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Accurate parameter estimation is key to maximizing the scientific impact of gravitational-wave
astronomy. Parameters of a binary merger are typically estimated using Bayesian inference. It is
necessary to make several assumptions when doing so, one of which is that the detectors output sta-
tionary Gaussian noise. We test the validity of these assumptions by performing percentile-percentile
tests in both simulated Gaussian noise and real detector data in the first observing run of Advanced
LIGO (O1). We add simulated signals to 512s of data centered on each of the three events detected
in O1 — GW150914, GW151012, and GW151226 — and check that the recovered credible intervals
match statistical expectations. We find that we are able to recover unbiased parameter estimates in
the real detector data, indicating that the assumption of Gaussian noise does not adversely effect
parameter estimates. However, we also find that both the parallel-tempered sampler emcee pt and
the nested sampler dynesty struggle to produced unbiased parameter estimates for GW151226-like
signals, even in simulated Gaussian noise. The emcee pt sampler does produce unbiased estimates
for GW150914-like signals. This highlights the importance of performing percentile-percentile tests
in different targeted areas of parameter space.

I. INTRODUCTION

To date, the LIGO [1] and Virgo [2] observatories have
detected over 50 gravitational waves from binary black
hole and binary neutron star mergers [3–7]. These de-
tections have opened a new window on to the Universe,
offering insights that would not be possible from elec-
tromagnetic observations alone. This is because grav-
itational waves carry information about the source bi-
naries’ parameters. By careful observation of a gravi-
tational wave’s frequency and amplitude evolution, one
can estimate a binary’s masses, spins, location, and other
properties. From these measurements it is possible to
infer the distribution of black holes in the universe [8],
measure the equation of state of dense nuclear matter [9–
11], constrain cosmological parameters [12–14], and (by
allowing modifications to model waveforms) test general
relativity (GR) in the strong-field regime [15–18]. Ac-
curate parameter estimation is therefore critical to the
success of gravitational-wave astronomy.

Bayesian inference is the standard method by which
physical parameters are extracted from gravitational
waves. Given some observed data and a gravitational-
wave model, a posterior probability distribution is ob-
tained on the parameters describing the binary. This
posterior is then marginalized to obtain credible intervals
on specific parameters. Stochastic samplers are needed to
fully map out the posterior distribution due to the high
dimensionality and complicated topology of the parame-

∗ suman.kulkarni@students.iiserpune.ac.in
† collin.capano@aei.mpg.de

ter space. Several assumptions are made in this process,
such as: the template gravitational-wave model is an ac-
curate representation of the signal; the digital output
from the detectors is accurately calibrated to the strain
induced by the passing gravitational wave; the stochas-
tic sampler produces an accurate representation of the
posterior.

One of the most critical assumptions made when es-
timating parameters is that, in the absence of a sig-
nal, the detectors output wide-sense stationary Gaus-
sian noise. This leads to a canonical likelihood function
that can be evaluated numerically, providing an algo-
rithm for estimating posterior distributions. However,
the LIGO and Virgo detectors are known to produce
a number of non-Gaussian noise transients (“glitches”)
[19–23]. Indeed, search pipelines must employ a
number of bespoke statistics in order to over-
come these glitches [24–27]. Non-Gaussian tran-
sients are generally less of a concern for param-
eter estimation. Since gravitational waves from
binary mergers have finite duration within the
LIGO/Virgo sensitive frequency band, estimat-
ing the parameters of a binary typically involves
between O(10s) and O(100s) of data. At current
sensitivity, both the signal rate and glitch rate
is low enough that it is rare for a non-Gaussian
transient to occur during the time of interest for
a parameter estimation analysis. Even so, it has
happened.

A large transient occurred in the Livingston detector
∼ 1 s before the merger of GW170817 [22]. This nearly
caused the signal to be missed by low-latency search
pipelines [28]. For the followup parameter estimation
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analyses, it was necessary to remove the transient from
the data by fitting a glitch model to the transient [22, 29].
Without this removal procedure the inferred parameters
of the binary would have been biased [30]. This, in turn,
would have yielded misleading answers to key questions,
such as what the equation of state of dense nuclear mat-
ter is.

