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Abstract

We introduce simplified models for enhancements in the matter power spectrum at small scales
and study their implications for dark matter substructure and gravitational observables. These
models capture the salient aspects of a variety of early universe scenarios that predict enhanced
small-scale structure, such as axion-like particle dark matter, light vector dark matter, and epochs
of early matter domination. We use a model-independent, semi-analytic treatment to map bumps
in the matter power spectrum to early-forming sub-solar mass dark matter halos and estimate
their evolution, disruption, and contribution to substructure of clusters and galaxies at late times.
We discuss the sensitivity of gravitational observables, including pulsar timing arrays and caustic
microlensing, to both the presence of bumps in the power spectrum and variations in their basic

properties.



I. INTRODUCTION

Many different microphysical models can produce features in the matter power spectrum
(MPS) in the early universe. These features correspond to enhancement or suppression of
the MPS on given scales relative to the predictions of the minimal Cold Dark Matter (CDM)
scenario. Sufficiently pronounced deviations on large enough scales can lead to observable
signatures in the late-time matter distribution.

In this paper, we study simplified models for modifications of the MPS on scales well
below the baryon Jeans length. The resulting dark matter (DM) substructure (which we
refer to interchangeably as microhalos, minihalos or simply “clumps”) form at high redshift;
as a result, they are significantly less massive than small-scale structure often considered in
the literature (e.g., dwarf and satellite galaxies up to 10'°M, in mass). Instead, our focus
is on wvery small-scale, non-compact structures orders of magnitude lighter than our Sun,
which do not host baryonic objects such as stars.

We consider a range of localized features in the small-scale MPS and study the resulting
observational signatures in the late-time universe; we focus on signatures that depend only
on the gravitational properties of the DM distribution. Our aim is to develop a simple
procedure to approximately predict the properties of small-scale DM substructure from
the broad features of an underlying MPS, and to illustrate the sensitivity of gravitational
observation techniques in a model-independent way.

Microphysical models that yield bump-like features can be classified according to whether
fluctuations in the density contrast begin with small initial amplitudes, and features are
created or magnified over time in the process of cosmic expansion, or whether fluctuations
begin with large initial amplitudes. Example models in the first class include standard dark
matter models with a modified expansion history such that primordial matter perturbations
experience a period of enhanced growth. Studies of models of this type have addressed the
impact on small scale structure for WIMP DM candidates [1-3], ALPs/axions [4-6], hidden
sector DM [7-11], and others. Models in the second class do not rely on large alterations to
the expansion history. Examples include vector DM from inflationary fluctuations [12-15],
ALPs/axions with post-inflationary U(1)pq breaking [16-19], ALPs/axions with parametric
resonance enhancement [20], large semi-diffuse solitons [21], and others.

Given this profusion of models that lead to similar phenomenology in small-scale struc-
ture, we argue for a simplified model-style approach. This approach allows us to abstract

away the microphysics and detailed dependence on any specific dark matter model, and



study instead a series of simple, few-parameter modifications to the matter power spectrum
which efficiently and accurately capture the dominant physical effects of a broad range of
models.

One can contemplate many different modifications to the MPS. From the microphysical
point of view, one of the simplest features to generate is a bump. A bump is characterized by
a rise in the power spectrum over a range of wavenumbers k, followed by a peak (which may
be narrow or broad), and finally a short-distance cutoff at higher k. The properties of both
the rising (smaller k) and falling (larger k) sides of the bump are ultimately determined by
microphysics. For example, in models where a bump is generated by a period of modified
cosmic expansion prior to Big Bang Nucleosynthesis (BBN), the rising slope is determined
by the equation of state of the universe during the epoch of modified expansion. Both a
period of early matter domination (EMD) and kination lead to linear growth in density
perturbations [1-3, 6, 7, 10, 11, 22-24]. However, EMD leads to a rise in the (dimensionless)
power spectrum that goes like k*, while for kination the power spectrum grows like k.
The largest scale that inherits this enhanced growth—i.e., the location of the bump—is
determined by other aspects of the microphysics, for example, the scale of reheating. On
the small-scale side, the short-distance cutoff can be associated with a free-streaming scale,
a Jeans length, a kinetic decoupling scale, cannibal oscillations, and so on.

Observational signatures can be divided according to whether they are sensitive primarily
to the gravitational properties of DM or its other, model-dependent interactions. Examples
of non-gravitational search techniques sensitive to very small-scale DM substructure include
direct and indirect detection experiments. In particular, a number of works have explored the
possibility that enhanced DM substructure might boost the sensitivity of indirect searches for
DM annihilations [10, 24]. Examples of purely gravitational signatures include stellar [25, 26]
and caustic [27] microlensing, and pulsar timing measurements [28-34]. The latter two
techniques are especially sensitive to the diffuse clumps produced by MPS enhancements
considered in this work. These can be used to search for DM substructure in a way that is
largely independent of the underlying particle properties.

This work is organized as follows. In Sec. II we describe the semi-analytic methods we use
to predict clump formation times, masses, sizes, and densities, and their distributions, taking
as input the MPS. We study simple power-law models for MPS enhancements, capturing
the gross features of many of the particle physics models described above, and consider
both isocurvature and adiabatic primordial perturbations, which are associated with differ-

ent transfer functions. We use the Press-Schechter ansatz to determine clump properties



as a function of collapse redshift. In Sec. III we discuss the observability of microhalos
produced from MPS bumps via gravitational probes or in Earth-microhalo encounters (if a
non-gravitational coupling exists); there we briefly describe pulsar timing (recently studied
in detail in Ref. [34] in the context of MPS enhancements similar to the ones considered
here), and mainly focus on estimating caustic microlensing sensitivities and the clump-Earth
encounter rates. In Sec. IV we sketch the analysis for three example models motivated by dif-
ferent microphysical scenarios and compare with the caustic microlensing sensitivity curves.
In this section we also use the extended Press-Schechter method to estimate the subhalo
distribution of the Milky Way in each of the example scenarios. In Sec. V we summarize
and conclude, discussing in particular the limitations of our simplified analysis. A central
theme here is that we must necessarily make predictions for the DM substructure on very
non-linear scales. It is crucial to check these results using N-body simulations. Given the
prevalence of small-scale structure enhancements in microphysical models of DM, together

with the prospect of new detection capabilities, such studies are of very high interest.

II. FROM POWER SPECTRUM TO MICROHALOS

The late-time distribution of DM substructure can be estimated by evolving the pri-
mordial density field to collapse. In this paper we employ a combination of semi-analytic
techniques that enable rapid exploration of clump parameter space. Given an initial power
spectrum of DM density fluctuations, we evolve it to the non-linear regime using linear
perturbation theory. This allows us to estimate average properties of the collapsed objects,
in particular size and density, and to use the Press-Schechter formalism to determine the
halo distribution. Halo size and density are the key properties to which the observational
techniques discussed in Sec. III are sensitive.

The semi-analytic prescription outlined above glosses over the non-linear evolution of DM
clumps in the presence of baryons and their potential disruption by gravitational interactions.
The small-scale structures considered in this work are, at best, at the edge of the resolution
of state-of-the art cosmological N-body simulations. We content ourselves with simple
estimates of clump disruption in our galaxy, but emphasize that continuing numerical studies
are necessary for making more realistic projections for some astrophysical probes. (Other
probes, as discussed in Sec. III, are primarily sensitive to clumps moving freely in galaxy
clusters, and are less subject to disruptive processes.) Below we discuss the prediction of

late-time DM clump distribution in more detail.
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A. Linear Evolution

If the primordial density fluctuations of DM are smaller than unity, linear perturbation
theory can be used to evolve them forward in time. The evolution equations that follow

from covariant stress-energy conservation are [35]

0= —6+3¢ (1a)

6= —gemzw, (1b)

where dots indicate derivatives with respect to conformal time, ¢ is the Fourier-space den-
sity contrast with comoving wavenumber k, § = ik - 7 is the velocity divergence, a is the
Friedmann-Robertson-Walker (FRW) scale factor, and ¢ and 1 are the metric perturbations
in conformal Newtonian gauge.

Different microphysical realizations of DM usually have different evolution equations at
small scales (i.e., additional terms in the system above that become important for sufficiently
large k), leading to non-trivial k& dependence for k larger than some cutoff k.. For example,
in the standard WIMP case, small scales are affected by the DM coupling to SM radiation,
leading to a non-vanishing pressure. This effect leads to washout of structure on scales
smaller than the corresponding Jeans scale. In models of wave-like DM (such as axion-like
particles or vector DM), k. corresponds to the comoving Compton wavelength of the field
below which the field cannot be localized, also leading to an effective pressure term. In both
examples, power on scales k > k. is suppressed.

Away from these small scales, the evolution of a DM candidate is fully specified by its
equation of state (assumed to be constant during the epochs of interest), and therefore
Eq. (1) is universal. The small-scale effects can often be modeled using the generalized DM
framework, which modifies Eq. (1) by additional model-dependent pressure and sound speed
terms [36]. The modes of interest for structure formation first evolve through a period of
radiation domination (RD, possibly after a period of non-standard cosmology), followed by
matter domination (MD). We will consider evolution during these two phases separately.

