
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Adiabatic waveforms for extreme mass-ratio inspirals via
multivoice decomposition in time and frequency

Scott A. Hughes, Niels Warburton, Gaurav Khanna, Alvin J. K. Chua, and Michael L. Katz
Phys. Rev. D 103, 104014 — Published 11 May 2021

DOI: 10.1103/PhysRevD.103.104014

https://dx.doi.org/10.1103/PhysRevD.103.104014


Adiabatic waveforms for extreme mass-ratio inspirals via
multivoice decomposition in time and frequency

Scott A. Hughes,1 Niels Warburton,2 Gaurav Khanna,3, 4 Alvin J. K. Chua,5 and Michael L. Katz6

1Department of Physics and MIT Kavli Institute, Cambridge, MA 02139, United States
2School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

3Physics Department, University of Massachusetts, Dartmouth, MA 02747, United States
4Department of Physics, University of Rhode Island, Kingston, RI 02881, United States

5Theoretical Astrophysics Group, California Institute of Technology, Pasadena, CA 91125, United States
6Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,

Am Mühlenberg 1, 14476 Potsdam-Golm, Germany

We compute adiabatic waveforms for extreme mass-ratio inspirals (EMRIs) by “stitching” together
a long inspiral waveform from a sequence of waveform snapshots, each of which corresponds to a
particular geodesic orbit. We show that the complicated total waveform can be regarded as a sum
of “voices.” Each voice evolves in a simple way on long timescales, which can be exploited to
efficiently produce waveform models that faithfully encode the properties of EMRI systems. We
look at examples for a range of different orbital geometries: spherical orbits, equatorial eccentric
orbits, and one example of generic (inclined and eccentric) orbits. To our knowledge, this is the
first calculation of a generic EMRI waveform that uses strong-field radiation reaction. We examine
waveforms in both the time and frequency domains. Although EMRIs evolve slowly enough that
the stationary phase approximation (SPA) to the Fourier transform is valid, the SPA calculation
must be done to higher order for some voices, since their instantaneous frequency can change from
chirping forward (ḟ > 0) to chirping backward (ḟ < 0). The approach we develop can eventually
be extended to more complete EMRI waveform models, for example to include effects neglected by
the adiabatic approximation such as the conservative self force and spin-curvature coupling.

I. INTRODUCTION

A. Extreme mass-ratio inspirals and self forces

The large mass ratio limit of the two-body problem is
a laboratory for studying strong-field motion in general
relativity. By treating the spacetime of such a binary
as an exact black hole solution plus a perturbation due
to the less massive orbiting body, it is possible to ana-
lyze the binary’s dynamics and the gravitational waves it
generates using the tools of black hole perturbation the-
ory. Because the equations of perturbation theory can, in
many circumstances, be solved very precisely, large-mass
ratio serves as a high-precision limit for understanding
the two-body problem in general (see, e.g., [1]).

This limit is also significant thanks to the importance
of extreme mass-ratio inspirals (EMRIs) as gravitational
wave sources. Binaries formed by the capture of stellar
mass (µ ∼ 1 − 100M�) compact bodies onto relativis-
tic orbits of black holes with M ∼ 106M� in the cores
of galaxies will generate low-frequency (f ∼ 0.01 Hz)
gravitational waves, right in the sensitive band of space-
based detectors like LISA. A typical EMRI will execute
∼ 104 − 105 orbits in LISA’s band as gravitational-wave
backreaction shrinks its binary separation. Because the
small body orbits in the larger black hole’s strong field,
EMRI waves are highly sensitive to the nature of the
large black hole’s spacetime. EMRI events will make it
possible to precisely map black hole spacetimes, weigh-
ing black holes’ masses and spins with exquisite accuracy,
and testing the hypothesis that astrophysical black holes
are described by the Kerr spacetime [2].

To achieve these ambitious science goals for EMRI
measurements, we will need waveform models, or tem-
plates, that accurately match signals in data over their
full duration. Such templates will provide guidance to
algorithms for finding EMRI signals in detector noise,
and will be necessary for characterizing astrophysical
sources. Developing such models is one of the goals of
the self force program, which seeks to develop equations
describing the motion of objects in specified background
spacetimes, including the interaction of that object with
its own perturbation to that spacetime — i.e., including
the small body’s “self interaction” [3]. Taking the back-
ground spacetime to be that of a black hole, self forces
can be developed using tools from black hole perturba-
tion theory, with the mass ratio of the system ε ≡ µ/M
(where µ is the mass of the orbiting body, and M the
mass of the black hole) serving as a perturbative order
counting parameter.

To make this more quantitative, we sketch the gen-
eral form of such equations of motion in the action-angle
formulation used by Hinderer and Flanagan [4]. Let
qα

.
= (qt, qr, qθ, qφ) be a set of angle variables which de-

scribe the motion of the smaller body in a convenient
coordinate system, let Jβ

.
= (Jt, Jr, Jθ, Jφ) be a set of ac-

tions associated with those motions, and let λ be a con-
venient time variable. The motion of the smaller body is
then governed by a set of equations with the form

dqα
dλ

= ωα(J) + ε g(1)
α (qr, qθ;J) + ε2 g(2)

α (qr, qθ;J) + . . .

(1.1)

dJα
dλ

= εG(1)
α (qr, qθ;J) + ε2G(2)

α (qr, qθ;J) + . . . (1.2)
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The frequency ωα describes the rate at which the angles
accumulate per unit λ, neglecting the self interaction.
The ωα(J) thus characterize the geodesic motion of the
small body in the black hole background. The terms

g
(n)
α describe how the small body’s trajectory is modified

by the self interaction at O(εn); the terms G
(n)
α describe

how the actions (which are constant along geodesics) are
modified. Note that the self-interaction terms only de-
pend on the angles qr and qθ — because black hole space-
times are axisymmetric and stationary, these terms are
independent of qt and qφ. Many aspects of this problem
are now under control at O(ε) (see, e.g., [5]), and work
is rapidly proceeding on the problem at O(ε2) [6].

As the issue of the smaller body’s motion is brought un-
der control, more attention is now being paid to the grav-
itational waveforms that arise from this motion. That is
the focus of this paper.

B. The adiabatic approximation and its use

The forcing terms in Eqs. (1.1) and (1.2) can be further
decomposed by splitting them into averages and oscilla-
tions about their average. Consider the first-order forcing

term G
(1)
α . We put

G(1)
α (qr, qθ;J) = 〈G(1)

α (J)〉+ δG(1)
α (qr, qθ;J) , (1.3)

where the averaged contribution is

〈G(1)
α (J)〉 =

1

(2π)2

∫ 2π

0

dqr

∫ 2π

0

dqθ G
(1)
α (qr, qθ;J) ,

(1.4)
and we define the oscillations about this average as

δG
(1)
α (qr, qθ;J) ≡ G

(1)
α (qr, qθ;J) − 〈G(1)

α (J)〉. The os-
cillations vary about zero on a rapid orbital timescale
To ∼ M ; the average evolves on a much slower dissipa-
tive inspiral timescale Ti ∼M2/µ, or Ti ∼ To/ε. Because
of the large separation of these two timescales for EMRIs,
the oscillations nearly average away during an inspiral.
For most orbits, neglecting the impact of the oscillations
introduces errors of O(To/Ti) = O(ε).

The simplest model for inspiral which captures the
strong-field dynamics of black hole orbits is known as
the adiabatic approximation. It amounts to solving the
following variants of Eqs. (1.1) and (1.2):

dqα
dλ

= ωα(J) ,
dJα
dλ

= ε 〈G(1)
α (J)〉 . (1.5)

In words, we treat the short-timescale orbital dynamics
as geodesic, but use the orbit-averaged impact of the self
force on the actions Jα. This amounts to including the
“dissipative” part of the orbit-averaged self force, since

to O(ε), the action of 〈G(1)
α 〉 is equivalent to computing

the rates at which an orbit’s energy E, axial angular mo-
mentum Lz, and Carter constant Q change due to the
backreaction of gravitational-wave emission. The adia-
batic approximation treats inspiral as “flow” through a

sequence of geodesics, with the rate of flow determined
by the rates of change of E, Lz, and Q [7].

It is worth noting that the picture we have sketched
breaks down near the so-called resonant orbits [8–11].
These are orbits for which the frequency ratio ωx/ωy =
nx/ny, where nx and ny are small integers. Resonances
have been shown to arise from the gravitational self force
itself [8] (for which x = r and y = θ), as well as from tidal
perturbations from stars or black holes that are near an
astrophysical EMRI system [10, 11] (for which x = r
or θ, and y = φ). Near resonances, some terms change
from oscillatory to nearly constant; neglecting their im-
pact introduces errors of O(ε1/2). As such, they will be
quite important, contributing perhaps the leading post-
adiabatic contribution to waveform phase evolution. We
neglect the impact of resonances in this analysis, though
where appropriate we comment on their importance and
how they may be incorporated into future work.

The computational cost associated with even the
rather simplified adiabatic waveform model is quite high.
As we outline in Sec. III, computing adiabatic backreac-
tion involves solving the Teukolsky equation for many
multipoles of the radiation field and harmonics of the
orbital motion; tens of thousands of multipoles and har-
monics may need to be calculated for tens of thousands
of orbits. To produce EMRI models which capture the
most important elements of the mapping between source
physics and waveform properties, the community has de-
veloped several kludges as a stop-gap for data analysis
and science return studies. The analytic kludge of Barack
and Cutler [12] essentially pushes post-Newtonian mod-
els beyond their domain of validity. Their match with
fully relativistic models is not good, but they capture
the key qualitative features of EMRI physics. Almost as
important, the analytic kludge is fast and is easy to im-
plement; as such, it has been heavily used for many LISA
measurement studies.

The numerical kludge of Babak et al. [13] is closer
to the spirit of the adiabatic approximation we describe
here, in that it treats the small body’s motion as a Kerr
geodesic, but uses semi-analytic fits to strong-field ra-
diation emission to describe inspiral. Wave emission is
treated with a crude multipolar approximation based on
the small body’s coordinate motion. Despite the crude-
ness of some of the underlying approximations, the nu-
merical kludge fits relativistic waveform models fairly
well. It is however slower and harder to use than the an-
alytic kludge, and as such has not been used very much.
More recently, Chua and Gair [14] showed that one can
significantly improve matches to relativistic models by
using an analytic kludge augmented with knowledge of
the exact frequency spectrum of Kerr black hole orbits.

The shortcomings of the kludges illustrate that, ul-
timately, one needs waveform models that capture the
strong-field dynamics of Kerr orbits and that accurately
describe strong-field radiation generation and propaga-
tion through black hole spacetimes. Waveforms based on
the adiabatic approximation are the simplest ones that



3

accurately include both of these effects. Though the adi-
abatic approximation misses important aspects from ne-
glected pieces of the self force, they get enough of the
strong-field physics correct that they will be effective and
useful tools for understanding the scope of EMRI data
analysis challenges, and for accurately assessing the sci-
ence return that EMRI measurements will enable.

C. This paper

Although the computational cost of making adiabatic
inspiral waveforms is high, the most expensive step of
this calculation — computing a set of complex numbers
which encode rates of change of (E,Lz, Q), as well as the
gravitational waveform’s amplitude — need only be done
once. These numbers can be computed in advance for a
range of astrophysically relevant EMRI orbits, and then
stored and used to assemble the waveform as needed. The
goal of this paper is to lay out what quantities must be
computed, and to describe how to use such precomputed
data to build adiabatic waveforms.

Our particular goal is to show how to organize and
store the most important and useful data needed to as-
semble the waveforms in a computationally effective way.
A key element of our approach is to view the compli-
cated EMRI waveform as a sum of simple “voices.” Each
voice corresponds to a mode (l,m, k, n) representing a
particular multipole of the radiation and harmonic of the
fundamental orbital frequencies. The voice-by-voice de-
composition was suggested long ago to one of us by L.
S. Finn, and was first presented in Ref. [15] for the spe-
cial case of spherical Kerr orbits (i.e., orbits of constant
Boyer-Lindquist radius, including those inclined from the
equatorial plane). This paper corrects an important er-
ror in Ref. [15] (which left out a phase that is set by ini-
tial conditions), and extends this analysis to fully generic
configurations.

The approach that we present has several important
features. First, we find that the data which must be
stored to describe the waveform voice-by-voice evolves
smoothly over an inspiral. This suggests that these data
can be sampled at a relatively low cadence, and we can
then build a high-quality waveform using interpolation.
Such behavior had been seen in earlier work [15]; this
analysis demonstrates that this behavior is not unique to
spherical orbits, but is generic. We describe the meth-
ods we have used for our initial exploration, and that
were used in a related study [16] focusing on the rapid
evaluation of waveforms for data analysis. Reference [16]
showed that the chasm between the computational de-
mands of accurate modeling and efficient analysis can
be bridged, but much work remains to “optimize” these
methods — for example, in determining the best way for
the numerical data to be sampled and interpolated.

Second, we show that this framework works well in
both the time and frequency domains. The frequency-
domain construction is particularly interesting. Thanks

to their extreme mass ratios, EMRIs evolve slowly
enough that the stationary-phase approximation (SPA)
to the Fourier transform should provide an excellent rep-
resentation of the frequency-domain form. However, for
some EMRI voices, the instantaneous frequency grows to
a maximum and then decreases. For such voices, the first
time derivative of the frequency vanishes at some point
along the inspiral. The standard SPA is singular at these
points. We show that including information about the
second derivative fixes this behavior, allowing us to com-
pute frequency-domain waveforms for all EMRI voices.

Third, we show that several of the waveform’s param-
eters can be included in a simple way which effectively
reduces the dimensionality of the waveform parameter
space. These parameters are angles which control the
initial position of the orbit in its eccentric radial motion,
and its initial polar angle in the range of motion allowed
by its orbital inclination. They are initial conditions on
the relativistic analog of the “true anomaly angles” used
in Newtonian celestial mechanics. Associated with these
initial anomaly angles are phases, originally introduced
in Ref. [17], which correct the complex amplitudes asso-
ciated with the waveform’s voices. By comparing with
output from a time-domain Teukolsky equation solver
[18, 19], we show that these phases allow one to match
any allowed initial condition with very little computa-
tional cost. This means that we can generate a suite
of data using only a single initial choice of the anomaly
angles, and then transform to initial conditions corre-
sponding to any other choice. This significantly reduces
the computational cost associated with covering the full
EMRI parameter space.

Finally, it should not be difficult to extend this frame-
work to include at least some important effects beyond
the adiabatic approximation, many of which are dis-
cussed in detail in Refs. [20, 21]. For example, both
conservative self forces and spin-curvature coupling have
orbit-averaged effects that are small, but that secularly
accumulate over many orbits [22–25]. Such effects can
be included in this framework by allowing the relativistic
anomaly angles discussed above (which in the adiabatic
limit are constant) to evolve over the inspiral; the phases
associated with these angles will evolve as well. We also
expect that the impact of small oscillations (such as arise
from both self forces and spin-curvature coupling) can
likewise be incorporated, perhaps very efficiently using a
near-identity transformation [26].