The transient that occurred during GW170817 was
loud enough that it could be identified and removed.
However, its presence raises the question, what if there
is less-obvious non-Gaussian noise present in the data
containing a binary merger? Such noise, being unmod-
elled, could adversely affect the reported credible inter-
vals. This would be particularly problematic for tests of
GR using gravitational waves.

Several previous studies have tested the validity of
Bayesian inference tools used for gravitational-wave pa-
rameter estimation [31–36]. The standard test is to per-
form a percentile-percentile test. This involves generat-
ing a number of simulated signals, which are drawn from
some prior distribution. These are added to some data;
a Bayesian inference analysis is then performed on each
signal separately, using the same prior. This yields cred-
ible intervals on each of the signals’ parameters. If all of
the assumptions made in the analysis are valid, then X%
of the signals should fall within the X-percentile credible
interval for any given parameter.

The primary focus of previous studies employing
percentile-percentile tests was to validate software tools
used for gravitational-wave Bayesian inference [31, 32,
34–36]. This was accomplished by adding simulated sig-
nals to simulated Gaussian noise, colored by power spec-
tral densities (PSDs) representative of the LIGO and
Virgo detectors. A violation of a percentile-percentile
test under these conditions would indicate that some as-
pect of the software — e.g., the stochastic sampler used
— was not properly recovering the posterior distribu-
tion. A percentile-percentile test was also used
in Ref. [33] to study the accuracy of parameter
estimates of signals that were anticipated to be
detected in Advanced LIGO given non-Gaussian
noise. As Advanced LIGO had not begun yet,
that study used Initial LIGO data that was re-
colored to resemble the expected power spectral
density of Advanced LIGO.

In this paper we, for the first time, perform percentile-
percentile tests in real Advanced LIGO data. Our
aim is to test the assumption that the detectors’ out-
put can be modelled as a gravitational-wave plus sta-
tionary Gaussian noise in data surrounding identified
gravitational-wave events. We do this by performing
identical percentile-percentile tests in real and simulated
Gaussian noise. Should the test be violated in the for-
mer and not the latter, it would indicate that the detec-
tor data is not sufficiently Gaussian during the observa-
tion time. We apply this test to the three gravitational-
wave events that were detected during the first ob-
serving run (O1) of Advanced LIGO: GW150914 [37],

GW151012 [3, 4, 38], and GW151226 [39].
Our paper is structured as follows: in Section II we

review Bayesian inference and its application to gravita-
tional waves. In Section III we detail the methods used in
this study. The results of our study are discussed in Sec-
tion IV. Finally, in Section V, we discuss the implications
of our results and prospects for future studies.

II. PARAMETER ESTIMATION USING
BAYESIAN INFERENCE

Consider a network ofN detectors labelled with indices
i = 1,..., N . The data collected at the ith detector is a
time series comprising of a signal under some waveform
model H along with the detector noise:

di(t) = ni(t) + si(t).

Here, ni(t) is the noise observed at the ith detector and
si(t) is the gravitational waveform obtained under the
model used. We denote the collection of data at all detec-
tors by D(t) and the set of parameters for the waveform
model by v.

Applying the Bayes’ Theorem, the posterior probabil-
ity density function is

P (v|D(t), H)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
P (D(t)|v, H)

Prior︷ ︸︸ ︷
P (v|H)

P (D(t)|H)︸ ︷︷ ︸
Evidence

. (1)

The prior indicates our knowledge of the parameters in a
given model before analysing the data. Assuming cir-
cular orbits, models describing binary black hole merg-
ers involve 15 parameters: the component masses m1,2,
the magnitude and orientation of the component spins,
the luminosity distance dL, the right ascension α, the
declination δ, the polarization ψ, the binary inclination
angle ι, the coalescence time tc, and the phase at the
time of coalescence φ.

We use similar priors as in Ref. [6]. For BBH merg-
ers it is common to use uniform priors on the compo-
nent source masses, choosing the bounds such that all
regions with non-zero posterior support are within the
boundaries. For the magnitudes of each component spin
vector, we use uniform priors on a1,2 ∈ [0.0, 0.99). For
the other two components of each spin vector, we use a
uniform solid angle prior, which assumes a uniform dis-
tribution for the azimuthal angle θazimuthal1,2 ∈ [0, 2π] and

a sine-angle distribution for the polar angle θpolar1,2 . We
make use of a uniform sky location prior, which assumes
a uniform distribution on α ∈ [0, 2π) and a cosine-angle
distribution for δ. The polarization angle ψ is uniform
∈ [0, 2π) and the inclination ι uses a sine-angle prior.
Uniform priors are used for the coalescence time ±0.1
s around the time of the merger. A uniform prior on
[0, 2π) is used for φ and analytically marginalized over,
as discussed later in this section.



