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We adapt a method, originally developed for searches for quasi-monochromatic, quasi-infinite
duration gravitational-wave signals, to directly detect new light gauge bosons with laser interferom-
eters, which could be candidates for dark matter. To search for these particles, we optimally choose
the analysis coherence time as a function of boson mass, such that all of the signal power will be
confined to one frequency bin. We focus on the dark photon, a gauge boson that could couple to
baryon or baryon-lepton number, and explain that its interactions with gravitational-wave inter-
ferometers result in a narrow-band, stochastic signal. We provide an end-to-end analysis scheme,
estimate its computational cost, and investigate follow-up techniques to confirm or rule out dark
matter candidates. Furthermore, we derive a theoretical estimate of the sensitivity, and show that
it is consistent with both the empirical sensitivity determined through simulations, and results from
a cross-correlation search. Finally, we place Feldman-Cousins upper limits using data from LIGO
Livingston’s second observing run, which give a new and strong constraint on the coupling of gauge
bosons to the interferometer.

I. INTRODUCTION

The LIGO-Virgo laser interferometers [1, 2] have suc-
cessfully detected canonical gravitational-wave sources
[3, 4], but may also be able to probe the existence of dark
matter [5]. Gravitational waves from annihilating scalar
or vector boson clouds that form around black holes have
garnered a lot of interest over the last few years [6–10],
resulting in new methods [11–13] and one search [14] for
scalar bosons. Constraints have even been placed on the
scalar boson mass, as a function of the mass of the black
holes, based on upper limits from a generic all-sky search
quasi-monochromatic gravitational waves [15]. There has
also been a search for dark matter inside our solar sys-
tem in the form of inspiraling binaries of compact dark
objects [16]. Additionally, light (planetary-mass) inspi-
raling systems, which could be composed of primordial
black holes, could comprise a fraction of dark matter, and
emit detectable gravitational waves [17–21]. Separately,
a search for sub-solar mass black holes has already been
done using data from LIGO-Virgo’s second observing run
[22].

In addition to detecting dark matter via gravitational-
wave observations, we can use data from LIGO-Virgo to
directly search for dark matter. Scalar dark matter par-
ticles could induce time-dependent changes in the funda-
mental constants, such as the electromagnetic coupling or
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electron mass [23–25], by interacting non-gravitationally
with standard-model fields. These couplings may cause
freely-suspended pieces of the interferometers, such as
the beam splitter or mirrors, to change in size, altering
the paths of the light rays that travel down each arm
[26]. A search for scalar dark matter coupling in this
way to the GEO600 interferometer [27] has recently been
performe, setting stringent upper limits on possible de-
viations of fundamental constants [28]. Axions [29] may
also cause changes in the phase velocities of circularly
polarized photons that compose the lasers in the beam
cavities, which would create a phase difference at the de-
tector output [30, 31]. Many other interesting ideas to
detect different kinds of dark matter interactions with
gravitational-wave detectors exist as well [32–35]; here,
we focus on dark photon dark matter particles that could
interact with the interferometers.

The dark photon, a gauge boson associated with the
U(1)B or U(1)B−L groups, could comprise dark matter,
and could arise from the misalignment mechanism [36–
38], the tachyonic instability of a scalar field [39–42], or
cosmic string network decays [43]. The misalignment
mechanism would have produced dark photons if the field
had been initalized at a non-minimum vacuum value. As
the field approached its minimum, it would have oscil-
lated about its minimum and released energy in the form
of particles. A tachyonic instability would have occurred
if a negative mass term had existed in the potential of
the early universe, which would have meant that changes
in this field would have caused particles to be emitted.
Here, we consider ultralight dark photons with masses
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of O(10−13 − 10−11) eV/c2. This mass range depends
on the frequencies to which ground-based interferometers
are sensitive, i.e. roughly [20-2000] Hz.

Dark photons may generate a quasi-sinusoidal signal in
our detector. The position of each mirror in the interfer-
ometer differs with respect to the “wind” from a specific
direction that results from the motion of the earth around
the sun. Dark photons would thus induce a slightly dif-
ferent classical force on each of the mirrors in the inter-
ferometer by coupling to the baryons or baryon-leptons
in the mirrors, which would lead to a differential strain
in the detector.

For the range of frequencies to which ground-based de-
tectors are sensitive, the dark photon’s coherence length
greatly exceeds the detectors’ separation [44], meaning
that cross-correlation techniques [45], typically used in
searches for gravitational waves from neutron stars and
stochastic backgrounds, can be applied [46–49]. Con-
straints have already been placed on the strength of the
coupling of the dark photons to the LIGO mirrors using
data from LIGO-Virgo’s first observing run (O1) [50, 51],
which are consistent with or surpass those of other dark
matter experiments, such as the Eöt-Wash torsion bal-
ance [52, 53] or the MICROSCOPE satellite [54].