As we were completing the bulk of the calculations
which appear here, a similar analysis of adiabatic EMRI
waveforms was presented by Fujita and Shibata [27].
Their analysis focuses to a large extent on the measura-
bility of EMRI waves by LISA, confining their discussion
to eccentric and equatorial sources. Like us, they also
take advantage of the fact that one can pre-compute the
most expensive data on a grid of orbits, and then assem-
ble the waveform by interpolation. We are encouraged by
the fact that their independently developed framework is
substantially similar to what we present here.
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D. Organization of this paper

The remainder of this paper is organized as follows.
Since inspiral in the adiabatic approximation is treated
as a sequence of geodesic orbits, we begin by reviewing
the properties of Kerr geodesics in Sec. II. Nothing in
this section is new; it is included primarily to keep the
manuscript self contained, and to allow us to carefully
define our notation and the meaning of important quan-
tities which are used elsewhere. Section III reviews how
we solve the Teukolsky equation and use its solutions
in order to calculate adiabatic backreaction on an orbit.
This allows us to compute how a system evolves from
orbit to orbit, as well as the gravitational-wave ampli-
tude produced by that orbit. This material is likewise
not new, but is included for completeness, as well as to
introduce and explain all relevant notation.

In Sec. IV, we lay out how one “stitches” together data
describing radiation from geodesics to construct an adi-
abatic waveform. This construction essentially amounts
to taking the solution to the Teukolsky equation for a
geodesic orbit and promoting various factors which are
constants on geodesics into factors which vary slowly
along an inspiral. This construction introduces a two-
timescale expansion: some quantities vary on the “fast”
timescale associated with orbital motions, To ∼ M ; oth-
ers vary on the “slow” timescale associated with the in-
spiral, Ti ∼ M2/µ = To/ε. The adiabatic waveform is
only accurate up to corrections of order the system’s mass
ratio, essentially because it assumes that all time deriva-
tives only include information about the system’s “fast”
time variation. One way in which a post-adiabatic anal-
ysis will improve on these results will be by including
information about time derivatives with respect to the
slow variation along the inspiral.

Section V describes how to compute multivoice sig-
nals in the frequency domain. Because EMRI systems
are slowly evolving, the stationary phase approximation
(SPA) should accurately describe the Fourier transform
of EMRI signals. However, because the evolution of cer-
tain voices is not monotonic, the “standard” SPA calcu-
lation can fail, introducing singular artifacts at moments
when a voice’s frequency evolution switches sign. We re-
view the standard SPA Fourier transform and show how
by including an additional derivative of the frequency it
is straightforward to correct this artifact. We conclude
this section by showing how to combine multiple voices
to construct the full frequency-domain EMRI waveform.

In Sec. VI, we present various important technical de-
tails describing how we implement this framework for
the results we present in this paper. We strongly empha-
size that there is a great deal of room for improvement
on the techniques described here. We have not, for ex-
ample, carefully assessed the most effective method for
laying out the grid of data on which we store information
about adiabatic backreaction and waveform amplitudes,
nor have we thoroughly investigated efficient methods
for interpolating these data to off-grid points (e.g., [16]).

These important points will be studied in future work, as
we begin assessing how to take this framework and use
it to develop EMRI waveforms in support of LISA data
analysis and science studies.

In Secs. VII and VIII we present examples of adiabatic
EMRI waveforms. In both of these sections, we show ex-
amples of the complete time-domain waveform produced
by summing over many voices, as well as the (much sim-
pler) structure of representative voices which contribute
to these waveforms. Section VII shows results for inspi-
ral into Schwarzschild black holes, presenting the details
of an inspiral with small initial eccentricity (einit = 0.2)
and another with high initial eccentricity (einit = 0.7).
Section VIII examines several examples for inspiral into
Kerr, including a case that is spherical, a case that is
equatorial with high eccentricity, and one example that
is generic, both eccentric and inclined. Although generic
EMRI waveforms based on various “kludge” approxima-
tions have been presented before, to our knowledge the
generic example shown in Sec. VIII is the first calculation
that uses strong-field backreaction and strong-field wave
generation for the entire computation. We find that there
is a great deal of similarity between qualitative features
of the Kerr and Schwarzschild waveforms. As such, our
presentation of Kerr results is somewhat brief, concen-
trating on the most important highlights and differences
as compared to the Schwarzschild cases.

For all the cases we examine, we demonstrate how one
can account for a system’s initial conditions by adjusting
a set of phase variables which depend on the initial val-
ues of the anomaly angles that parameterize the system’s
radial and polar motions. We calibrate our calculations
in one case (presented in Sec. VII) by comparing to an
EMRI waveform computed using a time-domain Teukol-
sky equation solver [18, 19]. Interestingly, in this case we
find a small phase offset that, for most initial conditions,
secularly accumulates, causing the waveforms computed
with this paper’s techniques to dephase from those com-
puted with the time-domain code by up to several radians
over the course of an inspiral. We argue tat this is an ar-
tifact of the adiabatic approximation’s neglect of terms
which vary on the slow timescale, and is not unexpected.
We show in this comparison case that we can empiri-
cally compensate for much of the dephasing using an ad
hoc correction that corrects some of the neglected “slow
time” evolution. Though this correction is not rigorously
justified, its form suggests that the dephasing may arise
from a slow-time evolution of the phases variables which
are set by the orbit’s initial conditions.

Our conclusions are presented in Sec. IX. Along with
summarizing the main results of this analysis, we describe
plans and directions for future work. Chief among these
plans is to investigate how to optimize the implemen-
tation in order to make EMRI waveforms as rapidly as
possible, which will be very important in order for these
waveforms to be usable for LISA data and science anal-
ysis studies, as well as investigating how to include post-
adiabatic effects with small modifications of the frame-
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work we present here. We also plan to publicly release
the code and data used in this study, and describe the
status of our plans as this analysis is being completed.

II. KERR GEODESICS

We begin by discussing bound Kerr geodesics. The
most important aspects of this content are discussed in
depth elsewhere [28–32]; we briefly review this material
for this paper to be self contained, as well as to introduce
notation and conventions that we use. Certain lengthy
but important formulas are given in Appendix A.

A. Mino-time formulation of orbital motion

Consider a point-like body of mass µ orbiting a Kerr
black hole with mass M and spin parameter a = |S|/M
(where S is the black hole’s spin angular momentum in
units with G = 1 = c), and use Boyer-Lindquist coordi-
nates (with the angle θ measured from the black hole’s
spin axis) to describe its motion. We use Mino time as
our time parameter describing these orbits. An interval
of Mino time dλ is related to an interval of proper time
dτ by dλ = dτ/Σ, where Σ = r2+cos2 θ, and where r and
θ are the Boyer-Lindquist radial and polar coordinates.
With this parameterization, motion in Boyer-Lindquist
coordinates is governed by the equations(
dr

dλ

)2

= [E(r2 + a2)− aLz]2 −∆[r2 + (Lz − aE)2 +Q]

≡ R(r) , (2.1)(
dθ

dλ

)2

= Q− cot2 θL2
z − a2 cos2 θ(1− E2)

≡ Θ(θ) , (2.2)

dφ

dλ
= csc2 θLz +

2MraE

∆
− a2Lz

∆
≡ Φr(r) + Φθ(θ) , (2.3)

dt

dλ
= E

[
(r2 + a2)2

∆
− a2 sin2 θ

]
− 2MraLz

∆

≡ Tr(r) + Tθ(θ) . (2.4)

We have introduced ∆ = r2 − 2Mr + a2. The quantities
E, Lz, and Q are the orbit’s energy (per unit µ), axial
angular momentum (per unit µ), and Carter constant
(per unit µ2). These quantities are conserved along any
geodesic; choosing them specifies an orbit, up to initial
conditions. Writing d/dλ = Σ d/dτ puts these equations
into more familiar forms typically found in textbooks,
such as Eqs. (33.32a-d) of Ref. [28].

Equations (2.1) and (2.2) tell us that bound Kerr orbits
are periodic in r and θ when parameterized using λ:

r(λ) = r(λ+ nΛr) , θ(λ) = θ(λ+ kΛθ) , (2.5)

where n and k are each integers. Simple formulas exist
for the Mino-time periods Λr and Λθ [31]; we define the
associated frequencies by Υr,θ = 2π/Λr,θ.

The motions in t and φ are the sum of secularly accu-
mulating pieces and oscillatory functions:

t(λ) = t0 + Γλ+ ∆tr[r(λ)] + ∆tθ[θ(λ)] , (2.6)

φ(λ) = φ0 + Υφλ+ ∆φr[r(λ)] + ∆φθ[θ(λ)] . (2.7)

In these equations, t0 and φ0 describe initial conditions,

Γ = 〈Tr(r)〉+ 〈Tθ(θ)〉 , (2.8)

Υφ = 〈Φr(r)〉+ 〈Φθ(θ)〉 , (2.9)

and

∆tr[r(λ)] = Tr[r(λ)]− 〈Tr(r)〉 ≡ ∆tr(λ) ,

∆tθ[θ(λ)] = Tθ[θ(λ)]− 〈Tθ(θ)〉 ≡ ∆tθ(λ) ; (2.10)

∆φr[r(λ)] = Φr[r(λ)]− 〈Φr(r)〉 ≡ ∆φr(λ) ,

∆φθ[θ(λ)] = Φθ[θ(λ)]− 〈Φθ(θ)〉 ≡ ∆φθ(λ) . (2.11)

The quantity Γ describes the mean rate at which observer
time t accumulates per unit λ; the Mino-time frequency
Υφ describes the mean rate at which φ accumulates per
unit λ. The associated period is Λφ = 2π/Υφ. Simple
formulas likewise exist for Γ and Υφ [31]. The averages
used in Eqs. (2.8)–(2.11) are given by

〈fr(r)〉 =
1

Λr

∫ Λr

0

fr[r(λ)] dλ , (2.12)

〈fθ(θ)〉 =
1

Λθ

∫ Λθ

0

fθ[θ(λ)] dλ . (2.13)

The ratio of the Mino-time frequencies to Γ gives the
observer-time frequencies:

Ωr,θ,φ =
Υr,θ,φ

Γ
. (2.14)

We thus have useful closed-form expressions for all fre-
quencies, conjugate to both Mino time λ and observer
time t, that characterize black hole orbits.

B. Orbit parameterization and initial conditions

Take the orbit to oscillate over θmin ≤ θ ≤ θmax, with
θmax = π − θmin, and over rmin ≤ r ≤ rmax, with

rmin/max =
p

1± e
. (2.15)

Choosing p, e, and θmin is equivalent to choosing the
integrals of motion E, Lz, and Q. We have found it par-
ticularly convenient to replace θmin with an inclination
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angle1 I, defined by

I = π/2− sgn(Lz)θmin . (2.16)

The angle I varies smoothly from 0 for equatorial pro-
grade to π for equatorial retrograde. The definition (2.16)
may seem a bit awkward thanks to the branch associated
with the sign of Lz. It is simple to show that

cos θmin = sin I . (2.17)

We have found that xI ≡ cos I is a particularly good pa-
rameter to describe inclination: xI varies smoothly from
1 to −1 as orbits vary from prograde equatorial to ret-
rograde equatorial, with Lz having the same sign as xI .
Schmidt [29] first showed how to compute (E,Lz, Q) for
generic Kerr orbits; a particularly clean representation is
provided by van de Meent [32]. We summarize his for-
mulas in Appendix A, tweaking them slightly to use our
preferred parameter set (p, e, xI).

Initial conditions for t and φ are set by the parameters
t0 and φ0 given in Eqs. (2.6) and (2.7). To set initial
conditions on r and θ, we introduce anomaly angles χr
and χθ to reparameterize those coordinate motions:

r =
p

1 + e cos(χr + χr0)
, (2.18)

cos θ =
√

1− x2
I cos(χθ + χθ0) . (2.19)

We put χθ = 0, χr = 0, t = t0, and φ = φ0 when λ = 0.
The phase χr0 then determines the value of r at λ = 0,
and χθ0 determines the corresponding value of θ. When
χθ0 = 0, the orbit has θ = θmin when λ = 0; when
χr0 = 0, it has r = rmin when λ = 0.

We define the fiducial geodesic to be the geodesic that
has χθ0 = χr0 = φ0 = 0 = t0. We denote with a
“check-mark” accent any quantity which is defined along
the fiducial geodesic. For instance, ř(λ) is orbital radius
along the fiducial geodesic, θ̌(λ) is the polar angle θ along
the fiducial geodesic. For non-fiducial geodesics, we de-
fine λ = λr0 to be the smallest positive value of λ at
which r = rmin; likewise2 λ = λθ0 is the smallest positive
value of λ at which θ = θmin. This means that

r(λ) = ř(λ− λr0) , θ(λ) = θ̌(λ− λθ0) , (2.20)

There is a one-to-one correspondence between λθ0 and
χθ0, and between λr0 and χr0. A useful corollary is

∆tr(λ) = ∆ťr(λ− λr0)−∆ťr(−λr0) ,

∆tθ(λ) = ∆ťθ(λ− λθ0)−∆ťθ(−λθ0) , (2.21)

with analogous formulas for ∆φr and ∆φθ.

Some of our definitions differ from those used in Ref.
[17]. In that reference3, χθ0 and χr0 were not used. In-
stead, χθ = 0 corresponded to λ = λθ0, and χr = 0
corresponded to λ = λrθ. As we discuss briefly in Secs.
IV and IX, the angles χr0 and χθ0 will play an important
role going beyond adiabatic waveforms. In the adiabatic
approximation, the angles χr0, χθ0, and φ0 are constant
as we move from geodesic to geodesic. When we include,
for example, orbit-averaged conservative self-force effects
or orbit-averaged spin-curvature forces, we find secularly
accumulating phases associated with each of these mo-
tions. Allowing the angles χr0, χθ0, and φ0 to evolve
during inspiral is a simple and robust way to “upgrade”
this framework to include these next-order effects.

III. ADIABATIC EVOLUTION AND
WAVEFORM AMPLITUDES VIA THE

TEUKOLSKY EQUATION

The next critical ingredient to constructing an adia-
batic inspiral is the backreaction which arises from the
orbit-averaged self interaction. The quantities which en-
code the backreaction also tell us the amplitude of the
inspiral’s associated gravitational waveform. In this sec-
tion, we briefly summarize how these quantities are calcu-
lated using the Teukolsky equation. As with Sec. II, the
contents of this section are discussed at length elsewhere,
but are summarized here to introduce critical quantities
and concepts important for later parts of this analysis.

