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Covariance matrices are among the most difficult pieces of end-to-end cosmological analyses. In
principle, for two-point functions, each component involves a four-point function, and the result-
ing covariance often has hundreds of thousands of elements. We investigate various compression
mechanisms capable of vastly reducing the size of the covariance matrix in the context of cosmic
shear statistics. This helps identify which of its parts are most crucial to parameter estimation.
We start with simple compression methods, by isolating and “removing” 200 modes associated with
the lowest eigenvalues, then those with the lowest signal-to-noise ratio, before moving on to more
sophisticated schemes like compression at the tomographic level and, finally, with the Massively
Optimized Parameter Estimation and Data compression (MOPED). We find that, while most of
these approaches prove useful for a few parameters of interest, like Ωm, the simplest yield a loss of
constraining power on the intrinsic alignment (IA) parameters as well as S8. For the case considered
— cosmic shear from the first year of data from the Dark Energy Survey — only MOPED was able
to replicate the original constraints in the 16-parameter space. Finally, we apply a tolerance test to
the elements of the compressed covariance matrix obtained with MOPED and confirm that the IA
parameter AIA is the most susceptible to inaccuracies in the covariance matrix.

I. INTRODUCTION

Cosmic shear is a weak lensing effect caused by the
large-scale structure of the universe and is an important
tool for constraining cosmology. The most common way
of obtaining information from cosmic shear is to use two-
point functions and, as is often the case, this analysis
assumes that the summary statistics have a gaussian dis-
tribution, thus requiring a covariance matrix. For a two-
point data vector of length N , the covariance matrix is a
symmetric N×N matrix with N×(N+1)/2 individual el-
ements that capture the auto and cross-correlation of the
data vector. As the length of the data vector increases,
the number of elements in the covariance matrix grows
quadratically and becomes harder to evaluate. Compres-
sion schemes resolve this by significantly reducing the
dimension of the matrix while still retaining relevant in-
formation about the parameters of interest, and also po-
tentially speeding up computations. One way of accom-
plishing this is to use the Massively Optimized Parameter
Estimation and Data compression (MOPED), in which,
if the noise in the data does not depend on the model
parameters, then the Fisher matrix for both the full and
compressed covariance matrices coincides and the com-
pression is said to be lossless [1, 2]. MOPED has been
widely used in literature for a variety of applications, for
example, CMB data [3], the redshift-space galaxy power
spectrum and bispectrum [4], parameter-dependent co-
variance matrices [5], compression of the Planck 2015
temperature likelihood [6], weak lensing and galaxy clus-
tering [7], and has been paired with a Gaussian Process
emulator to analyze weak lensing data [8].

We will focus on cosmic shear measurements from the
Dark Energy Survey Year 1 (DESY1) release [9, 10]; the

data vector has 227 elements, varying with angular sep-
aration and different pairs of tomographic redshift bins.
Since our parameter space consists of 16 free parameters,
we can use MOPED to reduce the 25, 878 independent
elements of the covariance matrix, to only 136.

Apart from MOPED, we will be analyzing the covari-
ance matrix with three other compression techniques:
the first involves performing an eigenmode decomposi-
tion then discarding the modes associated with the low-
est eigenvalues; the second approach removes those with
the lowest signal-to-noise ratio. In order to obtain a com-
pression competitive with MOPED in terms of shrinkage,
i.e. about 10% of the original size, we remove, in both
cases, 200 such modes.

Finally, the third method consists of a map-level com-
pression [11], where linear combinations of the tomo-
graphic maps are used to retain as much information as
possible. Compression of the tomographic bin pairs then
considerably reduces the size of the data vector of the
two-point functions. For example, we will see that most
of the information in the four tomographic bins used by
DESY1 can be compressed into a single linear combina-
tion of those bins, or one Karhunen-Loéve (KL) mode.
Therefore, instead of (4 × 5)/2 two-point functions for
each angular bin, we need include only one or two. For
this purpose, the data vector for each tomographic bin
will have the same length, and so the angular cuts to
the dataset and covariance matrix will be different from
the ones used in the aforementioned DESY1 paper. The
chosen covariance matrix has a dimension of 190 × 190.
With one KL mode, we can compress the shear data vec-
tor down to 10% of its original size, yielding 190 inde-
pendent elements for the covariance matrix of the new
data vector.
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A number of codes compute covariance matrices ana-
lytically; here we test two, which, despite being different,
produce compatible constraints. It must follow that the
parts most relevant to parameter estimation are similar
to each other. Establishing which regions of the covari-
ance matrix are most informative is the first step towards
building a tool for comparing these matrices without the
need for a full cosmological analysis. In this work, we use
compression schemes to look for an indication of which
elements should be considered for covariance matrix com-
parison.

