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With the goal of attempting to observe a stochastic gravitational wave background (SGWB)
with LISA, the spectral separability of the cosmological and astrophysical backgrounds is important
to estimate. We attempt to determine the level with which a cosmological background can be
observed given the predicted astrophysical background level. We predict detectable limits for the
future LISA measurement of the SGWB. Adaptive Markov chain Monte-Carlo methods are used to
produce estimates with the simulated data from the LISA Data challenge (LDC). We also calculate
the Cramer-Rao lower bound on the variance of the SGWB parameter estimates based on the inverse
Fisher Information using the Whittle likelihood. The estimation of the parameters is done with the
3 LISA channels A, FE, and T. We simultaneously estimate the noise using a LISA noise model.
Assuming the expected astrophysical background around Qgw,astro(25 Hz) = 0.355 — 35.5 X 10797
a cosmological SGWB normalized energy density of around Qcw,cosmo = 1 X 10712 to 1 x 10713

can be detected by LISA after 4 years of observation.
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I. INTRODUCTION

Since the accomplishment of the first observation
detection of gravitational waves from the merger of two
stellar mass black holes [3] by Advanced LIGO [1, 39] and
thereafter with Advanced Virgo [5, 12], gravitational-
wave observatories have become a new means to observe
astronomical phenomena. So far LIGO and Virgo
have announced the observation of 50 signals produced
from compact binary coalescence [7, 9], including two
from binary neutron star mergers [6, 8]. Gravitational
wave detections are expanding our understanding of
astrophysics and of the universe.

The Laser Interferometer Space Antenna (LISA) [16] is
a future ESA mission, also supported by NASA, with the
aim to observe gravitational waves in the low frequency
band [107°,1] Hz. The mission lifetime will nominally
be 4 years, but could be extendable to 6 or 10 years of
scientific observations. LISA is a triangular constellation
of three spacecraft, separated from one another at a dis-
tance of L = 2.5 x 10° m. The low frequency band is rich
with gravitational wave signals. The foreground of LISA
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will be dominated by sources from our galaxy, the Milky
Way. White dwarf binaries [15, 30, 44] are numerous (~
35 million binaries), and relatively near the LISA con-
stellation. For example, recently the Zwicky Transient
Facility (ZTF) has measured a double white dwarf with
an orbital period estimated at 7 minutes [19], which cor-
responds to a gravitational-wave emission of ~ 30 mHz.
LISA can be expected to observe many resolved bina-
ries, many of which are already known from photometry
studies and constitute the so-called verification binaries
[20]. Well studied systems like this can be used to ver-
ify the LISA performance, acting as a way to confirm
the sensitivity of LISA. We can expect to have one in a
thousand binaries which are resolvable. The large ma-
jority of the galactic binaries are unresolved and form
a stochastic signal. The stochastic gravitational wave
background from white dwarf binaries or galactic fore-
ground will be anisotropic and the signal will be not a
pure power law. A stochastic gravitational wave back-
ground (SGWB) [26, 57] will have a significant contribu-
tion from unresolved binaries, such as binary black holes
and binary neutron stars. This background is essentially
isotropic, and its level can be predicted from the signals
observed by LIGO and Virgo [2, 25]. Another important
SGWB would be from cosmological sources [26]. The
origin of this background comes from the early universe
[37, 47], with the possibility to measure the inflation sce-
nario parameters [22]. Cosmic strings could be another
observable source [24]. A cosmologically produced back-



ground can be modeled as a flat spectral energy density
o fY[29].

In this paper, we present a strategy to separate the two
SGWBs (astrophysical and cosmological), as well as the
LISA noise, using a Bayesian strategy [27, 30] based on an
Adaptive Markov chain Monte-Carlo (A-MCMC) algo-
rithm. We then show LISA’s ability to measure a cosmo-
logical SGWB for different magnitudes for the astrophys-
ical background. The SGWB from astrophysical sources
today represents an important goal, especially consider-
ing the current observations by LIGO and Virgo [4, 10].

Numerous studies have recently been presented which
address how to possibly detect a cosmologically produced
SGWB in the presence of an astrophysically produced
SGWB. For example a recent study displays the use of
principal component analysis to model and observe a
SGWB in the presence of a foreground from binary black
holes and binary neutron stars in the LISA observation
band [51]. A component separation method is proposed
in [49], where they show that it is possible to detect an
isotropic SGWB. The method uses maximum likelihood
parameter estimation with Fisher Information matrices.
This is proposed to replace an MCMC approach, and
applied to the LIGO-Virgo observational band.

The proposal in [62] is to use a number of broken
power-law filters to separate different backgrounds with
gravitational wave detectors on the Earth. In the study
of [18] the proposal is to divide the data into individual
short time segments. The method used the procedures
described in [59] to search the segments for the presence
of a binary black hole signal, either through direct detec-
tion or sub-threshold by generating a Bayesian evidence.
A cosmological SGWB would be present in all segments,
whereas a probability would exist for the presence of a
binary black hole merger for the segments. The method
is general, and could be applied to LIGO-Virgo or LISA.
The study presented in [54] noted that the sensitivity
of third generation gravitational wave detections, such
as Einstein Telescope [53] or Cosmic Explorer [55], will
be so good that almost every binary black hole merger
in the observable universe can be directly detected, and
then removed from the search for a cosmological SGWB.
The study of [58] then explored how to do such a subtrac-
tion of binary black hole merger signals, and the conse-
quences of the effect of residuals from such subtractions.
Another study used Bayesian methods to address spec-
tral separation for LIGO-Virgo observations, but trying
to address how to separate a SGWB from a correlated
magnetic noise background produced by the Schumann
resonances [32, 36, 61]; the study is, however, general
and can be applied to spectral separation for different
types of backgrounds [48]. This study was then expanded
to address the simultaneous estimation of astrophysical
and cosmological SGWBs, and displayed that this will be
especially important for third generation ground based
detectors [46]. Another study, specifically dedicated to
LISA observations [23] proposes to divide the data into
bins, and then within in each bin, a fit is made to a power

law or a constant amplitude; a variation on this approach
is presented here [35]. The claim is that this method is
more dynamic and able to fit arbitrarly shaped SGWBs.
The study of [42] shows how to assign Bayes factors and
probabilities to differentiate a SGWB signal from instru-
mental noise.

All the SGWB studies referenced above are summa-
rized in Tables II, III, IV, respectively for LIGO/Virgo,
LISA, and third generation detectors. We compare the
goals, methods, the performance, the limitations and the
application; see Appendix A. The study we present in
this paper, using Bayesian parameter estimation meth-
ods, has the advantage to fit two backgrounds and the
LISA noise simultaneously. We note the possibility to ex-
pand the work presented here to estimate more complex
LISA noise, and adding a new models for the SGWB;
for example, more complex SGWBs could include bro-
ken power laws, peaks in the frequency domain, or an
anisotropic SGWB from our galaxy.