A. Solving the Teukolsky equation

The Teukolsky equation [34] describes perturbations
to the Weyl curvature of Kerr black holes. The version
that we will use in this analysis focuses on the Newman-
Penrose curvature scalar

ψ4 = −Cαβγδnαm̄βnγm̄δ , (3.1)

where Cαβγδ is the Weyl curvature tensor, and nα and
m̄α are legs of the Newman-Penrose null tetrad [35].
Teukolsky showed that ψ4 is governed by the equation

1 The angle I has been labeled θinc in some previous work, such as
Ref. [33]. We have found this label to be potentially confusing,
since the Boyer-Lindquist angle θ is measured from the black
hole’s spin axis, whereas the inclination angle is measured from
the plane normal to this axis. We have changed notation to avoid
confusion with the coordinates.

2 These definitions account for the fact that these motions are

periodic: r(λr0 + nΛr) = rmin for any integer n, and θ(λθ0 +
kΛθ) = θmin for any integer k.

3 Reference [17] also used slightly different symbols for the anomaly
angles, writing χ for the polar anomaly, and ψ for radial. Here,
we only use ψ for the Newman-Penrose curvature scalars.
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(r2 + a2)2

∆
− a2 sin2 θ

]
∂2
t Ψ− 4

[
r + ia cos θ − M(r2 − a2)

∆

]
∂tΨ +

4Mar

∆
∂φ∂tΨ−∆2∂r

(
∆−1∂rΨ

)
− 1

sin θ
∂θ (sin θ∂θΨ) +

[
a2

∆
− 1

sin2 θ

]
∂2
φΨ + 4

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
∂φΨ +

(
4 cot2 θ + 2

)
Ψ = 4πΣT . (3.2)

The field Ψ = (r − ia cos θ)4ψ4, and T is a source term
whose precise form is not needed here. See Ref. [34] for
additional details and definitions.

An important point for our analysis is that

ψ4 =
1

2

d2

dt2
(h+ − ih×) as r →∞ , (3.3)

so ψ4 far from the source encodes the emitted gravi-
tational waves. These solutions also encode contribu-
tions to the rates of change of E, Lz, and Q from
gravitational-wave backreaction. This is equivalent to
the orbit-averaged self interaction arising from fields
which are regular far from the source (see Ref. [36], as
well as additional discussion on this point in Ref. [9]).

As r → r+ ≡ M +
√
M2 − a2 (the coordinate radius of

the event horizon), ψ4 encodes tidal interactions of the
orbiting body with the black hole’s event horizon. These
solutions encode contributions to the rates of change of
E, Lz, and Q from radiation absorbed by the horizon,
which is equivalent to the orbit-averaged self interaction
arising from fields which are regular on the event horizon
[9, 36]. Knowledge of ψ4 in the limits r →∞ and r → r+

provides all the data we need to construct adiabatic in-
spirals.

The frequency-domain approach we use to solve the
Teukolsky equation begins by writing ψ4 in a Fourier and
multipolar expansion. Writing

ψ4 =
1

(r − ia cosϑ)4

∫ ∞
−∞

dω

∞∑
l=2

l∑
m=−l

Rlm(r;ω)Slm(ϑ; aω)ei[mϕ−ω(t−t0)] , (3.4)

Eq. (3.2) separates [34], with ordinary differential equa-
tions governing Rlm(r, ω) and Slm(ϑ, aω).

The field ψ4 is measured at the event (t, r, ϑ, ϕ). (Note
the distinction between the orbit’s polar and axial an-
gles, θ and φ, and the polar and axial angles at which
the field is measured, ϑ and ϕ.) The function Slm(ϑ; aω)
is a spheroidal harmonic (of spin-weight −2, left out for
brevity); this function and methods for computing it are
discussed at length in Appendix A of Ref. [37]. For rea-
sons we will explain below, we have also introduced the
initial time t0 into our expansion (3.4).

The separated radial dependence has simple asymp-
totic behavior:

Rlm(r, ω)→ Z∞lmωr
3eiωr∗ , r →∞ , (3.5)

→ ZH
lmω∆e−i(ω−mΩH)r∗ , r → r+ . (3.6)

(We have absorbed a coefficient Ctrans
lmω into the defini-

tion of Z∞lmω, and a coefficient Btrans
lmω into the definition

of ZH
lmω; see Refs. [38–40] for further discussion of these

quantities.) These asymptotic forms depend on the “tor-
toise coordinate,”

r∗(r) = r +
Mr+√
M2 − a2

ln

(
r

r+
− 1

)
− Mr−√

M2 − a2
ln

(
r

r−
− 1

)
, (3.7)

where r± = M ±
√
M2 − a2. The frequency

ΩH =
a

2Mr+
(3.8)

is often called the rotation frequency of the horizon. It
describes the frequency at which an observer held in-
finitesimally outside the event horizon will orbit the black
hole as seen by distant observers.

The quantities Z∞,Hlmω are computed by integrating ho-
mogeneous solutions of the radial Teukolsky equation
against the source term of the separated radial Teukol-
sky equation. Further detailed discussion can be found
in Ref. [33], with updates to notation and minor correc-
tions in Ref. [41]. Of importance for this analysis is that
these quantities are computed by evaluating integrals of
the form

Z∞,Hlmω =

∫ ∞
−∞

dτ eiω[t(τ)−t0]e−imφ(τ)I∞,Hlmω [r(τ), θ(τ)] .

(3.9)
The integration variable τ is proper time along the
geodesic, and we subtract off t0 because it is already

accounted for in Eq. (3.4). The function I∞,Hlmω (r, θ) is
discussed in Refs. [33] and [41]; schematically, it is a
Green’s function used to solve the radial Teukolsky equa-
tion, multiplied by this equation’s source term. Using the
properties of Kerr geodesic orbits and using the methods
developed in Refs. [38–40], it is well understood how to

build I∞,Hlmω [r(τ), θ(τ)].
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Changing integration variable from proper time τ to
Mino time λ, and using Eqs. (2.6) and (2.7), this becomes

Z∞,Hlmω = e−imφ0

∫ ∞
−∞

dλ ei(ωΓ−mΥφ)λJ∞,Hlmω [r(λ), θ(λ)] ,

(3.10)
where we have introduced

J∞,Hlmω (r, θ) = (r2 + a2 cos2 θ)I∞,Hlmω (r, θ)×
eiω[∆tr(r)+∆tθ(θ)]e−im[∆φr(r)+∆φθ(θ)] .

(3.11)

By virtue of the periodicity of orbit’s r and θ motions

with respect to Mino time, the function J∞,Hlmω can be
written as a double Fourier series:

J∞,Hlmω =

∞∑
k=−∞

∞∑
n=−∞

J∞,Hlmkne
−i(kΥθ+nΥr)λ , (3.12)

where

J∞,Hlmkn =
1

ΛrΛθ

∫ Λr

0

dλr e
inΥrλr

∫ Λθ

0

dλθ e
ikΥθλθ J∞,Hlmω [r(λr), θ(λθ)] . (3.13)

Combining Eqs. (3.10), (3.12), and (3.13) plus the rela-
tions Ωr,θ,φ = Υr,θ,φ/Γ, we find that

Z∞,Hlmω =

∞∑
k=−∞

∞∑
n=−∞

Z∞,Hlmknδ(ω − ωmkn) , (3.14)

where

ωmkn = mΩφ + kΩθ + nΩr (3.15)

and

Z∞,Hlmkn = e−imφ0J∞,Hlmkn/Γ . (3.16)

These coefficients have the symmetry

Z∞,Hl,−m,−k,−n = (−1)(l+k)Z̄∞,Hlmkn , (3.17)

where overbar denotes complex conjugation. Our code
respects the symmetry (3.17) to double-precision accu-

racy. We take advantage of this by computing Z∞,Hlmkn for
all l, all m, all k, and n ≥ 0, then using Eq. (3.17) to infer
results for n < 0. This cuts the amount of computation
roughly in half.

As we describe in the following two subsections, the
coefficients Z∞lmkn set the amplitude of the gravitational
waves from a specified geodesic orbit, and also encode the
contribution to the orbit-averaged self force from fields
that are regular at null infinity; the coefficients ZH

lmkn
encode the contribution to the orbit-averaged self force
from fields that are regular on the event horizon. These
sets of coefficients are thus of crucial importance for com-
puting adiabatic inspiral and its gravitational waveform.

B. The gravitational waveform from an orbit

As shown in Sec. 8 of Ref. [17], the phase of Z∞,Hlmkn de-
pends on the values of λr0 and λθ0, which in turn depend
on the initial anomaly angles χr0 and χθ0. We denote by

Ž∞,Hlmkn the value of Z∞,Hlmkn for the fiducial geodesic. For a
general geodesic,

Z∞,Hlmkn = eiξmknŽ∞,Hlmkn , (3.18)

where the correcting phase is

ξmkn = kΥθλθ0 + nΥrλr0

+ m
[
∆φ̌r(−λr0) + ∆φ̌θ(−λθ0)− φ0

]
− ωmkn

[
∆ťr(−λr0) + ∆ťθ(−λθ0)

]
. (3.19)

The form of ξmkn we use is slightly different from that
derived in Ref. [17]. In particular, we have separated out
the dependence on the initial axial phase φ0, as shown
in Eq. (3.16), and the dependence on t0, which is dis-
cussed further in Sec. IV. See Ref. [17] for discussion and
derivation of the dependence on λθ0 and λr0.

The fact that the initial conditions only influence these
amplitudes via the phase factor ξmkn means that we only
need to compute and store quantities on the fiducial
geodesic. Using Eq. (3.19), we can then easily convert
these results to any initial condition. This vastly cuts
down on the amount of computation that must be done
to cover the space of physically important EMRI systems.
In addition, notice that ξmkn can be written

ξmkn = mξ100 + kξ010 + nξ001 . (3.20)

For each orbit one need only compute (ξ100, ξ010, ξ001) in
order to know the phases for all (l,m, k, n).

As we will see below, the values of these phases are ir-
relevant for the orbit-averaged backreaction4, but they
are critical for getting the phase of the gravitational
waveform correct given initial conditions. To write down

4 The phases are not irrelevant for backreaction as we go beyond
the adiabatic limit, and indeed play an important role in deter-
mining the strength of backreaction at orbital resonances [9].
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the gravitational waves, we use Eq. (3.3) to relate h to
ψ4 far from the source. Combining Eqs. (3.4), (3.5), and
(3.14), we further know that

ψ4 =
1

r

∑
lmkn

Z∞lmknSlm(ϑ, aωmkn)ei[mϕ−ωmkn(t−t0)]

(3.21)
as r → ∞. Here and in what follows, any sum over the
set (l,m, k, n) will be assumed to be from 2 to ∞ for l,
from −l to l for m, and from −∞ to ∞ for k and n. Let
us define

h ≡ h+ − ih× ≡
1

r

∑
lmkn

hlmkn

=
1

r

∑
lmkn

AlmknSlm(ϑ; aωmkn)ei[mϕ−ωmkn(t−t0)]) .

(3.22)

Combining Eqs. (3.3), (3.21), and (3.22), we see that

Almkn = −2Z∞lmkn
ω2
mkn

. (3.23)

As with Z∞lmkn, we define Ǎlmkn to be the wave amplitude
for the fiducial geodesic, and we have

Almkn = eiξmknǍlmkn . (3.24)

The data Ǎlmkn interpolate very well and should be
stored for generating inspiral waveforms. It will be con-
venient for later discussion to further define

Hlmkn = AlmknSlm(ϑ; aωmkn) (3.25)

Because spheroidal harmonics slowly change along an in-
spiral as ωmkn evolves, we find it useful to examine Hlmkn

rather than Almkn when computing wave amplitudes dur-
ing inspiral.

C. Adiabatic backreaction

Here we summarize how to use the coefficients Z∞,Hlmkn
to compute the adiabatic dissipative evolution, or back-
reaction, on a geodesic. We assume that a body is on a
Kerr geodesic orbit, and so is characterized (up to initial
conditions) by the orbital integrals E, Lz, and Q. Re-
sults for dE/dt and dLz/dt have been known for quite
a long time [42]; these quantities each split into a con-
tribution from fields that are regular at infinity, which
can be extracted from knowledge of the distant gravi-
tational radiation, and a contribution from fields that
are regular on the black hole’s event horizon. Comput-
ing the down-horizon contribution is a little more tricky;
one must compute how tidal stresses shear the horizon’s
generators, increasing its surface area (or its entropy),
and then apply the first law of black hole dynamics to
infer the change in the hole’s mass and spin. Results
for dQ/dt were first derived by Sago et al. [43], and are
found by averaging the action of the dissipative self force
on a geodesic. It also separates into pieces that arise from
fields regular at infinity and fields regular on the horizon.

The results which we need for our analysis are:(
dE

dt

)∞
=
∑
lmkn

|Z∞lmkn|2

4πω2
mkn

,

(
dE

dt

)H

=
∑
lmkn

αlmkn|ZH
lmkn|2

4πω2
mkn

, (3.26)

(
dLz
dt

)∞
=
∑
lmkn

m|Z∞lmkn|2

4πω3
mkn

,

(
dLz
dt

)H

=
∑
lmkn

αlmknm|ZH
lmkn|2

4πω3
mkn

, (3.27)

(
dQ

dt

)∞
=
∑
lmkn

|Z∞lmkn|2 ×
(Lmkn + kΥθ)

2πω3
mkn

,

(
dQ

dt

)H

=
∑
lmkn

αlmkn|ZH
lmkn|2 ×

(Lmkn + kΥθ)

2πω3
mkn

. (3.28)

In these equations,

Lmkn = m〈cot2 θ〉Lz − a2ωmkn〈cos2 θ〉E , (3.29)

αlmkn =
256(2Mr+)5(ωmkn −mΩH)[(ωmkn −mΩH)2 + 4ε2][(ωmkn − ΩH)2 + 16ε2]ω3

mkn

|Clmkn|2
. (3.30)

The terms 〈cot2 θ〉 and 〈cos2 θ〉 in Eq. (3.29) mean cot2 θ and cos2 θ evaluated at the θ coordinate along the orbit,
and then averaged using Eq. (2.13). The terms |Clmkn|2 and ε in Eq. (3.30) are given by

|Clmkn|2 = [(λ2
lmkn + 2)2 + 4aωmkn − 4a2ω2

mkn](λ2
lmkn + 36amωmkn − 36a2ω2

mkn)

+ (2λlmkn + 3)(96a2ω2
mkn − 48amωmkn) + 144ω2

mkn(M2 − a2) , (3.31)

ε =

√
M2 − a2

4Mr+
. (3.32)
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The quantity λlmkn appearing in Eq. (3.31) is one form
of the eigenvalue of the spheroidal harmonic; see Ref. [37]
for discussion of the algorithm we use to compute it, and
Appendix C of Ref. [41] for discussion of the various forms
of the eigenvalue in the literature (which are simple to
convert between). Note that the factor ε which appears
here (and is not used elsewhere in this paper) is distinct
from the similar symbol ε ≡ µ/M , the mass ratio.