In §II, we start by describing the dataset and the co-
variance matrices used. We then proceed to review each
compression scheme and apply them to a DESY1 cos-
mic shear, demonstrating how well they reproduce the
constraints obtained with the full covariance matrix. We
follow this by showing that compression can be a helpful
tool to compare two different covariance matrices, in §III.
Our tolerance test is described in §IV, where we investi-
gate the change in parameter constraints resulting from
the addition of noise separately to elements and eigen-
values of the covariance matrix. Finally, our conclusions
are summarized in §V.

II. METHODS

A. DES Cosmic Shear: Data and Analysis

In this section, we introduce the data and covari-
ance matrices that are used in this work. Our tests
are carried out using cosmic shear statistics ξ±(θ), fo-
cusing on the results from DESY1. The data is divided
into four tomographic redshift bins spanning the interval
0.20 < z < 1.30, which yields 10 bin-pair combinations,
each one containing 20 angular bins between 2.5 and 250
arcmin. We thus begin with 200 data points for statistic,
giving 400 in total. We then apply the angular cuts de-
scribed in [10], which removes the scales most sensitive
to baryonic effects; this leaves 167 points for ξ+(θ) and
60 for ξ−(θ), resulting in 227 data points corresponding
to the aforementioned 227× 227 covariance matrix.

Table I shows the 16-parameters varied and the priors
placed on them. Since cosmic shear is not sensitive to
most of these, their constraints are largest dominated by
the priors used. As such, throughout, we will only be
showing constraints on three of those: the matter den-
sity parameter, Ωm, the amplitude of matter fluctuations,
S8 ≡ σ8(Ωm/0.3)0.5, and the amplitude of the intrinsic
alignment, AIA.

To perform cosmological parameter inference we
use the CosmoSIS [12–19] pipeline, while employing
the MultiNest [20] sampler to explore the parameter
space, with 1000 livepoints, efficiency set to 0.05,
tolerance to 0.1 and constant efficiency set to True.

The covariance matrices are the following:

• the Full Covariance Matrix (FCM) used in the

Parameter Prior

Cosmological

Ωm U(0.1, 0.9)

logAs U(3.0, 3.1)

H0 (km s−1Mpc−1) U(55, 91)

Ωb U(0.03, 0.07)

Ωνh
2 U(0.0005, 0.01)

ns U(0.87, 1.07)

Astrophysical

AIA U(−5, 5)

ηIA U(−5, 5)

Systematic

mi G(0.012, 0.023)

∆z1 G(−0.001, 0.016)

∆z2 G(−0.019, 0.013)

∆z3 G(0.009, 0.011)

∆z4 G(−0.018, 0.022)

TABLE I. List of the priors used in the analysis for parameter
constraints (U denotes flat in the given range and G is gaussian
with mean equal to its first argument and dispersion equal to
its second). For the cosmological parameters, we fix w =
−1.0, Ωk = 0.0 and τ = 0.08. The astrophysical parameters
are associated with the intrinsic alignment, they follow the
relation AIA(z) = AIA[(1 + z)/1.62]η. Lastly, for systematics
we have mi corresponding to the shear calibration and ∆zi

for the source photo-z shift, with i = [1, 4] in both cases.

DESY1 analysis, which includes non-gaussian ef-
fects and super-sample variance; generated by
Cosmolike [21];

• one containing only the gaussian part, which we will
refer to as the Gaussian Covariance Matrix (GCM);
generated by the same code used to analyze the
KiDS-450 survey [22, 23].

Thus, throughout, the covariance labels FCM and GCM
differ for several reasons: first, they are two independent
codes and, second, although the code for the KiDS-450
survey does contain all the functionality in Cosmolike,
we ran the GCM with the simplest settings in order to ac-
centuate the differences. The ensuing discrepancies help
us assess various validation techniques. Where not oth-
erwise stated, the analysis and constraints will be per-
formed on the FCM.

Figure 1 shows the projected cosmological constraints
for the FCM and the GCM, using the same data vec-
tor and cuts. The 68% confidence level (CL) con-
straints are as follows: for the FCM: Ωm = 0.306+0.018

−0.023,

S8 = 0.784+0.054
−0.06 and AIA = 0.852+0.359

−0.233; and for the

GCM: Ωm = 0.309+0.017
−0.023, S8 = 0.787+0.051

−0.058 and AIA =

0.948+0.329
−0.22 . This shows that the variations we introduced
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to the calculation of the two matrices are measurable in
the parameter constraints.

Full Covariance Matrix
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FIG. 1. Constraints on cosmological parameters Ωm and S8

and intrinsic alignment parameterAIA for two covariance ma-
trices produced for cosmic shear. The purple curve is for the
FCM while the blue is for the GCM. In the 16–dimensional
parameter space, the volume of the posterior is about 22%
larger for the former.