The formal solution of Eq. (1) during radiation domination is [37]
n ’ : ,
§=Cilna+ Cy+ / [na —Inal %(k% — 3¢ — 3¢)dn’ (2)
0

where 7 is conformal time. In Newtonian gauge, perturbations are constant prior to hori-
zon entry, so C| = 0. The value of C5 depends on whether the modes are adiabatic or

isocurvature.



For adiabatic perturbations, superhorizon initial conditions give Cy = 3¢/2, so the second
and third terms are comparable; when the mode enters the horizon during radiation domi-
nation, the rapidly-decaying gravitational potentials in the third term generate a logarith-
mically growing contribution. Well after horizon entry, the solution in standard cosmology
is well-described by (see Appendix B2 of Ref. [37])

5_02+11¢1n(]2a), (3)

Qhor

where I} ~ 9.11, I, & 0.504, Gpor/deq = V/2keq/(2k), and ¢ is the initial (superhorizon) value
of the gravitational potential.! This parametrization is valid for ay, < a < deq, Where apor
is the scale factor at horizon entry of mode k and a.q is the scale factor at matter-radiation
equality (MRE).

In models with isocurvature initial conditions, C5 is not correlated with the size of grav-
itational potentials. This means that if Cy > ¢, the perturbations do not grow significantly
during RD. Note that Eq. (3) is correct in both adiabatic and isocurvature cases.

The part of the solution in Eq. (2) that is sourced by the gravitational potentials is only
valid for modes that enter during standard RD. However, the form of the late-time solution,
Eq. (3), holds even for modes that entered during a period of non-standard cosmology, albeit
with different values of Cy, I1 and I;. These parameters are usually k-dependent and can
be determined by matching the evolution of ¢ through a period of modified cosmology (and
into RD) onto the Ina and constant terms. For detailed examples of this matching, see
Refs. [1, 6, 23]. For example, if a mode has entered the horizon during a period of early
matter domination, then Cy = I1¢ = 2¢(k/k.)?/3, I, = (k./k)* [1, 6]. If a mode enters
during a period of kination, then Cy = I¢ = 3.2¢\/k/k., I = 1/k./(v/2k) [23]. In these
expressions k, is the comoving horizon size at the end of the period of modified cosmology.

Next we consider the evolution of perturbations through matter-radiation equality (MRE)
and beyond. Well after the radiation contributions to gravitational potentials have decayed,

the system in Eq. (1) can be cast as the Meszaros equation [37, 38],
” 243y o 3 5

2y(1+y)  2y(1+y)
where y = a/aeq, primes denote derivatives with respect to y, and we set the baryon density

=0, (4>

to €, = 0 for simplicity. Matching the solution of this equation in the y < 1 limit to Eq. (3)

1 While we mostly follow the notation of Ref. [37] here, note that our parameter I5 in Eq. (3) slightly differs
from that of Ref. [37], which incorporates Cs into I5. It is somewhat convenient to keep them separate
when discussing isocurvature and adiabatic perturbations in a unified way; when we consider the specific

case of adiabatic perturbations alone, we will absorb C5 into I5, in which case Iy — 0.594. See Footnote 3.
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gives

5=2
2

[CQ + ]1(?111 (4]26_3&)} U1<y) — ;1—5]1¢U2(y), (5)

Ahor

where?

2 45 2 vi+y+1
——{( +y>ln—y—2 1+y (6)

Uly)=3+y. Lly) =+ |3 Ty -1
are the growing and decaying solutions of Eq. (4). We again note that the constants Cy, I,
and I, depend on the expansion rate of the universe when the mode entered the horizon,
and can be determined by matching as described above.

In what follows we will need the autocorrelation function (§?). We write it as

2
<52> - <g) [D1230<C22> + DidzIIQL2<¢2> + 2DZ‘SODadi‘[1L<OQ¢>j| (7>

where

L=In (4126—3 feq ) (8)

Qhor

is the logarithm from Eq. (5), and we defined the growth functions:

8
Do = D,g = — —U,.
150 Ula adi Ul 45L U2 (9>
At late times,
Diso = Daai ~ aaeq (a)aeq > 1). (10)

Let us consider two limits of Eq. (7). First we take the standard case of adiabatic initial

conditions and Cy = 3¢/2. In this case, for a/ac, > 1, it is easy to see that

(6%) = D3y IY L PR, (11)
where?
L'=In <4fge—3 th) . I, — 0.594 (12)

and we related (¢?) to the curvature power spectrum
3\’ 2 k\™
P, == N= x A | — . 1
w(h) = (3) @)= x () (13)

2 The Meszaros equation (4) can be solved for a non-zero baryon fraction f;, as in Ref. [37]; we present the

fv = 0 solutions for simplicity but use f; # 0 in our numerical results.

3 I, changes because in this particular case it is convenient to absorb Cs into I». See Footnote 1.



The 2018 Planck best-fit values of the spectral index and initial amplitude of curvature
perturbations are n, = 0.965 £ 0.004 and In(10'°A,) = 3.044 + 0.014 at the pivot scale
ko = 0.05 Mpc ™' [39].

In the large isocurvature limit C5 > ¢, we instead find

=28 (3) (@ (1)

Comparing Egs. (11) and (14) we see that large isocurvature perturbations do not benefit
from the radiation driving effect or the logarithmic growth during RD. This difference can
be significant — for example, adiabatic modes that enter the horizon at T ~ MeV have
I, L = 130. During MD, the growth is linear in scale factor for both types of fluctuations.
This means that an isocurvature perturbation collapses significantly later than an adiabatic
perturbation with the same initial amplitude.

The linear theory results described above can be used to propagate an initial power
spectrum of density fluctuations (encoded in Cy and I; in concrete models) until they are
of O(1), at which point perturbation theory breaks down, signaling the onset of gravita-
tional collapse. This, however, does not mean that microhalos begin to self-gravitate at
this point. If collapse occurs during RD, the DM provides a negligible contribution to the
gravitational potential, unless that overdensity is so large that the region around it is locally
matter-dominated. This can occur in two distinct ways, corresponding to isocurvature and
adiabatic perturbations. In the isocurvature case, the initial density fluctuation can be so
large that local MRE is attained well before the global MRE. This was studied in Ref. [16]
in a spherical collapse model. Adiabatic perturbations, on the other hand, by definition
must reach collapse dynamically. Ref. [10] studied the case where this occurs during the
logarithmic growth of a perturbation (originally enhanced through a period of EMD). In
this example, the perturbation becomes non-linear well before it begins to self-gravitate and
virialize (when local MRE is attained).

In what follows, we focus on fluctuations that collapse only after global MRE, enabling
the use of standard results on spherical collapse and avoiding the difficulties of collapse
without virialization. While not fully general, this restriction still captures many of the
scenarios introduced in Sec. I. Moreover, we expect that the gravitational probes discussed
later are more sensitive to objects that collapse at or after MRE, given the range of mass

scales that they can probe.*

4 Other probes, such as indirect detection, may be significantly enhanced in objects that form earlier [10].



B. Collapse and the Formation of Microhalos

The Press-Schechter (PS) formalism enables a semi-analytic understanding of structure
formation from the evolution of the linear density contrast discussed above [40]. PS pos-
tulates that the fraction of matter in collapsed objects of size R at a given time is related
to the cumulative probability distribution to find éz > d., where dg is the density contrast
smoothed over scales R and 9, is the critical linear density contrast, i.e., the fractional over-
density that would collapse in a non-linear treatment. For spherical collapse during MD,
d. ~ 1.686 [41]. The second key assumption in PS is that the probability distribution of dg

is Gaussian and therefore fully specified by its variance,

(e R) = [ S0l k)W kR’ 15)

o = | —=
Y (27_(_)3 Y Y

where W is a smoothing kernel and we use redshift z = 1/a — 1 and the scale factor a inter-
changeably as independent variables. The comoving smoothing scale R can be translated to
a mass scale M oc poR? (po is the average DM density today), with the precise relationship
between M and R depending on the choice of W (see Appendix A).

2

The variance o* encodes the evolution of structure as a function of time. A useful quantity

that can be derived from it is the critical mass M,(z) such that
o(z, M,) = 0. (16)

At a given redshift, M, gives the typical mass of the largest structures that collapse at this
time.? In all microphysical models, M, is a monotonically increasing function of 1/(1 + z),
indicating the hierarchical assembly of smaller clumps into larger and larger structures.
The density fluctuation variance o and the characteristic mass M, can be used to model
the distribution of microhalos as a function of redshift within the PS framework and its
extensions. We will do this in Sec. [T F, but for now we briefly describe the basic properties
of the earliest-forming microhalos.

In the spherical collapse model, the average density of matter in a newly-formed object

depends only on the collapse redshift z. [41-43]:

1+ 2.\
p(ze) ~ 178p(z.) ~ 3500 GeV /cm® < 2%;)02 > : (17)

® Here “typical” means 1o fluctuations at redshift z. Objects of a fixed mass M, (z) can form earlier than

z, but they must arise from rarer upward fluctuations in the density contrast.



where p(z.) is the background density at the time of collapse. Then a characteristic radius

of clumps forming at redshift z. can be assigned as

Ru(z) = (%>/ (18)

Amp(z.)