In evaluating Eqs. (3.26), (3.27), and (3.28), we must
truncate the infinite sums, with cutoffs determined by
the needs of the analysis in question. For the purpose of
this paper, we have implemented the following cutoffs:

• We include all l from 2 to 10.

• At each l, we include all m from −l to l.

• We truncate the k sum when the fractional change
to the accumulated sum is smaller than 10−5 for
three consecutive values of k. Holding all other
indices fixed, contributions to this sum tend to fall
off monotonically and fairly rapidly with increasing
k, so in practice this condition means that neglected
terms change the sum by less than several × 10−7.

• We truncate the n sum when the fractional change
to the accumulated sum is smaller than 10−6 for
three consecutive values of n. Especially for e &
0.4, contributions to this sum do not fall off mono-
tonically with n until some threshold has been
passed (see Figs. 5 and 6 of Ref. [44], and Figs.
2 and 3 of Ref. [33]). Once past that threshold,
convergence is quick, and we find that neglected
terms in this case also change the sum by less than
several × 10−7.

We emphasize that these cutoffs have not been selected
carefully, but are simply chosen for ease of calculation
and to produce results which are “converged enough” for
the exploratory purposes of this paper. A more careful
analysis and assessment of how to truncate these sums
should be done before using these ideas to make “pro-
duction quality” waveforms (e.g., for exploring LISA data
analysis questions, or science return with EMRI measure-
ments) in order to make sure that systematic errors in
waveform modeling are understood and do not adversely
affect one’s analysis.

As E, Lz, and Q change, we require the system to
evolve from one geodesic to another. To do this, we let
these orbital integrals change by enforcing a balance law:(

dC
dt

)orbit

= −
(
dC
dt

)∞
−
(
dC
dt

)H

, (3.33)

for C ∈ [E,Lz, Q]. As these orbital integrals evolve, the
orbit’s geometry slowly changes in order to keep the sys-
tem on a geodesic trajectory. Appendix B shows how
to relate rates of change for p, e, and xI to the rates of
change of E, Lz, and Q.

IV. ADIABATIC INSPIRAL AS DISSIPATIVE
EVOLUTION ALONG A SEQUENCE OF

GEODESICS

We now examine solutions to the Teukolsky equation
for a slowly evolving source. Critical to our analysis is the
idea of a two-timescale expansion: the waveform phase
varies on a “fast” orbital timescale To ∼ M , and orbit
characteristics vary on a “slow” inspiral timescale Ti ∼
M2/µ. The two timescales differ by the system’s mass
ratio: To/Ti = µ/M ≡ ε. The waveforms we compute in
this way are accurate up to corrections of order ε.

Suppose that we have used the rates of change dE/dt,
dLz/dt, dQ/dt to compute how a system evolves from
geodesic to geodesic. We parameterize inspiral by a book-
keeper time ti which measures evolution along the inspi-
ral as seen by a distant observer. We treat the inspiral
as a geodesic at each moment ti, and call the geodesic at
this moment the “osculating” geodesic [45–47]. At each
such moment, the osculating geodesic’s energy E(ti), its
angular momentum Lz(t

i), and its Carter constant Q(ti)
are known. By our assumption that the inspiral is a
geodesic at each moment, we can reparameterize and de-
termine p(ti), e(ti), and xI(t

i). We can also compute
quantities such as the frequencies Ωr,θ,φ(ti) and the am-
plitudes Z∞lmkn(ti) for each geodesic in this sequence.

To leading order in ε, the curvature scalar ψ4 that
arises from this sequence of geodesics is given by

ψ4(ti) =
1

r

∑
lmkn

Z∞lmkn(ti)Slm[ϑ; aωmkn(ti)]

×ei[mϕ−Φmkn(ti)] . (4.1)

This is Eq. (3.21), but with the amplitude Z∞lmkn and the
frequency ωmkn now functions of ti. Notice the depen-
dence on harmonics of the accumulated orbital phase:

Φmkn(ti) =

∫ ti

t0

ωmkn(t′) dt′ . (4.2)

This reduces to ωmkn(ti − t0) in the limit that the orbit
does not inspiral. Equation (4.2) builds in the depen-
dence on the initial time t0, which is why we leave this
parameter out of the factor ξmkn in Eq. (3.19).

To justify this inspiraling solution for ψ4, substitute
Eq. (4.1) into the Teukolsky equation, Eq. (3.2). Doing
so, one finds that it satisfies the Teukolsky equation up
to errors of order the orbital timescale over the inspiral
timescale, O(To/Ti) ∼ O(ε). These errors in turn arise
from the fact that time derivatives have both fast-time
contributions, for which ∂t ∼ 1/To ∼ ωmkn, as well as
slow-time contributions, for which ∂t ∼ 1/Ti ∼ ε/To. In
the adiabatic approximation, we neglect the slow-time
derivatives, expecting that at any moment their contri-
bution will be small as long as the system’s mass ratio
is large. Some of the errors arising from this neglect can
accumulate secularly, leading to phase errors up to sev-
eral radians after an inspiral. Post-adiabatic corrections
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will change the amplitude and phase of Eq. (4.1) in such a
way as to correct the adiabatic approximation’s fast time
over slow time errors. See [20] for further discussion.

In our applications, we are typically more interested in
the waveform h(ti) than in ψ4(ti). This is given by

h(ti) ≡
∑
lmkn

hlmkn(ti) =
1

r

∑
lmkn

Hlmkn(ti)ei[mϕ−Φmkn(ti)] ,

(4.3)
where

Hlmkn(ti) = Almkn(ti)Slm[ϑ; aωmkn(ti)] (4.4)

and

Almkn(ti) = −2Z∞lmkn(ti)

ωmkn(ti)2
. (4.5)

Equation (4.3) showcases the “multivoice” structure of
EMRI waveforms: each hlmkn(ti) that contributes to
h(ti) constitutes a single “voice” in this waveform. As
we will see in Secs. VII and VIII, even when the wave-
form is complicated, each voice tends to be quite simple.

As discussed in Sec. III, we can compute the ampli-
tudes Ǎlmkn for the fiducial geodesic and then correct
using the phase factor ξmkn in order to get the wave am-
plitude for our system’s initial conditions. Let us imag-
ine we have computed Ǎlmkn on a dense grid of orbits.
Knowing [p(ti, e(ti), xI(t

i)], it is then simple to construct
the fiducial amplitudes Ǎlmkn(ti) along an inspiral.

To convert from the fiducial amplitudes to Almkn(ti),
we need the phase factor ξmkn(ti) at each moment along
the inspiral. Recall that ξmkn depends on the angles
χθ0 and χr0 which set the polar and radial initial con-
ditions. An important feature of the adiabatic approx-
imation is that these angles are constant: χθ0 and χr0
do not change as inspiral proceeds. However, the map-
ping between (χθ0, χr0) and ξmkn does change as inspiral
proceeds, leading to a slow evolution in this phase fac-
tor. When post-adiabatic physics is included, this story
changes: the angles χθ0 and χr0 slowly evolve under
the influence of orbit-averaged conservative self forces,
and orbit-averaged spin-curvature interactions. This will
change the slow evolution of ξmkn, and is one way in
which conservative effects leave an observationally im-
portant imprint on EMRI waveforms.

V. FREQUENCY-DOMAIN DESCRIPTION

Our description so far has focused on presenting adia-
batic EMRI waveforms in the time domain. We showed
that the time-domain waveform can be regarded as a
superposition of different “voices,” each of which has
its own slowly evolving amplitude. In this section, we
will exploit this multivoice structure to compute the
Fourier transform of an EMRI waveform, thereby de-
scribing these waves in the frequency domain.

Because all quantities in an EMRI evolve slowly (as
long as the two-timescale approximation is valid), our
expectation is that the stationary phase approximation
(SPA) will provide a high-quality approximation to the
Fourier transform. For some voices, the frequency evolu-
tion is not monotonic: some voices rises to a maximum
frequency, and then their frequency decreases. As we dis-
cuss below, it is conceptually straightforward to extend
the “standard” SPA calculation in such a circumstance.
We begin by reviewing the standard calculation, then dis-
cuss voices whose frequency evolution is not monotonic.
We conclude this section by describing how to assemble
a frequency-domain waveform with many voices.

A. Standard SPA calculation

Begin by assuming a single voice signal of the form

h+(t)− ih×(t) ≡ h(t) = H(t)e−iΦ(t) . (5.1)

The Fourier transform of this is given by

h̃(f) ≡
∫ ∞
−∞

h(t)e2πift dt

=

∫ ∞
−∞

H(t)ei[2πft−Φ(t)] dt . (5.2)

To compute the stationary phase approximation to the
Fourier transform, expand the signal’s phase as

Φ(t) = Φ(tS) + 2πF (t− tS) + πḞ (t− tS)2 + . . . . (5.3)

We will define the time tS momentarily. In Eq. (5.3), we
have introduced the signal’s instantaneous frequency and
the instantaneous frequency derivative at t = tS :

F ≡ 1

2π

dΦ

dt

∣∣∣∣
tS

, Ḟ =
dF

dt
≡ 1

2π

d2Φ

dt2

∣∣∣∣
tS

. (5.4)

We will assume that Ḟ is small, in a sense to be made
precise below.

Using these definitions, we rewrite the Fourier trans-
form integral:

h̃(f) = e−iΦ(tS)

∫ ∞
−∞

H(t)e2πi[ft−F (t−tS)−(1/2)Ḟ (t−tS)2] dt

= ei[2πftS−Φ(tS)] ×∫ ∞
−∞

H(t′ + tS)e2πi[ft′−Ft′−(1/2)Ḟ (t′)2] dt′ . (5.5)

On the second line, we changed the integration variable
to t′ = t − tS . The integrand of Eq. (5.5) very rapidly
oscillates unless the Fourier frequency f matches the in-
stantaneous frequency F . When this condition is met, the
phase is stationary: it is approximately constant, vary-
ing very slowly due to the contribution from Ḟ , which is
assumed to be small.

We take the time tS to be the time at which the phase
is stationary. Let us rewrite it t(f), the time at which
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F (t) = f . Under the assumption that the largest contri-
bution to the integral comes from t′ ' 0, or equivalently
from t ' t(f), we have

h̃(f) ' H[t(f)]ei[2πft(f)−Φ(t(f))]

∫ ∞
−∞

e−iπḞ [t(f)](t′)2dt′ .

(5.6)
This integral can be evaluated with standard methods,
and we finally obtain

h̃(f) ' H[t(f)]ei[2πft(f)−Φ(t(f))−π/4]√
Ḟ [t(f)]

. (5.7)

Note that Ḟ can be positive or negative, and it appears
under the square root. To eliminate ambiguity about the
phase of this voice in the frequency domain, we clean this
up as follows:

h̃(f) ' H[t(f)]ei[2πft(f)−Φ(t(f))∓π/4]√
|Ḟ [t(f)]|

. (5.8)

We choose the plus sign in the phase if Ḟ > 0, and the
minus sign for Ḟ < 0. This approximation works well
when both F (t) and H(t) change slowly,∣∣∣∣ 1

F

dH

dt

∣∣∣∣� |H| , ∣∣∣∣ 1

F

dF

dt

∣∣∣∣� |F | . (5.9)

It also requires that the signal frequency F evolves mono-
tonically — the sign of dF/dt cannot change.

B. Non-monotonic frequency

What if our signal has a frequency which does not
evolve monotonically? In particular, what if F rises to
a maximum and then decreases, or falls to a minimum
and then increases? When this occurs, two problems
arise with the standard SPA analysis. First, in this cir-
cumstance there are multiple solutions to the condition
F (t) = f . The signal at frequency f must include contri-
butions from all times from which the signal frequency F
equals the Fourier frequency f . Second, Ḟ = 0 at the mo-
ment that the evolution of F switches sign. The standard
SPA Fourier transform is singular at that point. These
issues affect EMRI signals, since the frequency associated
with many voices rises to a maximum and then decreases.

In particular, this occurs for EMRI voices which involve
harmonics of the radial frequency: Ωr reaches a maxi-
mum in the strong field, then goes to zero as the inspiral
approaches the last stable orbit.

The root cause of the singularity is that the standard
SPA assumes F (t) and Ḟ (t) completely describe the sig-

nal’s phase. If Ḟ vanishes at frequency f , then the calcu-
lation assumes all times contribute to the Fourier integral
at f , and the integral (5.6) diverges. (This is consistent
with the fact that the Fourier transform of a constant
frequency signal is a delta function.) However, for real

EMRI signals, F (t) is not constant when Ḟ = 0; the
singularity in the SPA analysis is an artifact of our as-
sumption that F (t) and Ḟ (t) completely characterize the
signal’s phase. To remove this artifact, we need more
information about the signal’s phase evolution. Let us
therefore include the next term in the expansion:

Φ(t) = Φ(tS)+2πF (t−tS)+πḞ (t−tS)2+
π

3
F̈ (t−tS)3 . . .

(5.10)
where

F̈ ≡ 1

2π

d3Φ

dt3

∣∣∣∣
tS

. (5.11)

Now revisit Eq. (5.2), but use (5.10) to expand the
phase. We again find that tS is the stationary time, for
which F = f . However, there may be multiple roots of
the equation F (t) = f . Let us define tj(f) to be the

jth time at which F (t) = f , and write Ḟj ≡ Ḟ [tj(f)],

F̈j ≡ F̈ [tj(f)]. For EMRI waveforms, N ≤ 2. Each value
of j contributes to the Fourier transform, so we have

h̃(f) '
N∑
j=1

H[tj(f)]ei[2πftj(f)−Φ(tj(f))] ×

∫ ∞
−∞

e−iπ[Ḟj(t
′)2+F̈j(t

′)3/3]dt′ . (5.12)

To perform this integral, put α = γ + 2πiḞ , with γ real
and positive. Define β = 2πF̈ , and use∫ ∞
−∞

e−αt
2/2−iβt3/6 dt =

2√
3

α

|β|
eα

3/3β2

K1/3(α3/3β2) ,

(5.13)
where Kn(z) is the modified Bessel function of the 2nd
kind. Taking the limit γ → 0, we find

h̃(f) ' 2√
3

N∑
j=1

H[tj(f)]ei[2πftj(f)−Φ(tj(f))] iḞj

|F̈j |
e−2πiḞ 3

j /3F̈
2
jK1/3(−2πiḞ 3

j /3F̈
2
j ) . (5.14)

This result defines our “extended” SPA.
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It is useful to examine two limits of Eq. (5.14). To facilitate taking these limits, we define

Xj ≡
2π

3

Ḟ 3
j

F̈ 2
j

. (5.15)

First, we take Ḟj to be arbitrary, and expand about F̈j = 0. To set this up this, eliminate F̈j in Eq. (5.14):

h̃(f) '
√

2

π

N∑
j=1

H[tj(f)]ei[2πftj(f)−Φ(tj(f))] Ḟj√
Ḟ 3
j

i
√
Xje

−iXjK1/3(−iXj) . (5.16)

Expanding about F̈j is equivalent to examining Eq. (5.16) for Xj → ±∞. Using

Ḟj√
Ḟ 3
j

= |Ḟj |−1/2 Ḟj > 0 ,

= i|Ḟj |−1/2 Ḟj < 0 , (5.17)

and, for X real,

lim
X→±∞

i
√
Xe−iXK1/3(−iX) =

√
π

2
e−iπ/4

(
1− 5i

72

1

X
+ . . .