B. Eigenvalues

Let us start with the easy task of analyzing the eigen-
values of the covariance matrix. Each eigenvalue is asso-
ciated with a linear combination of the data vector, or a
mode.

The idea is to remove the contribution of the lowest
eigenvalues, since these are usually attributed to numer-
ical noise and, as such, contain the least amount of in-
formation. The highest eigenvalues, on the other hand,
are said to be the most informative [24] The procedure
is simple, we first diagonalize the covariance matrix in
order to calculate its eigenvalues then sort them into in-
creasing order. Setting the lowest eigenvalues to zero
would result in a non-positive definite (NPD) matrix, so
we replace them instead with lower values (nine orders
of magnitude lower), thus removing their effective contri-
bution; we then transform back to the original basis and
perform a cosmological analysis with the new covariance
matrix.

For the purpose of reducing the covariance matrix to
about 10% of its original size, we follow the procedure
above to discard the 200 eigenmodes with the lowest
eigenvalues. The results reported in Figure 2 show a

loss of constraining power on two of the three parame-
ters shown. This is consistent with the fact that we are
removing about 90% of the information contained in the
covariance matrices. However, it is inconsistent with the
conjecture that the modes with lowest eigenvalues are
irrelevant, in fact, constraints on S8 for the FCM are
0.779+0.044

−0.46 , whereas, for the new covariance matrix, we

obtain 0.725+0.076
−0.083, showing an increase in the errors of

almost 77%. It is then clear that this method is incom-
patible with a 10% reduction, and so we must look for a
different way of ordering the modes.

Original
Covariance Matrix
Removing the
lowest eigenvalues
Removing the
lowest SNR
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FIG. 2. Constraints on cosmological parameters Ωm, S8 and
the intrinsic alignment parameter AIA for the original covari-
ance matrix (in purple) and for the two new covariance ma-
trices obtained in §II B (in blue) and §II C (in magenta).

C. Signal-to-noise ratio

Instead of looking only at the “noise” – or the eigen-
values of the covariance matrix – a better way to assess
the importance of modes is to consider the signal as well.
We can define the expected signal-to-noise ratio (SNR)
as (

S

N

)2

= TiC
−1
ij Tj , (1)

where Ti is the predicted theoretical signal for the ith

data point, given a fiducial cosmology, and C is the co-
variance matrix. Repeated indices are summed in all
cases, throughout this work. If C were diagonal, then the
eigenvectors would simply be the Tis themselves, and not
a linear combination of them, and we could estimate the
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FIG. 3. Scatter plot for the relation between the signal to noise (SNR) for each parameter (y-axis) against that for the full
set of parameters (x-axis). The derivatives are shown with respect to Ωm (blue circle), for S8 (orange x) and for the intrinsic
alignment parameter AIA (green triangle). The purple rectangle spreads until the two hundred lowest values of SNR, which
corresponds to the values that are modified for parameter constraints.

SNR squared expected in each mode by just computing
T 2
i /Cii, with ii denoting the diagonal element i. Then we

could throw out the modes with the lowest SNR. Since
this is not the case here, we have to first diagonalize C
and then order the values. We write the expected SNR
squared as (

S

N

)2

=
v2i
λi

, (2)

where λi are the eigenvalues of the covariance matrix,
which is diagonalized with the unitary matrix U , and
the eigenvectors are

vi ≡ UTijTj , (3)

with the superscript T denoting the transpose. From
a naive point of view, this makes it clear which modes
should be kept and which should be dropped; modes vi
for which

(
v2/λ

)
i

is small can be discarded. As we will
later see, however, it is not as simple as that.

After obtaining the SNR for the covariance matrix, we
reduce the 200 lowest values to seven orders of magnitude
lower, which is equivalent to increasing the noise (or de-
creasing the signal) of these modes. We then obtain a
new covariance matrix with the corresponding modified
SNR values. The parameter constraints for this method
are shown in Figure 2, where we note that only Ωm is well
constrained (in agreement with those obtained with the
original covariance matrix to within a 2σ interval). The
constraining power on AIA and S8, on the other hand,
is weakened, which suggests that the modes removed do
indeed carry relevant information for these parameters.

We can investigate this loss by tweaking our under-
standing of which modes carry information. The “signal”
that these modes are ordered by is the amplitude of the
data points. The parameters, however, are sensitive to
the shape as well as the amplitude. To address this, we
can identify the SNR for each parameter individually by

taking (
∂S/∂pα
N

)2

=
(∂vi/∂pα)2

λi
, (4)

where ∂/∂pα is the derivative with respect to each pa-
rameter. The importance of this procedure is illustrated
in Figure 3, which shows the normalized SNR for a given
mode on the x-axis against the SNR for Ωm, S8 and AIA.
The shaded region shows the 200 modes excluded in the
previous analysis, where we see the presence of low SNR
modes that contain information about the parameters.
This is particularly true for the intrinsic alignment pa-
rameter AIA, which seems to explain the poor constraints
shown in Figure 2. As a result, simply cutting on raw
SNR loses constraining power.