The organization of the paper is as follows. In Sec. IT
we introduce the SGWB spectral separation problem for
LISA, and then describe the inverse of the Fisher Infor-
mation matrix of the SGWB parameters, and how this
provides the Cramer-Rao lower bound on the variance
of the parameter estimates. In Sec. III we describe the
A-MCMC. The simulated LISA mock data is presented
in Sec. IV. Presented in Sec. V are the parameter esti-
mation procedures and results using the LISA A and T
channels; Sec. V presents similar results using the LISA
A, E and T channels. Conclusions are given in Sec. VL.

II. SPECTRAL SEPARATION

An isotropic SGWB observed today Qgw (f) can be
modeled with the frequency variation of the energy den-
sity of the gravitational waves, pgw, where dpgw is the
gravitational wave energy density contained in the fre-
quency band [f, f+df]) [21]. The distribution of the en-
ergy density over the frequency domain can be expressed
as,

_ [ dpew
Qew (f) = 1o dIn(f)

=Sl (h)
k

(1)

. . . . 3HZC?
where the critical density of the universe is p. = 87705 .

In this paper we chose to approximate the spectral en-
ergy density as a collection of power law contribution
o
(this is a simplified model), Qaw (f) ~ >, Ak (ﬁ)
where the energy spectral density amplitude of the com-
ponent k (representing the different SGWBs) is Ay, with
the respective slope ay and fr.5 is some characteristic
frequency. The SGWB is predicted to have a slope com-
ponent o = 0 for the cosmological background. This is
true for scale invariant processes, this is approximately




true for the standard inflation and certainly false for cos-
mic string and turbulence. However for our study here
we will model the cosmologically produced SGWB with
a = 0. In addition, we will use a = % for a compact bi-
nary produced astrophysical background. According to
Farmer and Phinney the slope is o = % for quasi-circular
binaries evolving purely under gravitational wave emis-
sion [34]. The eccentricity and environmental effects can
modify the slope. We also note the limitations of our
power law model as phase transition in the early uni-
verse can produce two-part power laws, with a traction
between the rising and falling power law component at
some peak frequency. But we start in this study with
two power law backgrounds. As the two backgrounds
are superimposed, the task is to simultaneously extract
both the astrophysical and cosmological properties, i.e.
to simultaneously estimate the astrophysical and the cos-
mological contribution to the energy spectral density.

To avoid identifiability issues, we choose a Bayesian
approach by putting informative priors on the individual
slope and amplitude parameters. Our work here builds
on that of Adams and Cornish [13] where they demon-
strated that it is possible to separate a SGWB from
the instrumental noise in a Bayesian context. Similarly
Adams and Cornish then showed that one could detect a
cosmological SGWB in the presence of a background pro-
duced by white dwarf binaries in our galaxy [15]. Since
the production of those studies LIGO and Virgo have
observed gravitational waves from binary black hole and
binary neutron star coalescence. We now know that there
will definitely be an astrophysically produced background
across the LISA observation band produced by compact
binary coalescences over the history of the universe [25],
and if LISA is to observe a cosmologically produced back-
ground it will be necessary to separate the two.

The literature provides a relatively large difference in
the estimation of the magnitude of the astrophysically
produced SGWB. A recent simulation of the SGWB
from merging compact binary sources with the Star-
Track code [50] predicts an amplitude around Qg =~
4.97 x 1079 to 2.58 x 1078 at 25 Hz. However another
study considered the binary black hole and binary neu-
tron star observations by LIGO/Virgo, and produced
predictions going from the LISA observational band to
the LIGO/Virgo band. They estimate an amplitude
for the astrophysical SGWB of Qgw ~ 1.8 x 107? to
2.5 x 107Y at 25 Hz [25]. These amplitudes can be prop-
agated to the LISA band by recalling Eq. 1 and using
frer = 25 Hz and a = 2/3. In the context of an effort to
observe a cosmological SGWB we have large variations
due to the predictions of the astrophysical component.

In our study here we predict the accuracy of a mea-

surement of Qg)g,v with astrophysical inputs of differing

magnitudes using fr.; = 25 Hz, Q(G%Vi/ = [3.55 x 10710,
1.8 x 1079, 3.55 x 1072, 3.55 x 107%] after 4 years of
observation. We use the orthogonal LISA A, E, and T
channels, which are created from the time delay interfer-
ometry (TDI) variables X, Y, and Z [52]. Our method

fits the parameters of two stochastic backgrounds, and
simultaneously the LISA noise with the help of the chan-
nel T'. We assume uncorrelated noise TDIs between the
”science” channels (A4, F) and the noise channel (7). The
T channel is ”signal insensitive” for gravitational-wave
wavelengths larger than the arm lengths. The noise chan-
nel T is obtained from a linear combination [52] of the
TDIs channel (X,Y,Z). We demonstrate a good abil-
ity to estimate the noise present in the two science data
channels A and E. We can then set a limit on the abil-
ity to detect the cosmological SGWB. The predictions
from the Bayesian study are confirmed via a study of
the frequentist estimation of the error. Namely, we use
a Fisher information analysis, performed for the spectral
separation independently of the Bayesian A-MCMC ap-
proach. The inverse of the Fisher Information matrix of
the SGWB parameters, presented in Sec. II, provides the
Cramer-Rao lower bound on the variance of the SGWB
parameter estimates.

A useful toy model to consider is the problem of
separating two independent stationary mean-zero Gaus-
sian noise processes that have different power spectra
S, (f) = A1 fer and S, (f) = A2f*2. Suppose we have
data that is formed from the sum of these two indepen-
dent noise processes

d(t) = ny(t) + no(t), t=1,...,T. 2)

After a Fourier transform to d(f) = - S d(t)e

at Fourier frequencies fi, = 2nk/T, k=0,...,N=2-1
(for T even), we can write:

d(fi) = 71 (fx) + n2(fe), k=0,...,N. (3)
Then the vector d has an asymptotic complex multivari-
ate Gaussian distribution with a diagonal covariance ma-
trix. The diagonal elements are given by the values of the
spectral density S(fix) = A1 f' + A2 f,?. Our assump-
tion of independence implies that one can simply sum the
individual spectral densities of the two noise processes.