3

For the luminosity distance, a uniform prior on comov-
ing volume was used in Ref. [6] (which was converted to
luminosity distance by assuming a standard ΛCDM cos-
mology [40]), with bounds chosen to enclose the posterior
for each event. However, in this work, we use a prior uni-
form in the log10 of the comoving volume. We do this so
as to sample higher SNRs; see Section III B for details.

We assume that each detector outputs independent,
wide-sense stationary Gaussian noise in the absence of a
signal. Under this assumption the likelihood function is

P (D(t)|v, H) ∝

exp

[
−1

2

N∑
i=1

〈d̃i(f)− s̃i(f,v), d̃i(f)− s̃i(f,v)〉

]
(2)

The inner product 〈ãi(f), b̃i(f)〉 is defined as

〈ãi(f), b̃i(f)〉 = 4<
∫ ∞
0

ã∗i (f)b̃i(f)

S
(i)
n (f)

df

where S
(i)
n (f) is the PSD of the noise in the ith detector.

We use the median-mean variation of Welch’s method
as described in Ref. [41] to estimate the PSD in each de-
tector. As in Ref. [6], ±256 s of data centered on each
simulated signal is broken up into overlapping 8 s seg-
ments for this purpose. The O1 LIGO detectors’ PSD
grows very rapidly at frequencies below ∼ 20 Hz. Con-
sequently, we use a lower-frequency cutoff of 20 Hz when
generating template waveforms s̃(f) and evaluating inner
products.

As was done in Ref. [6], we use the IMRPhenomPv2
waveform model [42, 43] to generate template waveforms
when evaluating the likelihood. We also use this model
to generate our simulated signals. IMRPhenomPv2 mod-
els the inspiral, merger, and ringdown of the dominant
gravitational-wave mode emitted by circular, precessing
binary black holes. Due to some simplifying assumptions
made in the model, the waveform’s dependence on the
coalescence phase φ can be written as

s̃i(v, f, φ) = s̃0i (v, f, φ = 0)eiφ. (3)

It is possible to analytically marginalize over the phase
for signals of this form. Substituting Eq. (3) into the
likelihood Eq. (2) and marginalizing the posterior over φ
using a uniform prior yields

logP (v|D) ∝ logP (v) + log I0

[∣∣∣∣∣∑
i

O(s0i , di)

∣∣∣∣∣
]

− 1

2

∑
i

[〈
s0i , s

0
i

〉
+ 〈di, di〉

]
, (4)

where

O(s0i , di) ≡ 4

∫ ∞
0

s̃∗i (f ; v, φ = 0)d̃i(f)

S
(i)
n (f)

df,

and I0 is the modified Bessel function of the first kind.
We use this form of the likelihood function in our anal-
ysis, obviating the need to sample over phase. This sub-
stantially reduces computational cost, as the phase is a
difficult parameter for stochastic samplers to measure.

III. METHODS

A. Obtaining Samples

We use the PyCBC Inference software library to per-
form our analysis [34]. PyCBC Inference provides a
collection of tools for performing Bayesian inference on
gravitational waves, as well as doing percentile-percentile
tests on simulated signals. It has support for multiple
stochastic samplers. In this analysis, we use the parallel-
tempered, ensemble Markov-chain Monte Carlo (MCMC)
sampler emcee_pt [44, 45], with 200 walkers and 20 tem-
peratures.

To ensure that the samples we obtain for the posterior
are independent of their initial position of the chains, we
use the max_posterior and n_acl burn-in tests. The
max_posterior test requires that all chains sample at
least one point with a prior-weighted log likelihood within
ND/2 of the maximum over all chains, where ND is the
number of dimensions. The n_acl test ensures that the
length of each chain is greater than 10 times the autocor-
relation length, as calculated using the second half of the
chain. If so, samples in the second half of the chain are
retained. The sampler is considered burned-in at the first
iteration that passes both tests. Post burn-in samples
are thinned by their autocorrelation length so that we
only use independent samples to estimate the posterior
probability density function. We run the sampler until
we obtain 1400 – 2000 independent samples.