On the other hand, as [25] argues, removing the modes
with the highest SNR is recommended in order to obtain
a bias-free inference (another way would be to use a non-
Gaussian likelihood). In light of that, we followed the
same procedure used for removing the modes with the
lowest SNR, but instead set the 200 highest modes to
values several orders of magnitude lower. This yielded
weaker constrains for not only for S8 and AIA, but also for
Ωm. We believe that this divergence was due to the large
quantity of modes removed for our analysis and does not,
in any way, invalidate the findings of the aforementioned
work.

D. Tomographic Compression

The tomographic compression method of this section is
based on a Karhunen-Loéve (KL) decomposition for the
shear power spectrum suggested by [11] and later applied
to real space two-point function in [26] for the CFHTLens
survey. Its implementation consists of finding the eigen-
mode — in this case, a linear combination of the con-
vergence in different tomographic bins — with most of
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the signal-to-noise ratio contribution to the power spec-
trum, and then transforming the two-point function of
this eigenmode into real space. This is not the most gen-
eral compression method for the two-point function in
real space, since the weight is dependent on the multi-
pole `. However, as found in [26], it is effective on the
real space data, nonetheless.

Before diving into the derivation, it is worth summa-
rizing the results. With CosmoSIS, we calculate the shear
angular power spectrum C` of the convergence κi, where
i = [1, 4] for the 4 tomographic bins probed by DES Year
1 with a fiducial cosmology at the best-fit parameters.
We thus have 4 × 5/2 = 10 pairs of bins for which we
can compute spectra. The left plot in Figure 4 shows
the diagonal elements of the signal part, S`, and of the
noise part, N`, of the spectrum. The right-hand panel
shows the signal to noise ratio for the KL-transformed
eigenmodes, which we call D`, ranging from ` = 10 to
` = 2500. That is, we identify a mode as b`m = riκ

i
`m,

where ri is the weight factor on the ith tomographic bins.
We can see that the first KL mode contains most of the
SNR contribution to the power spectrum. However, if
we want to recover more information, we also should in-
clude the second and the cross mode between the first
and second KL-mode.

With the total power spectrum C` = S` + N`, we cal-
culate the Karhunen-Loéve (KL) modes for each ` (so we
drop the ` subscript) via a general eigenvalue problem

Cijep = λpN
ijep . (5)

The index p in ep corresponds to the pth KL-mode of C.
Using Cholesky decomposition, N = LLT , we express the
new observable as bp = epL

−1κ. And we find that E` =
[e1, e2, · · · ]T is a basis transformation of basis so that the
shear signal is diagonalized. We can now calculate the
power spectrum D` for the new uncorrelated observable
b`m,

D` = 〈b`mbT`m〉 = E`L
−1C`L−1ET` = Λ` , (6)

where Λ` = diag[λ1, λ2, · · · ] If we denote E`N
−1 as R`

and further write U ij` = Ri`R
j
` , where i and j are the

indices for the tomographic bin-pairs, we have the com-
pression in terms of one simple linear combination,

D` = Ri`Cij` R
j
` = U ij` C

ij
` , (7)

with U ij` being the weight we will use to compress the
two-point functions. We note that these KL-modes bp`m
are uncorrelated, so that their power spectrum Dpp′

` is
a diagonal matrix whose entries are 1+SNR of the cor-
responding eigenmodes. This allows us to compress ten
tomographic bin-pairs to one, or two, by taking only the
modes with the highest SNR.

We want, however, to eventually compress the two-
point function data vector of DESY1, which is measured
in the real space tomographic bin pair i, j and related to

the angular power spectrum C` via

ξij+ (θ) =

∫
`d`

2π
J0(`θ)Cij(`) ,

ξij− (θ) =

∫
`d`

2π
J4(`θ)Cij(`) .

