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The post-merger signal in binary black hole merger is described by linear, black-hole perturbation theory.
Historically, this has been modeled using the dominant positive-oscillation frequency (corotating), fundamental
mode. Recently, there has been a renewed effort in modeling the post-merger waveform using higher, positive-
oscillation frequency overtones in an attempt to achieve greater accuracy in describing the waveform at earlier
times using linear perturbation theory. It has been shown that the inclusion of higher overtones can shift the
linear regime to the peak of (l,m) = (2, 2) spherical harmonic mode. In this work, we show that the inclusion
of negative-oscillation frequency (counterrotating) modes, called ‘mirror’ modes, extends the validity of linear
perturbation theory to even earlier times, with far lower systematic uncertainties in the model in recovering
remnant parameters at these early times. A good description of the signal at early times also enables for a greater
signal-to-noise ratio to be accumulated in the ringdown phase, thereby, allowing for a more accurate measurement
of remnant parameters and tests of general relativity.

I. INTRODUCTION

A perturbed black hole (BH) settles down to a stationary
state by the emission of gravitational waves. At late times,
when the perturbations are small and backreaction is not sub-
stantial, emitted gravitational waves form a discrete spectrum
of complex frequencies called quasi-normal modes (QNMs)
[1], sometimes referred to as the ringdown signal. For a Kerr
BH, QNMs are completely specified by its mass M f and di-
mensionless spin a f . This is a consequence of the ‘no-hair’
theorem [2]. For a given angular mode (l,m), there are a count-
ably infinite number of QNMs (ωlmn ∈ C) characterized by
their overtone index (n = 0, 1, 2, ...). The overtone numbers are
assigned in decreasing order of damping times, i.e., the lowest
overtone number (n = 0) has the largest damping time and is,
therefore, the longest lived. It then follows that, if one takes
the starting time of the ringdown to be at a late enough time
after merger, then all the higher overtones would have decayed
sufficiently so that the ringdown signal can be described by a
single overtone.

The information about the nature of the initial perturbation
is contained in the complex excitation amplitude of each QNM.
For a binary black hole (BBH) merger, then, the excitation am-
plitudes, in general, depend on the binary parameters like the
mass ratio (q), the spin angular momenta of the two component
BHs (~s1, ~s2), and the eccentricities of the binary orbit (e1, e2).

Historically, in gravitational wave data analysis, the start
time for ringdown was choosen so that not only the non-
linearities had died down but also the higher overtones had
sufficient time to decay. This made it possible for ringdown to
be modeled using only the most dominant QNM [3]. Recently,
however, there have been efforts to model the ringdown signal
using higher overtones [4, 5] by starting the ringdown at ear-
lier times when the contribution of the higher overtones to the
ringdown signal is still significant. This has mostly been due
to a three-fold reason.

First, most of the BBH mergers observed by LIGO/Virgo [6,
7] have nearly equal masses and small spins [8]. For a non-
spinning, equal mass binary, the next dominant mode after
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(l,m) = (2, 2) is (l,m) = (3, 2) whose amplitude is a few per-
cent compared to the dominant mode [9, 10]. For a consistency
test of ‘no-hair’ theorem, one determines the mass and spin of
the perturbed BH using the dominant mode [11] and uses these
estimates to determine the oscillation frequency and damping
time of a subdominant mode. One then checks for its consis-
tency with the measured value of the oscillation frequency and
damping time of the subdominant mode [12]. For the current
detector sensitivities and the BBH mergers we have observed
so far, neither is this subdominant mode detectable nor is the
frequency and damping time of the mode resolvable [13, 14]
from the ringdown signal alone. Higher overtones are excited
even for non-spinning, equal mass mergers and, therefore, mea-
surement of the overtone frequencies and damping times can
be used for testing the ‘no-hair’ theorem [15].

Secondly, including overtones in a ringdown model can shift
the start time of ringdown to earlier times and can therefore
increase the signal-to-noise (SNR) contained in the ringdown.1

Indeed, Giesler et al. [4] showed that including up to n = 7
overtones can shift the start time of ringdown to the peak of
h22 mode.

Finally, LISA could observe BBH mergers with total mass
greater than 108M�, which would have a very small or no
inspiral part [9]. Having a ringdown model where multiple
excitation amplitudes have been mapped to progenitor param-
eters can, then, be used to determine the parameters of the
binaries.

There have been numerous studies in literature that model
the ringdown phase of a BBH merger signal using higher angu-
lar modes [9, 17–19]. Other studies model the ringdown phase
using higher overtones [4, 5]. Cook [20] does a multimode
fitting of the ringdown phase including higher overtones. The
effective one-body (EOB) formalism has modeled ringdown
using a superposition of QNMs and pseudomodes (modes that
are not QNMs) [21–24]. For a discussion on some of these
studies, see Giesler et al. [4].