The Whittle likelihood approximation in the frequency
domain can then be written as:

1 AU d(fR)
S(fx)

7S(fr)

N
p(d|Ar, a1, Az, a0) = ||
k=1

where S(fr) = Aify" + Ao f,?. The product I,(fi) =
d(fu)*d(fy) is the periodogram, the squared magnitude
of the Fourier coefficients at the frequency fi. The log
likelihood (up to an additive constant) is thus

N
lnp(d|A1, o7, Ag, a2) —— Z ({;L((J{:))

k=1

()



A. The Fisher information

The Fisher information matrix I for a parameter vec-
tor 8 = (61,...,0,) is given by the expected value of the
negative Hessian of the log likelihood. The element in
row 4 and column j of the Fisher information is given by:
2

0
00,00, 09,
The Fisher information can be easily obtained for the
parameter vector (A1, a1, A, az) by using that (asymp-

= E |~ g ol (6)
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B. The Cramer-Rao bound

The Fisher information can be used to give a lower
bound for the variance of any unbiased estimator, the so
g\alled Cramer-Rao bound. For any unbiased estimator
0; of the unknown parameter 6;, its standard error A6;
satisfies

(AB)? > Tys(0) ! = !

E |~ 5 35 Wp(dl6)

Under certain regularity conditions, the posterior distri-
bution of a parameter 6 is asymptotically Gaussian, cen-
tered at the posterior mode and covariance matrix equal

(17)

to the inverse of the negative Hessian of the posterior dis-
tribution evaluated at the posterior mode. For flat priors,
the posterior density is proportional to the likelihood, the
posterior mode is the maximum likelihood estimate and
the standard error AH of the Bayesian estimator 9 of
the parameter 6; can bAe approximated by evaluating the
Fisher information at 6;, i.e.

Defining the uncertainty of an estimate é\z by

Ab;
0,

(19)

we say that we can estimate the parameter 6; with on er-
ror of 10% based on the Fisher analysis if the uncertainty
of a parameter estimate is equal to 0.1. The purpose of
this study is to derive a threshold on the separability by
an A-MCMC routine with the likelihood of the Eq. 4. In
the following we will thus have a limiting value for the
separability of the cosmological SGWB parameters and
the astrophysical SGWB.

We use a toy problem to display the separabil-
ity of two stochastic backgrounds according to their
slope difference.  For this we fix one background

() = A (75)7 = Qs (55)"" = 355 x
/

2/3
1077 (25HZ) , and we leave free the slope of the sec-
f a2 [e7s)
ond background Qy(f) = Ao (H) = Qo (frvf) =

o
1x 10712 (25’;{ ) . We show the uncertainties (£ 01 for

0; € [Qa/3,a9/3,0, 0], with Af; the error from the
Fisher information, see Sec. II B) for the amplitudes and
spectral slopes as a function of the difference between
the spectral slopes (0o = ag — a/3). This quantity is
also called coefficient of variation or the relative stan-
dard deviation (RSE), this is the absolute value of the
standard deviation divided by the mean of the parame-
ter. We use this quantity to appreciate the dispersion of
values around the mean. it is preferable to use this quan-
tity because it is unitless. Thus it is easier to compare
parameters of different units and ranges values. Fig. 1
displays the uncertainties (Age ) as the function of da be-

tween -5 and 5.

The uncertainty of the parameter ag becomes larger
when the slope difference da is near to zero. Here it
is more difficult to separate the two backgrounds when
their slopes are similar. The uncertainties are also not
symmetric about da = 0 because when the slope changes
the amplitude is also changing by a factor fT_e?. The
uncertainty of the amplitude parameter 2y is maximal
when the two amplitude parameters are identical. The
position of the maximum changes for different inputs of
Qq; if Qg increases the position of the maximum converge
to da = 0.
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III. ADAPTIVE MARKOV CHAIN
MONTE-CARLO

A. Markov chain Monte-Carlo

Bayesian inference quantifies the estimation and uncer-
tainties of unknown parameters based on the observation
of events that depend on these parameters. The quan-
tification uses the posterior probability distribution. It
is obtained using Bayes’ theorem (see Eq. 20) by up-
dating the prior distribution of the parameters with the
likelihood p(d|f), the conditional distribution of the ob-
servations given the parameters:

_ p(d|9)p(6)

where p(0) is the prior distribution, p(6|d) is the posterior
distribution, and p(d) = [ p(d|@)p(#)db is the evidence.

MCMC methods [38] provide a numerical strategy to
compute the joint posterior distribution and its marginal
distributions. It is a sampling-based approach that sim-
ulates a Markov chain constructed in such a way that its
invariant distribution is the joint posterior.

(20)

B. Metropolis-Hasting sampler

As it is generally difficult to sample independently
from a multivariate distribution, MCMC methods draw

7 ) of the amplitudes and spectral slopes as a function of the difference in the differential spectral

dependent samples from Markov chains. The predomi-
nant MCMC algorithm is the Metropolis-Hastings (MH)
algorithm. It is based on the rejection or acceptance of a
candidate parameter #’ where the acceptance probability
is given by likelihood ratio between the candidate and
the previously sampled parameter value. Thus, any
move into the direction of higher likelihood (towards
the MLE) will always be accepted, but because downhill
moves still have a chance to be accepted, the MH
algorithm avoids getting stuck in local maxima.

Metropolis-Hastings algorithm
e Randomly select an initial point 6(%).

e At the n-th iteration:

— Generation of candidate 6’ with the proposal
distribution g(#'|6(™))
— Calculation of acceptance probability

p(d|0") p(6(n))
p(d[e)) p(0)

— Accept/Reject

a = min [1,

* Generation of a uniform random number
u on [0,1]

x if u < «, accept the candidate:
pn+l) — g/

x if u > a, reject the candidate:
g(n+1) — g(n)

Note that the proposal distribution g is often chosen to be
Gaussian centered around the current parameter value.



While executing the algorithm, we can monitor the ac-
ceptance rate, the proportion of candidates that were ac-
cepted. On the one hand, if this number is too close to
0 then the algorithm makes large moves into the tails
of the posterior distribution which have low acceptance
probability causing the chain to stay at one value for a
long time. On the other hand, a high acceptance rate
indicates that the chain makes only small moves causing
slow mixing. To control the mixing of the Markov chain
we can introduce an adaptive step-size parameter that
controls the size of the moves; this is the standard de-
viation in case of a univariate Gaussian proposal or the
covariance matrix of a multivariate Gaussian proposal.
As the iterations of the algorithm proceed, it is possible
to dynamically modify the step-size to improve the con-
vergence of the chain. Intuitively, an optimal proposal
would be as close to the posterior distribution as pos-
sible. Using a Gaussian proposal, its covariance matrix
should thus be as close to the covariance matrix of the
posterior distribution. Since the previous MCMC sam-
ples can be used to provide a consistent estimate of the
covariance matrix, this estimate can be used to adapt the
proposal on the fly, as detailed in III C.