(8)

In order to use linear combinations of all the tomo-
graphic bins, we need to ensure that the combination
is `-independent, that is to say, the transformed two-
point correlation function, ξ̃±(θ), can be directly calcu-
lated from other two-point functions. In fact, Figure 5
shows that the U ij(`) are generally `-independent, ex-
cept for low `s, due to the existence of cosmic variance.
Therefore, we have,

ξ̃±(θ) =

∫
`d`

2π
J0/4(`θ)D(`)

=

∫
`d`

2π
J0/4(`θ)U ij` Cij(`)

= Ū ijξij± (θ) , (9)

where Ū ij is the average U ij` given by,

Ū ij =

∫ `max

`min
d` (2`+ 1)U ij`∫ `max

`min
d` (2`+ 1)

. (10)

We make a more conservative angular cut than the one
discussed in [9], making sure that both ξ±(θ) are uniform
in regard to tomographic combinations. We consider an
angular scale for ξ+ from 7.195′ to 250.0′, and for ξ− from
90.579′ to 250.0′. Therefore, for the purpose of explor-
ing the KL-transform, the raw data vector has a length
of 190. By shrinking 10 tomographic combinations for
each angle into 1 KL-mode, the data vector is reduced to
length 19, and so the number of elements in the covari-
ance matrices has a compression of 99%.

In Figure 5, we plot the normalized KL-eigenmode
ep`N

− 1
2 and its corresponding weight, U ij` = Ri`R

j
` .

Modes with increasing ` are plotted in increasing opac-
ity of the color. While the KL-modes do vary by a
slight amount for different `, their sensitivity to it is not
very significant since they converge for higher ` to their
weighted average, which we represent with the dashed
black lines. For the first KL-mode, the tomographic bins
with higher redshift are weighted more than those with
low redshift. This is also shown in the right panel by the
weight on tomographic combination that the combina-
tion of bin 3 and bin 4 carries most of the weight in the
signal-to-noise ratio. This agrees with the fact that low-
redshift galaxies are less affected by lensing than high-
redshift galaxies, as indicated in the left panel of Figure
4.

We ran the likelihood analysis as detailed in §II A with
the first KL-mode and the first two KL-modes with their
cross correlation mode, which correspond to a 10-to-1
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FIG. 4. Left: Shear power spectrum of the FCM. Solid lines are diagonal elements of the signal matrix S`, and dashed lines
are the diagonal elements of noise matrix N`. Right: Signal-to-noise ratio matrix D` of the first to fourth KL-modes of the
power spectrum on the left.

FIG. 5. Left: Column vectors of the matrix R`, or ep`N
− 1

2 , for compressing the shear power spectrum C`. Right: Transfor-
mation on tomographic bin combination Uij constructed from the KL-eigenmodes. For both plots, the dashed black lines are
the weighted average of each mode. The lightest shade represents ` = 10 and the increment is ∆` = 10 for each darker shade.

and 10-to-3 compression, respectively, and show the pa-
rameter constraints on the Ωm−S8−AIA plane in Figure
6. We do not include the third and fourth KL mode be-
cause they contain considerably less signal to noise. We
can see that the first KL-mode is generally not sufficient
to recover the information in the data vector. Since the
first two modes contain most of the SNR contribution at
a map level, we were able to recover the Ωm constraints.
However, information about the S8−AIA combination is
clearly lost. This could be due to the fact that the SNR-
prioritized modes are not the sensitive direction for these
parameters, as was also the case in Figure 3. Indeed, the
S8−AIA plane shows a strong correlation between these
two parameters. This likely explains why the constraints
for S8 widened: the KL-modes fail to break the degen-
eracy on AIA, which is mostly present in the modes that
are insensitive to cosmic shear and are discarded in the

compression process.

E. Applying MOPED

The MOPED compression scheme takes place at the
two-point level, with the compressed data vector contain-
ing linear combinations of the many two-point functions.
In principle, this requires only Np linear combinations of
the two-point functions, where Np is the number of free
parameters, and each mode, or linear combination, con-
tains all the information necessary about the parameter
of interest.

For each parameter pα that is varied one captures a
single linear mode

yα = UαiDi , (11)

where Di are the data points and the coefficients are
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defined as

Uαi ≡
∂Tj
∂pα

C−1ji , (12)

with Tj being the theoretical prediction for the data point
Dj for a fiducial cosmology. An illustration of the matrix
Uαi is shown in Figure 7, showing the weighting vector
for parameters Ωm, S8 and AIA.

The now much smaller data set {yα}, which contains
Np data points, carries its own covariance matrix, from
which χ2 can be computed for each point in parameter
space. Propagating through shows that this covariance
matrix is related to the original Cij via

Cαβ = UαiCijUjβ , (13)

which also happens to be identical to the Fisher matrix
of our likelihood. This compression was first suggested
by Tegmark et al. (1997) for a single parameter only.
The non-trivial extension to multiple parameters, where
the full Fisher matrix is reproduced with the compressed
data, is the MOPED algorithm [1]. One difference here
is that our weighing vector given by Eq. (12) does not
carry the normalizing factor of Eq. (11) in [1]. In our
case, the covariance matrix is 227×227, while the number
of parameters needed to specify the model is only 16, so
Cαβ is a 16 × 16 matrix. We have apparently captured
from the initial set of (227×228)/2 = 25, 878 independent
elements of the covariance matrix a small subset (only
136) of linear combinations of these 26k elements that
really matter. If two covariance matrices give the same
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FIG. 6. Cosmological constraints marginalized over all 16
parameters for the 190×190 FCM and that compressed using
the first KL-mode and the first two KL-modes.

set of Cαβ , it should not matter whether any of the other
thousands of elements differ from one another.