In all of these studies, the ringdown is modeled using only
the positive-oscillation frequency (corotating) part of the QNM

1 Bhagwat et al. [16] showed that the SNR may not always increase on the
addition of higher overtones depending on the relative phase of the different
overtones.
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spectrum. A few studies do try to include negative-oscillation
frequency modes in their ringdown waveforms. Taracchini et al.
[25] model the ringdown waveform starting from the peak of
the corresponding spherical harmonic mode and includes only
the fundamental counterrotating mirror mode padded with a
smoothing function that has two free parameters for each mode
in order to get a smooth transition from inspiral-merger to
ringdown. They use positive-oscillation frequency overtones
to achive a better fit but do not include negative-oscillation
frequency modes for higher overtones. London et al. [17]
start their ringdown after the peak luminosity and do look for
negative-oscillation frequency modes using their greedy-OLS
algorithm but do not find them to be significantly excited for
non-spinning binaries. We will later see that we reach the same
conclusion when starting our ringdown model at similar times.
Jiménez Forteza et al. [26] fit negative-oscillation frequency
modes to a BBH merger signal for an n = 1 overtone model
and find that the lower-order counterrotating mirror modes are
not significantly excited which is validated in our study too.
Hughes et al. [27] and Lim et al. [28] numerically solve the
Teukolsky equation for a point particle infall into a Kerr BH
and find negative-oscillation frequency modes are excited.

We will refer to the negative-oscillation frequency modes
as ‘mirror’ modes and positive-oscillation frequency modes
as ‘regular’ modes from hereon. For a BBH merger there is
no reason, apriori, for the gravitational waves to consist of
regular modes alone (see Berti et al. [29] for more discussion).
For the mirror modes to be omitted from ringdown waveforms
consistently (especially ones including higher overtones), it
has to be shown that the excitation amplitudes for these modes
are much smaller than regular modes. Alternatively, one can
argue that these mirror modes start at an earlier time than the
regular modes and owing to their smaller damping times than
their corresponding regular modes, they decay away before the
ringdown starts for the (dominant) regular modes.

In this paper, we study in detail the effect of including mir-
ror modes in a BBH gravitational waveform for non-spinning
binaries. We fit the complex excitation amplitudes to numeri-
cal relativity (NR) waveforms and show that including mirror
modes in a ringdown waveform improves the fits to NR wave-
forms at all times in the ringdown regime. The improvement
in fits is especially prominent at times before the peak of the
(l,m) = (2, 2) spherical harmonic mode. We study the system-
atics of the modeling to determine if the improvement in the
fits to NR waveforms is due to the presence of mirror modes
in the gravitational waveform. An alternative reasoning for
the enhancement of the fits could be that the additional free
parameters introduced in the model due to the inclusion of
mirror modes acts as basis functions and fit to some of the
non-linearities in the waveform, especially at early times.

We note that most of the metrics used in this study have
been introduced in Giesler et al. [4] and Bhagwat et al. [16] to
study the importance of including higher (regular) overtones
to a ringdown model. We will use their model as a reference
and compare the results of our model against theirs.

Our goal is to improve the theoretical modeling of ringdown
waveforms. We make the case that including mirror modes in
a ringdown model give better estimates of the remnant param-
eters at times before the peak of the (l,m) = (2, 2) spherical
harmonic mode. We point out that the detectability and resolv-

ability of mirror modes is beyond the scope of this paper (see
Isi et al. [15], Bhagwat et al. [16], Cabero et al. [30] for a dis-
cussion on detecting higher angular modes and overtones). The
start time of ringdown has also been a contentious topic in the
literature and we refer the interested reader to Kamaretsos et al.
[9], Baibhav et al. [18], Nollert [31], Berti et al. [32], Carullo
et al. [33] for a discussion on the different choices that have
been made in the literature.

The paper is organised as follows. In section II we intro-
duce the ringdown model and lay down the assumptions and
approximations used. In section III we show our results and
discuss modeling systematics. In section IV we conclude by
highlighting the main results of the paper and discuss some
issues with a pure ringdown model.

II. BINARY BLACK HOLE RINGDOWN WAVEFORM

The gravitational waves emitted by a perturbed Kerr BH of
mass M f and spin a f as observed by an observer at a large
distance r is given by2 [34],

h(t) = h+−ih× =
M f

r

∑
lmn

Clmne−iωlmnt
−2S lm(Ω, a fωlmn), (2.1)

where Clmn = Almne−iφlmn are the complex excitation ampli-
tudes, t is the retarted time at null infinity, and Ω is the coor-
dinate on a sphere (θ, φ). The complex ωlmn ≡ ωlmn(M f , a f )
are the full set of QNM frequencies as determined by perturba-
tion theory. The complex angular functions

−2S lm(Ω, a fωlmn)
are the −2 spin-weighted spheroidal harmonic functions under
which the perturbation equations of a Kerr BH decompose into
a radial and angular part. They reduce to −2 spin-weighted
spherical harmonic functions

−2Y lm(Ω) in the Schwarzschild
BH case (a f = 0).