C. Adaptive Markov chain Monte-Carlo

We use the version of the Adaptive Metropolis MCMC
from Robert and Rosenthal [56]. For a p-dimensional
MCMC we can perform the Metropolis-Hasting with a
proposal density g, (.|0™) in iteration n defined by a
mixture of Gaussian proposals:

0 (16) =(1 = ) N (mn), (2'28)22n>

n 6N<9("), (O.l)zIp>

with 3,, the current empirical estimate of the covariance
matrix, 8 = 0.25 a constant, p the dimensionality of the
parameter space, N the multi-normal distribution and
I, the p x p identity matrix. We chose to compute an
estimate X, of the covariance matrix using the last hun-
dred samples of the chain. The chain generated from an
adaptive algorithm is not Markovian but the diminish-
ing adaptation condition ensures ergodicity and thus the
convergence to the stationary distribution.

IV. DATA FROM THE MOCK LISA DATA
CHALLENGE

A. Noise and SGWB energy spectral density of the
MLDC

The mock LISA data challenge (MLDC) provides sim-
ulations of the signal and noise of LISA in the approx-

imation of one arm. We use the (X,Y,Z) time se-
ries of the LD(C1-6 data set from the MLDC webpage
[17]. These are simulations of a binary produced SGWB

of the form Qaw(f) = Qo3 (f::f) for frep = 25
Hz with a slope a = % and an amplitude of Q5,3 =
3.55x 1072 (at 25 Hz)). Fig. 2 and 3 display the gravita-
tional wave periodograms for the (X,Y,Z) and (A, E,T)
channels.

We can transform the X, Y, Z time series to the A, E, T
channels according to:

A=L(z-X)
E=-L1(X-2Y+2) (22)
T=-"(X+Y+2).

sk

3

This linear combination of the original channels used
to define T' has been shown to be insensitive to the
gravitational-wave signal. While this is not exactly true,
we will maintain that assumption for this analysis. As
such, T' can be regarded as a null channel which contains
mainly only noise, while channels A and E are the science
channels, containing the gravitational-wave signal in the
presence of noise [57]. In the following we focus on the
science channels, A and E.

In this study we use a simplified model where we as-
sume equal noise levels on each spacecraft. According to
Adams and Cornish [15] one can use a more complicated
model that allowed for different noise levels. Future work
will address this, plus the situation where the slope pa-
rameters for the noise can also vary. These parameters
could then also be estimated by Bayesian parameter es-
timation methods.

For the following studies we chose to restrict the fre-
quency band to correspond to the LISA band [107°,1]
Hz. The power spectral density of the channel T, S,
can be described as (according to [17]):

Sr(x) =16S0,(z) (1 — cos(x)) sin®(z)

+ 1288, (z) sin?(2) sin® (g) (23)

with x = % f, Sop is the optical metrology system noise
and Spp, is the acceleration and displacement noise. The
LISA noise budget is:

SOp(f) — NOptL2 (1 + (8 H}HZ>4) (24)
SPm(f) = NAchQSAcc(f)SDis(f)

with

Sacelh) = (14 (269)) (14 )

) (25)
Spis(f) = (2nf) ™" (22L)

The two free parameters, Nop: and Nac., are the re-
spective levels of the two principal sources of noise in
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the LISA noise budget. In the LISA Science Require-
ment Document [33], the level of the LISA noise accel-
eration is Nee = 1.44 x 1078 s74Hz ™! and the upper
limit on the level of the optical metrology system noise
is Nopt = 3.6 x 10747 Hz~'. From the modeling of the
strain requirements of the mission performance require-
ments, this is a maximisation of the noise level. The LISA
model corresponds to the understanding of the physical
effects of the system for the LISA design. The two noise
sources correspond to estimates of different physical ef-
fects. We clearly do not yet have the true values for
these physical effects; we presently only have estimates
from experiments. The LISA requirements fixed the limit
of the two magnitude levels so as to respect LISA’s de-
tection performance. In Fig. 4, the green curve is the
analytic noise model of the PSD of the channel T with
the parameters from the proposal [33]. The blue curve
is the periodogram of the Channel T of the MLDC data
(LDC1-6 SGWB signal), the square magnitude of the
Fourier coefficients, of the simulated T' channel MLDC
(see Eq. 22) data. Assuming the functional form of the
noise PSD in channel T is given by (23), we can use the
A-MCMC (see Sec. III) to fit the LISA Noise Parame-
ters Nopt and Nac. The priors for the two components
are flat log-uniform distributions and we specify g = 0.01
and N = 200000 in the A-MCMC algorithm. The orange
curve in Fig. 4 is the estimated PSD based on Eq 23 with
Nopt and Ny replaced by the posterior means of sam-
ples obtained via the A-MCMC, given in Eq 26. The 1 o
error bands are overlaid in grey. Fig. 5 shows the corner
plot for the posterior samples of the two parameters, and

the empirical posterior distributions seem to be well ap-
proximated by Gaussian distributions. It shows that this
model yields a reasonable fit to the simulated channel T’
data. We acknowledge that this is a rigid noise model for
the purpose of this study, and future work will include
more realistic scenarios: allowing for different noise levels
on each spacecraft [15], allowing for small modifications
of the transfer functions, and allowing for small modifi-
cations in the spectral slopes of the noise components.
The posterior means of the two noise parameters are:

Nacc =T7.08 x 10751 +4 x 10753 S*4HZ*1 (26)
Nopt = 1.91 x 10747 +4 x 1074 Hz ™!

The gravitational-wave energy spectral density Qgw can
be defined as

w2 .PSD
Qaw,1(f) = 32H§ f? RI(If()f)

for I = A, E, where Hy the Hubble-Lematre constant
(Hy ~ 2.175 x 1078 Hz), PSD; the power spectral den-
sity of the channel I and R; the response function. An
asymptotically unbiased estimate of PSDy is given by
the periodogram L,(f) = Y8, |d(fi)[? = 5 (fe)d1 (fu)-

We use two different response functions for the MLDC
data, one system of equations for the noiseless data
Eq. 28, and one for the noisy data Eq. 30

(27)

Ra(f) = Raa(f) ¥
Rp(f) = Rep(f)*
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pos

and Eq. 26.
with Ry given in [14], f, = 5%, and CSu()L 36 f ., 2
2l 2 Ri(f) = T30S, {EESIH (f/f*)} (30)
e - -1 () [545 (1)
L85 (i>4 178273 (i)ﬁ where Si(f) = 8sin(£) [4511(1 + cos (£) +
6048 \ f. 15667200 \ f.
19121 < ! )8 cos? (%)) + S, (2 + cos (;cf:) )] defined in [57] with
2476656000 \ f,



e N2
s = (1 (5)7) 8 = ane
and f. = 5-7. The energy spectral density of the

astrophysical background from the MLDC is a power
law according to the documentation of the LISA Data
Challenge Manual [17] given by Qaw(f) = 3.55 x

2/3
1079 (25sz)

periodogram (AZGWJ(f) = RotF)
blue and for channel E in orange. The green curve is
the power law model with the parameters (Qq, fref, @)

with Qaw = Qu (75) from the MLDC documen-
tation. The data at high frequency cannot be used

because the transformation of the Egs. 28 and 30 are

valid for low frequency. We use the frequency band
[2.15 x 1075,9.98 x 1073] Hz.