Ultimately, what matters is how well the likelihood
does at extracting parameter constraints. Since most
analyses assume a Gaussian likelihood, this boils down
to how well the contours in parameter space agree when
computing χ2 using two different covariance matrices.

Figure 8 compares the constraints obtained for the
compressed covariance matrix and data set with results
from the full one. The two curves agree extremely well
for the parameters shown: Ωm, S8 and AIA. This is also
true for all the other cosmological and intrinsic alignment
parameters, where their mean values agree at the 1σ con-
fidence level. While the volume of the whole constrained
parameter space does increase by about 13%, the con-
straints for most parameters are less than 4% broader,
which shows that the information loss is negligible.

III. COMPARISON OF COVARIANCE
MATRICES

Armed with this information about compression, we
now set out to compare the two covariance matrices, the
GCM and the FCM, described in §II A.

A. Element-by-element comparison

We begin by performing an element-by-element com-
parison between the two covariance matrices. If there
were only a single data point, then the covariance ma-
trix would be one number and comparing two covariance
matrices to try to understand why they give different
constraints would be as simple as comparing these two
numbers. The simplest generalization is then to do an
element-by-element comparison. We make a scatter plot
of the elements of the two matrices in the bottom panel of
Figure 9, where we can see that the elements of the FCM
are, in general, larger than the GCM’s, with many of the
off-diagonal elements differing by 2 orders of magnitude
or more. In some ways, this is useful and reassuring, as it
aligns with what we see in the parameter constraints, in
Figure 1: larger elements in the covariance matrix trans-
lates to less constraining power.

The limitation of this method is that it remains unclear
which of the differences are driving the final discrepancies
in parameter constraints. This difficulty is an outgrowth
of the increasing size of the data sets and hence the grow-
ing number of elements of the covariance matrix that any
two codes are likely to disagree on. This element-by-
element comparison, however, would prove much more
practical if we fewer elements to compare. Towards that
end, we turn to compressed covariance matrices.
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FIG. 7. An illustration of the 227 values of the weights corresponding to Ωm, S8 and AIA used for compressing the covariance
matrices. Note the similarity of the weighting vectors for S8 and AIA, and that the largest values correspond to the last 60
elements, i.e. those that we will use to compress the part of the covariance matrix that holds information for ξ−.

B. Compressed Matrices Comparison

Since we have shown that, out of all the compression
schemes shown here, the only one capable of reproducing
the original parameter constraints was MOPED, that is
what we will be using in this section.

We compress both covariance matrices using the same
Uα,i (we also tried using different U ’s for each and ob-
tained similar results).

Figure 10 shows a one-to-one scatter plot of the com-
pressed elements, which, as expected, exhibits a similar
behavior to that observed in Figure 9, with the elements
of the FCM being larger than those of the GCM. Here,
however, the ratio of the diagonal elements is closer to
1, with a fractional difference of up to 17%, as compared
to 26% with the original matrices. Perhaps even more
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FIG. 8. Constraints on cosmological parameters Ωm and S8

and for the intrinsic alignment parameter AIA for the original
covariance matrix, FCM, (in purple) and for the compressed
one (in blue).
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elements, and the color bar varies according to the number of
elements in one hexagonal bin, where the darkest blue color
corresponds to only one element, and the brightest yellow
shade to 2000. Top: Scatter plot of the ratio of the elements
of the GCM and the FCM vs the FCM value. For illustrative
purposes, we draw a black, horizontal line at GCM/FCM = 1.
Bottom: Density of the scatter plot of the positive elements
of the GCM and the FCM, with the black line showing FCM
= GCM.
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FCM, over elements of the FCM. The black horizontal line
is drawn at GCM/FCM = 1. Bottom: One-to-one scatter of
the elements of the compressed matrices, with the black line
describing FCM = GCM.

importantly, there are much fewer points on this plot,
since MOPED reduces the number of elements that need
to be compared. These figures provide a greater insight
into the relevant elements for parameter estimation: the
dispersion is largely damped, and most of the elements
are within 25% of each other, which explains what we
see in the parameter constraints. Figure 11 shows the
correlation matrix for the GCM and the FCM, and the
difference between the normalized off-diagonal elements.
The small differences suggest that the root of the slightly
looser constraints obtained with the GCM is the larger di-
agonal elements of the MOPED-reduced covariance ma-
trix. That is, a problem that initially required inspecting
hundreds of thousands of elements is reduced to one in-
volving only 16.
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FIG. 11. The upper right and lower left plots display the
correlation matrix for the GCM and the FCM respectively,
and the difference between them, ∆rij , is shown on the lower
right.