The perturbation of a Kerr BH is described by the Teukolsky
equation [35]. The Teukolsky equation is a second order differ-
ential equation and, therefore, for a given angular mode (l,m)
and overtone number n, there are two linearly independent
solutions. For a perturbed Schwarzschild black hole, due to
the spherical symmetry of the background, if ωlmn is one of
the solutions, the second linearly independent solution is given
by −ω∗lmn, i.e., positive- and negative-oscillation frequency so-
lutions have the same damping time. For a Kerr black hole
there is no such simple relationship between the two solutions
because of the reduced symmetry of the system. One still has
positive- and negative-oscillation frequency solutions, though,
with the damping times of the positive-oscilaltion frequency
solution always larger than that of the corresponding negative-
oscillation frequency solution (see Fig. 1 for an example). The
azimuthal symmetry of the Kerr background does, however,
separate the angular part of the perturbation equations in terms
of −2 spin-weighted spheroidal harmonics, with the decoupled
equations obeying the following symmetry relations:

ωlmn = −ω∗l−mn , Almn = A∗l−mn (2.2)

2 We use the sign convention used in SXS simulations.
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FIG. 1. QNM frequencies of the first 8 overtones (n = 0, 1, 2, ..., 7) for
l = 2 and m > 0 for a Kerr BH with dimensionless spin a f = 0.69M
with larger flecks denoting higher overtones. Notice that the damping
time of the negative-oscillation frequency solution is always shorter
than its corresponding positive-oscillation frequency solution. The
QNM frequencies for m < 0 can be easily worked out using Eq. (2.2).

where Almn are the angular separation constants.3

A gravitational waveform, in general, is therefore a linear
combination of the two solutions and is given by,4

h(t) = h+ − ih× =
M f

r

∑
lmn

[Clmne−iωlmnt
−2S lm(Ω, a fωlmn)

+ C′lmne−iω′lmnt
−2S lm(Ω, a fω

′
lmn)]

(2.3)

where we have now written the two solutions explicitly and,
therefore, the mode sums go over each independent set with
ωlmn denoting the regular modes and ω′lmn denoting the mirror
modes.5

Equation (2.3) can be simplified using the symmetry rela-
tions Eq. (2.2) to give

h(t) = h+ − ih× =
M f

r

∑
lmn

[Clmne−iωlmnt
−2S lm(Ω, a fωlmn)

+ (−1)lC′l−mneiω∗lmnt
−2S ∗lm(Ω′, a fωlmn)]

(2.4)

where Ω′ = (π − θ, φ) and we have used the following relation

−2S ∗l−m(Ω′,−a fω
∗
lmn) = (−1)l

−2S lm(Ω, a fωlmn) (2.5)

Numerical relativity simulations, in general, decompose the
angular part of the waveform in spherical harmonic functions
and the ringdown part can be written as

h(t) = h+ − ih× =
M f

r

∑
l′m

hl′m(t) −2Y l′m(Ω) (2.6)

3 Not to be confused withAlmn which are the real-valued excitation ampli-
tudes.

4 The calculation in the remainder of the section follows closely that of Berti
et al. [29] and Lim et al. [28].

5 The QNM set (ωlmn) in Eq. (2.1) is the union of the QNM sets (ωlmn and
ω′lmn) in Eq. (2.3). From hereon, ωlmn denotes the latter set.

In order to compare an NR waveform to a perturbation the-
ory ringdown waveform, we have to expand the spheroidal
harmonic functions in a basis of spherical hamonics.

The −2 spin weighted spheroidal functions can be expressed
in an orthonormal basis of −2 spin-weighted spherical harmon-
ics as

−2S lm(Ω; a fωlmn) =
∑
l′m′

µl′m′
lm (a fωlmn) −2Y l′m′ (Ω) (2.7)

where µl′m′
lm (a fωlmn) = µl′

lm(a fωlmn)δm′
m is the spherical-

spheroidal mixing coefficient.
Equating the left hand side of Eq. (2.4) and (2.6) and using

the orthogonality condition for spin-weighted spherical har-
monics, we can write the gravitational waveform explicitly in
terms of spherical harmonics and QNMs as

h(t) = h+ − ih× =
M f

r

∑
l′m

∑
ln

[Clmnµ
l′
lm(a fωlmn)e−iωlmnt

+ (−1)l+l′C′lmnµ
∗l′
l−m(a fωl−mn)eiω∗l−mnt] −2Y l′m(Ω)

(2.8)

where we have used the following relation

−2Y∗lm(π − θ, φ) = (−1)l
−2Y l−m(θ, φ) (2.9)

An NR angular mode is then related to the excitation ampli-
tudes by

hl′m =
∑

ln

[Clmnµ
l′
lm(a fωlmn)e−iωlmnt

+ (−1)l+l′C′lmnµ
∗l′
l−m(a fωl−mn)eiω∗l−mnt]