B. Credible intervals and the percentile-percentile
test

Once the posterior is estimated, we obtain a credible
interval on each parameter by marginalizing over all of
the other parameters. The X% credible interval gives
the region of parameter space that contains X% of the
marginalized posterior probability of that parameter. In
other words, we expect the true value of the parameter to
be within the X% credible interval with X% probability.
Hence, the credible intervals provide a useful way to test
whether a parameter estimation analysis is biased.

We perform a Bayesian analysis on a set of simulated
events. For each parameter, we plot the fraction of sig-
nals in which the true parameter value lies in a credible
interval as a function of credible intervals. This is called a
percentile-percentile plot. If the recovery is unbiased, we
expect the plot for each parameter to follow the y = x
line, with some fluctuations due to noise. To quantify
the deviations from the expected y = x line, we perform
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a Kolmogorov-Smirnov (KS) test. This gives us a two-
tailed p-value for each parameter.

The p-value gives the probability of obtaining a
percentile-percentile curve at least as extreme as the ob-
served curve under the null hypothesis that the analysis
provides an unbiased estimate of the parameter. A very
small p-value (lower than a level of significance α) points
to an outcome which is very unlikely under the null hy-
pothesis, allowing us to reject the null hypothesis with a
maximum Type I error of α. We apply this test to each
parameter, yielding 13 p-values for each event. If the
analysis is unbiased, we in turn expect these p-values to
be uniformly distributed between 0 and 1. We therefore
perform another KS-test on the set of p-values to obtain
a single “p-value of p-values”, by which we can evalu-
ate the probability that the analysis is unbiased. This
method was used in Ref. [34] to verify that emcee_pt
provides an unbiased estimate of gravitational-wave pa-
rameters in Gaussian noise, using a prior similar to that
used for GW150914.

For each event (GW150914, GW151012 and
GW151226), we generate 100 simulated signals (“in-
jections”) with parameters drawn from the same mass
and spin priors used for that event in Ref. [6]. The
coalescence times of the injections are drawn from a prior
uniform in an interval of ±256 s centered on the reported
coalescence time of each event. We choose this time win-
dow because it was the amount of time used to estimate
the PSD for each event in the original analysis [46]. As
was done in the original analyses, we use a uniform prior
on the coalescence time tc ∈ t0 + [−0.1, 0.1) s, where t0
is GPS time of the simulated signal. Since the prior is
centered on signals’ injected time, we do not include tc
in the percentile-percentile tests.

The original analysis used a prior uniform in comoving
volume to encapsulate the posterior [6]. Instead, we use
a prior uniform in log10 of the comoving volume. This is
done to avoid having too many injections with low SNR.
We choose the bounds such that the majority of the in-
jections have SNRs representative of their actual event
while ensuring that the 90% credible interval of the re-
ported distances are contained in the bounds. The dis-
tribution of the SNRs of the resulting injections is shown
in Fig. 1. The prior bounds used on the source masses
and the comoving volume (expressed in terms of the lu-
minosity distance) are uniform over the intervals listed in
Table I. For the remaining parameters, we use the priors
discussed in Section II.

The amount of time analyzed for each event needs
to be large enough to encapsulate the longest-duration
waveform allowed by the prior. The in-band wave-
form duration of binary mergers is approximately in-
versely proportional to the chirp mass of the binary. For
GW150914 and GW151012, we use an analysis duration
of 8 seconds around each simulated signal, which is suf-
ficiently long given our low frequency cutoff of 20 Hz.
GW151226, being lower mass, requires a longer analy-
sis time. To limit the amount of time that needed to
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FIG. 1. Distribution of the “optimal” SNRs of the injections
used in our analysis. Here, SNR is defined as

√∑
i 〈s̃i, s̃i〉,

where the sum is over the number of detectors and si is the
simulated waveform. The bounds on the comoving volume
prior are chosen so that majority of the injections have an
SNR close to that of the actual event.

be analyzed, a constraint on the detector-frame chirp
mass Mdet = (mdet

1 mdet
2 )3/5/(mdet

1 + mdet
2 )1/5 was ap-

plied to the GW151226 analysis in both Ref. [6] and
in the original publication by the LIGO and Virgo col-
laborations [39]. We include the same constraint —
Mdet ∈ [8.7, 10.7] M� — as used in Ref. [6] here [46].
So as not to bias the percentile-percentile test, this con-
straint is applied both when analyzing each simulated
signal, and when drawing the parameters for the signals.
With this constraint in this place, we need only to analyze
12 seconds of data around each signal in the GW151226
percentile-percentile test.