)
, (5.18)

we have

h̃(f) =

N∑
j=1

H[tj(f)]ei[2πftj(f)−Φ(tj(f))∓π/4]

|Ḟj |1/2

(
1− 5i

48π

F̈ 2
j

Ḟ 3
j

+ . . .

)
. (5.19)

The minus sign in the exponential is for Ḟ > 0, the plus sign for Ḟ < 0. Equation (5.19) is an accurate approximation

when |F̈j |2 � |Ḟj |3. Notice that we recover the standard SPA result, Eq. (5.8), when F̈j = 0 and N = 1.

Next, allow F̈j to be any real value, and expand about Ḟj = 0. To do this, we replace Ḟj for Xj in Eq. (5.14),

h̃(f) ' 22/3

31/6π1/3

N∑
j=1

H[tj(f)]ei[2πftj(f)−Φ(tj(f))]
F̈

2/3
j

|F̈j |
iXj

1/3e−iXjK1/3(−iXj) , (5.20)

and expand about Xj = 0. Using

lim
X→0

iX1/3e−iXK1/3(−iX) =
e2πi/3Γ( 1

3 )

22/3

[
1−X2/3 e

2πi/3Γ(− 1
3 )

22/3Γ( 1
3 )

]
, (5.21)

we find

h̃(f) '
e2πi/3Γ( 1

3 )

31/6π1/3

N∑
j=1

H[tj(f)]ei[2πftj(f)−Φ(tj(f))]
F̈

2/3
j

|F̈j |

[
1− e2πi/3

(π
3

)2/3 Γ(− 1
3 )

Γ( 1
3 )

Ḟ 2
j

F̈
4/3
j

+ . . .

]
. (5.22)

Equation (5.22) is accurate when |Ḟj |2 � |F̈j |4/3. No-

tice that this result is well behaved and finite at Ḟj = 0,
demonstrating that the extended SPA cures the singular-
ity at points where the rate of change of the instantaneous
signal frequency passes through zero.

We note here that the issue of a signal’s frequency
and frequency derivative both vanishing was examined
by Klein, Cornish, and Yunes [48] in the context of com-
parable mass binaries with spinning and precessing con-

stituents. Although superficially similar to the case we
discuss here, the root cause of the pathology in their case
was rather different. In addition to having an orbital
timescale To and an inspiral timescale Ti, the waveforms
from precessing binaries vary on precession timescales Tp

which are typically intermediate to Ti and To. A given bi-
nary typically exhibits precession on multiple timescales,
depending on the binary’s spins. Such a waveform may
also considered “multivoice,” due to the evolution of fea-
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tures in different harmonics. One finds in this case that
the stationary points of different voices can coalesce,
leading to a pathological SPA estimate for the waveform’s
Fourier transform. Each individual voice, however, re-
mains well behaved, in contrast to the case for EMRIs.
As such, their treatment does not need to use additional
information about the phase evolution, as we find is nec-
essary in our analysis.

Figure 1 illustrates how these elements come together
for a voice that showcases many of the features we have
discussed here. We show the l = m = 2, k = 0, n = 20
voice for an equatorial Kerr inspiral with a = 0.9M ,
pinit = 12M , einit = 0.7, and mass ratio ε = 10−3. The
full time-domain waveform and additional voices are dis-
cussed for this case in more detail in Sec. VIII A.

On the left-hand side of Fig. 1, we show this voice’s
time-domain amplitude and the evolution of its fre-
quency. The voice frequency increases until it reaches
a maximum, then rapidly decreases, at least until the in-
spiral ends several hundred M after reaching this maxi-
mum. The Fourier transform, computed using Eq. (5.14)
and shown in the right-hand panels, has two branches:
the branch with ḟ > 0, shown as the long-dashed curve in
the upper right-hand panel of Fig. 1; and the branch with
ḟ < 0, shown as the short-dashed curve in this panel.

Combining the two branches yields the solid curve
shown in the lower right-hand panel of Fig. 1. We over-
lay on this plot a discrete Fourier transform computed
using this time-domain voice; because of the large dy-
namic range in the signal’s amplitude, we consider sep-
arately a low-frequency DFT (focusing on data for ti .
5.5×105M , for which f . 0.018M) and a high-frequency
DFT (focusing on data for ti & 5.5 × 105M). We use a
Tukey window of width 500M to taper these segments

of the time-domain signal. Aside from lobes near the
boundaries associated with these windows, we see perfect
agreement between the DFT and the SPA. Notice the in-
teresting structure in the band 0.024 . Mf . 0.037.
This arises from beating between the contributions along
the branches with ḟ > 0 and ḟ < 0: at each frequency in
this band, the signal contributes at two different times,
and with two different phases. Additional examples of
voices, in both the time and frequency domains, are
shown in Secs. VII and VIII.

C. Multiple voices

Generalization to a multivoice signal is straightfor-
ward. Let us write our signal in the time domain

h(t) =
∑
V

HV (t)e−iΦV (t) , (5.23)

where V labels the voice, and is shorthand for all the
mode indices which describe each voice of the waveform.
For generic EMRIs, V ≡ (l,m, k, n).

The calculation proceeds as before, but now the phase
is stationary for each voice at some moment. Define

FV =
1

2π

dΦV
dt

, (5.24)

and likewise define ḞV , F̈V . Assume that the condition
FV (t) = f has NV solutions for voice V , and define
tj,V (f) to be the jth such solution. (As stated in the
previous section, NV will be either 1 or 2 for EMRIs.)
The stationary phase Fourier transform is then

h̃(f) =
2√
3

∑
V

NV∑
j=1

HV [tj,V (f)]ei[2πftj,V (f)−ΦV (tj,V (f))] iḞj,V

|F̈j,V |
exp

[
−2πi

3

Ḟ 3
j,V

F̈ 2
j,V

]
K1/3

[
−2πi

3

Ḟ 3
j,V

F̈ 2
j,V

]
≡
∑
V

h̃lmkn(f) . (5.25)

We have introduced Ḟj,V ≡ ḞV [tj,V (f)] and F̈j,V ≡
F̈V [tj,V (f)]. Depending on the relative values of vari-

ous powers of Ḟj,V and F̈j,V , one can expand the V th
voice as in Eqs. (5.19) or (5.22).

VI. IMPLEMENTATION

In this section, we describe various technical details by
which we implement this formalism for computing EMRI
waveforms. To make an adiabatic inspiral and its associ-
ated waveform, we lay out a grid of orbits, parameterized
by each orbit’s (p, e, xI). We store all the data at each

grid point needed to construct the inspiral and the wave-
form. We then interpolate to estimate the values of each
datum at locations away from the grid points. In this
section, we describe this data grid and the data which
are stored on it, and details of how we interpolate data
off grid. We emphasize that there is surely a great deal of
room to improve on the techniques we present here; in-
deed, we used different algorithms to design our data grid
and to perform interpolation in a closely-related compan-
ion analysis, Ref. [16]. For this initial study, the grids
and interpolation techniques we use are chosen for ease
of use. In later work, we plan to investigate how best to
optimize the grids and interpolation methods for speed
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FIG. 1. An example of the time-domain and frequency-domain structure of one voice: l = m = 2, k = 0, n = 20, for an
equatorial Kerr inspiral with a = 0.9M , pinit = 12M , einit = 0.7, and mass ratio ε = 10−3. On the left, we show this voice’s
amplitude (top) and frequency (bottom) as a function of time over the inspiral. The voice’s frequency increases until it reaches
fmax ' 0.037/M ; it then reverses and falls to ffinal ' 0.024/M at the end of inspiral. The spiky features occur when this
amplitude passes through zero (note the log scale). On the right, we show the frequency domain structure computed with the
extended SPA. In the top right, we examine contributions to the SPA along the two branches of F (t) = f . The curve with long

dashes is the magnitude of the SPA for the branch with ḟ > 0; the curve with short dashes is for the branch with ḟ < 0. Bottom
right shows the final SPA Fourier transform obtained by summing contributions from the two branches, and compares this to a
discrete Fourier transform (DFT). Because of the large dynamic range between the low-frequency and high-frequency behavior
of this voice, we separately examine the DFT for the early time, low-frequency portion (corresponding to ti . 5.5 × 105 M ;
plotted with magenta dashes) and the DFT for the late, high-frequency portion (ti & 5.5 × 105 M ; plotted with blue dots).
Modulo lobes at the boundaries of the two DFTs (associated with the Tukey window used to taper the time-domain signal near
these boundaries), the DFTs coincide perfectly with the SPA. Notice the interesting behavior in the band 0.024 .Mf . 0.037.
This arises from beating between the contributions along the two branches.

and accuracy of waveform calculation.

A. EMRI data grids

We store our data on a grid that is rectangular in
p − pLSO, e, and xI , where pLSO parameterizes the last
stable orbit (LSO). The value of pLSO is easy to calculate
as a function of e and xI [49], making it simple to set up
a grid in this space. We set our innermost grid point to
pmin = pLSO + 0.02M , slightly outside of the LSO. The
radial frequency Ωr → 0 as p→ pLSO, which means that
Fourier expansions in Ωr tend to be badly behaved as the
LSO is approached; this can be regarded as a precursor
to the small body’s plunge into the black hole [50, 51]
at the end of inspiral. Very little inspiral remains when
the small body has reached our choice of pmin, so we are
confident that the error incurred by truncating at pmin

(rather than closer to pLSO) is negligible. That said, it
should be emphasized that this choice of pmin has not
been carefully evaluated. It will be useful to systemati-

cally examine how to select the grid’s inner edge in future
“production quality” work.

Many important quantities vary rapidly near the LSO.
Of particular importance is the phase of Ǎlmkn, which
tends to rotate rapidly as p → pLSO. It is crucial to
resolve this behavior in order to compute accurate wave-
forms. To account for this behavior, we use a grid whose
density increases near pLSO. For this paper, our grid is
uniformly spaced in

u ≡ 1√
p− 0.9pLSO

. (6.1)

Using this spacing, we have laid down 40 points between
pmin = pLSO + 0.02M and pmax = pmin + 10M . Differ-
ent choices certainly could be used; for example, a grid
reaching to larger p and with a different algorithm for
increasing density near pLSO was used in Ref. [16]. The
choice of p spacing is an example of an issue that should
be more carefully investigated, and perhaps empirically
designed depending on what works best given computing
resources and accuracy needs for one’s application.
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For any X stored on our grid, dX/de → 0 as e →
0. Empirically, we find it is important to have dense
grid coverage for small e in order for this behavior to be
accurately captured. For this paper, we have used grids
that run over 0 ≤ e ≤ 0.8 in steps of ∆e = 0.1. Work
in progress [52] suggests that this spacing may introduce
small systematic errors in computing the inspiral rate
as a function of initial eccentricity; using higher density
across at least the small e part of this range appears to
effectively address this. More detailed discussion of this
point will be presented in later work [52].

For fixed p−pLSO and fixed e, all our stored data tends
to be very smooth and indeed nearly linear as a function
of xI . Our grid covers the range −1 ≤ xI ≤ 1, with 16
points spaced by ∆xI = 2/15 ' 0.1333.

We store the following data at each grid point:

• The rates of change (dE/dt)∞,H, (dLz/dt)
∞,H,

and (dQ/dt)∞,H obtained by summing over many
modes until convergence has been reached, using
the convergence criteria described in Sec. III C.

• The rates of change of the orbital elements
(dp/dt)∞,H, (de/dt)∞,H, and (dxI/dt)

∞,H obtained
by using the Jacobian described in App. B with
these fluxes.

• The fiducial amplitude Ǎlmkn for all modes used to
compute (dE/dt)∞, (dLz/dt)

∞, and (dQ/dt)∞.

So far, we have constructed such data sets for spheri-
cal (e = 0) and equatorial orbits (xI = ±1) for a/M ∈
[0, 0.1, 0.2, . . . , 0.9, 0.95, 0.99], as well as for generic orbits
for spin a = 0.7M covering 0 ≤ e ≤ 0.4. These data are
produced using the code GREMLIN, a frequency-domain
Teukolsky solver primarily developed by author Hughes,
with significant input from collaborators. The core meth-
ods of this code are described in Refs. [33, 37], updated
to use methods developed in Refs. [39, 40] for solving
the homogeneous Teukolsky equation; see [53] for further
discussion.

Two-dimensional orbits (eccentric and equatorial, or
spherical and inclined) typically require several hun-
dred to several thousand modes in order to converge
as described in Sec. III C, reaching ∼ 104 modes in the
strongest fields. The number of modes needed for con-
vergence of generic orbits is an order of magnitude or
two larger. Each spherical orbit mode requires about 0.1
seconds of CPU time for small values of l, increasing to
roughly 0.25 seconds for modes with l = 10. Computing
eccentric orbit modes is more time consuming, since each
mode involves an integral over the radial domain covered
by its orbit. This cost also varies significantly by radial
mode number n. For small l, modes for small eccentricity
(e . 0.2) take on average 1 CPU second or less; medium
eccentricity modes (e ≈ 0.5) average about 5–10 CPU
seconds; and large eccentricity modes (e = 0.8) average
30–40 CPU seconds each. These averages are skewed sig-
nificantly by larger values of n, for which the integrand

of Eq. (3.13) rapidly oscillates, and the integral tends to
be small compared to the magnitude of the integrand.
At l = 10, these times increase: small eccentricity modes
take on average up to 20 CPU seconds; medium eccentric-
ity modes average about 40–50 CPU seconds; and large
eccentricity modes require on average 150 seconds.

The CPU cost per mode is ameliorated by the fact that
each orbit (p, e, xI) and each mode (l,m, k, n) is indepen-
dent of all others. As such, this problem is embarrass-
ingly parallelizable, and data sets can be effectively gen-
erated on distributed computing clusters. The data sets
described above are publicly available through the Black
Hole Perturbation Toolkit [54]. Plans to extend these
sets, develop further examples, and release the GREM-
LIN code, are described in Sec. IX.