(2.10)

Note that a spherical harmonic mode (l′,m) has contributions
from spheroidal harmonic orbital angular quantum numbers l
other than the corresponding spherical harmonic one, l′. At this
point, we have to make a choice on the set of QNMs we want to
use to fit a given hl′m. Giesler et al. [4] and Bhagwat et al. [16]
make two assumptions to arrive at this set of QNMs. They ig-
nore spherical-spheroidal mode mixing (µl′

lm = δl′
l ) and mirror

modes (C′lmn = 0). We relax the second assumption by in-
cluding mirror modes while still ignoring spherical-spheroidal
mode mixing. Berti and Klein [36] do a numerical calculation
of this coefficient and validates the above approximation. The
ringdown model, therefore, simplifies to

hl′m(t) =
∑

n

[Cl′mne−iωl′mnt + C′l′mneiω∗l′−mnt]. (2.11)

In this study we focus on the l′ = 2 mode of a nearly equal
mass binary (SXS:BBH:0305) and a high mass ratio binary
(SXS:BBH:1107), both of whose higher modes are subdomi-
nant.

III. RESULTS

In the previous section we introduced our ringdown model
and elucidated the assumptions that were made. In this section
we show that our model agrees with NR better than the refer-
ence model. We further show that the errors in the estimation
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of remnant parameters is smaller for our model at times before
h22 mode peaks.

The complex amplitudes in the ringdown waveform is a
function of the effective potential of a BH spacetime and initial
condition for perturbations. It is a highly non-trivial initial
value problem. Analytic solutions exist for special cases of
point particles falling into a BH [37–40]. Therefore, for a bi-
nary black hole ringdown waveform, the excitation amplitudes
have to be inferred by fitting a ringdown waveform to NR
simulations.

A second point of note is that, due to the spin of a Kerr
BH, even if the initial conditions have a definite mode struc-
ture, both corotating regular and counterrotating (mirror) mir-
ror modes will be excited in response to the initial perturba-
tions [41–45]. In Fig. 2, we plot the evolution of the amplitude
|hlm| and the mode frequency flm = −=(ḣlm/hlm) of the spher-
ical harmonic modes l = 2 as a function of the retarded time
for the two cases under study. For the m = 1 mode, in both
the cases, the modulation of the mode frequency about the
oscillation frequency of the fundamental QNM due to the fun-
damental mirror mode can be distinctly seen in the figure. This
can be elucidated by considering only the n = 0 contribution
in Eq. (2.11) which then simplifies to

hlm = Clm0e−iωlm0t
[
1 +
C′lm0

Clm0
ei(ω∗l−m0+ωlm0)t

]
. (3.1)

If one makes the approximation ω∗l−m0 + ωlm0 ≈ <(ω∗l−m0 +

ωlm0) (see Fig. 1), they can deduce that the modulations are
(approximately) purely oscillating and the oscillation frequency
is given by the sum of the individual oscillation frequencies. It
can also be seen that the amplitude of the modulations depend
on the ratio of the two excitation amplitudes. For the m = 2
mode, the modulations are not visible to the eye. Clearly,
the excitation amplitudes of the mirror modes relative to the
amplitudes of their corresponding regular modes depend on
the value of the azimuthal quantum number m [43].
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FIG. 2. The amplitude (left) and mode frequency (right) evolution
of the l = 2 modes for an almost equal mass (q = 1.221) binary
(grey) and a large mass ratio (q = 10) binary (red). Solid (dashed)
lines show the m = 2 (m = 1) mode. The modulation of the mode
frequency about the oscillation frequency of the fundamental QNM
due to the fundamental mirror mode can be clearly seen from the right
panel for the m = 1 mode. A back-of-the-envelope calculation of the
frequencies of the modulations turn out to be the sum of the oscillation
frequencies of the two corresponding modes demonstrating that the
modulations are indeed due to the fundamental mirror mode.

We consider two test cases from the publicly available

SXS6 catalogue of NR simulations, SXS:BBH:0305 and
SXS:BBH:1107, corresponding to non-spinning binaries with
mass ratios q = 1.221 and q = 10, respectively. The former is
a GW150914-like signal with the final mass M f = 0.9520M
and dimensionless spin a f = 0.6921. The later has a final mass
M f = 0.9917M and spin a f = 0.2605. The QNM frequencies
are fixed to their GR values (and calculated using Ref. [47])
which leaves only the complex amplitudes as free parameters
which we fit to NR using a linear least squares method. A
ringdown model with overtone index upto N has 2(N + 1) com-
plex amplitudes that are being fit.7 We vary the start time of
ringdown from t0 = tpeak − 25M to t0 = tpeak + 50M, where the
origin t0 = tpeak has been taken to be the peak of the h22 mode.
We fix the end time to be t = tpeak + 90M by which time even
the longest lived overtone would have decayed essentially to
numerical noise. We define the mismatch between the best-fit
ringdown waveform (hfit) and NR waveform (hNR) by

M = 1 −
〈hNR|hfit〉

√
〈hNR|hNR〉〈hfit|hfit〉

, (3.2)

where the inner product is defined as

〈a(t)|b(t)〉 =

∫ t

t0
a∗(t′)b(t′)dt′. (3.3)

We note that QNMs are not orthogonal and complete under
this inner product. This has been a longstanding theoretical
question and it is doubtful whether such an inner product can
be defined for QNMs that is also of practical use [48].