We see that objects that form earlier are denser and more compact. In Sec. ITE we will
argue that earlier-forming microhalos are more likely to survive tidal disruption by stars,
other clumps, and the galactic halo.

After a clump forms, its early-time evolution depends on whether the bump in the power
spectrum is a localized spike or a broad enhancement [44, 45]. For spiked features, a narrow
range of scales goes nonlinear at approximately the same time, while all other scales must
evolve for a much longer period before crossing the collapse threshold. In this case, the
clumps that form first evolve for a long time in relative isolation, and they have featureless
profiles with peaked inner densities scaling as p ~ r~=3/2. In the case of broad enhancements,
larger and larger clumps are continually forming, coalescing out of their predecessors. Thus
the enhanced population of microhalos develops with a substructure of smaller, older clumps,
which is expected to survive at least an order of magnitude in redshift after formation [44,
45]. The average density profiles in this case are modified by accretion, trending toward
the Navarro-Frenk-White (NFW) [46] profile with p ~ r~1. In the examples of Sec. IID
and IV we will consider both narrow and broad enhancements to the MPS. For simplicity,
however, in both cases we will model the density profile as NFW. For a narrow spike, this
choice underestimates how compact the resulting objects are, and therefore overestimates
the disruption probability. This choice is thus conservative in estimating the late time
abundance of these objects.

The NFW profile is given by

_ 4ps
plr) = (r/ro) (L +1/ry)2 (19)

where p, and rg are scale mass and scale radius. The scale radius and density can be

thought as the physical size and density of the microhalo core that forms during initial
collapse; indeed, these quantities appear to be tightly correlated with wavenumber of the
enhancement in the power spectrum and the redshift of collapse [45]. While major mergers
of microhalos can shift ps and 7, these quantities remain stable up to O(1) factors [47]. The
r > r, outer regions, on the other hand, are subject to accretion and can be susceptible to

tidal disruption as we discuss in Sec. 11 E.
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The mass within a given radius r is

M(r) = 16mpsrif(r/rs), (20)
where
c
f(c)zln(c+1)—c+1. (21)
The scale mass is the mass within the scale radius:
M, = M(r,) = 1670, £(1). (22)

We can approximately relate the collapse mass M, and radius R., given by Egs. (16) and (18),
to rs, My, and p,. Recall that R, is defined as the radius within which the density is 178p(z.),
where p(z.) is the background density at collapse. This means that M, and R, are close
to the virial quantities Msyy and Rsgg, defined for halos with an average density 200 times
the background density, evaluated at collapse. Simulations of ACDM halos suggest that the
concentration parameter caog = Rago/7s shortly after formation is about 2 for Earth-mass
halos in ACDM [48] (one needs to take the Earth mass coo0 ~ 60 and redshift it back to
z ~ 30 where these halos were measured in the first place), implying that M, and R, are
similar to the NFW scale quantities. Let ¢, be the concentration parameter at formation,
ie.,

¢ = R./rs. (23)

Let us also assume that Rago(2.) = R., neglecting the difference between 200 and 178. This
allows us to find M, and p, from c,, R, and M,:

M, = I 6 (24)

fle)

The scale density is then obtained from Eq. (22). As mentioned above, halos of different

masses can form at around the same redshift. Thus a more realistic description of the
microhalo population would account for scatter in the concentration parameter ¢, [49]. This
scatter reflects both the “rarity” of a collapsing density peak (or, equivalently, the spread in
formation redshifts of halos with similar masses) [50] and the subsequent assembly history.

We will focus on a single representative value of ¢, for simplicity.

C. Scaling Behaviors

Here we derive some simple scaling laws that allow estimation of the properties of the
largest clumps forming from an enhancement in the power spectrum. We modify the pri-

mordial power spectrum in Eq. (13) by introducing a “bump” function B that enhances the
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power spectrum over some range of scales, such that Pr(k) — Pr(k)B(k). The resulting

variance in the density contrast on a given comoving scale k at scale factor a is:

o*(a,R=1/k) = # / dk k2W (k/k)?|D(a, k)|*Pg (k) B(k)

~ A,D(a, k)? (%) <%) : (25)

Here W is a window function that isolates scales of order k in some way. In the second
line we assume that B ~ (k/k)™ characterizes the nontrivial behavior of B at the largest
enhanced length scales, where k is the smallest value of k with any enhancement, and
we focus on those scales since they will determine the largest substructures. The relevant
scale-dependent growth function D(a, k) depends on whether the bump is isocurvature or

adiabatic:

a

D(a, k) ~ (

where the scale factor and k dependence follows from Egs. (11) and (14), and the exponent

) L, L ~ 10In(aeq/anor) ~ 10In(k/keq), (26)

Qeq

a is 1 (0) for adiabatic (isocurvature) perturbations.®

~

Then the collapse redshift z.(k) is determined by setting the critical linear density contrast

equal to the variance:

]% ni/2 ]% (ns—1)/2 p
do~ VA | = — = A 27
(k) (k) (zc<k>> 0

Turning the perspective around, we can find the mode k. (z) that characterizes scales col-

lapsing at z. If we associate a mass with k, as M, ~ p(a)(k./a)™3 ~ po/k? and set n, ~ 1,

we have

o V() (22 1o 2

M, z

where M ~ po/k® and

M, (z) ~ M o

M <—ZeqLa\/A_$) o . (29)

6 The factor (62) o |D(a,k)|?>Pr is sometimes written as |T(k)D(a)|? Pxcpm, where T'(k) is a transfer
function, D(a) = a, and Pacpm ~ (k/keq)*Pr (see, e.g., the textbooks [41, 51]). The conventional
normalization of Pycpwm is chosen such that T'(k) ~ 1 (or L%(keq/k)?) for modes that enter the horizon
after (or before) matter-radiation equality. These conventions and normalizations are convenient for
studying wavenumbers in the vicinity of koq, but are somewhat encumbering in our case of interest with

k > keq, where the factors of k/keq always cancel between T'(k)? and Pycpwm.
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Figure 1. Comparison of the critical mass M, (z) derived by numerically solving Eq. (16) (solid line)
with the analytic estimate in Eq. (29) (dashed line). This example corresponds to an adiabatic
power-law enhancement of the MPS defined in Eq. (30) with n1 = ny = 3, kp/keq = 10% and
£ = 10*. In the shaded grey regions the estimate of Eq. (29) is not valid, since the power spectrum
changes its logarithmic slope; the low-z boundary is found by setting the factor in parenthesis in

Eq. (29) to 1, while the high-z boundary corresponds to collapse of the peak scale k.

In Fig. 1 we compare the analytic estimate in Eq. (29) (dashed line) with the critical
mass M, derived by solving Eq. (16) numerically (solid line) for a particular choice of B
defined below in Eq. (30). We see that Eq. (29) provides an excellent approximation to
the critical mass over nearly two orders of magnitude in z. In the shaded grey regions the
estimate of Eq. (29) is not valid, since the power spectrum changes its logarithmic slope;
the low-z boundary is found by setting the factor in parenthesis in Eq. (29) to 1, while the
high-z boundary corresponds to collapse of the peak scale k, where the power law growth
with n; ends (see Eq. (30)).

D. Results for Power Law Peaks

We use simplified models to parametrize bumps in the power spectrum. We add power-
law enhancements over the primordial ACDM baseline in Eq. (13), specifying a wavenumber
k, which determines the location of the peak of the bump in the power spectrum and a
numerical factor £ which gives the size of the enhancement over the value for ACDM at the

same value of k,. We assume that the rise and fall in the power spectrum on either side of
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peak are power laws in k, which we allow to have different exponents n; and ny. The final
form of the peak enhancement can be written as

B(k) = & x (B/k)™ k< Ky (30)

(kp/k)™ k= ky,

such that the full power spectrum is given by Pr(k) for k < k,/EY™ and B(k)Pgr(k)
otherwise. This simple expression captures the main features of a broad range of well-
motivated models. For instance, an early epoch of kination predicts ny = 1 [23], while early
matter domination gives n; = 4 [1]. The inflationary production of massive scalar spectator
fields can generate 0 < n; < 3 [52], while ultralight dark vector DM gives n; = 3 [12].
Meanwhile, altering the falling slope on the right hand side of the peak approximates a
number of physical cutoff mechanisms. A very rapidly falling peak, which we can model
as e.g. mg = 00, can correspond to a Jeans cutoff, related to the wave nature of a DM
candidate [6] or its coupling to the radiation bath [1]. The other extreme ny = 0, where
the rise is followed by a plateau, can be found in models where a modified expansion period
is relatively short and preceded by radiation domination [53]. (In such cases the plateau
should reflect logarithmic growth; this is a minor effect that is not captured by the simplified
model.) An intermediate regime, where the fall is less steep than the rise, can be found in
models of dark photon DM produced by inflationary fluctuations, where ny = 1 [12] or EMD
models with cannibal interactions, where ny = 2 [11]. We discuss these three scenarios in
further detail in Sec. IV.