IV. TOLERANCE OF THE COMPRESSED
MATRICES

Now that we have shown that we are indeed able to
compress the covariance matrix into a much simpler and
considerably smaller one, our next step is to analyze the
amount of error the elements can tolerate while repro-
ducing compatible parameter constraints.

In the next two sections we test two different ways
of perturbing the covariance matrix: first we consider an
error to the elements themselves, then we follow a similar
procedure to study the effects of introducing an error to
the eigenvalues of the compressed covariance matrix. In
both cases the perturbation is drawn in the following
manner: consider that we want to test the impact of an
error x%; this can either be an increase of a decrease in
the original element, or eigenvalue, as what we care about
most is not whether the parameter constraints will be
larger, but rather how different they are. For this error
to be random, but centered at our desired percentage,
we draw a δ, for each new element/eigenvalue, from a
Gaussian distribution, G(0, x

100 ) and calculate the new
value to be

Cnew
αβ = (1 + δ)Cold

αβ , (14)

where, for the eigenvalue, we replace Cαβ with λi. This
analysis is done only for the FCM, with errors ranging
from 5 − 45%, and for 50 realizations of the perturbed
matrices.

One of the concerns that arises when modifying the
covariance matrix is that the resulting one has to be pos-
itive definite (PD). For this reason, in each section we
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FIG. 12. An error plot showing the changes to the constraints for Ωm, S8 and AIA for errors added at
5%, 10%, 15%, 25%, 30%, 35%, 40% and 45% of the original elements (in purple) and eigenvalues (in green) of the compressed
covariance matrix. The blue rectangle covers the 68% CL interval obtained for the FCM, and the darker blue vertical line
shows the mean value for the respective parameter.

also describe the steps taken to ensure this. Another in-
telligent way of guaranteeing PD would be to perturb the
log of the covariance matrix. The issue, however, is how
to introduce an error to the log matrix that would be sim-
ilar to what we expect to see in the original covariance
matrix. In

Cnew
αβ = e(1+δ)(log C

old)αβ , (15)

the value of Cnew
αβ is not necessarily within δ% of Cold

αβ .

Introducing a 10% error, for example, in such a matrix,
results in a perturbed covariance matrix with some of its
elements differing by several orders of magnitude from
the original one. A safer procedure would then be to
perturb the log of its eigenvalues, but, since we have
a section dedicated to perturbations to the eigenvalues
themselves, we deemed this would be repetitive.

A. Modifying the elements

Once we generate new values for each independent el-
ement, following Eq. (14), we check for positive definite-
ness. Since the resulting matrix is, more often than not,
not PD, we correct this by identifying the smallest neg-
ative eigenvalue and adding it to the diagonal [27]. We
check that, although doing this largely increases the val-
ues of the diagonal elements, less than 40% have a stan-
dard deviation of more than twice the original perturba-
tion.

The constraints for Ωm, S8 and AIA are shown in Fig-
ure 12, in purple, where the blue rectangle spans over
the constraints for the unchanged compressed covariance
matrix. The relative change in size for the 68% CL inter-
val is mostly > 10% for the cosmological parameters; on
the other hand, for the intrinsic alignment parameter A,
the mean values are more than 1σ away from the original
one and the loss in constraining power goes up to ∼ 30%.

B. Modifying the eigenvalues

Another way of introducing error to the covariance ma-
trix is to perturb its eigenvalues. For a symmetric matrix,
we have

C = QΛQ−1 , (16)

where Λ = λI, with λ being the eigenvalues and I the
identity matrix; and Q is a square matrix whose columns
are composed of the eigenvectors of Cαβ . The eigenvalues
are then perturbed as described in Eq. (14), and the er-
ror, δ is drawn from G(0, x

100 ), with the requirement that
|δ| < 1. We then have λnew > 0, and thus the perturbed
covariance matrix associated with these new eigenvalues
is PD.

The results for this method are also plotted in Figure
12, in green. Despite the results following the same ten-
dency as those of the last section, we find that about 80%
of the elements of the perturbed covariance matrices are
within 10% of their original value.