In Fig. 3, we show the dependence ofM as a function of
the start time t0. We compareM between our model and the
reference model of Giesler et al. [4] (which does not include
mirror modes) for up to an 8-tone ringdown waveform. The
mismatch curves are qualitatively similar for both the simu-
lations apart from the characteristic that the mismatches for
the (l,m) = (2, 1) mode of the (almost) equal mass binary has
multiple crests and troughs before hitting the numerical noise
floor. We see that the mismatch for any given t0 and (N + 1)-
tone model is lower for mirror mode model compared to the
reference model. The betterment inM is roughly 3 orders of
magnitude for an 8-tone model at t0 ∼ tpeak−10M. We observe
that the fundamental mirror mode is definitively excited in the
q = 10 binary and is considerable at late times as was seen in
Fig. 2. We note that the mismatches for (l,m) = (2, 2) mode
of SXS:BBH:0305 agree with Fig. 1 of Giesler et al. [4] when
mirror modes are not included, thus providing a validation for
our fits.

In addition, in Fig. 3, we compute the numerical noise floor
by calculating the mismatch between the waveforms of the
two highest resolved NR simulations. This would give us an
estimate of the truncation errors in an NR simulation due to
finite grid sizes. For the modes and the cases under study, we
see that the mismatch of this noise floor is between ∼ 10−4 and
∼ 10−7 with the higher mismatches occuring at late times. This
is illustrated by the grey horizontal dotted lines in the figure.

6 Simulating eXtreme Spacetimes [46]
7 Bhagwat et al. [16] calls a ringdown model with N included overtones an

(N + 1)-tone model and we will follow their nomenclature.
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FIG. 3. Comparison of mismatchesM between mirror modes model and our reference model for an (N + 1)-tone model for the two cases
under consideration. The mismatchesM are plotted as a function of start time t0 whose origin is taken to be the peak of h22. Solid (dashed)
lines represent the class of ringdown models with (without) the mirror modes. The top panel shows the mismatches for (l,m) = (2, 2) spherical
harmonic mode while the bottom panel depicts the same for (l,m) = (2, 1) mode. The grey, dotted, horizontal line shows the mismatch for
the two highest resolution NR simulations. We note that the mismatches are always lower when the mirror modes are included with marked
improvements at times before the peak of the h22 mode.
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The plot shows another crucial feature. An 8-tone ringdown
model gives orders of magnitude lower mismatches than (say)
a 2-tone model even when the ringdown is started at a late
enough time (∼ tpeak + 30M) when all higher overtones are
expected to have decayed to numerical noise. This happens at
or below the numerical noise floor of the simulations used and,
therefore, we believe that at these times the free parameters of
the models are being fit to numerical noise and that this feature
is unphysical.

We point out that even though there is a huge improvement
inM at early times with the inclusion of mirror modes in the
ringdown model, mirror modes alone do not produce good fits.
The positive-oscillation frequency modes are still the dominant
modes (at least for the cases considered in this study) present
in the waveform. It would be interesting to see if spins and
precession of the progenitor binary change this conclusion.

As argued in Giesler et al. [4], a ringdown model should
not just produce a small mismatch but also recover the correct
physical parameters of the system. This is because a smaller
mismatch can be a result of the additional mode functions
(mirror modes, in our case) acting as basis functions to fit some
of the non-linearities in the data, especially at early times. To
this end, we vary M f and a f but keep the QNM frequencies to
be that determined from perturbation theory (i.e., functions of
M f and a f ) and repeat the mismatch calculation. A ringdown
signal consisting of actual BH QNMs should minimize the
mismatch for the true value of M f and a f as determined from
NR simulations, modulo systematic errors. A sharply peaked
mismatch, on the other hand, would give better statistical errors
on the remnant paramters. In Fig. 4 and Fig. 5, we plot the
mismatch on a grid of M f and a f for two different start times,
t0 = tpeak and t0 = tpeak−10M, respectively, for an 8-tone model.
The left panel of each plot shows the heatmap of mismatches
for the reference ringdown model and the right panel includes
mirror modes in the ringdown model.