B. Interpolating and integrating across the grid

To find data away from the grid points, in this anal-
ysis we use cubic spline interpolation in the three direc-
tions. Because our grid is rectangular in (p−pLSO, e, xI),
this can be implemented effectively, and is adequate for
demonstrating how to build adiabatic waveforms and
illustrating the results. Cubic spline interpolation for
the individual mode amplitudes will not scale well to
“production-level” code, in terms of computational ef-
ficiency and memory considerations. In Ref. [16], a set
of the present authors used reduced-order methods with
machine learning techniques to construct a global fit to
the set of mode amplitudes, finding outstanding efficiency
gains in an initial study of Schwarzschild EMRI wave-
forms. Future work will apply these techniques to the
more generic conditions we examine here.

Other data needed to construct the waveform (for ex-
ample, the geodesic frequencies Ωr,θ,φ and the phases
ξmkn) are calculated at each osculating geodesic as in-
spiral proceeds. Substantial computing speed could be
gained by storing and interpolating such data; indeed,
all such data tends to evolve smoothly and fairly slowly
over an inspiral, so it is likely that effective interpola-
tion could be implemented. We leave an investigation of
what to store and interpolate versus what to compute for
future work and future optimization.

To make an adiabatic inspiral, we construct
a sequence of osculating geodesics, parameter-
ized by [p(ti), e(ti), xI(t

i)] given initial conditions
[pinit, einit, xI,init]. To do this, we interpolate to find
dp/dt, de/dt, and dxI/dt at each inspiral time ti, then
use a fixed-stepsize 4th-order Runge–Kutta integrator
to construct the inspiral. This simple method is an
obvious point for improvement in future work; indeed,
in the related analysis [16], we used a variable-stepsize
8th-order Runge–Kutta integrator.

Note that both (dp/dt) and (de/dt) are singular as the
LSO is approached. This is because the Jacobian (App.
B) relating these quantities has zero determinant at the
LSO. This singularity can adversely affect the accuracy of
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interpolating these quantities. Multiplying both (dp/dt)
and (de/dt) by (p − pLSO)2, which exactly describes the
singularity in the zero eccentricity limit and approxi-
mately describes it in general, yields smooth data which
interpolate very well. Another approach is to interpo-
late the fluxes dE/dt, dLz/dt, and dQ/dt, normalized by
post-Newtonian expansions of these quantities in order
to “divide out” their most rapid variations across orbits.
This would construct a sequence of osculating geodesic
parameterized as [E(ti, Lz(t

i), Q(ti)]. Determining the
most efficient way to parameterize these orbits in order
to optimize waveform construction for speed and accu-
racy are very natural directions for future work.

VII. RESULTS I: EXAMPLE SCHWARZSCHILD
EMRI WAVEFORMS AND THEIR VOICES

We now present examples of EMRI waveforms and
their voices in the time and frequency domains. Our goal
is not to exhaustively catalog EMRI waveforms, but just
to present examples which showcase the behavior that we
find, and how this behavior tends to correlate with source
properties. We begin here with results for Schwarzschild;
the next section shows Kerr results.

Thanks to spherical symmetry, Schwarzschild orbits
are confined to a plane, which we define as equatorial.
We can thus set Q = 0 and focus on voices with k = 0
(i.e., neglecting harmonics of the θ motion). We examine
two cases: one starts at (pinit, einit) = (12M, 0.2) and in-
spirals to efinal ' 0.107; the other starts at (pinit, einit) =
(12M, 0.7) and inspirals to efinal ' 0.374. In both cases,
pfinal follows from the Schwarzschild last stable orbit:
pLSO = (6+2e)M . We use mass ratio ε = 10−3 in all the
cases we examine, both here and in the following section.
Results for other extreme mass ratios can be inferred by
scaling durations and accumulated phases with 1/ε.

A. Waveforms in the time domain

The top two panels of Fig. 2 show h+ for the two
Schwarzschild inspirals we examine, both with initial
anomaly angle χr0 = 2π/3. The waveform is shown in
the system’s equatorial plane, so h× = 0. For the case
with einit = 0.2, we plot contributions from all modes
with l ∈ [2, 3, 4], m ∈ [−l, . . . , l], n ∈ [0, . . . , 10] (as well
as modes simply related by symmetry); for the case with
einit = 0.7, we use the same l and m range, but go over
n ∈ [0, . . . , 40]. As in our discussion of the convergence
of adiabatic backreaction in III C, we emphasize that we
have not carefully analyzed how many modes to include.
This range produces visually converged waveforms — ad-
ditional modes do not change the waveform enough to
impact the figures. This is adequate for this paper.

The lower panels of Fig. 2 show the influence of the
phase ξm0n on the waveform, zooming in on early and
late times. The red curves include all ξm0n corrections,

and the blue curves neglect them, showing inspirals made
using the fiducial amplitudes Ǎlm0n. Both early and late
in the inspiral, the phase correction has a noticeable in-
fluence. This is not surprising, since the impact of ξm0n

is to adjust the system’s initial conditions — different
choices of ξm0n correspond to physically different inspi-
rals. The influence on the large eccentricity case is par-
ticularly strong.

Figures 3 and 4 show how the phases ξ001 (top pan-
els) and ξ100 (bottom panels) evolve over these inspi-
rals. We show these phases for initial anomaly an-
gles χr0 = 0 (solid [black] curves), π/6 (dotted [red]),
π/2 (short-dashed [blue]), 3π/2 (dot-dashed [green]), and
11π/6 (long-dashed [magenta]). For the small eccentric-
ity case, both ξ001 and ξ100 are nearly flat over the in-
spiral, though they show significant variation in the very
last moments. The variation is larger in the higher ec-
centricity case for ξ001, changing by almost a radian over
the inspiral for χr0 = π/2 and 3π/2 even before reach-
ing the large change at the very end. In all cases, ξ100

and ξ001 are smooth and well behaved. They are also
relatively simple to calculate, only requiring information
about the geodesic with parameters p and e. Since com-
puting Alm0n is an expensive operation, one should only
compute the fiducial amplitudes Ǎlm0n and use the phase
ξm0n = mξ100 + nξ001 to convert.

To calibrate how well the phases ξm0n allow us to ac-
count for initial conditions, we compare the waveform as-
sembled voice-by-voice with one computed independently
using a time-domain Teukolsky equation solver. For the
comparison waveform, we compute the worldline followed
by an inspiraling body, use it to build the source for the
time-domain Teukolsky equation as described in Ref. [18],
and then compute the waveform using the techniques de-
veloped in Refs. [18, 19]. The time-domain solver projects
its output onto spherical (l,m) modes of spin-weight −2;
we focus our comparison on voices with l = 2, m = 2.

Figures 5, 6, and 7 summarize the results that we find
for Schwarzschild inspiral with pinit = 12M , einit = 0.7.
Figure 5 shows what we find when the initial anomaly
angle χr0 = 0. In this case, we find that the waveform
assembled voice-by-voice and the time-domain compari-
son remain in phase for the entire inspiral. In the figure,
we compare the two waveforms for a stretch of duration
∆ti = 3000M at the beginning of inspiral as well as a
stretch of duration ∆ti = 1000M in the middle (near
ti = 1.5× 105M). The two waveforms lie on top of each
other in both cases; for this choice of χr0 we find an
excellent match all the way to the end at ti ' 3× 105M .

Figure 6 shows the inspiral waveforms when we put
χr0 = 2π/3. In this case, we find a secular drift which
accumulates as inspiral proceeds. The top panel is again
a stretch ∆ti = 3000M from the beginning of inspiral; as
in Fig. 5, the two computed waveforms lie on top of one
another. However, by ti = 1.5×105M , the two waveforms
are about 2 radians out of phase, as can be seen in the
lower panel of this figure. This mismatch grows to about
4 or 5 radians by the end of the inspiral.
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FIG. 2. The waveform h+ for inspiral into a Schwarzschild black hole with (pinit, einit, xI,init) = (12M, 0.2, 1) (left-hand panels)
and (pinit, einit, xI,init) = (12M, 0.7, 1) (right-hand panels). The waves are observed in the plane of the orbit, so h× = 0, and
the mass ratio is ε = 10−3 in all cases. The top panels show the complete inspiral waveform over this domain, with the initial
radial anomaly angle χr0 = 2π/3. The bottom panels compare h+ including the phase corrections ξm0n (solid [red] curves)
with h+ neglecting these corrections (i.e., incorrectly using the fiducial amplitudes Ǎlm0n; dashed [blue] curves). In both cases,
we compare early times (the first 3000M of inspiral) and late times (an interval of 1000M near the end of inspiral). Neglecting
ξm0n leads to significant differences in the waveforms.

As discussed in Sec. IV, our solution neglects the im-
pact of “slow-time” derivatives on EMRI evolution, leav-
ing out time derivatives of terms which vary on the in-
spiral timescale Ti. As such, our solution only solves the
Teukolsky equation (3.2) up to errors of O(ε). The time-
domain solver by contrast finds a solution which, up to
numerical discretization, solves Eq. (3.2) at all orders in
To/Ti. Our hypothesis is that this phase offset is be-
cause the time-domain solver captures at least some of
the “slow-time” derivatives which are missed by the adi-
abatic construction. Interestingly, the magnitude of the
offset depends strongly on χr0. By examining multiple
values of χr0, we find that the effect varies at least ap-
proximately as 1−cosχr0. This suggests that a slow-time
variation in ξm0n may play a particularly important role
in this secular drift.

To test the hypothesis that the offset is due to over-
looked slow-time terms, we replaced the accumulated
phase, Eq. (4.2), with the following ad hoc modification:

Φmod
m0n(ti) =

∫ ti

t0

[
mΩφ

(
1 + (1− cosχr0)

3

2

dp/dt

pΩφ

)
+ nΩr

(
1 + (1− cosχr0)

3

2

dp/dt

pΩr

)]
dt .(7.1)

The factor of (1− cosχr0) in this modification accounts
for the empirical dependence on χr0 that we found; the
factor of dp/dt connects this phase to the inspiral, and the

factors 1/p and 1/Ωr,φ provide dimensional consistency.
The numerical factor 3/2 was determined empirically. It
is interesting to note that a slow-time evolution in the
Newtonian limit yields

dΩ

dt
= −3

2

dp

dt

Ω

p
− 3e

de

dt

Ω

1− e2
. (7.2)

Our empirical phase modification appears to be consis-
tent with a weak-field correction associated with the rate
at which p changes due to inspiral.

We strongly emphasize that Eq. (7.1) is completely ad
hoc, and has not been justified by any careful calculation.
However, we find that it does surprisingly well improv-
ing the match between the two calculations. Figure 7 is
the equivalent of Fig. 6, but with Eq. (7.1) used to com-
pute the phase rather than Eq. (4.2). Notice that the
two waveforms lie on top of one another, at least over
the domain shown here. As inspiral proceeds, our ad hoc
fix becomes less accurate: we find a roughly 1 radian off-
set between the two waveforms when ti ' 2.5 × 105M ,
growing to several radians by the end of inspiral. We find
nearly identically improved matches examining inspirals
with different values of χr0, and for different choices of
the mass ratio ε. Interestingly, including terms in de/dt
inspired by the weak-field rate of change of Ω, does not
help, suggesting that the similarity to the weak-field for-
mula may be a coincidence.
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FIG. 3. The phase correction ξ100 (bottom panel) and ξ001

(top panel) for inspiral with pinit = 12M , einit = 0.2 at mass
ratio ε = 10−3. In both panels, the solid (black) line corre-
sponds to χr0 = 0, dotted (red) curves show χr0 = π/6, short-
dashed (blue) shows χr0 = π/2, long-dashed (magenta) shows
χr0 = 11π/6, and dot-dashed (green) shows χr0 = 3π/2.
Notice that these curves show only gentle variation until
nearly the end, with many changing rapidly as the inspiral
approaches the last stable orbit.

This analysis indicates that the phase offset we find
is consistent with a post-adiabatic effect, and therefore
is missed by construction when making adiabatic wave-
forms. The surprising effectiveness of our ad hoc fix sug-
gests it may not be too difficult to analytically model this
behavior and improve these waveforms.

B. Waveform voices

The waveforms shown and discussed in Sec. VII A are
fairly complicated, especially for the high eccentricity
case. By contrast, the individual voices which contribute
to these waveforms are very simple, evolving smoothly
and simply on the much longer inspiral timescale.

Figures 8 and 9 show individual voices that contribute
for the case with einit = 0.2. A handful of the voices
we show look jagged in these figures due to how we have
presented the data: the amplitude passes through zero in
some cases, so |Hlm0n| appears spiky on a log-linear plot.
These zero passings correspond to moments when the in-
stantaneous frequency Fm0n = (1/2π)dΦm0n/dt changes
sign. In this low eccentricity case, the voices with l = 2,
m = ±2, n = 0 have the largest amplitudes.

Figure 10 shows some of the voices which contribute
for the case with einit = 0.7. Again we see that the

FIG. 4. The same as Fig. 3, but for an inspiral with pinit =
12M , einit = 0.7. These phases show more variation in this
case than when einit = 0.2, although the curves still show
only gentle variations until the system approaches the end of
inspiral.

voices’ amplitudes and phases are smooth and well be-
haved. In contrast to the small eccentricity case, modes
with n = 0 do not dominate here. Of the voices we plot,
n = 6 dominates at early times, though it falls below
several other voices as the inspiral ends. The voice with
n = 3 starts out weakest, but becomes strongest roughly
halfway through this inspiral.

All of the voices we examine have this behavior: both
the amplitudes and phases of individual voices evolve
smoothly on the inspiral timescale Ti. This property is
shared by the voices’ frequency-domain behavior. Fol-
lowing Sec. V, we compute the frequency-domain repre-
sentation of the voices examined here; Figs. 11 and 12
show our results. Again, we see that all the voices evolve
smoothly over the inspiral. The apparent spikiness in
some cases (for example, the voice with l = m = 4, n = 4
for einit = 0.2) is because this voice’s amplitude passes
through zero, and we show its magnitude on a log scale.
It’s also worth noting that the frequency range of differ-
ent voices varies. This is because our analysis begins in
the time domain, and then transforms to the frequency
domain using the SPA. Different voices thus start at dif-
ferent frequencies, and reach different frequencies at the
end of inspiral.

Both the time-domain and the frequency-domain rep-
resentation of these voices can be computed quickly
and efficiently. Future work, particularly data-analysis-
focused applications which compare EMRI waves to de-
tector noise, could benefit substantially by focusing upon
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FIG. 5. The waveform for inspiral into a Schwarzschild black
hole with pinit = 12M , einit = 0.7, χr0 = 0 at mass ra-
tio ε = 10−3 computed voice-by-voice using the methods
described here (blue crosses), and computed using a time-
domain Teukolsky equation solver for the worldline of an in-
spiral with these initial conditions. Though only voices with
l = 2, m = 2 are included, the multivoice data are otherwise
identical to the χr0 = 0 data shown in Fig. 2. Top panel shows
a stretch ∆ti = 3000M near the beginning of inspiral; bottom
shows a stretch ∆ti = 1000M near ti = 1.5× 105M , roughly
the middle of this inspiral. The two calculations agree per-
fectly in these two snapshots; we in fact find that they hold
this agreement all the way to the end at ti ' 3× 105M .

the waveform in voice-by-voice fashion, studying which
voices are most relevant for detection and measurement
as a function of source parameters.