We set up two types of runs for each event — one in
stationary Gaussian noise and one in real detector noise.
In the former, we generate stationary Gaussian noise col-
ored by the PSDs representative of the sensitivity of the
LIGO detectors at the time of detection of the respec-
tive event. We then add the same simulated signals to
the two noise runs and perform a parameter estimation
analysis on each signal. We obtain credible intervals on
all the parameters and construct the percentile-percentile
plot. We also find the p-values of p-values as described
in Section III B. We checked that the presence of
the original events in the real detector noise runs
do not significantly affect the p-values and their
interpretation.

When analyzing each simulated signal, we re-estimate
the PSDs using a window of ±256 s centered on that sig-
nal, as described above. Consequently, our test makes
use of up to ±512 s of real data centered on the original
events. Data is downloaded from the Gravitational-wave
Open Science Center (GWOSC) [47].
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Parameter GW150914 GW151226 GW151012

m1 (M�) [10, 80] [7, 50] [10, 80]

m2 (M�) [10, 80] [3, 15] [10, 80]

VC converted to
dL (Mpc)

[50,700] [150, 700] [300, 1500]

TABLE I. Source mass and comoving volume priors used in
our analysis. The comoving volume is expressed in terms of
the luminosity distance.

C. Test on simulated glitches

As a proof of principle, we perform a percentile-
percentile test on simulated non-Gaussian noise,
which we create by adding glitches to Gaussian
noise. We use the same realization of Gaus-
sian noise and the same injections as used for
the GW150914 analysis. Glitches are created by
using the BayesWave [29] reconstruction of the
glitch that occurred in the Livingston detector
during GW170817 [22, 30, 48]. We add the tran-
sient at random times to our simulated Hanford
and Livingston data, with an average rate of one
glitch per 16 seconds in each detector. Each glitch
is given a random phase offset that is drawn uni-
formly in [0, 2π), and we randomly scale the ampli-
tude of each transient by using a uniform prior in
[0, 1] for the scale factor. The glitch times, phase,
and amplitude are uncorrelated between the two
detectors.

The percentile-percentile plot for the simulated
glitch data is shown in Fig. 2. We obtain a p-value
of p-values for this analysis of 0.001. Compared to
the results using Gaussian noise — see Fig. 3 and
the first column of Table II — the non-Gaussian
noise is clearly failing the percentile-percentile
test, as expected.

IV. RESULTS

The results are summarized in Tables II and III for
the Gaussian noise and real noise runs, respectively.
Percentile-percentile plots for GW150914 are shown in
Fig. 3 and for GW151226 in Fig. 4. The percentile-
percentile plot for GW151012 (not shown) is qualitatively
similar to GW150914.

For GW150914 and GW151012, we find a p-value of
p-values of 0.86 and 0.98 in Gaussian noise, respectively.
We therefore find no reason to reject the null hypothesis
that the sampler provides an unbiased estimate of the pa-
rameters. In real noise, we obtain a p-value of p-values of
0.25 and 0.94 for the two events, respectively. Although
the p-value of p-values is lower for GW150914 in real
noise, it is not small enough to reject the null hypothe-
sis that the data containing GW150914 is stationary and
Gaussian.

FIG. 2. Percentile-percentile plot for simulated non-Gaussian
noise. Shown are the fraction of simulated signals with pa-
rameter values recovered in a credible interval as a function
of credible intervals for each parameter. If the parameters
were recovered exactly, the plot would follow the line y=x as
indicated by the diagonal line. Simulated glitches were added
to the same Gaussian noise as used in Fig 3, and the same
simulated signals were used to perform the test. We perform
a KS-test to obtain a p-value for each parameter, which is
indicated by the color bar. We then perform a KS-test on
the set of p-values to obtain a p-value of p-values of 0.001,
indicating that the noise fails the percentile-percentile test,
as expected.