This simplified model lets us study the statistical properties of dark matter clumps as a
function of the peak location, peak height, and the power laws on the rising and falling sides
of the peak, for both adiabatic and isocurvature perturbations. These are the most important
data affecting final distributions and observables. We take Eq. (30) to parametrize an
“effective” primordial power spectrum, and then use the standard growth functions derived
in Sec. ITA to evolve them forward in time. The effect of any non-standard cosmological
evolution is absorbed into B(k), even though it can occur well after inflation. More explicitly,
in Eq. (15) we use

(5, k) — Dyai(a)* 12 L (k)?B(k)Pr (k) (adiabatic) G

Diso(a)? [B(k) — 1] Pr(k) + Daai(a)*I* L' (k)*Pr(k) (isocurvature)
where the curvature power spectrum Ppg is given in Eq. (13) and the various growth factors

are for the standard cosmology. For reference, growth functions D are defined in Eq. (9),
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I is defined below Eq. (3), and L' is given in Eq. (12). Note that when B(k) represents an
isocurvature enhancement, we assume that the MPS is still the standard adiabatic one at
large scales; this is enforced in the second line by the presence of B(k) — 1, which vanishes
for k < k,/EY™. We now consider varying each of the MPS parameters in Eq. (30) in turn,
measuring the sensitivity of the properties of the resulting microhalos.

In Fig. 2 we vary the height of the peak in the top line as & = 10*7/2 for i ¢
{-2,-1,0,1,2}. The peak location is kept fixed at k,/ke; = 10® and the slopes to
ny = ng = 3. These enhancements to the power spectrum are shown in the upper-left
panel. The upper right panel shows the properties of the collapsed clumps as in the M-p;
plane. The scale mass M, and scale density ps can be related to the critical mass M, and
radius R, assuming a value for the concentration parameter at formation, as described in
Sec. 11 B.

Each point on the lines in the right-hand panels of Fig. 2 corresponds to a specific value of
the collapse epoch z. for the clumps of that mass, since z. relates the scale mass to the scale
radius (and hence scale density). The horizontal grey-dashed lines correspond to collapse
epochs of z, = 10, 100, 250 and 1000 from bottom to top, respectively. As we discuss in
Sec. IT E clumps which form at redshifts prior to z = 250 are unlikely to be severely disrupted
in our galaxy.

We present results for both adiabatic (solid) and isocurvature (dashed) perturbations. In-
creasing the enhancement causes modes of a given k to go nonlinear earlier. Fluctuations on
physical scales to which those modes contribute significantly thus collapse earlier, increasing
the density of the resulting clump. For adiabatic perturbations, enhancements greater than
& = 103 lead to the formation of clumps which are likely to survive in the environment of the
Milky Way to the present day. Isocurvature perturbations require an enhancement factor of
& ~ 10%5 for the same result. Since isocurvature fluctuations do not benefit from logarithmic
growth or radiation driving during RD (see the discussion in Sec. IT A) they require a larger
enhancement in order to collapse at the same time as an equivalent adiabatic mode.

The lower panels of Fig. 2 vary the peak position as k, /keq = 1057/2 fori € {~2,-1,0,1,2},
keeping the enhancement factor fixed to & = 10%. Shifting the peak toward lower k means
that larger scales become non-linear earlier on, leading to an increase in the density for a
given mass. This also leads to an increase in the maximum clump mass that receives a
density enhancement over ACDM.

In Fig. 3 we present results for varying the slope on the left-hand side of the peak (at
lower values of k, upper plots), and the right-hand side of the peak (at higher values of
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Figure 2. Power spectra and the resulting microhalo properties for different peak amplitudes (top
row) and positions (bottom row). Upper left: The dimensionless power spectrum for different
peak heights for & = 10*+%/2 with i € {-2,-1,0,1,2} (corresponding to the gradation of lighter
to darker lines) in Eq. 30; peak position k,/keq = 108 and slopes n1 = ny = 3 are held fixed.
Upper right: Minihalo scale density as a function of scale mass, ps(Ms), for these peak height
variations, showing both adiabatic (solid) and isocurvature (dashed) perturbations. Dashed grey
lines indicate the collapse epoch z.. Lower left: The power spectrum for different peak positions
kp/keq = 108+4/2 with i € {—2,—1,0,1,2} (corresponding to the gradation of lighter to darker
lines); the enhancement is held fixed at £ = 10*. Lower right: As for upper right, showing varying
peak position. Note the scales of the axes in the right-hand plots differ.

k, lower plots). We keep the peak location and enhancement fixed at k/keq = 10°® and
& = 10* in these plots. In the upper panels we take n; € {2,3,4,5} and in the lower panels
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Figure 3. Power spectra and the resulting microhalo properties for different rise (top row) and
fall slopes (bottom row). Upper left: Rise slope variations for n; € {1,2,3,4} (corresponding to
the gradation of darker to lighter lines) in Eq. 30, with fixed ny = 3, kp/keq = 10% and € = 10%.
Upper right: Minihalo scale density as a function of scale mass, ps(Mj;) for the different rise slopes.
Dashed grey lines indicate the collapse epoch z.. Lower left: Power spectra for different peak
fall slopes ng € {0,1,2,00} (corresponding to the gradation of darker to lighter lines), with fixed
ny =3, kp/keq = 108 and & = 10*. Lower right: As for upper right, showing varying peak fall
slopes. Note the scales of the axes in the right-hand plots differ.

ny € {0, 1,2, 00}, with the other exponent fixed to 3.
Fattening the low-£ tail causes longer wavelength modes to collapse earlier if we hold £,
and & fixed. It increases the largest length scales associated with the MPS enhancement,

and thus the mass of the largest objects with density enhancement over the ordinary ACDM
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scenario. On the high-k side of the peak, broadening the cutoft slope with £, and £ fixed
pushes the collapse epoch z. of the smallest structures to higher redshifts, resulting in denser
objects.

We do not show results for isocurvature enhancements in Fig. 3. These would follow the
same general trends of Fig. 2: compared to adiabatic enhancements, isocurvature bumps
would result in smaller characteristic densities and masses due to the absence of the radiation

driving effect at early times.

E. Microhalo Substructure, Evolution, and Disruption

The survival of early-forming microhalos until late times is paramount to their possible
observation using the methods described in Sec. III. Gravitational interactions with other
clumps, the galactic halo, and baryonic objects can transfer energy to a clump, changing
its internal structure, stripping away some of its matter or disrupting it completely. The
early-time hierarchical assembly of smaller structures into larger ones tends to flatten the
core density profiles [44, 45]; this effect is more pronounced in broad MPS enhancements
and motivates the NFW profile we use to model these objects, as discussed in Sec. 11 B.
At later times, microhalos accreted onto the host galactic halo can be stripped of a large
fraction of their mass. This mass loss occurs beyond a tidal radius R; from the microhalo
center; R, is estimated as the radius beyond which the tidal force of the host halo is larger

than the microhalo’s self-gravity [54]:

M(Ro] v |

R/(R)~R [Mh(R)

(32)
where R is the radius of the microhalo orbit around the host, and M, (R) is the host mass
interior to R. Thus R,/rs ~ (ps/pn)'/?, where pj, is the average density of the host, so
R;/rs > 1 for early-forming microhalos within galaxy-sized hosts. This suggests that these
tidal effects tend to modify the outer structure of the microhalos, but do not affect survival
of the microhalo “core” with r < r,. As an explicit example we can estimate the tidal radius
for microhalos orbiting the MW at R &~ Ry ~ 8.1 kpc with M;(R) ~ 10" M, [55]. This is
relevant for the pulsar timing probe of microhalos [34]. We find that R;/rs > 1 as long as
the microhalos formed earlier than z ~ 10. In all examples we consider in this work, the
MPS enhancements lead to formation of microhalos at much earlier times, and therefore we

do not expect tidal disruption by the host halo to significantly alter these objects at late
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times.” Similar arguments hold for diffuse populations of microhalos (i.e., microhalos not
bound to any galaxy) in galaxy clusters; in this case, it is clear from Eq. (32) that tidal
disruption by the host is even less relevant than in our galaxy.

Stellar encounters at late times are a particularly efficient source of clump disruption,
capable of destroying microhalos that formed even at z > 10. In the impulse approximation,
the specific impulse transferred to the clump constituents from an encounter with a star with

mass M, and impact parameter b is of order

GM*T'M'T b
o (Gl (1) -

where the first factor is the characteristic tidal force and the second is the encounter

timescale. Therefore the energy transfer relative to the binding energy of the clump is
of order [56, 57]
AE vy Av GM,ry

~Y
5 )
K, v b2V 1 Vpir

vir

(34)

The ratio 7y /Uy X /P, where p is the clump mass density, so the density is the only
microhalo property on which the relative energy transfer depends in this approximation.
Setting AF/E, = 1 defines a critical impact parameter [56, 57|

B vVGpM,

Urel

b (35)
Encounters with larger b transfer less energy, but are also more probable. The probability
to transfer a total energy of order Ej, over many subcritical encounters is comparable to
the probability of a single critical encounter [56, 57], so the total probability of transferring
AFE ~ Ej is roughly double the probability of a single critical encounter.