VIII. RESULTS II: EXAMPLE KERR EMRI
WAVEFORMS AND THEIR VOICES

We next consider a few examples of inspiral into Kerr
black holes. Although certain important details differ
from the results discussed in Sec. VII, much of what we
find for Kerr inspiral waveforms is qualitatively quite sim-
ilar to those we find for the Schwarzschild case. As such,
we keep this discussion brief, focusing on the most impor-
tant highlights of this analysis. Future work will explore
these waveforms and their properties in depth.

We begin in Sec. VIII A with a discussion of two con-
strained cases: one that initially has zero eccentricity, but
is inclined with respect to the hole’s equatorial plane; and
a second case that is equatorial, but starts with large ec-
centricity. We then discuss one example of fully generic
(inclined and eccentric) inspiral in Sec. VIII B.

FIG. 6. Same as Fig. 5, but for χr0 = 2π/3; the multivoice
data shown here are identical to the l = 2, m = 2 χr0 =
2π/3 data shown in Fig. 2. The two waveforms agree very
well at early times, but a secular offset accumulates in this
case; as shown in the lower panel, the two waveforms are
roughly 2 radians out of phase by ti ' 1.5 × 105M . This
grows to about 4 or 5 radians by the end of inspiral. Our
hypothesis is that the time-domain integrator includes slow-
time contributions (i.e., contributions from source terms that
evolve on the longer inspiral timescale Ti) which are left out
of the adiabatic waveform.

A. Constrained orbital geometry: Spherical and
equatorial inspirals

We begin our Kerr study with two cases of inspiral
into black holes with spin a = 0.9M . In the first case,
we examine an orbit that is spherical, with large incli-
nation to the black hole’s equatorial plane. We take
(rinit, xI,init) = (10M, 0.5). This inspiral reaches the last
stable orbit at r = 3.820M , xI = 0.483. The orbit’s
inclination is nearly constant during inspiral, with xI de-
creasing very slightly. A similarly slight decrease of xI is
seen in all of the cases we have examined.

The left-hand panels of Fig. 13 show the gravitational
waveform we find in this case. For the time-domain
waveform, we plot contributions from all modes with
l ∈ [2, 3, 4], m ∈ [−l, . . . , l], k ∈ [0, . . . , 10], plus modes
that are simply related by symmetry. (For inspirals with
zero eccentricity, only voices with n = 0 contribute.) The
strong influence of spin-orbit modulation can be seen in
the lower left-hand panels, which zoom in on early and
late times. These lower panels also illustrate the role of
the initial polar anomaly angle χθ0, contrasting the wave-
form with χθ0 = 2π/3 versus the one with χθ0 = 0. The
two waveforms are similar in shape but shifted, consis-
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FIG. 7. Same as Fig. 6, but using the ad hoc phase modi-
fication introduced in Eq. (7.1). This correction adjusts the
orbital phase with a term that depends on the inspiral rate.
Though this correction has not been rigorously computed, it
nonetheless substantially improves the agreement between the
two waveforms, at least over this domain of ti. (As described
in the text, the waveforms drift from one another as inspi-
ral continues.) This supports the hypothesis that this drift
arises due to slow-time variations neglected in the adiabatic
approximation.

tent with the fact that χθ0 controls the system’s initial
conditions: when χθ0 = 0, the orbit is at θ = θmin when
t = 0; for χθ0, the orbit starts at a value of θ roughly
midway between the equator and θmax = π − θmin.

The right-hand panels of Fig. 13 show several of the
voices with l = m = 2 which contribute to this wave-
form. The trend we have found across all the cases we
examine is that voices with |k +m| = l are loudest, and
fall off as |k+m| moves away from this peak. This trend
can be seen in the cases shown here: the strongest voice
has k = 0, followed by k = −1. In the time domain,
the voices with k = 2 and k = 1 have roughly the same
amplitude; the voice with k = −2 is the weakest of those
shown here. Interestingly, the voices with k = 2, k = 1,
and k = −2 have similar magnitude in the frequency

domain. The factor 1/
√
Ḟ which enters the frequency-

domain magnitude compensates for the fact that this
voice’s time-domain amplitude is smaller by a factor of
2 or 3. Such differences have important implications for
the measurability of these signals.

The second case we examine is an equatorial eccentric
inspiral, with (pinit, einit) = (12M, 0.7). These are the
same initial conditions we used for the high-eccentricity
inspiral into Schwarzschild we examined in Sec. VII. For

Kerr with spin a = 0.9M , these initial conditions lead to
a much longer inspiral that goes very deep into the strong
field, becoming nearly circular before plunge: inspiral
lasts for ∆ti ' 6.1 × 105M , roughly twice the duration
of the high-eccentricity Schwarzschild inspiral, and ends
with (pfinal, efinal) = (2.40M, 0.057).

The left-hand panels of Fig. 14 show the gravitational
waveform for this inspiral. For the time-domain wave-
form, we include contributions from modes with l ∈
[2, 3, 4], m ∈ [−l, . . . , l], n ∈ [0, . . . , 40], plus modes that
are simply related by symmetry; as in the Schwarzschild
cases we examined, only voices with k = 0 contribute
since there is no θ motion. The early waveform is quali-
tatively quite similar to the early large eccentricity wave-
form we found for Schwarzschild (Fig. 2). The late wave-
form, by contrast, is quite different, reflecting the fact
that the orbit has nearly circularized as it approaches the
final plunge. As in the Schwarzschild case, we see that
the initial radial anomaly angle χr0 has a large impact
on the waveform.

The right-hand panels of Fig. 14 show some of the
l = m = 2 voices which contribute to this waveform.
An interesting trend we see is that the importance of dif-
ferent voices changes dramatically during inspiral. The
evolution of the n = 0 voice is especially dramatic: it
is fairly weak at early times (and in fact passes through
zero during the inspiral), but dominates the waveform at
late times. This makes sense — at late times the system’s
geometry is nearly circular, and voices corresponding to
radial harmonics play a substantially less important role.

B. Generic Kerr inspiral

We conclude our discussion of results by looking at
a Kerr inspiral that is both inclined from the equato-
rial plane and eccentric. As discussed in Sec. VI, we
have not yet generated dense data sets covering a wide
range of such orbits. The example shown here demon-
strates that the techniques we have developed to build
adiabatic EMRI waveforms have no difficulty with such
cases. Although generic EMRI waveforms have been de-
veloped using “kludges,” to our knowledge this is the first
generic example that uses strong-field backreaction and
strong-field wave generation for the entire calculation.

The case we examine begins at (pinit, einit, xI,init) =
(12M, 0.25, 0.5). At mass ratio ε = 10−3, inspiral
lasts for ∆ti ' 3.5 × 105M , at which time the smaller
body encounters the LSO at (pfinal, efinal, xI,final) =
(4.64M, 0.084, 0.488). As in the spherical cases, notice
that the total change in inclination is very small: the
change δxI = 0.012 corresponds to the inclination angle I
increasing by about 0.79◦. Figure 15 shows the trajectory
that the smaller body follows in (p, e, xI). The left-hand
panels of Fig. 16 shows the time-domain +-polarization
of the waveform that we find in this case, including all
modes with l ∈ [2, 3, 4], m ∈ [−l, . . . , l], k ∈ [0, . . . , 10],
n ∈ [0, . . . , 25] (as well as modes simply related to this
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FIG. 8. Some of the voices which contribute to h+ for the case (pinit, einit) = (12M, 0.2), as shown in the left panels of Fig.
2. The magnitude of the amplitude |Hlm0n(ti)| is on the left; the phase Φm0n(ti) is on the right. Top panels show voices with
l = 4 and m = 4, bottom panels show l = 2 and m = 2. Solid (red) curves are data with n = 0, short-dashed (blue) blue curves
are n = 1, long-dashed (green) are n = 2, dot-dashed (magenta) are n = 3, and dotted (black) are n = 4. In all cases both
the amplitude and the phase evolve smoothly and simply. As functions of time, these voices can be sampled much less densely
than h+ must be sampled in order to accurately track its behavior.

modes by symmetry). The right-hand panel of Fig. 16
and both panels of Fig. 17 show some of the voices that
contribute to this waveform (l = m = 2, k = 0 voices in
Fig. 16; l = m = 2, k = ±2 voices in Fig. 17).

Perhaps not surprisingly, the picture that emerges for
generic orbits is a blend of features seen in the spherical
and equatorial limits. The time domain waveform has
large peaks corresponding to periapsis passage, separated
by lower amplitude troughs as the orbit moves through
apoapsis; the relatively small contrast between the peaks
and troughs is consistent with this case’s fairly modest
initial eccentricity. Superposed on this structure is a
more rapid “whirling” associated with frame-dragging.
This is especially clear late in the waveform when the
orbit has moved to small radius, and resembles behavior
seen in the waveform for the spherical case at late times.

For k = 0, the time-domain structure of voices that
contribute to this waveform is similar to what we saw in
the low-eccentricity Schwarzschild case shown in Fig. 8:
n = 0 is the strongest voice, with contributions steadily
decreasing as n increases. For k = ±2, we see more varia-
tion: n = 0 often starts out relatively weak, but becomes
much stronger late in the inspiral after eccentricity is
significantly decreased. The frequency domain structure
of the voices is consistent with this picture; given the
already large number of plots in this paper, we do not
include figures showing this.

IX. CONCLUSION

In this paper, we have shown how to to use precom-
puted frequency-domain Teukolsky equation solutions to
make EMRI waveforms. In this way, one can compute
and store in advance the most computationally expen-
sive aspects of EMRI analysis, and then use the meth-
ods we describe to rapidly assemble waveforms using the
stored data. We particularly emphasize the usefulness of
the multivoice waveform structure, which facilitates iden-
tifying particularly important waveform multipoles and
harmonics, both in the time and frequency domains.

The framework and techniques we describe here have
not been optimized, so there is much scope for effi-
ciency gains. In a companion analysis [16], some of
the present authors examined several algorithmic im-
provements, showing that we can in fact construct
analysis-length time-domain EMRI waveforms in the
Schwarzschild limit in under a second. There are two
ways that the results of the present work can be incorpo-
rated into the framework of [16]. The first is to extend
to Kerr inspirals. The main challenges here are due to
the higher dimensional parameter space, and the need
to sum over more modes, since waveforms depend on
an additional harmonic frequency. Inspirals also extend
deeper into the strong field, so more modes are likely to
make strong contributions to the waveform. The frame-
work in [16] is designed to overcome these challenges. Its
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FIG. 9. Some voices with l = 2 and m = −2 which con-
tribute to h+ for the small eccentricity case shown in Fig. 2.
Colors and definitions are exactly as in Fig. 8. The behav-
ior of modes with n = 3 and n = 4 are interesting: During
the inspiral, there are moments at which the phase evolution
reverses direction, corresponding to the voice’s instantaneous
frequency changing sign. The amplitudes corresponding to
these voices pass through zero at times very close to these
moments. The zero passage of these amplitudes leads to the
sharp appearance that we see here. The real and imaginary
parts of H2−23 and H2−24 are perfectly smooth.

neural network interpolation is a promising technique for
dealing with the increased dimensionality, and its use of
GPU-based hardware acceleration alleviates the compu-
tational burden of summing over thousands of additional
(l,m, k, n)-modes.

The second extension is to incorporate frequency-
domain waveforms. For the Schwarzschild limit, Ref. [16]
already demonstrates how to efficiently interpolate wave-
form amplitudes; the remaining new challenge is the ef-
ficient calculation of the stationary time as a function of
frequency. This can likely be achieved by sparsely eval-
uating t(f) at a few key frequencies and interpolating to
compute additional values. Knowing t(f) is in addition
likely to be useful for connecting the frequency-domain
waveforms we describe here to a detector response func-
tion. The LISA detector’s response changes with time
as the antenna orbits the Sun, introducing time- and
frequency-dependent modulations, and changing the sen-
sitivity to the two gravitational-wave polarizations as the
orientation of the antenna relative to a source varies over
the orbit. Though both these extensions will complicate
the development of fast waveforms, they do not change
the fundamental message of Ref. [16]. We are confi-
dent that adapting those methods with the data sets and

FIG. 10. Some voices with l = 2, m = 2 which contribute to
the large eccentricity waveform shown in Fig. 2. Top panel
shows the voices’ phase, lower panel their amplitudes. Solid
(red) curves are data with n = 0, short-dashed (blue) curves
are n = 3, long-dashed (green) are n = 6, dot-dashed (ma-
genta) are n = 9, and dotted (black) are n = 12. In contrast
to the small eccentricity case, the voice with n = 0 does not
dominate over most of the inspiral. In fact, of the voices
shown, the one which starts weakest (n = 3) evolves to be
become the loudest by the end of inspiral. Nonetheless, all
amplitudes and phases evolve in a smooth and simple way,
just as in the low eccentricity case.

framework described here will be quite effective.

Because of the high cost of generating the wave-
form amplitude data, once computed, the data should
be widely shared. The data sets we have computed,
described in Sec. VI, have been released through the
Black Hole Perturbation Toolkit [54] (hereafter “the
Toolkit”). These data were all computed using a fairly
small (roughly 1000 core) in-house cluster at the MIT
Kavli Institute. This scale of cluster is adequate for
making inspiral data for 2-D orbits (spherical or equa-
torial), but is too small to be useful for fully generic
3-D (inclined and eccentric Kerr) data sets. We have
ported our frequency-domain Teukolsky equation solver,
GREMLIN, to the US National Science Foundation’s
XSEDE [55] environment, and plan to develop generic
data sets there. It should be noted, however, that there
is a lot to be learned from 2-D cases about how best
to lay out orbits on the grid (for example, the work in
progress mentioned in Sec. VI that shows the importance
of dense coverage at small eccentricity). Data sets re-
leased through the Toolkit are likely to be revised with
some regularity as we learn more about the best way to
lay out the data grids.
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FIG. 11. Frequency domain representation of the voices shown in Figures 8 and 9. Top left shows voices with l = m = 2;
bottom left shows voices with l = m = 4; both panels on the right show voices with l = 2, m = −2. In all cases, the solid
(red) curves are the frequency-domain amplitudes with n = 0; short-dashed curves (blue) are for n = 1; long-dashed (green)
are n = 2; dot-dashed (magenta) are n = 3; and dotted (black) are n = 4. (We use two panels for the voices with m = −2 to
showcase the range in amplitude of this case.) Because we generate the waveform in the time domain and use the stationary
phase Fourier transform, each voice spans a slightly different range of frequency.