The results from GW151226 are less clear, however.
The p-value of p-values is less than 0.1 in both Gaussian
and real noise. This indicates that the emcee_pt sampler
is not fully converging on the posterior under this prior.
Given the low p-values from emcee_pt, we decided to
try the dynesty nested sampler [49] with the GW151226
prior in Gaussian noise.1 Several previous studies have
shown that dynesty can produce unbiased parameter es-
timates of gravitational wave sources [35, 36, 50]. How-
ever, in this case, we find that dynesty yields even worse
results than emcee pt, with a p-value of p-values of 0.001.
We did not try to analyze real noise with dynesty as a
result.

The low-frequency noise in the Livingston detector
had larger amplitude during GW151226 than it did dur-
ing GW150914. In order to test whether the small p-
values for GW151226 are due to the different PSD at

1 Due to the way dynesty samples the parameter space it was
necessary to remove the constraint on chirp mass when testing
it. This meant increasing the analyzed time to 30 seconds, and
generating a new set of simulated signals.
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those times, we shifted the coalescence times of the in-
jections used in the GW150914 runs to those used in
the GW151226 runs. We then perform the percentile-
percentile test in Gaussian noise using the same noise
realizations as was used to analyze the GW151226-like
injections, and with the emcee_pt sampler. The result-
ing percentile-percentile plot is shown in Fig. 5; p-values
are reported in the last column of Table II. Doing this, we
obtained a p-value of p-values of 0.92. The low p-values
for the GW151226-like signals is therefore not due to the
changing PSD.

Since the GW150914 injections shifted to the
GW151226 times passed the percentile-percentile test in
Gaussian noise, we repeat the analysis in the real noise
around GW151226, again using the emcee_pt sampler.
The results are reported in Fig. 5 and the last column of
Table III. We obtain a p-value of p-values of 0.31 in this
case. We therefore cannot rule out the null hypothesis
that the real noise around GW151226 is stationary and
Gaussian.

V. SUMMARY AND OUTLOOK

We have performed percentile-percentile tests in both
simulated and real noise using the same priors that were
used to analyze GW150914, GW151012, and GW151226.
Simulated signals were added to a 512 s block of time
centered on each event. Comparing percentile-percentile
test results from real data to simulated noise, we find
no reason to reject the null hypothesis that the detector
data was sufficiently stationary and Gaussian at these
times to produce unbiased parameter estimates for these
events.

We find that both the emcee_pt sampler and the
dynesty nested sampler struggle to produce unbi-
ased parameter estimates for signals similar to that of
GW151226. Previous studies have shown that both
of these samplers pass percentile-percentile tests for
GW150914-like signals [34–36]. In addition, Ref. [50]
recently showed that the dynesty sampler passes
percentile-percentile tests for binary neutron star and
neutron-star–black-hole binaries. This suggests that the
difficulty with GW151226-like signals is not due to their
low mass, or even large mass ratio (Ref. [50] allowed mass
ratios up to 10:1). One major difference from our work is
that Ref. [50] only considered aligned-spin signals. That
reduced the number of parameters involved in their anal-
ysis as compared to ours. In addition, spin precession
adds more structure to waveforms, leading to a more
complicated likelihood topology. This is particularly true
of lower-mass and larger mass-ratio signals, which is tar-
geted by the GW151226 prior. However, while our results
are suggestive, determining if precession is the primary
difficulty for these samplers will require more study.

Regardless of the cause, the poor percentile-percentile
test results we obtain for GW151226-like signals with

both emcee_pt and dynesty highlights the need for bet-
ter stochastic samplers. Even if a sampler is shown to
produce unbiased parameter estimates for some region
of parameter space, as both these samplers have, it does
not mean that the sampler will do so for all parts of pa-
rameter space. For this reason, the gravitational-wave
community should strive to continually perform these
tests as new waveform models and more sensitive detec-
tors become available. The primary hurdle to perform-
ing percentile-percentile tests is the computational cost
involved. However, new methods for fast likelihood es-
timation [51], and the ease with which newer inference
toolkits [34, 36] can parallelize over many cores make
regular percentile-percentile tests more feasible.