V. CONCLUSION

In this work, we set out to explore different ways of
compressing, comparing and analyzing covariance matri-
ces, giving particular emphasis to the MOPED compres-
sion scheme. We started by looking at the parameter con-
straints of two 227 × 227 covariance matrices, the FCM
and the GCM, generated for DESY1 cosmic shear mea-
surements, and saw that, although some of their elements
differed by several orders of magnitude, they generated
similar constraints. It was clear, then, that not all el-
ements contribute equally to the parameter constraints,
and we needed to employ increasingly complicated meth-
ods to try and locate the most relevant parts of the co-
variance matrix.
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The first step was then to analyze the eigenvalues. We
began with the hypothesis that modes associated with
the highest eigenvalues carry most information, as such,
those with the lowest eigenvalues would contribute less to
parameter estimation. Using this notion to compress the
covariance matrix we “removed” the lowest 200 eigen-
values, by setting them to several orders of magnitude
lower. While the loss in constraining power for Ωm was
only around 20%, we saw a loss of about 77% in the size
of the constraints for S8, and more than 100% for AIA.
Next, we moved on to the signal-to-noise ratio, and, us-
ing a similar procedure adopted for the eigenvalues, we
“removed” the modes with the lowest SNR. The results
were similar to those obtained with the eigenvalue cuts
and showed us that these modes did not contribute sig-
nificantly to constraining some cosmological parameters,
like Ωm, however constraints on the intrinsic alignment
parameters, and even S8 were more affected. This is
consistent with the fact that the IA parameters are more
sensitive to low SNR scales in cosmic shear, and it shows
us that we need to look at the SNR per parameter before
making any cuts, so that we do not lose important infor-
mation for the parameters that we want to constrain.

The next step was to shrink the covariance matrix by
applying a tomographic compression, where we decom-
pose the shear angular power spectrum into KL modes,
then we look for modes with the highest SNR and com-
press shear data vector by the modes. We thus go from
ten tomographic bin combinations to only one or two.
The resulting covariance matrix, for one mode, is then
reduced from 190× 190 to 19× 19 or 59× 59, showing a
reduction of about 99% or 91%, respectively. We show,
however, that one mode is not sufficient for constraining
the parameters of our model, with the results being sim-
ilar to our previous tests involving SNR: the constraints
for Ωm, for example, are reproduced with the first and
second KL-mode, but this is not the case for the IA pa-
rameters. Since essential information of IA parameters
is contained in low SNR KL-mode, the high KL-modes
failed to break the degeneracy of AIA − S8 correlation,
resulting in wider S8 constraints.

Finally, we applied MOPED, which uses linear combi-
nations of the data vector. By transforming the data
vector and covariance matrix with a weighting vector
that is parameter dependent, we were able to reduce the
227 × 227 matrix to a 16 × 16 matrix. We show that
the cosmological analysis using this compressed matrix
reproduced similar constraints to the DESY1 analysis,
for an uncompressed covariance matrix. We also showed
a comparison of the elements of the compressed covari-
ance matrix for the FCM and the GCM and found that
the new elements show reasonable agreement, with their
correlation matrices being very similar, and the diago-
nal elements showing a percentage difference of less than
15%.

Given these results, we successfully show that MOPED
is the only compression scheme, out of the ones con-
sidered in this work, capable of capturing all the rele-

vant information required to reproduce reliable param-
eter constraints for the 16 parameters of interest. It is
worth noting here that compression does not automati-
cally speed up the computation for parameter inference
if the projection to form the MOPED coefficients is done
at each sampled point. For speed gains, a way to com-
pute the theoretical MOPED coefficients rapidly needs
to be found, e.g. using Gaussian Processes to generate
the compressed theory [8].

When looking at the one-to-one element comparison
of the FCM and the GCM, in Figure 9, the region of
large variance suggests that there could be considerable
differences in the parameter constraints. We see, how-
ever, in Figure 1, that this is not the case. This becomes
clearer when comparing the elements of the compressed
covariance matrices, where, while they do follow the same
tendency as the full comparison, only a smaller portion of
the elements display a greater dispersion. In this sense,
one of our most important results is in the ability of using
MOPED to compare different matrices.

One last step was taken to analyze the error tolerance
of the compressed FCM. We adopted two ways of doing
this, by introducing error taken from a Gaussian distri-
bution for 5 − 45% of the original 1) element and, 2)
eigenvalue of the compressed covariance matrix. For the
latter, we checked that only about 20% of elements of
the resulting, perturbed, covariance matrix showed er-
rors within the expected value, while the vast majority
had only about a 10% error. In both cases, however, the
results were similar: for the cosmological parameters Ωm
and S8, the 2σ constraints changed by about 7%, on av-
erage, while for the intrinsic alignment parameter AIA,
the constraints were up to 30% larger. Finally, we high-
light the increasing shift, in the mean values of AIA, to
about 32% smaller than those obtained with the uncom-
pressed FCM; while for the cosmological parameters this
was only about 5%, in general.
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