We note that when the ringdown is started at the peak of
h22 mode, the 8-tone reference model gives better estimates
of the remnant parameters than a model with mirror modes
for (l,m) = (2, 2) while for (l,m) = (2, 1) mode, the remnant
parameter estimates are roughly the same. But if we move
the ringdown start time to an earlier fiducial time t0 = tpeak −

10M, our ringdown model has a deeper minimum near the
correct remnant paramters. At this start time, the improvement
in remnant estimates with the inclusion of mirror modes is
far greater for the large mass ratio binary than the (almost)
equal mass one. This, as expected, points towards a greater
significance of mirror modes for large mass ratios [29]. This
aspect is also clear from the mismatch plots of the (l,m) = (2, 1)
mode. The remnant parameter estimates using the (l,m) =

(2, 1) mode is also far superior with the inclusion of mirror
mode ascertaining our earlier assertion that the mirror modes
excitation amplitudes depend on the value of m.

In Tab. I, we quote the value of the mismatch for the best-
fit M f and a f when varied on a grid. Notice that the mirror
mode model gives lower mismatches throughout with stark
differences for the larger mass ratio case, m = 1 mode, and
starting time before t0 = tpeak. The only exception is the
(almost) equal mass case where minimal excitation of mirror
modes are expected and, therefore, by the time of the peak of
the h22 mode, these modes are no longer significant.

SXS:0305 SXS:1107
m reference mirror mode reference mirror mode

t0 = tpeak

2 −6.51 −6.84 −6.15 −6.62
1 −3.96 −5.34 −3.79 −6.71

t0 = tpeak − 10M
2 −3.73 −6.11 −3.88 −5.76
1 −2.94 −4.36 −2.88 −5.19

TABLE I. The value of the mismatch (log10M) for the best-fit
paramters in Fig. 4 and Fig. 5. Note that the mirror mode model
gives orders of magnitude better mismatch for all the cases except the
(almost) equal mass case starting at t0 = tpeak where the mismatches
are similar.

We quantify the errors in the estimation of the remnant
parameters using a quantity ε, introduced in Giesler et al. [4],
defined as

ε =

√(
δM f

M

)2

+
(
δa f

)2
, (3.4)

where δM f and δa f are the differences between the best-fit
values and the true values of the remnant parameters as deter-
mined by NR. In Fig. 6 we plot ε as a function of the number
of overtones in the ringdown model. We compare the perfor-
mance of a ringdown model with mirror modes to that of the
reference model. We do the comparison at two different start
times, t0 = tpeak and t0 = tpeak − 10M. We see that when the
ringdown is started at t0 = tpeak, the mirror modes model per-
forms as good as or even marginally better than the reference
model up to a 6-tone ringdown waveform for both the spherical
harmonic modes in the (almost) equal mass binary case. A
higher-tone waveform model deteriorates the remnant parame-
ter estimates for the mirror mode model though the reasoning
for the same is not clear at this stage and needs further study.
For the high mass ratio case, the situation is different, with the
mirror mode model performing much better than the reference
model up to a 6-tone ringdown waveform for m = 2 mode and
7-tone waveform for m = 1 mode. If the ringdown in started
at an earlier time t0 = tpeak − 10M, the mirror mode model is
clearly superior to the reference model for both the spherical
harmonic modes and both the mass ratios under consideration.
The trend is the same for both the modes and mass ratios, with
the errors in the estimation of remnant parameters decreasing
monotonically with the number of included overtones and the
mirror mode model performing better by a factor of ∼ 5 − 10
for an 8-tone model.

In Tab. II and Tab. III, we quote the real-valued amplitudes
of regular modes (Almn) and mirror modes (Ālmn) for an 8-tone
model for the two cases under study (SXS:0305 and SXS:1107)
and the two spherical harmonic modes (l,m) = (2, 2) and
(l,m) = (2, 1), respectively. The fit amplitudes are calculated at
t0 = tpeak − 10M. We choose a fiducial reference time t0 = tpeak
to quote the values of the amplitudes so that they can be easily
compared with the values quoted in other studies [4, 16]. Even-
though the mirror mode amplitudes are much larger than the
regular mode amplitudes at the start time t0 = tpeak − 10M, we
see that the regular modes become more dominant by the time
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FIG. 4. MismatchM between best-fit ringdown model and NR waveform for an 8-tone model on a grid of M f − a f for GR QNM frequencies.
The start time of ringdown is taken to be t0 = tpeak. The white crosshair denotes the true remnant mass and spin as ascertained by NR while the
grey cross shows the best-fit value determined by a ringdown model. The result for the reference model is plotted on the left panel while the
mirror modes model is on the right panel of each plot. The result for spherical harmonic mode (l,m) = (2, 2) is plotted in the top panel of the
figure while the bottom panel highlights the result for the l = 2, m = 1 mode. The plot on the left is for the simulation SXS:0305 and the right
plot is for SXS:1107.