On the other hand, critical encounters with b < b. may not completely destroy the
clump, because the transferred energy may not be efficiently redistributed before the outer
layers are stripped away [54]. In this case, a dense remnant core remains. Nonetheless, the
probability of a critical encounter is a reasonable estimate for the survival rate of larger
clumps. In particular, if the clumps contain substructure, the smaller, denser constituents
may be spilled out by disruptive encounters, with their own structure preserved.

We define the total disruption probability P to be twice the critical encounter probabil-
ity [56]

P = 2n7bS (36)

" This conclusion might not hold for all microhalos, such as those on highly radial orbits that take them

close to the center of the host.
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where n is the number of galactic disc crossings and S is the orbit-averaged stellar column
mass density along the clump orbit.® For clumps in the Milky Way, n ~ 100 and S ~
140M, /pc?. Since b, depends only on the clump density, which in turn depends only on the

redshift of collapse, we can estimate [59]

n [250\°?

Therefore, we arrive at a qualitative estimate that clumps forming before z ~ 250 typically

survive, while clumps forming later are typically strongly disrupted. A similar calculation of
the survival probability has been validated in N-body simulations of a microhalo traversing
a dense field of stars [57].

While the pulsar timing techniques described in Sec. I1I probe the MW microhalo distri-
bution, caustic microlensing is mainly sensitive to the diffuse microhalo population in galaxy
cluster lenses. These clumps can be disrupted by the diffuse stars in the cluster. We can use
Eq. (36) to estimate the disruption probability. Taking some representative cluster param-
eters v, ~ 1000 km/s, S ~ 107M /kpc?, and n ~ 10 we find that disruption is significant
only for objects that formed after z, < 6. We therefore expect clumps originating from
MPS enhancements to survive in the diffuse cluster environment.

We overlay contours of z. in the plots, both to give a sense for the pace of structure
formation once the bump in the power spectrum starts to go nonlinear, and to estimate
the sensitivity of the clump population and the observables to the variations in the survival

cutoff on z..

F. Subhalo Distribution

In this subsection we estimate the microhalo distribution inside galaxies. The density
fluctuation variance in Eq. (15) can be used to construct a global (Universe-averaged) dis-
tribution function within the Press-Schechter formalism [40]. In this framework, the fraction

df of matter in objects of mass in the range [M, M + dM] is

df 2 6. |dlno 52
— exp <—202> : (38)

M. 2)=4/2
g M) Mo |dln M

The halo function is the comoving number density of collapsed objects in this mass range:
dn po df
UM = B0
i M) =

(39)

8 A more sophisticated treatment of the stellar distribution yields a similar disruption probability [58].
9 See, e.g., Ref. [60] for numerical studies of the diffuse stellar population in clusters and Ref. [61] for

relevant parameters of a cluster where caustic microlensing was observed.
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where pg is the DM density today. Generalizations of the PS ansatz exist (such as Ref. [49,
62]) that provide a better fit to N-body simulations. However, these simulations have been
mostly performed for standard power spectra. (Exceptions include, e.g., Refs. [44, 45, 63],
which study power spectrum enhancements from a modified cosmology. Post-inflationary
axion DM models are another example widely studied in simulation; for a recent analysis,
see [64].) It is therefore important to validate the predictions of the Press-Schechter ansatz
and its extensions for other primordial power spectra.

Note that M in Eq. (38) is the mass of recently-formed objects, i.e., those overdensities
that are just collapsing at z. Evaluating the mass function at z = 0 as a proxy for the
distribution of microhalos in the MW (or other galaxies or clusters relevant for caustic
microlensing) misses two important effects: disruption of clumps, as described in the previous
section, and the fact that the objects forming now are assembled from smaller objects;
disruption may “spill” these constituents such that these “sub-microhalos” are the relevant
clumps at late times. A coarse model that side-steps these issues is to simply evaluate the
distribution function at an earlier time, e.g., z ~ 250, such that microhalos formed during
this era are not likely to be disrupted. We will take this approach.

The PS ansatz, Eq. (38), has another shortcoming in the present context — it does not cap-
ture the fact that microhalos that end up in galaxies are necessarily embedded in larger-scale
overdensities that form galaxies in the first place. As a result, the large-scale overdensity
effectively lowers the collapse threshold for microhalos at early times (while the galaxy-scale
overdensity is still in the linear regime), resulting in a slight enhancement of the microhalo
distribution function inside of galaxies, compared to the global average. This effect is cap-
tured by the extended Press-Schechter (EPS), or excursion set, formalism [65-67], in which
the conditional probability distribution of microhalos of mass M identified at 2z, to end up

in large-scale overdensities of mass M; and (later) redshift z; is given by

df AS | dS A)?
ang, M2 M=) = am oL, {_%]' (40)

d My
Here Ad = 5 — 41, with &; = 6./D(z;), and AS = Sy — Sy, with S; = 02(2; = 0, M;) and the
density variance is evaluated using the sharp-k filter.!® The quantity (df /dM,)dM, gives the
fraction of mass of M; in microhalos in the mass range [Ms, My + dM,]. Other distributions
can be obtained from Eq. (40) by adding appropriate factors (e.g., multiplying by M;/M,

gives the number distribution of microhalos as a function of their mass at z).

10 Note that since we want to take z; deep in the MD era, the growth functions for adiabatic and isocurvature

fluctuations are nearly equal, D = D;,, = D,q; as discussed in Sec. II.
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In Sec. IV we will use Eq. (40) to show that microhalos make up an O(1) fraction of the
MW DM mass in several representative models, by taking z; = 0, M; = Myw ~ 102 M,,
and zo ~ 250. We again emphasize that this amounts to the crude assumption that all

microhalos formed at z < 250 are disrupted.

III. PROBES OF SMALL SCALE STRUCTURE

In this section we explore the observability of DM microhalos. For the MPS enhancements
we consider, these objects are typically too light and diffuse to be detectable via microlens-
ing [25, 26] or astrometric techniques [68]. Two proposed observables stand out as being
potentially sensitive to diffuse microhalos: photometric lensing of highly-magnified stars [27]
and pulsar timing [28-34]. In Sec. IIT A we estimate the sensitivity of photometric lensing
and compare it with the predictions of several specific scenarios in Sec. IV. The sensitivity of
pulsar timing was recently evaluated in Ref. [34] for several of the same models we consider
here, so we do not attempt to replicate their sophisticated analysis. It was found that pulsar
timing can be a powerful probe of microhalos given enough “high quality” pulsars can be
monitored over a long enough time; we discuss these requirements in Appendix B.

If a non-gravitational coupling of DM to SM particles exists, substructure can have an
important impact on indirect and direct detection. The impact of microhalos on DM anni-
hilation signals has recently been considered in Refs. [10, 24]. We therefore focus on direct

detection and estimate Earth-microhalo encounter rates in Sec. 111 B.

A. Caustic Microlensing

An interesting gravitational observable was considered in Refs. [69, 70] and applied to
axion miniclusters by Dai and Miralda-Escudé [27], and in Refs. [6, 20] to other kinds of
substructure. The goal is to observe a background star near a galaxy cluster lens caustic
that undergoes microlensing by a compact object in the cluster, giving rise to a time-varying
light curve with a total magnification that can reach a factor of 10°~*. During the event
duration 7, the star appears to move a distance d ~ 7v,¢ 1, where p is the magnification and
Uper 18 the star-cluster relative velocity. As the line of sight sweeps over a clumpy dark matter
distribution, the magnification varies, leading to jitter in the light curve. These variations
may be observable if they are the order of the brightness of the background star when it is

not being enhanced by the caustic.
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The surface density field ¥ of a cluster DM halo is related to the line-of-sight integral of the
three-dimensional density distribution. It therefore inherits fluctuations from the intrinsic
granularity of the DM distribution in the presence of a high abundance of microhalos. On
non-linear scales the density power spectrum can be computed in the halo model [49] from
the halo mass function df /dIn M and the Fourier transform of the clump density profile
p"(g; M):

@) =7 [ Sl M), (41)
where p is a mean density in some region of the cluster. From this the surface density
power spectrum can be estimated by partitioning the cluster lens into a series of slices and

assuming they have the same mass function, with the result [27]:

Pola) = [ S i1 M) (42)

where ¢ is the surface Fourier mode. Here ¥ = [dL p(L) is the mean surface density. We
are interested in a long line of sight through galaxy clusters, of order a Mpc. In the cases
analyzed in [27], the mean surface density along the line of sight is dominated by the cluster,
3 =%, (as opposed to DM along the line of sight but outside of the cluster).