Fig. 6 and Fig. 7 show the energy

B. Uncertainty of the Cosmological Component g
from the Adaptive Markov chains Monte Carlo
(A-MCMC)

According to the Sec. IT B, one can calculate the uncer-
tainty of the estimation of parameter 2 (the cosmolog-
ical amplitude of the Spectral Energy Density), namely
AQQO To estimate this quantity from the Fisher Informa-
tlon we use the formulae given in Sec. IT and the inverse

matrix of the Fisher Information (blue line in Fig. 11).

Not surprisingly we can predict a better separability
(uncertainty is less) for high values of the cosmological
background. The uncertainty can be calculated indepen-

10916(Nacc) = =50.15+399

I

logao(Nopt) = —46.72+8:31

log10(Nopt)

l0g10(Nacc)

log10(Nopt)

FIG. 5. Corner plot of the A-MCMC of the power spectral
density of the Channel T of the MLDC dataset, fitting of
the two magnitudes of the LISA noise model from the pro-
posal [33], the vertical dash lines on the posterior distribution
represent from left to right the quantiles [16%, 50%, 84%).

dently with the A-MCMC calculation:

AQQ - O'QO
Q  Q

(31)

This ratio is calculated and represented as the scatter
points on Fig. 11. We can also estimate the error of the
uncertainty estimation (see Eq. 32) from the estimation
of the full width at half maximum of the posteriors dis-
tributions. The uncertainties (from the A-MCMC) are
given by:

Errory = A 79

0.9 (32)
aQ
Error_ = 7|QO+(SQO|

V. STOCHASTIC GRAVITATIONAL WAVE
BACKGROUND FITTING WITH ADAPTIVE
MARKOV CHAIN MONTE-CARLO USING THE
CHANNEL T AND THE TWO SCIENCE
CHANNELS A AND FE

In this section we consider the null channel 7" and the
science channels A and E. We assume that the obser-
vation of the noise in channel T informs us of the noise
in channels A and E. We follow the formalism of Smith
and Caldwell [60].

We can simulate the noise and SGWB in frequency
domain.

PSDs =854+ Ny

PSDg = Sg + Ng (33)
PSDy = Ny
Qawal( =)
With Sa(f) = Sp(f) = 34 w fref = 25 Hz,
the noise components Na(f) = Ng(f) and Np(f) can be
written as:
Ny=N; — Ny

{ Nr = Ny +2N, (34)

with

Q

—
~
~—

~

*ﬁ
S~—"
o

N(f) = <4SS(f) +38 (1+cos2 (fi)) S
No(f) = = (25,(f) + 85a(f)) cos (£) | (f

W(f)=1- e 7 and

Ss(f) = NPos )
Salf) = G255 (1 + (e ) (36)

The LISA noise budget is given from the LISA Science
Requirement Document [33]. To create the data for
our example, we use an acceleration noise of Ngee =
1.44 x 10~*® s~*Hz ! and the optical path-length fluc-
tuation Np,s = 3.6 x 10~4! Hz~!. We can estimate
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the MLDC with the noisy channel.

the magnitude of the noise from the channel 7. One
should note the importance of using the channel T to
estimate the noise in the channels A and FE, as it is
then possible to parameterize an A-MCMC of six param-
eters, 0 = (Nace, Npos, Q2/3, 23,0, ap). We can also
calculate the propagation of uncertainties for the power
spectral densities with the partial derivative method.
As such, we can estimate the error on the measure-
ment realized by a fit of the parameters 6, dPSD; =

\/Ze (%)zdm. We then obtain for two SGWBs
2/3 0
Qastro(f) = QQ/3 (%) 3 Qcosmo(f) - QO ( L ) )

f'ref

dPSD; = [N,(o, ANaee, )% + N1(dNpos, 0, f)?

+ SI(QQ/g,@g/g, QO7a07 f)Q(ng + dQ%/S

+1In (fif>2 (98/da3)s + diagm i

1/2
APSDy = [N1(0, dNces £)? + Nr(dNyos, 0, f)?]

(37)
with {dNaCCa de087 anstrm daastro: dQcosmo; dacosmo}
being the positive error estimations of the parameters;
I = A E. We take 1 o for the posterior distributions.

We can also estimate the error of the power spectral
density fit using the MCMC chains to produce the error.
With the MCMC chains we can calculate a histogram
of PSD;(f) at each frequency. For each histogram we
compute the 68% credible band. This method is similar
to that of BayesWave; see Figure 7 of [45]. The two
methods produce the same error bands, but we need to
assume that the posterior distributions are Gaussian.
The quadratic sum of partial errors calculation yields
a good estimation of error from MCMC chains if the
posterior distributions of the chains are Gaussian.

We can calculate the covariance matrix:
< PSD(f), PSD,(f) >=Cr (0, f) (38)
with I,J = [A,E,T]. As such, it is possible to pa-

rameterize an A-MCMC with six parameters: 6 =
(Nace, Npos, Qawa, @). We can calculate the covariance

matrix of (dA(f),JE(f)7JT(f))

Sa+Ns 0 0
co,f) = 0 Sg+Ng 0 (39)
0 0 Nr
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(Sa —|—NA)71 0 0
O, =K 0 (Se+Ng)~' 0
0 0 Ny?
(10)
and K(fi) = det(C) = (SA+NA)(;‘E+NE)NT‘ We use the

definition of the Whittle likelihood from [57], and the
log-likelihood is:

N
L£(d|f) = *%Z [ > (\/dz(f) ™, dJ(f))
k=0 L1I,J=[A,E,T)
+1n (27rK(fk))]
N a2 PE: e
kz Sa+ Ny SE +ENE Nij;

+In (87%(Sa + NA)(Sp + NE)NT)]

(41)
1 ac ac
F,=-Tr(Cc!
b =5 r(C 90, aab>
N [0(Sa+Na) 8(Sa+Na)
:Z 00, 00y
k_ol 2(Sa + Na)? (42)
9(Sg+Ng) 0(Se+NE) ONT ONT
+ 69(,, 891, 800, 891,
2(SE + Ng)? N2 ]

If we have the channel T as zero and we consider the two
science channels A and E as independent, we obtain:

N 9S1(f)+Ni(f) 0S1(f)+Ni(f)
00 o

32X s

IAElcO

We have a comparable result given in [60], the inverse of
the Fisher Information matrix on the diagonal gives the
uncertainties of the estimation of the parameters. We see
the importance to estimate the "noise” channel T" for the
estimation of the SGWB.

In Fig. 8 we display the influence of the precision on
the fitted parameter versus the value of the cosmolog-
ical background €. Obviously, we understand that if
the astrophysical background is large it will be harder
to measure the cosmological background with high pre-
cision.

