the data is assumed to be known. When the model is specified correctly, the following

theorem, proven by White in Ref. [31] with careful attention to regularity conditions, gives

the familiar equivalence between the negative Hessian and the Fisher information matrix.

Theorem 2. Information Matrix Equivalence. Given White’s regularity conditions

and assuming that the model is specified correctly,

C(â) = J(â)−1 = I(â)−1. (A26)

In other words, the negative Hessian equals the Fisher information matrix. Likewise, if the

model is specified incorrectly, then Eq. (A26) fails to hold in general, i.e., J(â) is generically

not equal to I(â).
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For completeness, we sketch how this equivalence arises and how it can break down.

Consider the log-likelihood logL(z; a). Elementary use of the product rule shows that

∂2 logL(z; a)

∂ax∂ay
=

1

L(z; a)

∂2L(z; a)

∂ax∂ay
− ∂ logL(z; a)

∂ax

∂ logL(z; a)

∂ay
(A27)

Taking the expectation of both sides (and using the likelihood function as the PDF) gives:

Ez
[
∂2 logL(z; a)

∂ax∂ay

]
= −Ez

[
∂ logL(z; a)

∂ax

∂ logL(z; a)

∂ay

]
, (A28)

since the first term on the right-hand side vanishes:

Ez
[

1

L(z; a)

∂2L(z; a)

∂ax∂ay

]
≡
∫
dzL(z; a)

(
1

L(z; a)

∂2L(z; a)

∂ax∂ay

)
(A29)

=
∂2

∂ax∂ay

∫
dzL(z; a) =

∂2

∂ax∂ay
1 = 0. (A30)

Eq. (A28) is the familiar equivalence between the negative Hessian and the Fisher matrix.

The vanishing expectation value of the first term on the right-hand side of Eq. (A27) depends

on the appearance of logL(x; a) in the numerator. That is, it assumes that the true likelihood

appears within the model space. In general, if the model is incorrectly specified, Theorem 2

says that the equivalence between the negative Hessian and Fisher matrices ceases to hold.

White also provides specification-robust procedures [31]. We emphasize that many statistical

analyses in lattice gauge theory are expected to be in the privileged position of knowing the

correct model.

Appendix B: Equivalence of sample-based and mean-based forms of chi-squared

likelihood

In this brief appendix, we discuss the definition of the likelihood function in Eq. (24)

and Eq. (25), based on the individual sample values χ2
i . This definition is not manifestly

equivalent to the standard definition based on the data means,

χ2 ≡ (ȳ − fM(a))T (Σ/N)−1(ȳ − fM(a)), (B1)

where ȳ = 1
N

∑N
i=1 yi is the sample mean (cf. Section III for additional notation). However,

it is straightforward to prove that the two definitions agree up to an additive constant,

N∑
i=1

χ2
i = (N − 1)d+ χ2. (B2)
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where d is the dimension of the observation vector yi, as defined in the main text. The proof

follows by elementary matrix manipulations. By definition, the left-hand side is

N∑
i=1

χ2
i =

N∑
i=1

(yi − fM(a))TΣ−1(yi − fM(a)) (B3)

=
N∑
i=1

(yTi )Σ−1yi − 2NfM(a)TΣ−1ȳ +NfM(a)TΣ−1fM(a) (B4)

= (N − 1)d+NȳTΣ−1ȳ − 2NfM(a)TΣ−1ȳ +NfM(a)TΣ−1fM(a) (B5)

= (N − 1)d+ (ȳ − fM(a))T (Σ/N)−1 (ȳ − fM(a)) (B6)

≡ (N − 1)d+ χ2, (B7)

where we have used the definition of the sample mean, ȳ = 1
N

∑N
i=1 yi. To obtain the third

equality, we have used the relation
∑N

i=1 yiy
T
i = (N − 1)Σ + NȳȳT (which follows from

rearrangement of the definition of the sample covariance matrix), as well as the matrix

identity
∑N

i=1 y
T
i Σ−1yi =

∑N
i=1 tr[Σ−1yiy

T
i ].

This proof shows clearly how the standard error of the mean, σ2
ȳ = σ2/N , arises in χ2

from the sample covariance matrix. We also clearly see that minimization of chi-squared to

find the best-fit parameters a? will give identical results in either case.

Appendix C: Linear and Nonlinear Models

Both linear and nonlinear models appear commonly in lattice gauge theory analyses.

Linear models are linear functions of the fit parameters. A common example of the linear

case is an order-p polynomial model, which can be written as

f(x; a) = Xa (C1)
f0

f1

...

fd

 =


0 x0 x2

0 · · · x
p
0

0 x1 x2
1 · · · x

p
1

...
...

...
...

0 xd x
2
d · · · x

p
d




a0

a1

...

ap

 (C2)

where x is the d-dimensional data vector, a is the p-dimensional vector of model parameters,

and X is the (d × p) design matrix. We note that design matrix is rectangular but not

generally square. In the special case of one dimensional data, the previous equation reduces

to the familiar f(x; a) = a0 + a1x+ a2x
2 + · · ·+ apx

p.
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Nonlinear models are nonlinear functions of the fit parameters. The most important

example in lattice gauge theory is the spectral decomposition of Euclidean two-point corre-

lation functions, for which a p-state model takes the form

f(t; a) = A0e
−E0t + A1e

−E1t + · · ·+ Ape
−Ept, (C3)

where here a denotes the full set of 2p model parameters,

a = {A0, A1, · · · , Ap} ∪ {E0, E1, · · · , Ep}. (C4)

Since each term involves the product of an amplitude Ai with e−Eit, the model function is

clearly nonlinear in the fit parameters.

We emphasize that the distinction between linear and nonlinear models applies only to

the functional dependence on the model parameters. As the polynomial example shows, a

generic linear model can be an arbitrary nonlinear function of the data.
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