We will define the sensitivity criterion in terms of the amplitude of fluctuations of the

lensing convergence
KR = Z/Ecm't; (43>
where

Ecm’t = 02/(47TGDeff)
D.j; = DyDys/Ds. (44)

Here Dy g 1s are distances to the lens, the source, and from the source to the lens. X
sets the density scale at which an isolated lens produces multiple images. The convergence

power spectrum is then given by

~ Px(g)

Egm't
or, in dimensionless form,
2
P
A2 =L ox 46
=L (16)
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To obtain rough observational sensitivities we require that A, is larger than some value
10737* on some scale ¢ (such that the observed brightness fluctuations are O(1) if the mag-
nification is 103~*). Ref. [20] employed a monochromatic simplified assumption, where one
focuses only on clumps of mass M, composing a fraction f of the dark matter (df /dIn M =
fMS(M — M) for some constant 0 < f < 1). We will see later that the monochromatic
assumption provides a good approximation to the convergence power spectrum from a more
realistic distribution. In the monochromatic limit and assuming an NFW profile for the

clumps, A, can be expressed analytically,

_ 1 V Z]clfjwsqrsg(qrs)
§ 10g(2/\/5) YieritTs ’

where g is a function appearing in the Fourier transform of the NF'W profile. The quantity

(47)

qrsg(grs) reaches a maximum of 0.35 at gry = 0.77. In evaluating sensitivities we use D,ss ~
Gpc to compute Y..;; and set X, = 0.8%.,.;;. These values are consistent with the observation
of the magnified star LS1 reported in [61].

To estimate the sensitivity of caustic microlensing, we require that max, A,(q) > 1073
and impose three extra criteria [20]: the lensed light should sweep over many clumps as the
star traverses d to enable a statistical treatment; the clumps should be smaller than d to
cause significant density fluctuations during the microlensing event; and the clumps should
be large enough that the fluctuations they induce in the light curve are not washed out by
the finite size of the lensed source star.

The first criterion, that there are many clumps along the line of sight, can be imposed by
requiring fm(d/2)?3, /M, > 10 or so. This results in a sharp cutoff of M, ~ 1072M. The
second criterion, ry < d, can be imposed by picking representative values for 7, v,., and p,
leading to d ~ 103 AU [20]. For the third criterion, we take the minimum sensitivity length
~ 10 AU used in Ref. [27] and require r; > 10 AU.

These criteria and the requirement on A lead to the sensitivity curves on the M, p, plane
shown in Fig. 4. The thickness of the bands comes from varying f from 0.1 to 1. In Sec. IV we
will show that this monochromatic estimate provides a reasonable approximation to a more
realistic calculation of the convergence power spectrum (i.e., using a non-monochromatic
distribution) in a few representative models.

Several phenomena can potentially mimic the lensing signal of enhanced DM substructure.
These include the presence of planets in the cluster, blending of the observed star with other
faint stars, and surface density fluctuations from gas in the cluster. Ref. [27] argued that

these processes are unlikely to present a significant background, either because they are rare
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Caustic Microlensing Sensitivity
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Figure 4. Estimate of the sensitivity of caustic microlensing for a monochromatic microhalo dis-
tribution in the plane of microhalo scale mass M, and scale density ps (assuming NFW profiles
for these clumps). The bands correspond to varying the fraction of DM in microhalos between
0.1 and 1. The boundaries of this region are defined in the text. Denser microhalos within these

boundaries lead to larger lensing convergence fluctuations.

(e.g., free floating planets and blended stars of comparable brightness to the source), or
because they induce fluctuations in convergence on very different length scales compared to

microhalos (e.g., cluster gas), or both.

B. Encounter Rate

While the previous two subsections focused on gravitational signatures of microhalos,
DM substructure can also impact terrestrial direct detection searches if a non-gravitational
coupling to Standard Model particles exists. If most of the dark matter in the galaxy is
bound into clumps that formed at high redshift, then the encounter rate of DM constituents
with Earth can be drastically different from ACDM. We first estimate the encounter rate
assuming (1) the distribution of the largest free clumps is dominated by a single characteristic
collapse redshift z., and (2) the clump properties are well-approximated by the scaling laws
of Sec. I1C.

For a monochromatic (i.e., delta-function-like) microhalo mass distribution the encounter
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rate is

1

NOVyel

— -1 __
T:Fenc =

(48)

where the Earth-microhalo relative velocity is v, ~ 1073, the local microhalo number
density is n = ppar/M.(2.), and the cross section is ¢ = TR,(z.)®. Putting together the

pieces, using Eq. (18) for R,, and dropping O(1) numbers, we can express the rate as

M, (ZC>%/J<ZC) 5
T .
PDMUrel

(49)

Here p(z.) and M.(z.) are given by Eqgs. (17) and (29) respectively, so in this approximation
the rate is a function of z., the exponent n; characterizing the power law enhancement, and
the mass M corresponding to the maximum enhanced scale in the matter power spectrum.

A nontrivial distribution of microhalos masses is easily incorporated to give a differential

encounter rate
dFenc o PDM df

dinM M dlnM
where df /dIn M can be estimated from EPS as in Eq. (40), and the cross-section ¢ implicitly

OUrel, (50)

depends on M as above.

IV. EXAMPLES

In this section we apply the results discussed in the previous sections to three specific
microphysical scenarios: two EMD-like models, and dark photon DM produced through
inflationary fluctuations. In Figs. 5 and 6, we show power spectra and quantify the result-
ing microhalo properties (mass and density), comparing them to the sensitivity of caustic
microlensing. In Fig. 7 we estimate the microhalo distribution functions, which are then
used to compute lensing convergence power spectra (Figs. 8 and 9) and Earth-microhalo en-
counter rates (Fig. 10). Below, we give a brief summary of the models and these results, and
then, for illustration, we explain in greater detail the features of early matter domination
(arising in the first two models) in subsection IV A.

The first model, denoted “EMD+-cutoff”, exhibits a k? rise in the power spectrum begin-
ning around k/ke, ~ 107 and ending in a small-scale cutoff. This power spectrum can be
generated by a period of early matter domination with a reheating temperature of around
10 MeV and a Jeans length providing the short distance cutoff. The particular spectrum

shown in Fig. 5 corresponds, for example, to an ALP dark matter particle with mass around
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107% eV [6]."' In this case, the modified expansion history allows the relic density to be
saturated without fine-tuning the ALP misalignment angle [71]. The ps(M;) curve is well
within the estimated sensitivity of caustic microlensing for clumps collapsing before z ~ 50.

The second model, denoted “EMD+plateau,” also exhibits a k* rise in the power spec-
trum, followed by a plateau. In this case, the transition from ACDM to k* again corresponds
to EMD with a reheating temperature of around 10 MeV. The transition from k* to the
plateau corresponds to the onset of EMD, prior to which the universe is assumed to be ra-
diation dominated. (Logarithmic growth during RD is neglected in the toy model.) A short
distance cutoff is typically present at higher k£, but we extend the plateau to high scales to
maximize the difference with the EMD+cutoff model. An example power spectrum of this
kind arises in the cannibal models studied in [53]. The large scale behavior of the ps(Mj)
curve is the same as that of the cutoff model, while the greater power at small scales leads
to higher densities at low masses, further strengthening the lensing sensitivity.

The third model, denoted “Dark Photon” and shown in Fig. 6, exhibits a k3 rise in
power starting around k/ke, ~ 10® and reaching O(1) before descending in a shallow k!
cutoff. This corresponds to dark photon DM with mass ~ 107° eV produced near the end of
inflation [12].'? Although the boost in power is much larger than in the previous scenarios,
it is isocurvature and occurs at smaller scales. Resultingly, the ps(M;) curve skirts the
caustic microlensing projection, only exhibiting significant enhancement below 10~ M.
This suggests more refined analysis of the microlensing sensitivity is warranted.

Fig. 7 shows the Milky Way subhalo mass distribution derived from extended Press-
Schechter for each of the three models. These distributions are evaluated at high redshifts
zo = 250 and 2z = 100, in the left and right panels, respectively. These are particularly
relevant because the rough estimate of clump survival from stellar encounters depends only
on the clump density, which in turn depends only on the redshift of collapse. Therefore,
by choosing ze ~ O(100) (and z; = 0, M; = Myw) we obtain an estimate for the DM
clump distribution in the galaxy today. This amounts to the coarse approximation that all
microhalos forming later than 2z, are disrupted, while those that form earlier all survive. The
cusps in the distributions of Fig. 7 (and the sharp fall-off for the EMD+Cutoff model) are a
consequence of the sharp-k filter used in the EPS formalism and the broken power law model

for the power spectrum enhancement B(k) in Eq. (30). This can be seen by noting that

I While the presence of a small scale cutoff is expected due to the Jeans scale, the steepness used here is
only a toy model, and it is probably less sharp in a complete treatment. Exponentially falling cutoffs can

be achieved, however, in particle DM models with a non-negligible free-streaming scale.
12 This is approximately the lowest dark photon mass for which inflationary production can saturate the

observed relic abundance of DM given current b@¥hds on the scale of inflation.