We have also conducted an A-MCMC study with 6
parameters: 2 for the noise channel T, 2 for the astro-
physical background, and 2 for the cosmological back-
ground. We use the data from the two science channels,
A and E, along with channel T. Given the magnitude
level of the LISA noise budget from the LISA Science Re-
quirements Document [33], we use the acceleration noise
Nyee = 1.44x 10748 s~4Hz ! and the optical path-length
fluctuation Npos = 3.6 x 1074 Hz~!. We make the
assumption that the data in Channel A and T are in-
dependent. The noise in both channels depend on the
two parameters Npos and Ng... We aim to estimate the
SGWB and noise parameters simultaneously using data
from both channels A, E and T via our A-MCMC algo-
rithm. Using the additional data from channel T" will
yield a more efficient estimation procedure and a gain
in precision of parameter estimates than using the data
from channels A, E only. For four different magnitudes
of the astrophysical SGWB, we conduct A-MCMC runs
with different values for the amplitude of the cosmolog-
ical background; see Table I). The A-MCMC is charac-
terized by § = 0.01, N = 4 000 000 (see Section III C)
and we use 2 000 samples to estimate the co-variance
matrix. We use log uniform priors with 10 magnitude



intervals for the 2 noise channel parameters [Nopt, Nacc]
and for the two background amplitudes [Qcosmo, Qastrol,
a uniform prior for the slope between —0.4 and 0.4 for the
cosmological slope Qeosmo, and a uniform prior between
0.27 and 1.07 for the astrophysical slope agstro-

We note for comparison purposes the results given
in [60] where the diagonal elements of the inverse of the
Fisher Information F,, provide the uncertainties of the
respective parameter estimates. The Fisher Information
Matrix is a Block matrix. Indeed, we have a 6 x 6 matrix,
assuming the parameters to be independent. We can thus
distinguish two independent types, the first coming from
derivatives related to the noise of LISA this generates a
2 x 2 matrix, Nax2. The second type corresponds to a
4 x 4 matrix giving the derivatives linked to the SGWB,
S4x4. This second matrix is the same as the one calcu-
lated in the Sec. IIA. So we have:
Nayo| O ]

(44)

Fab:[ 0 | Sixa

In Fig. 9, the blue line is the data for 6 =
(Naces Npos, Qawa, @) = (1.44 x 10748 s74Hz !, 3.6 x

1074 Hz ™', 3.55 x 1079, 2

with the LISA noise model of the Eq. 33 with a SGWB
from binaries origin. The green line is the LISA noise
model from [60]. The A-MCMC is characterized by
8 =0.01, N =1 000 000 (see Sec. III C) and we use 2
000 samples to estimate the co-variance matrix. We use
log uniform priors with 10 magnitude intervals for the
three first parameters and a uniform prior for the slope
between —% and %. The orange line in Fig. 9 displays
the result of the A-MCMC, and in grey the error for 1 o.
Fig. 10 displays the corner plot from the A-MCMC; the
posterior distributions are well approximated by Gaus-
sian distributions. We have evidence of good fits. The
estimation of the noise level magnitudes from the para-
metric estimation yields a positive result because we have
the possibility to fit the background with the noise level
throughout the frequency domain; it is also possible to
have a very efficient estimation of the different noise com-
ponents thanks to the signal 7" being devoid of a science
signal source.

The advantage of 2 science channels, A and E, as op-
posed to one, A or E, is a factor of v/2 for the error
estimation, and hence the overall sensitivity. Indeed, the
error of the cosmological amplitude is given by the co-
efficient (g, Qg) of the square root of the inverse of the
Fisher Information matrix. We have for one channel (A4

or E), AQoa or ) = /FQ_ol,Qo(A or )’ For a combina-

tion of A and E we have AQqy(4 and By = A4 orm) o

. The data are simulated

cause. If we modeled the spectrum of the two Channel A
and F as the same think we would have Fa,b(A and E) =

2F“’«xb(A or E)*
Note that in the LISA observing band we have a ratio
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of gestze — 5.29 at 1 mHz and 1.15 at 0.1 mHz. The im-
portance in being able to distinguish between two back-
grounds is not the absolute amplitude of the background,
but the ratio between the two backgrounds’ magnitudes
%. For a smaller ratio we can fit the cosmologi-
cal background with less uncertainty. From Fig. 11, we
can separate the cosmological background from the astro-
physical background with a magnitude ratio of 4610 with
Qastro = 3.55 x 1077 and a reference frequency of 25 Hz.
Here we have a fitting uncertainty of 50%, which is the
limit for making a measurement. In fact, we can consider
making a measurement of the cosmological background
if the uncertainty is less than 50%; note the dashed line
in Fig. 11. This example corresponds to a cosmologi-
cal background of Qcosme = 7.7 x 10713 In Fig. 11 the
same study is presented with four values for the astro-
physical background: Qugi0 = 3.55 x 1078, 3.55 x 1079,
1.8 x 1072 and 3.55 x 10719, The same ratio produces
similar results for different inputs of astrophysical am-
plitude. We obtain respectively the limits to contrain-
ing the cosmological background: Qcosmo = 7.8 x 10712,
7.8x10713,3.6x107 3 and 7.6 x 10~ 4. The value of these
A-MCMC results are given in the Table I. Figs. 12 and 13
present respective examples of corner plots and posterior
distributions for a run of a 6 parameter A-MCMC with
QGW,Astro = 3.55 x 1078 and QGW,Cosmo =1x 10710,
QGW,Astro =3.55 x 107° and QGW,Cosmo =5x 10712,

VI. CONCLUSION

In this paper we present the potential for separat-
ing the spectral components of the two SGWBs with an
adaptive MCMC method. We also implement a Fisher in-
formation study, predicting the measurement uncertainty
from the A-MCMC analysis. The two independent stud-
ies produce consistent results. We obtained an uncer-
tainty around 1 for the low level (Qp = 1 x 10712) and
around 0.03 for the high level (9 = 1 x 10~%). For ex-
ample, with an astrophysical background of Qgw, astro =
3.55 x 107 55k
Qew,cosmo = 7.6 X 1013 can be detected. This cor-
responds to an uncertainty AQS?)U of 0.5 (dashed line in
the Fig. 11). The study presented in Sec. IV B displays
the possibility to fit the parametric components of the
SGWB.