We emphasize that our results in real data do not prove
that the detectors’ noise is stationary and Gaussian, only
that we have no reason to doubt that they are. It is pos-
sible that a non-Gaussian noise component exists in the
data during the inspiral and merger of one these events
that is simply missed by our analysis, or is not detected
due to the statistical nature of our test. Even so, our re-
sults give confidence that assuming stationary Gaussian
noise has not lead to biased parameter estimates in O1.
We plan to extend this test to other detected events in
the future.
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Parameter GW150914 GW151226 GW151012 GW150914 prior

prior prior prior tc shifted

m1 (M�) 0.975 0.314 0.814 0.137

m2 (M�) 0.876 0.850 0.483 0.990

dL (Mpc) 0.154 0.377 0.032 0.248

α 0.405 0.076 0.701 0.103

δ 0.192 0.001 0.342 0.990

ι 0.731 0.076 0.122 0.567

ψ 0.326 0.238 0.268 0.296

a1 0.693 0.518 0.419 0.567

θazimuthal
1 0.176 0.064 0.693 0.176

θpolar1 0.850 0.333 0.966 0.659

a2 0.134 0.065 0.829 0.359

θazimuthal
2 0.609 0.487 0.021 0.775

θpolar2 0.873 0.184 0.526 0.775

p-values of p-values 0.855 0.019 0.978 0.915

TABLE II. P-values obtained for each parameter when recovered from Gaussian noise colored by the power-spectral densities
representative of the detectors at the time of the respective events. The last column corresponds to results from the injections
used in the GW150914-like run shifted to the coalescence times used in the GW151226-like injections. We perform a KS-test
comparing the set of p-values obtained for each event to a uniform distribution and report the p-value of p-values in the last
row.

Parameter GW150914 GW151226 GW151012 GW150914 prior

prior prior prior tc shifted

m1 (M�) 0.609 0.420 0.901 0.253

m2 (M�) 0.600 0.351 0.722 0.584

dL (Mpc) 0.054 0.290 0.282 0.405

α 0.464 0.619 0.169 0.357

δ 0.651 0.668 0.487 0.659

ι 0.243 0.101 0.051 0.651

ψ 0.398 0.219 0.276 0.398

a1 0.371 0.501 0.973 0.668

θazimuthal
1 0.035 0.434 0.494 0.089

θpolar1 0.542 0.356 0.676 0.449

a2 0.233 0.078 0.802 0.405

θazimuthal
2 0.449 0.332 0.034 0.419

θpolar2 0.975 0.071 0.827 0.895

p-values of p-values 0.242 0.069 0.938 0.310

TABLE III. P-values obtained for each parameter when recovered from the actual detector noise at the time of the respective
events. The last column corresponds to results from the injections used in the GW150914-like run shifted to the coalescence
times used in the GW151226-like injections. We perform a KS-test comparing the set of p-values obtained for each event to a
uniform distribution and report the p-value of p-values in the last row.
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a) Gaussian Noise b) Real Noise

FIG. 3. GW150914: Plot of the fraction of simulated signals with parameter values recovered in a credible interval as a
function of credible intervals for each parameter. If the parameters were recovered exactly, the plot would follow the line y=x
as indicated by the diagonal line. For each parameter, a KS test is performed between the recovered curve and the diagonal
line to obtain a two-tailed p-value, which is indicated by the color bar..

a) Gaussian Noise b) Real Noise

FIG. 4. GW151226: Plot of the fraction of simulated signals with parameter values recovered in a credible interval as a
function of credible intervals for each parameter. If the parameters were recovered exactly, the plot would follow the line y=x
as indicated by the diagonal line. For each parameter, a KS test is performed between the recovered curve and the diagonal
line to obtain a two-tailed p-value, which is indicated by the color bar.
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a) Gaussian Noise b) Real Noise

FIG. 5. GW150914 Shifted: Plot of the fraction of simulated signals with parameter values recovered in a credible interval as
a function of credible intervals for each parameter. If the parameters were recovered exactly, the plot would follow the line y=x
as indicated by the diagonal line. For each parameter, a KS test is performed between the recovered curve and the diagonal
line to obtain a two-tailed p-value, which is indicated by the color bar.
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