FIG. 5. Same as Fig. 4 but the ringdown start time is taken to be t0 = tpeak − 10M. It is clear that a linear ringdown model including mirror
modes recovers the true masses and spins much better at this time than the reference model.
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FIG. 6. ε as a function of the number of overtones included in a ringdown model. Solid (dashed) curves are for the mirror modes (reference)
model. In the left two panels, the ringdown is started at t0 = tpeak whereas on the right two panels, the ringdown start time is taken to be
t0 = tpeak − 10M.
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(l,m) = (2, 2)
SXS:0305 SXS:1107

n Almn Ālmn Almn Ālmn

0 0.972455 0.00195254 0.337405 0.00104528
1 4.04150 0.0571118 1.10677 0.0409705
2 9.93874 0.535089 3.00238 0.503610
3 17.0806 1.43902 6.14453 2.15847
4 17.7877 0.672877 6.34204 2.32482
5 8.58776 0.0602107 2.59237 0.531559
6 1.43898 0.00153011 0.347826 0.0216096
7 0.0674631 1.37488e−05 0.0106518 0.000144103

TABLE II. Best-fit real amplitudes of (l,m) = (2, 2) mode for a mirror
mode model with ringdown start time t0 = tpeak−10M. The amplitude
values quoted are at t = tpeak obtained by time-evolving the respective
amplitudes with their decay times. Almn are the amplitudes of the
regular modes and Ālmn are the mirror mode amplitudes.

the h22 mode peaks. At this time, the mirror modes are subdom-
inant by close to an order of magnitude for most modes with up
to ∼ 3 orders of magnitude for n = 7. We point out that the am-
plitude of the positive-oscillation frequency fundamental mode
calculated at t0 = tpeak−10M and time evolved to t0 = tpeak is in
striking agreement to that calculated at t0 = tpeak (and reported
in Giesler et al. [4] and Bhagwat et al. [16]). This indicates
that the positive-oscillation frequency fundamental mode has
entered the linear phase even at this early time. Additionally,
we observe, for both the spherical harmonic modes, that the ra-
tio between the mirror mode amplitudes and the corresponding
regular mode amplitudes (Ālmn/Almn) is greater for the large
mass ratio case indicating that mirror modes are more strongly
excited in large mass ratio binaries. Furthermore, note that, for
both the mass ratios, this ratio is larger for (l,m) = (2, 1) mode
than (l,m) = (2, 2) mode, demonstrating that mirror modes are
more strongly excited in m = 1 mode than m = 2 mode.

We note the observation in Bhagwat et al. [16] that the best-
fit amplitudes increase with the overtone number n, reaches a
maximum around n = 3/4 and decreases for higher n holds
true for the mirror mode model as well and as such provide
support to their speculative reasoning that high-n overtones are
excited first by sources far away from the horizon and hence
are weaker. By contrast, low-n overtones, excited by sources
closer to the horizon, falls partly into the horizon and does not
reach null infinity. Consequently, intermediate-n overtones are
the most strongly excited.

Till this point, we have chosen a fiducial start time t0 =

tpeak − 10M to show the importance of mirror modes at times
earlier than the peak of h22 mode. We will now look at the
effect of a varying start time for an 8-tone ringdown model.
We emphasize that this is crucial if one wants to compare the
two models at different start times as t0 = tpeak − 10M was
not chosen as the start time because the mirror modes model
performs the best with regard to minimizing the errors on
the remnant parameters but rather as the approximate earliest
time when the mirror modes model still gives mismatches
close to the numerical noise floor (see Fig. 3). In Fig. 7, we
show the error in the estimation of remnant parameters as a
function of the start time. We see that for the reference model,

l = 2, m = 1
SXS:0305 SXS:1107

n Almn Ālmn Almn Ālmn

0 0.0528504 0.000369536 0.125076 0.00501953
1 0.326904 0.0217794 0.746708 0.0985377
2 1.08230 0.195302 2.67917 0.873092
3 2.13312 0.566340 5.84294 3.09317
4 2.13512 0.432410 5.73515 3.29656
5 0.921344 0.0753840 2.06885 0.913868
6 0.144722 0.00289362 0.236321 0.0535978
7 0.00606425 2.65232e−05 0.00624921 0.000426323

TABLE III. Same as Tab. II but for (l,m) = (2, 1) mode.

the errors increase (virtually) monotonically the earlier the
ringdown is started with respect to the peak of h22. For a
mirror mode model, the error estimates have a minima at some
time between t0 = tpeak − 10M and t0 = tpeak with the remnant
parameter estimates using the mirror mode model being an
order of magnitude more accurate. We observe that this minima
occurs around the time that the mismatch curve has a minima
too. Therefore, we can also use the conventional wisdom of
taking the start time of ringdown at the earliest minima of a
mismatch curve – which is always at an earlier time for a mirror
mode model than the corresponding minima for the reference
model for a sufficiently high-tone ringdown waveform – to
argue the significance of mirror modes at times before the peak
of h22. Furthermore, in the case of (l,m) = (2, 2) mode, the
minimum errors in the 8-tone mirror mode model are about the
same as that for the 8-tone reference model started at t0 = tpeak
but with the advantage that the mirror mode model achieves this
at a much earlier time, thereby accumulating more energy in the
ringdown signal. The situation is even better for (l,m) = (2, 1)
mode where not only do the minimum errors occur far before
the peak of h22 mode but also the errors are much smaller than
that achieved by the reference model started at t0 = tpeak.