In the Sec. V we discussed and demonstrated the pos-
sibility to analyze the noise’ channel (the T' channel) to
fit the noise parameters of the LISA noise budget. The
advantage of this method is to increase the efficiency of
the parameter estimates and utilize the total frequency
domain [1 x 107° Hz, 1 Hz]. We also apply a Fisher in-
formation study to the LISA noise. According to the
Fig. 11 we show the possibility to separate the two SG-
WBs with a spectral separation with a factor of 4610
(for frey = 25Hz). Using a realistic range for the pre-
dicted magnitude of the astrophysically produced SGWB
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FIG. 9. Power spectral density of the channels A, E and T from the LISA noise model [60] and an astrophysical SGWB
(Q2/3 = 3.55 x 1072 at 25 Hz). The figures show the power spectral densities: channel A top, F middle, and T bottom.
The parameters are from the proposal [33]. The orange line is the LISA noise model from [60], in green the values from the

A-MCMC, and in grey the 1 o error.

the methods demonstrated in this paper show that it is
possible for LISA to also a observe a cosmologically pro-
duced SGWB in the range of Qgw,cosmo = 1 X 10712 to
1 x 10713,

We note some limitations in this study and give some
expectations for future work. In this paper we assume no
difference in the noise levels on each spacecraft. Accord-

ing to [15] it is possible to include such a noise variation
for each spacecraft. We could also include small modifi-
cations of the transfer functions Rj, and allow for some
modification of the the spectral slopes of the noise com-
ponents. We can have a varying slope but with a narrow
Gaussian prior centered on the theoretical value. It will
be important to address more detailed models of both
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FIG. 10. Corner plot for the A-MCMC using the channels A, E and 7. The results are for the two magnitudes for the
LISA noise model from the proposal [33], and a single SGWB (amplitude and spectral slope). The vertical dashed lines on
the posterior distribution represent from left to right the quantiles [16%, 50%, 84%]. The true values for the parameters are

0 = (Naces Nros, Qawa, @) = (1.44 x 10718 s74Hz ™!, 3.6 x 10~* Hz ™!, 3.55 x 107?, %)

the LISA noise and the astrophysical and cosmological
contributions to the stochastic background.
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Appendix A: Signal Separation Literature Summary

In this Appendix we present in tabular form a list of
various studies that have been conducted in order to sep-
arate different SGWBs and detector noise sources. The
literature is rich in this subject.

1. SGWB studies for LIGO/Virgo

Table II presents a summary of the literature address-
ing SGWB signal separation for LIGO and Virgo.

2. SGWRB studies in LISA band

Table III presents a summary of the literature address-
ing SGWB signal separation for LISA.

3. SGWB studies for the future third generation
detectors

Table IV presents a summary of the literature ad-
dressing SGWB signal separation for third generation
gravitational-wave detectors.
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Input Values of the A-MCMC errors (o)

% Qastro 355 x 1078 355 x107% 1.8x107% 355x10719] 3.55x107% 355x107° 1.8x107° 3.55x1071°
1.x107% [1.011 x 107% 9.982 x 1077 9.987 x 1077 9.992 x 1077 [3.395 x 10~V 3.057 x 10~ 0 3.106 x 10~ % 2.588 x 10~ °
5.x 1072 |5.014 x 1072 4.971 x 1072 5.007 x 1072 4.960 x 1072 |1.754 x 10710 1.464 x 1071° 1.506 x 1071° 1.462 x 107 °
2.x 1072 2.005%x 1072 1.984 x 107 2.007 x 1072 2.083 x 107° |7.481 x 107! 5.600 x 107! 6.588 x 107** 5.492 x 107!
1.x 107 19.972 x 1071% 1.008 x 1077 1.046 x 10™° 1.046 x 1072 |4.480 x 107! 2.828 x 10! 3.196 x 10~ 3.196 x 10~ !
5.%x 10710 [4.965 x 10710 4.975 x 1071° 5.076 x 1071° 4.956 x 1071°]2.529 x 107! 1.497 x 10~ 1.703 x 10~ 1.385 x 10~ !*
2.%x 10710 [2.002 x 107° 1.984 x 107° 1.976 x 107*° 1.976 x 1071°]1.394 x 107! 6.647 x 10~ 8.251 x 1072 5.157 x 10~ *
1.x 10719 ]9.981 x 107! 1.065 x 1071 9.941 x 10~ 1.003 x 1071°/9.228 x 1072 5.322 x 102 4.050 x 1072 3.048 x 1072
5.x 107 |5.013 x 107 5.057 x 107 5.058 x 107 5.163 x 1071 |7.078 x 107! 5.171 x 10712 2.879 x 1072 1.706 x 10~ 2
2.x 107 [2.006 x 107 2.014 x 107 1.989 x 107! 2.016 x 10711 [5.389 x 107 '2 2.558 x 1072 1.130 x 102 8.457 x 10~ '3
1.x 107 [1.001 x 107! 1.008 x 107 1.002 x 107 1.026 x 107 |4.269 x 1072 1.406 x 1072 5.902 x 1073 4.472 x 10713
5.%x 1072 [5.011 x 1072 4.959 x 1072 5.001 x 107!2 5.024 x 107'?[3.583 x 107 '2 9.843 x 1073 4.526 x 10~ 3 2.556 x 10~'3
2.%x 10712 2,196 x 1072 1.952 x 1072 1.948 x 1072 1.985 x 107 '2[3.001 x 107 '2 7.460 x 1073 3.190 x 10~*3 1.433 x 1073
1.x 1072 [1.019 x 107'2 1.064 x 1072 9.936 x 1073 1.013 x 1072|2.155 x 1072 5.119 x 103 2.233 x 1073 1.040 x 10713
1.x 107138 9.891 x 107 1.040 x 1073 9.936 x 10~ 2.002 x 1073 1.036 x 1073 4.054 x 10~

TABLE I. Results of the A-MCMC runs with 6 parameters (2 for the LISA noise, 2 for the astrophysical background and 2 for
the cosmological background). We use the data from the A, E and T channels. The four columns of values correspond to the
output of 13 A-MCMC runs. The study is conducted using 4 values for the amplitude of the astrophysical background after 4
years of observation: 3.55 x 1078, 3.55 x 107?, 1.8 x 1072 and 3.55 x 107'°. And respectively, the same for the error columns.
The error estimations come from the posteriors distributions.
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Fisher Information study (displayed with lines), and the parametric estimation from the A-MCMC (with the scatter points)
for the channel A and E, with the noise channel T. We conduct the study with different value for the astrophysical magnitude
Qustro. There are error bars for the four sets of A-MCMC runs; see Eq. 32. The horizontal dashed line represents the error level
of 50%. This is the limit fixed to be where it is possible to measure the cosmological SGWB. The semi-dashed line represents

the 10% error.
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FIG. 12. Corner plot giving the A-MCMC generated posterior distributions for a run with 6 parameters with Qaw, astro =
3.55 x 1078 and Qew,cosmo = 1 X 107!, The vertical dashed lines on the posterior distributions represent from left to right
the quantiles [16%, 50%, 84%]. This is from a run of using the data from channels A, E and T. These results are presented
in Table I and also in Fig. 11.
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FIG. 13. Corner plot giving the A-MCMC generated posterior distributions for a run of 6 parameters, with Qgw,astro =
3.55 x 1072 and Qaw.cosmo = 5 X 1072, The vertical dashed lines on the posterior distribution represent from left to right