dSy/dMy < B(k = R™!) in the EPS probability distribution, Eq. (40), for the sharp-k filter,
where R oc M'/3. Thus, sharp features in B(k) translate directly into cusps in df /dIn M.
Next, we evaluate lensing convergence power spectra. These are shown in Fig. 8 for
the EMD-inspired models and in Fig. 9 for the dark photon model. In each panel we
show the result of evaluating Eq. (46) using the EPS distribution with M; = 10 M, and
z1 ~ 1 (representative of the clusters where caustic microlensing has been observed) and
two different values of z5. Since caustic microlensing is a statistical probe, it is potentially
sensitive to density inhomogeneities on a wide range of scales, including sub-substructure
whose existence is not captured by the EPS mass function and the use of a smooth NFW
profile in Eq. (45). We therefore show the convergence spectrum for zo = 1000 and zo = 100
to illustrate its range. We note again that the high-z stellar disruption cutoff relevant
for the MW does not apply to the clusters relevant for caustic microlensing. Ref. [27]
argued that convergence fluctuations with a magnitude A, > 107* — 1072 in the range
q € (107%,0.1) AU are potentially observable. We see that the denser, earlier-forming
structures result in larger fluctuation amplitude, but on smaller scales (larger ¢). In each
panel of Figs. 8 and 9 we compare the power spectra from realistic microhalo distributions to
those from monochromatic distributions centered at M = M,(z), as evaluated in Eq. (47).
We see that the latter provides a reasonable, order-of-magnitude approximation to the more
realistic distributions. Comparing the two EMD-like examples in Eq. (8), we note minute
differences in the large-q behavior of the power spectra for the cutoff and plateau cases.
The EMD+Plateau example features more power at large k£ which translates in a larger
abundance of smaller halos (see Fig. 7), which results in slightly more power at large ¢
in the convergence PS. Note that the power spectra shown in Figs. 8 and 9 depend on
microphysical parameters which determine the position of the MPS peak and high-% cutoff;
for example, increasing Try in the EMD models, or the dark photon mass, shifts the MPS
peak to larger k£, which would also translate the convergence power spectra to higher q.
We conclude this section with an estimate of Earth-microhalo encounter rates in our
benchmark scenarios. The result of evaluating Eq. (50) with the EPS microhalo distribution
functions in Fig. 7 (with M; = Myw, 21 = 0, and 2z = 250) is shown in Fig. 10. We see
that enhanced substructure leads to Earth-microhalo encounter rates of ~ once in 10% to
10° years. The higher rates correspond to power spectra with more power at large k, leading
to the formation of lighter microhalos (which have a large number density for fixed total
DM energy density). Since we expect that our treatment of disruption is conservative, true

rates are likely to be even smaller, since more DM mass is locked up in somewhat heavier
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A. EMD-induced Bumps in the MPS

The simplified power spectra in Fig. 5 are motivated by scenarios where the cosmological
expansion history is modified by a period of EMD, ending shortly before Big Bang Nucle-
osynthesis (BBN). Here, for illustration, we sketch the enhancement generated by EMD in
greater detail.

Various models can give rise to an EMD era with significant impact on the DM power
spectrum. Relic hidden radiation baths, for example, can come to temporarily dominate the
energy density of the universe once the lightest dark particle becomes nonrelativistic [1, 7].
Alternatively, EMD can arise due to the nonthermal production of unstable states, as in
misalignment production of moduli [72, 73]. Obtaining enhanced small-scale structure from
an EMD era requires DM to be kinetically decoupled from the SM radiation bath following
reheating [1]. While this condition is often not satisfied for WIMPs [3], it can easily be
satisfied in models with nonthermal DM (e.g. [71]), or theories where DM arises from a
hidden radiation bath that is thermally decoupled from the SM (e.g. [7, 11]).

During EMD, perturbations grow linearly with scale factor between horizon entry and
reheating, resulting in a total enhancement of a density perturbation by a factor ary/aner-

Since the scale factor at horizon entry scales as apo ~ 1/ k?, EMD gives rise to a power
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Figure 8. Convergence power spectra for the two EMD models (with a high-k cutoff, left, and
without, right) with Tryy ~ 10 MeV, evaluated using the subhalo distributions at zo = 100 and
zo = 1000. Larger reheating temperatures shift the spectra to larger wavenumbers ¢. The solid
and dotted curves assume an Extended Press-Schechter (EPS) and Delta Function subhalo mass
distributions respectively. Convergence fluctuations with a magnitude A, > 107 — 1073 in the

range ¢ € (107*,0.1) AU™! are potentially observable using microlensing of highly magnified
stars [27].
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of highly magnified stars [27].

spectrum that grows like k*. The largest scales that can receive EMD enhancement depend
on the reheating temperature where EMD terminates. Both BBN and the Cosmic Microwave
Background (through Ng) place lower bounds on this temperature, requiring Try 2 5
MeV [74, 75]. For a given collapse redshift, using Eq. (29), we see that M, ~ k=3 ~ Trji.
If TRy ~ 10 MeV — few hundred MeV, the resulting clumps are in the sensitivity region for
caustic microlensing.

The smallest scales that can receive EMD enhancement are also indirectly affected by
Tru. Modes that go nonlinear and collapse during EMD form halos that are dominantly
composed of the metastable particle, and they are obliterated by the reheating process [10].
Thus, for adiabatic perturbations that begin at the level of one part in 10°, there is an
effective upper limit on the amplitude of the EMD-induced enhancement of 10° for modes
that enter the horizon during EMD, or 10* for modes that enter during an earlier period of
RD (since modes grow by a factor of ~ 10 upon horizon entry during RD).

The location of the peak is primarily determined by the small-scale cutoff, k.. Here
there are a range of possibilities, depending on the microphysics of both DM and the physics
generating the EMD era. For example, free-streaming, collisional damping, and diffusion

damping are all typically modeled with a Gaussian cutoff, T'(k) oc exp(—k?/k2,,) [76, 77]. For

cut
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text.

free-streaming, k., is given by the particle free-streaming horizon, k_} = Apg; for collisional
damping, the cutoff is determined by m,, if DM is predominantly coupled to ¢, where ¢ is the
metastable species responsible for generating EMD [7, 10] (i.e., keyt = a(T" = my)H(T = my)
in [10]); if DM is instead coupled to the SM radiation bath the temperature of kinetic
decoupling, Tiq4, dictates collisional damping scale [3] (i.e., kewt = a(T = Tia) H(T = Tka)).

For another example, in the case of cannibal self-interactions, the cutoff is a more gradual
function of k, with an envelope falling off as T'(k) ~ (keu/k)? [11].

The nature of the peak — whether it is a relatively sharp feature or a plateau — depends on
whether k; is smaller or larger than k.,;, where k; is the wavenumber of the mode that enters
the horizon at the onset of EMD. If k; > k.., the feature is typically sharp, and k; plays
little role. If, however, k; < k.., then modes with k., > k > k; enter the horizon during
a prior period of radiation domination. They experience logarithmic growth, followed by
linear growth during EMD. The resulting feature in the power spectrum is a broad plateau,

rather than a sharp bump, eventually cut off near k., [53].

V. DISCUSSION

Features in the matter power spectrum arise in many different models of dark mat-
ter and early universe cosmology, and, as a result, they yield unique probes of both new

particle physics and the universe prior to BBN. We have endeavored to give a simplified,
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phenomenological presentation of the map from enhancements in the power spectrum to the
properties of dark matter clumps at late times and their impact on gravitational observables,
particularly caustic microlensing [27]. In general, detailed features of the primordial power
spectrum are smoothed out in late-time observables, so that simple broken power law bumps
in the MPS are sufficient to model more physical enhancements. The small-k power law,
and whether the perturbations are isocurvature or adiabatic, determines many features of
the largest, most observable clumps, if they survive until late times. Increasing the slope of
the power law increases the collapse redshift for a given scale, which in turn increases the
density and decreases the radius of the resulting collapsed objects. Extending the power law
to smaller k results in larger, more massive, less dense clumps. If the power law extends to
large enough k, neither the peak nor the cutoff strongly affects observable prospects.

For more localized enhancements, the details of the peak and cutoff affect the properties
of the densest clumps. These details are important in some cases and not in others. For
example, for caustic microlensing, differences in the MPS cutoff slope lead only to minute
differences in the shape of the convergence power spectrum (its amplitude is also modified,
but this is degenerate with the fraction of DM in microhalos). In fact, in our treatment
this observable appears to be well approximated using a monochromatic microhalo mass
distribution which only depends on the location of the MPS peak and its falloff at small k.
In contrast, Earth-microhalo encounter rates can be sensitive to the very small-scale behavior
of the MPS, strongly influencing direct detection prospects. This is because shallower slopes
in the MPS beyond the peak lead to a large abundance of light microhalos, thereby enhancing
the probability of an encounter.

Our analysis relies on a number of assumptions and simplifications which provide numer-
ous directions for future development. We conclude by enumerating some of these points.
We have only considered clumps that collapse after matter-radiation equality. However,
there are other possibilities which lead to structures forming at earlier epochs. One way this
can happen is collapse during the radiation-dominated period that precedes matter-radiation
equality. The properties of these clumps depend on the free-streaming length of the dark
matter, and hence precisely how cold it is. Alternatively, there may be an epoch of non-
standard cosmological evolution such as early matter domination (EMD), when structures
may also collapse. Clumps that collapse during EMD may disappear at reheating due to the
decay of the field responsible for the EMD. This introduces an aspect of model-dependence
which is not captured by our phenomenological approach. A detailed study of structure

formation where both possibilities occur was performed in Ref. [10].
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We have focused on clumps whose masses lie within a few orders of magnitude of the mass
of the Earth. Partly this is because that is the regime of maximum sensitivity for caustic
microlensing. Pulsar timing searches also have sensitivity in this region and at higher masses.
It is unclear what searches would be sensitive for clumps with masses substantially less than
this. The existence of lower mass clumps is also more sensitive to UV physics and the
mechanism which determines the relic density. For example, ALP clumps from a period of
EMD have a lower bound on their masses associated with the size of the mass inside the
horizon when the ALP field starts oscillating [6].