We provide a speculative reasoning for why the remnant
parameter estimates are better in the absence of mirror modes
when the ringdown is started near the peak of h22 mode. We
reason this to be because mirror modes start well before the
peak of h22 – we have seen that the fundamental positive-
oscillation frequency mode has already entered the ringdown
phase at −10M – and due to their weaker excitation and shorter
damping times compared to regular modes (especially for the
higher overtones where the difference in damping times be-
comes large), they decay to numerical noise by the time the
h22 mode peaks. This line of reasoning has support from Fig. 6
where one sees that the inclusion of mirror modes improves
parameter estimation for lower-tone models mainly for the
large mass ratio case where these negative-oscillation frequen-
cies are excited more strongly. In principle, different modes
should start at different times but allowing for this in a pure
ringdown model would introduce unphysical discontinuities
in the waveform or waveform derivatives (see Bhagwat et al.
[16] for an expanded discussion). An option would be to attach
higher order perturbation theory waveforms to modes that start
later so as to have a common earlier starting time for a higher
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FIG. 7. ε as a function of the start time of ringdown t0 for an 8-tone model. Filled circles (pluses) show the value for reference (mirror mode)
model. Note that ε is consistently lower for the mirror mode model at early times for both the spherical harmonic modes.

order ringdown waveform but that is beyond the scope of the
current work.

IV. CONCLUSION AND DISCUSSION

In this work, we studied the effects of including negative-
oscillation frequency modes in a ringdown waveform which we
call ‘mirror’ modes. A ringdown signal from a non-spinning
BBH merger has no apriori reason to consist of only corotating
regular modes and, therefore, mirror modes should be included
in the ringdown waveform for a more accurate description of
the gravitational wave signal. We find that including mirror
modes decreases the mismatch of our best-fit model with NR
waveforms, with up to ∼ 3 orders of magnitude improvement
at times well before the peak of the h22 mode. We further check
whether the mismatches are minimized for the true values of
mass and spin, if they are allowed to vary, and find that the
mirror mode model determines the remnant parameters better
if the ringdown is started 6 − 9M before the peak of the h22
mode. On the other hand, an 8-tone ringdown model with
only corotating regular modes gives better estimates of the
remnant paramters if the ringdown is started at the peak of
h22 for the (l,m) = (2, 2) mode because mirror modes are
not excited strongly for the m = 2 mode, although a 6-tone
mirror mode model performs as good as a 6-tone reference
model for the almost equal mass binary and an 8-tone reference
model for the large mass ratio binary. We reason that the
poorer performance of the mirror mode model when starting
the ringdown at t0 = tpeak is because the mirror modes are
excited at earlier times and they decay to numerical noise by
the the time of the peak of h22 mode. We note that more work
needs to be done in this regard to verify this claim. Having
different start times for each mode would lead to unphysical
discontinuities in the waveform or its derivatives and, therefore,
presents a technical challenge in pure ringdown modeling. A
possible route is to include second-order contributions and start
the ringdown at an earlier time. This would ensure smooth
transition to linear regime for all the modes.

A source of systematic that can affect our results is the use
of mismatch as a quantifier for our fits. It has been argued by

Nollert [31] and later by Berti et al. [32] that the fit-amplitudes
of a mismatch-based approach cannot be regarded as the physi-
cal modes excited in the system. A better quantifier is Nollert’s
energy maximized orthogonal projection (EMOP) that gives
the energy parallel to a given QNM [31, 32]. We also point
out thatM as a function of the remnant parameters (M f and
a f ) is an oscillatory function with multiple local crests and
troughs, which is an undesirable feature, not least because of
the difficulty of locating the true remnant values.

If we trust the ringdown fits as the QNMs excited in the
system, then it poses the question of what happened to all the
non-linearities present in the system? Bhagwat et al. [16] argue
that the conclusions of recent works to model the post-merger
signal with a pure ringdown model is at odds with Bhagwat
et al. [49], where the authors find appreciable non-linearities in
the source frame near the common horizon. We bring to notice
a more recent work of Okounkova [50] that uses the same
quantifiers of non-linearity as that used in Bhagwat et al. [49].
The author then time evolves the gauge invariant quantifiers
and finds that the non-linearities fall into the common horizon
soon after its formation and does not reach asymptotic infinity.

We believe further progress in ringdown modeling should
take into account these findings. Future work will include
feasibility studies of detecting these mirror modes in LISA
signals and in third generation ground-based detectors. We are
also in the process of using this model to recover the remnant
parameters for select events published by LIGO/Virgo.
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