the quantiles [16%, 50%, 84%]. This is from a run using the data from channels A, E and T. These results are presented in
Table I, and also in Fig. 11.
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Reference Goal Method Perfomance Limitations and
applications
7.-C. Chen et. al Astrophysical Estimation of Qo3 = 447575 x The error on the lo-
[25] SGWB  from  bi- the SGWB from 1072, frey = 3 cal merger rate is
nary black holes and LIGO/Virgo obser- mHz) important
binary neutrons stars vations; local merger
rate R
B. Abbott et. al. [2] Astrophysical Estimation of Qo3 = L1737 x The error on the
SGWB from  bi- the SGWB from 10712 fres =25 Hz local merge rate is
nary black holes and LIGO/Virgo obser- important

binary neutrons stars

vations  with the
local merger rate
R estimation from

GW150914
B. Abbott et. al. [4, 3 backgrounds con- Results from cross- Q% < 5.8 x 1077 No correlated noise
10] sidered, power laws correlation analysis Qa3 < 3.4 x 1079, due to the mag-
a=0, %, 3 with Advanced fref =25 Hz netic Schumann
LIGO O3 combined resonances
O1 and O1 results
A. Parida et. al. [49] Separate different Component sep- Simulation  demon- Requires a negligible

isotropic SGWBs for
LIGO

aration of power
laws avoiding use of
MCMC methods

stration  for  Ad-
vanced LIGO target
sensitivity: Qo =
(1 &+ 0.676) x 1075,
1.719) x 107%; Q3 =
(1 + 3.284) x 1078;
fres = 100 Hz.

amount of computa-
tion and be simple to
apply to real data

C. Ungarelli and A. Fit broken power-law Filters based on Achieved fitting fac- Small number of fil-
Vecchio [62] SGWB with data broken power-law tor greater than 97% ters needed to mea-
from Earth-based spectra sure SGWB in the
detectors first generation laser
interferometers

R. Smith and E. To detect astrophys- Bayesian parame- Less data needed to Gives a  unified
Thrane [59] ical SGWB  with ter estimation to observe background, method for a search
LIGO/Virgo detect unresolved as opposed to tra- for resolvable signals
binary black hole ditional correlation and a SGWB of

background based search unresolvable signals
S. Biscoveanu et. al. To detect a pri- Use method of [59]; Measurement of a Limitations from the

18]

mordial SGWB in
the presence of un-
resoved binary black
holes in LIGO/Virgo
band

individual short time
segments analyzed

simulated power law:
0.08

log Qo = —5.9675:9%,

a=049"018

precision of the com-
pact binary signal
waveforms, and non-
Gaussian noise

E. Thrane et. al. [61]

SGWB measurement
in the context of
correlated magnetic
noise in LIGO/Virgo
band.

Correlated noise be-
tween detectors cre-
ates a systematic er-
ror in cross correla-
tion study

Measurement of
the correlated noise
from the Schumann
resonances

Possibility to use
Wiener Filter to sub-
tract the correlation.

P. M. Meyers et. al.
(48]

LIGO/Virgo SGWB
measurement in the
context of correlated
magnetic noise

Parameter  estima-
tion of the correlated
magnetic noise and
SGWB

Demonstration with
Qz/g ~ 3 X 10_9,
frey = 25 Hz and re-
alistic magnetic cou-

pling in LIGO/Virgo

An alternative to
Wiener filtering

TABLE II. Methods to measure and to separate SGWBs for LIGO/Virgo.
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Reference Goal Method Perfomance Limitations and
applications
N. J. Cornish and S. Observe cosmic Strategies for indi- LISA could detect a The LISA sensibility

L. Larson [29]

SGWB with astro-
physical foregrounds

vidual, or two LISA
interferometers using
cross-correlation

cosmic SGWB at the
level of Qaw (f)h3 >
7x 10712

is derived for LISA
arm-length of L =
5 x 10°

M. Pieroni and E.
Barauss [51]

Extraction of the
cosmological SGWB

Principal component
analysis to model

LISA can measure a
cosmological SGWB

A robust technique
that can be extended

and astrophysical and extract SGWBs of Qp = 6 x 107* to different detectors
foreground with with SNR = 31
LISA noise
C. Caprini et. al. Observe SGWBs Reconstruction of Detects a power law Signal and noise are
[23] with LISA SGWB as a function of Qa3 = 5.4x10712 assumed to be sta-
of frequency for frey = 0.001 Hgz, tionary for all times.
simple and broken with SNR=601.
power-laws
R. Flauger et. al Observe SGWBs Reconstruction of Improvement of /2 Will be expanded to

[35]

with LISA, building
on the work of [23]

the spectral shape
of a SGWB with
the LISA A, E,T
channels

over the method of
(23]

account for unequal
arm-lengths for LISA
constellation.

N. Karnesis et. al.
[42]

Fast methodology
to assess LISA
detectability of a
stationary, Gaussian,
and isotropic SGWB

Testing the Radler
simulated dataset
from the LISA Data
Challenge

Successful ~ demon-
stration for
Qa/5(f) =
3.6 x 107 (5=L)""°

Analysis done with
simple LISA noise
model

TABLE III. Methods to measure and to separate SGWBs for LISA

Reference Goal Method Perfomance Limitation and
application
T. Regimbau et. Observing a  pri- The data will be Possible  limit  of Potential limita-
al. [54] mordial SGWB cleaned of the direct Qew ~ 107" after 5 tion to sensitivity
below the compact observations of bina- years of observation comes from other
binary produced ries by the third gen- with third generation astrophysical  grav-
background eration detectors detectors [53, 55] itational wave
emission.

A. Sharma and J.
Harms [58]

Cosmological SGWB
with third-generation
detectors in the pres-
ence of an astrophys-
ical foreground

Matched filtering
and residual study
for the astrophysi-
cal foreground and
cross-correlation for
cosmological SGWB

Cosmological SGWB
(ﬂat) QGW = 2 X
1072 observed with
SNR = 5.2 after 1.3
years

Limitation for cos-
mological SGWB is
instrumental  noise
and un-removed
astrophysical sources

K. Martinovic et.
al. [46]

Astrophysical (com-
pact binary coales-
cence) and cosmolog-
ical SGWB (cosmic
strings and first order
phase transitions)

Bayesian parameter
estimation for simul-
taneous estimation
of astrophysical and
cosmological SGWB
with third generation
detectors

Possible limit at 25
Hz of Qaw = 2.2 X
10™'3 (broken power-
law model for pri-
mordial SGWB) and
Qew = 4.5. x 1071
for cosmic strings

Methods will be ap-
plicable for LISA

TABLE IV. Methods to measure and to separate SGWBs for the third generation detectors.
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