Plans are in place to release the GREMLIN code which
was used to generate these data sets, and which includes
tools for post-processing analysis and generating EMRI
waveforms. A reduced functionality version of GREM-
LIN (specialized to circular, equatorial orbits) has al-
ready been released [54]. The generic version will be
released after it is cleaned of proprietary libraries and
fully comports with Open Source licensing requirements.

FIG. 12. Frequency domain representation of the voices
shown in Fig. 10. All curves show voices with l = m = 2.
The solid (red) curve is the frequency-domain amplitude with
n = 0; short-dashed (blue) is for n = 3; long-dashed (green)
is n = 6; dot-dashed (magenta) for n = 9; and dotted (black)
for n = 12.

In terms of analyses of the source physics, there are
several natural places to extend what we have done here.
One clear step is to consider how physics beyond the adi-
abatic approximation affects waveforms. As described in
Sec. VII, we see evidence from comparison with wave-
forms computed by a time-domain Teukolsky solver that
neglecting terms which vary on the long inspiral timescale
leads to an initial-condition-dependent secular drift in
the waveform. Our hypothesis is that this arises due to
a slow evolution in the ξmkn phases described in Sec. III.

In a similar vein, we expect it will not be difficult to in-
corporate the orbit-averaged first-order conservative self
force. In brief, on average the conservative self force
changes the rate at which the orbit precesses, and can
be modeled as a slow “anomalous” change to the rate of
periastron advance and the advance of the line of nodes.
These anomalous changes can in turn be incorporated
into an osculating geodesic framework by allowing the
parameters χr0, χθ0, and φ0 to slowly evolve under the
influence of this force. See, for example, Ref. [46] for
further discussion. A similar effect due to the orbit-
averaged coupling of the smaller body’s spin to the back-
ground curvature probably can also be modeled in such
a way. It should also be possible to include many non-
orbit-averaged self forces and spin-curvature couplings
[22–25, 56] by using a near-identify transformation [26].
Such non-orbit averaged analyses will be needed in or-
der to model the impact of resonances [9, 11], for ex-
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FIG. 13. Left panels: the waveform h+ for an example of spherical inspiral into a black hole with a = 0.9M . This example
has (rinit, xI,init) = (10M, 0.5), is at mass ratio ε = 10−3, and is observed in the black hole’s equatorial plane. During inspiral,
the orbit’s radius steadily shrinks while xI decreases very slightly (see text for details). The polar anomaly angle χθ0 = 2π/3.
Top left shows the waveform over the entire inspiral; bottom left panels zoom onto early and late times. The lower panels also
illustrate the influence of the anomaly angle, comparing χθ0 = 2π/3 (solid [red] curves) with inspiral on the fiducial geodesic
(dash [blue] curves). We again see that this angle has a large effect on the waveform, in this case changing the initial orientation
so that the frame-dragging induced modulation begins at a different phase. Right panels: some of the l = m = 2 voices which
contribute to this waveform, both time domain (top) and frequency domain (bottom). Each line is a different k index: solid
(red) is k = 0, short-dashed (blue) is k = 1, long-dashed (green) is k = −1, dot-dashed (magenta) is k = 2, and dotted (black)
is k = −2. Across the examples of zero eccentricity inspiral we have examined, the tendency is that voices with |k+m| = l are
the strongest, and fall off as |k +m| moves away from this peak.

ample. It is likely that an orbit-averaged-based analysis
accurately describes systems away from resonances, but
one will need to do a more complicated (and expensive)
analysis in the vicinity of each resonance to model how
the system evolves through each resonance crossing, and
practical schemes for efficiently combining the two within
template models must be devised. Regardless, extensions
of this sort may make it possible for this framework to in-
corporate the most important post-adiabatic effects quite
easily, significantly improving the ability of these models
to serve as templates for EMRI measurements.

Finally, we note that recent phenomenological
frequency-domain gravitational wave models are being
calibrated in the large mass-ratio limit with Teukolsky
waveforms [57]. The directly constructed frequency-
domain waveforms presented in this work could be useful
in this effort.
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we find (pfinal, efinal) = (2.40M, 0.057). The late waveform is consistent with low eccentricity late in the inspiral. Top left shows
the waveform for χr0 = 2/3 over the inspiral; in addition to zooming onto early and late times, bottom left illustrates the
influence of the anomaly angle, comparing χr0 = 2π/3 (solid [red] curves) with inspiral on the fiducial geodesic (dashed [blue]
curves). Right panels: some of the l = m = 2 voices which contribute to this waveform, both time domain (top) and frequency
domain (bottom). Solid (red) curves show the voices with n = 0; short-dashed (blue) are for n = 3; long-dashed (green) are
n = 6; dot-dashed (magenta) are n = 9; and dotted (black) curves show n = 12.
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Appendix A: Formulas for E, Lz, and Q

In this appendix, we list formulas for the geodesic con-
stants of the motion E, Lz, and Q as functions of our
preferred parameters p, e, and xI ≡ cos I. Formulas for
these constants were first worked out by Schmidt [29],
and are provided in particularly clean form for generic
orbits by van de Meent [32]. We list them here using our
preferred parameterization, and also include formulas for
spherical orbits.

The three geodesic constants are given by

E =

√
κρ+ 2$σ − 2sgn(xI)

√
σ(σ$2 + ρ$κ− ηκ2)

ρ2 + 4ησ
,

(A1)

Lz = −
g(ra)E −

√
g(ra)2 + h(ra)f(ra)E2 − h(ra)d(ra)

h(ra)
,

(A2)

Q = (1− x2
I)

[
a2(1− E2) +

L2
z

x2
I

]
, (A3)

where ra = p/(1−e) is the coordinate radius of the orbit’s
apoapsis. For generic orbits, the quantities appearing
here are given by

κ = d(ra)h(rp)− d(rp)h(ra) , (A4)

$ = d(ra)g(rp)− d(rp)g(ra) , (A5)

ρ = f(ra)h(rp)− f(rp)h(ra) , (A6)

η = f(ra)g(rp)− f(rp)g(ra) , (A7)

σ = g(ra)h(rp)− g(rp)h(ra) , (A8)

where rp = p/(1+e) is the coordinate radius of the orbit’s
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FIG. 15. The inclined and eccentric trajectory in (p, e, xI) for the generic inspiral we examine. This trajectory, illustrated
by the blue curve, begins at (pinit, einit, xI,init) = (12M, 0.25, 0.5) and proceeds until the smaller body encounters the LSO
(a section of which is illustrated by the orange plane) at (pfinal, efinal, xI,final) = (4.64M, 0.084, 0.488). A projection of this
trajectory into the (p, e) plane is illustrated by the red curve, along with the projection of the LSO at the final value of xI
(black line in lower plane); a projection of this trajectory into the (p, xI) plane is illustrated by the green curve, along with the
projection of the LSO at the final value of e (black line on back “wall” of the box).

periapsis, and where

d(r) = ∆(r)[r2 + a2(1− x2
I)] , (A9)

f(r) = r4 + a2[r(r + 2M) + (1− x2
I)∆(r)] , (A10)

g(r) = 2aMr , (A11)

h(r) = r(r − 2M) +
(1− x2

I)∆(r)

x2
I

, (A12)

Note that we have switched notation slightly versus Refs.
[29] and [32]: we use$ in these lists rather than ε to avoid

notational collision with ε =
√
M2 − a2/2Mr+, as well

as with the very similar ε ≡ µ/M .
For spherical orbits with e = 0, ra = rp ≡ ro. In this

limit, we use a different form of these quantities:

κ = d(ro)h′(ro)− d′(ro)h(ro) , (A13)

$ = d(ro)g′(ro)− d′(ro)g(ro) , (A14)

ρ = f(ro)h′(ro)− f ′(ro)h(ro) , (A15)

η = f(ro)g′(ro)− f ′(ro)g(ro) , (A16)

σ = g(ro)h′(ro)− g′(ro)h(ro) . (A17)

In these formulas, ′ denotes ∂/∂r.

Appendix B: Jacobian from
(dE/dt, dLz/dt, dQ/dt) to (dp/dt, de/dt, dxI/dt)

Once the rates of change dE/dt, dLz/dt, and dQ/dt
have been computed, we use them to compute how a

system evolves from one geodesic to another in the adi-
abatic limit. As part of this, we would like to know how
the geodesic geometry parameters p, e, and xI change
due to this backreaction. In this appendix, we write out
the details of this procedure.

A generic Kerr orbit has turning points in its radial
motion at apoapsis, ra = p/(1 − e), and at periapsis,
rp = p/(1 + e). It also has a turning point in its po-
lar motion at θm. (The second polar turning point at
π − θm yields no new information because of reflection
symmetry about θ = π/2.) Recall that θm is related to
our inclination angle I by Eq. (2.16). The radial turning
points mean that R(ra) = 0 and R(rp) = 0, where R(r)
is defined in Eq. (2.1); the polar turning point means
that Θ(θm) = 0, where Θ(θ) is defined in Eq. (2.2). We
require that these conditions hold as the system evolves
due to backreaction, which means that we require

d

dt
R(ra) = 0 ,

d

dt
R(rp) = 0 ,

d

dt
Θ(θm) = 0 .(B1)

Expanding these total time derivatives, we find that the
results can be written as a matrix equation,JEra JLzra JQra

JErp JLzrp JQrp
JExI JLzxI JQxI

 ·
 dE/dt
dLz/dt
dQ/dt

 =

dra/dt
drp/dt
dxI/dt

 (B2)

Computing the various matrix elements Jab, we find sim-
ple expressions for dra,p/dt and dxI/dt. Examine the
change to the inclination first:
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FIG. 16. Left panel: the waveform h+ for an example of generic inspiral into a black hole with a = 0.7M . This example
corresponds to (pinit, einit, xI,init) = (12M, 0.25, 0.5), and has a mass ratio ε = 10−3; the small body inspirals until it encounters
the LSO at (pfinal, efinal, xI,final) = (4.64M, 0.084, 0.488). We show the waveform as observed in the black hole’s equatorial
plane. Upper left panel shows the waveform over the inspiral; lower left panels zoom onto early and late times. The lower left
panels also illustrate the influence of the anomaly angle, comparing χr0 = χθ0 = 2π/3 (solid [red] curves) with inspiral on the
fiducial geodesic (dashed [blue] curves). Right panel: Some of the voices that contribute to this waveform. The voices shown
here are for l = m = 2, k = 0; solid (red) curve is n = 0, short-dashed (blue) is n = 1, long-dashed (green) is n = 2, dot-dashed
(magenta) is n = 3, and dotted (black) is n = 4. The behavior of these voices is quite simple, with n = 0 strongest, and the
voices falling away as n increases.

dxI
dt

= (1− x2
I)

2
√

1− x2
I

√
Q− a2(1− E2)(1− x2

I)(dLz/dt)− xI(dQ/dt)− 2xI(1− x2
I)a

2E(dE/dt)

2[Q− a2(1− E2)(1− x2
I)

2]
(B3)

=
2xI(1− x2

I)Lz(dLz/dt)− x3
I [(dQ/dt) + 2(1− x2

I)a
2E(dE/dt)]

2[L2
z + x4

Ia
2(1− E2)]

. (B4)

Notice that Eq. (B3) is singular when Q → 0 (which
coincides with |xI | → 1), and Eq. (B4) is singular when
Lz → 0 (|xI | → 0). We use Eq. (B3) when |xI | ≤ 0.5,
and (B4) when |xI | > 0.5. The two expressions yield
identical results except right at their singular points.

To present our results for dra,p/dt, we first define

D(r) ≡ 2M [Q+ (Lz − aE)2]− 2r[L2
z +Q− a2(1− E2)]

+6Mr2 − 4r3(1− E2) . (B5)

Using this, we have

JEra,p ≡
4aM(Lz − aE)ra,p − 2Er2

a,p(a2 + r2
a,p)

D(ra,p)
,

JLzra,p ≡
4M(aE − Lz)ra,p + 2Lzr

2
a,p

D(ra,p)
,

JQra,p ≡
r2
a,p − 2Mra,p + a2

D(ra,p)
. (B6)

We then find

dra,p

dt
= JEra,p

dE

dt
+ JLzra,p

dLz
dt

+ JQra,p
dQ

dt
, (B7)

Once dra,p/dt are known, it is simple to compute dp/dt
and de/dt:

dp

dt
=

(1− e)2

2

dra

dt
+

(1 + e)2

2

drp

dt
, (B8)

de

dt
=

(1− e2)

2p

[
(1− e)dra

dt
− (1 + e)

drp

dt

]
. (B9)

In the spherical limit e = 0, ra = rp ≡ ro, and the
conditions R(ra) = 0, R(rp) = 0 are redundant. The
equations we have derived here do not work in that limit.
Spherical orbits are instead governed by the conditions
R(ro) = 0, R′(ro) = 0, where R′ ≡ ∂R/∂r. Past work
[58, 59] long ago proved that adiabatic dissipative self
interaction evolves a spherical orbit into a new spherical
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FIG. 17. Additional voices that contribute to the waveform shown in Fig. 16. Left panel shows voices with k = 2; right panel
shows voices with k = −2. As in the right-hand panel of Fig. 16, the solid (red) curves are n = 0, short-dashed (blue) are n = 1,
long-dashed (green) are n = 2, dot-dashed (magenta) are n = 3, and dotted (black) are n = 4. The behavior is somewhat more
complicated for these voices; although larger values of n tend to be weaker, the evolution for small values of n evolves rather
differently than in the k = 0 case. For both the cases shown here, the n = 0 voice in particular evolves in importance.

orbit; the first derivation of dQ/dt [43] proved that this
result respected the “spherical goes to spherical” con-
straint. Given (dE/dt, dLz/dt, dQ/dt) from a spherical
orbit, one can infer dro/dt by enforcing the condition

d

dt
R′(ro) = 0 . (B10)

(Alternately, one can enforce the conditions dR(ro)/dt =
0, dR′(ro)/dt = 0. Doing so yields solutions for dro/dt
and dQ/dt given dE/dt and dLz/dt. This is how back-
reaction on spherical orbits was computed [37] before
dQ/dt was fully understood [43].) Implementing Eq.

(B10), we find

dro

dt
= Jc

Ero

dE

dt
+ Jc

Lzro

dLz
dt

+ Jc
Qro

dQ

dt
, (B11)

where the Jacobian elements for spherical orbits are

Jc
Er =

2aM(Lz − aE)− 2a2Er − 4Er3

Dc(r)
, (B12)

Jc
Lzr =

−2M(Lz − aE) + 2Lzr

Dc(r)
, (B13)

Jc
Qr =

r −M
Dc(r)

, (B14)

with

Dc(r) = −[a2(1− E2) + L2
z +Q] + 6Mr − 6(1− E2)r2 .

(B15)
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