To predict the properties of the clumps we rely on the Press-Schechter formalism. This is
based on assumptions of Gaussian fluctuations, which may not hold for the large enhance-
ments of the power spectra we consider. The Press-Schechter picture tells us that larger halos
are formed by the hierarchical merges of smaller clump halos. The detailed treatment of
this process, and the ultimate fate of the clumps involved requires N-body simulations which
are particularly challenging due to the large hierarchies of scales involved. Consequently in
our calculations of microlensing sensitivity we assume either a “monochromatic” microhalo
mass function or one derived from a high-redshift snapshot of an extended Press-Schechter
mass function; the true late-time distribution is certainly much more complex. We assume
an NFW-type profile for the clumps. Studies of axion miniclusters [78] and ultra-compact
microhalos [44, 45] both support NFW (or slightly-cuspier-than-NFW) profiles for the first
forming halos.

Our projection for the caustic microlensing sensitivity in Fig. 4 is quite simplified, and
based on [6, 20]. We have assumed the existence of a single “typical” cluster for our projec-
tions. This could be improved by considering an ensemble of clusters whose properties are
already known. We also have not considered the impact of astrophysical uncertainties and
potential backgrounds inherent in the cluster, such as clumps of gas, although these effects
have been argued elsewhere to be unimportant [27].

Finally, we do not address the inverse problem. The extent to which any details of the
clump mass distribution and profiles (and the early universe physics responsible) can be
reconstructed from extended observations using future telescopes is an interesting question

which we leave for future work.
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Appendix A: Window Function Dependence

The semi-analytical results in the body of the paper depend on the choice of the window
function W used to filter the density contrast — see the definition of the density variance
0% in Eq. (15). All subsequent results, such as typical collapsing masses M, (Eq. (16))
and the subhalo distribution function depend on this choice. In certain cases, the window
function choice is physically or theoretically motivated: the real space top hat filter scale is
straightforward to interpret in terms of a physical length/mass scale [66], while a Fourier
top hat filter simplifies calculations in the extended Press-Schechter formalism [65]. In the
context of sharply-rising dimensionless power spectra considered here, the position-space top
hat can lead to divergences when computing o, while the Fourier top hat always yields finite
results. It is therefore important to check whether different choices of window functions can
change our conclusions. In this Appendix we show that this is not the case — qualitatively
similar results are obtained for many different choices of W.

We consider three different window functions: a spherical top hat (TH) with a Gaussian

cut off at large k, a Fourier space top hat (FTH) and a Gaussian (G):

3(sinkR — kRcoskR) __ kpy2
Wern(kR) = O(1 — kR) (Alb)
W (kR) = e~ F*/2, (Alc)

where we take a = 10~* following Ref. [1]. The mass scale corresponding to R is then given

by M = (47/3,672, (27)%/2) X ppmoR® for TH, FTH and Gaussian filters, respectively.'?

13 The equality is only approximate for TH with a Gaussian cutoff. Moreover, the normalizations of the

FTH and Gaussian filters are ambiguous — see, e.g., Refs. [66, 79, 80] for discussions of these issues.

36



In Fig. 11 we show the result of varying W for two representative MPS enhancements
inspired by early matter domination: one has a sharp cutoff at £ = kpcax, and another a
plateau for k > kpeax. These are described in Sec. IV. Different choices of W give estimates
of the fluctuation variance and typical collapse mass that differ at most by a factor of ~ 2—3.
Moreover, the largest differences occur where our model of the MPS enhancement sharply
changes slopes; in all physical examples we are aware of the cutoff is much smoother, so
we expect that these larger discrepancies to be absent for more realistic power spectra. We
therefore conclude any choice of window function provides a viable estimate of the density

field to our desired accuracy.

Appendix B: Pulsar Timing

Dark matter clumps can also be probed with searches using pulsar timing arrays (PTAs).
This possibility has recently been studied in detail by [32-34]. Two types of signal are
possible. The first is a Doppler-shift in the frequency of the pulsar as a clump passes near
the pulsar or the Earth. The second type is a Shapiro time-delay if the clump traverses the
line-of-sight between the Earth and the pulsar. Depending on how many clumps traverse
the vicinity of a pulsar in the array, and how long it takes these signals can be further
subdivided into static, dynamic, and stochastic searches.

While initial work indicated excellent prospects for constraining the properties of clumps,
it was realised in Ref. [33] that some of the DM signal is absorbed by the fit of the pulsar
timing model. Incorporating this effect leads to nearly an order of magnitude decrease
in the size of the Doppler signal, and a factor of around 4 in the Shapiro signal. The
prospects for detection at SKA become more challenging, and so [33, 34] also discuss the
capabilities some more futuristic PTAs. The most important parameters in the analysis
of [32-34] are the PTA observation period T, timing residuals tryss, cadence AT, distance
d, and number of pulsars Np. The optimistic parameter sets considered in [32-34] primarily
involve decreasing the timing residual to order 10 ns and increasing the number of pulsars
in the array to order 1000. There are also increases in the observation time to 30 years and
decreasing the observation cadence to 1 week.

Current PTAs include the Parkes Pulsar Timing Array [81] (20 pulsars), the European
Pulsar Timing Array [82] (42 pulsars), and the NANOGrav 11-year data set [83] (45 pulsars).
There is some overlap between the arrays, so only 73 of these are independent. Some of

the pulsars were combined in the International Pulsar Timing Array data release 1 (IPTA-
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Figure 11. Impact of the window function choice on density fluctuation variance (left column,
defined in Eq. 15) and typical mass collapsing at z (right column, defined in Eq. 16). The two rows
correspond to Early Matter Domination-inspired models described in Sec. IV, with and without
a sharp cutoff at small scales. The solid, dashed and dotted lines correspond to the Top Hat,
Fourier Top Hat and Gaussian window functions defined in Eq. Al. In the left column we have

fixed z = 1000.

drl) [84], which used 49 MSPs rather than 73. The more recent IPTA data release 2 [85]
(IPTA-dr2) includes 65 pulsars.

The Square Kilometre Array (SKA) is a next-generation radio-telescope that will com-
mence construction later in the current decade. Ref. [86] estimates that an SKA PTA could
include 200 pulsars with 50 ns timing residual and a cadence of 2 weeks. These parameters
are consistent with other work [87, 88] - specifically, that SKA2 could discover up to 3000
millisecond pulsars (MSPs), and that 5-10% of these MSPs are appropriate for use in tim-
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ing arrays. Results assuming a 20 year observation period at SKA would therefore appear
around 2050.

The limitation on the number of pulsars is set by the total number of MSPs in the MW
(estimated to be around 30,000 [89, 90]) and the fraction suitable for timing arrays. If the
latter is of order 5-10%, achieving a timing array with 1000 pulsars could require discovering
an order one fraction of the MSPs in the galaxy.

The current best timing residuals are around 50 ns. Indeed, there is one pulsar in the
NANOGrav-11 dataset with tgys = 30 ns, although the average in that array is around 10
times higher. The Parkes telescope can achieve residuals of 100 ns on only a few pulsars. One
could scale the Parkes parameters to the recently commissioned FAST telescope, which would
lead to the conclusion that FAST could achieve residuals of 1-10 ns on some pulsars [91].
However, [91] indicates this target will be difficult to reach; a “realistic” timing array on
FAST is considered to be 50 pulsars with residuals of around 100 ns.

The main challenge to achieving low timing residuals is noise from a variety of sources [92].
In particular, jitter noise on short time scales due to the intrinsic variability of the shape of
individual pulsars is already becoming an issue, although there are proposals that may be
able to deal with it. On longer time scales there are timing noise and irregularities (“red
noise”), and effects from the interstellar medium (ISM). Scattering off the ISM causes a
dispersive delay in the signal. For a static source this can be manageable, but millisecond
pulsars tend to have relatively high velocities. Consequently over a 20-30 year observation
time this dispersion can have an impact. Whether all of these noise sources can be overcome
to allow timing residuals of O(10) ns is as of yet unclear.

Recently [34] has considered the prospects for the observation of dark matter substructure
from a number of different dark matter scenarios, including early matter domination and
dark photons which we also consider here. For early matter domination and assuming
optimistic PTA parameters reheating temperatures less than 1 GeV can be probed. For
dark photon dark matter and optimistic parameters PTAs may be sensitive to masses less
than 1077 eV (note that for masses < 1077 eV inflationary production of dark photons

cannot saturate the observed DM relic density due to bounds on the scale of inflation [93]).
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