Despite interesting constraints from O1 data, an end-
to-end analysis scheme and search design to detect dark
photons does not yet exist, nor does an independent
check on the cross-correlation method. Furthermore, the
cross-correlation search has some limitations: (1) the de-
tectors need to take high-quality data at the same time,
(2) the separation and orientation of detector pairs im-
pact the sensitivity of the search, (3) the computational
cost scales approximately with the square of the number
of detectors, (4) the signal model does not explicitly en-
ter into the analysis, and (5) follow-up techniques have
not yet been developed to confirm or deny the existence
of dark matter. We aim to address these five limitations
with our proposed independent method.

The layout of this paper is as follows: in section II, we
describe the model of the dark photon signal, and the im-
print the signal leaves on the detectors. In section III, we
outline our proposed method to search for dark photons,
in which we carefully choose the Fast Fourier Transform
duration as a function of the dark photon mass, select
candidates based on a detection statistic, and perform
follow-ups of potential signals. In section IV, we calcu-
late the theoretical sensitivity for our method and per-
form injections to verify that calculation. Finally we dis-
cuss some conclusions and future steps for our work in
section V.

II. DARK PHOTON DARK MATTER

We describe here the physics of dark photon dark mat-
ter. In section II A, we explain the properties of ultralight
dark matter, and justify why we can treat dark matter
as a classical field. Section II B details the model for the

signal in our detector. Afterwards, we show what kinds
of frequency modulations to expect in section II C. The
derivations and signal model shown in this section are
taken primarily from [44] and [46].

A. Ultralight dark matter

We consider ultralight dark matter with masses mA <
10−11 eV/c2. For these masses, the number of dark mat-
ter particles in a region of space, i.e. the occupation
number No, is huge. If we consider the dark matter en-
ergy density as ρDM = 4.00×1014 eV/m3 [55] and a cube
of volume λ3, and attribute all of the dark matter energy
to the rest energy of the dark photon, we have:

No = λ3
ρDM

mAc2
=

(
2π~
mAv0

)3
ρDM

mAc2
,

≈ 1.69× 1054
(

10−12 eV/c2

mA

)4

, (1)

where λ is the De Broglie wavelength of the dark photon,
~ is Planck’s reduced constant, v0 ' 7.667 × 10−4c is
the virial velocity (the circular velocity of dark matter
orbiting at the sun’s distance from the center of the Milky
Way) [56], and mA is the mass of the dark photon [44].

Though N0 is very large, dark photon dark matter
can be approximated as a single coherent sinusoidal wave
with characteristic frequency ω over a coherence length
Lcoh during a coherence time Tcoh [44]:

Lcoh =
2π~
mAv0

= 1.6× 109 m

(
10−12 eV/c2

mA

)
, (2)

Tcoh =
4π~
mAv20

= 1.4× 104 s

(
10−12 eV/c2

mA

)
, (3)

where Tcoh is derived from the classical kinetic energy of
the dark matter particles.

B. The signal

We can describe the contribution of the dark photon
to the standard-model action with a four-vector potential
[39]. Within a coherence time, we can write the dark
four-vector potential Aµ(t, ~x) of a field created by dark
photon dark matter as:

Aµ(t, ~x) = (A0)µ sin(ωt− ~k · ~x+ φ) kg · m/(s·C), (4)

where (A0)µ is the four-amplitude of Aµ, ~k is the wave-
vector, t is time, φ is a random phase, and ~x is the posi-
tion at which Aµ is measured. The index µ can refer to
the time component or any spatial component.
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Typically, we choose the Lorentz gauge (∂µAµ = 0).
In this gauge, we note that:

(A0)0

| ~A0|
=
v0
c
' 7.667× 10−4, (5)

where | ~A0| is the magnitude of the spatial components
of Aµ, normalized by the present dark matter energy
density of the universe (see appendix A). Equation 5
means that the dark scalar potential is about three or-
ders of magnitude smaller than the dark vector poten-
tial. Therefore, we will neglect the time-component of
the four-vector potential, and only consider from here a
standard (three-) vector potential.

From ~A, we can derive the dark electric and magnetic
fields [46]:

~E = ∂0 ~A− ~∇A0 ' ω ~A0 cos(ωt− ~k · ~x+ φ), (6)

~B = ~∇× ~A = −~k × ~A0 cos(ωt− ~k · ~x+ φ), (7)

noting that ~∇A0 ∼ −~k(A0)0 ∼ v0~v0
c3 ω| ~A0|. This term is

O(
v20
c2 ) times smaller than ∂0 ~A. Our calculation further

underscores that we can safely neglect the contribution
of the dark scalar potential to the electric field.

Next, we would like to compare the relative amplitudes

of ~E and ~B:

| ~E|
| ~B|
∼ ω

|~k|
=
c2

|~v|
∼ 103c. (8)

The amplitude of the dark electric field greatly exceeds
that of the dark magnetic field, and hence we also neglect

the contribution of ~B to the dark photon dark matter
signal.

From the above discussion, dark photons have an as-
sociated dark electric field, and this dark electric field
causes a force on a particular test mass with which the
dark photons interact. In the interferometers, dark pho-
tons couple to the particles in the four mirrors in the
Fabry-Perot cavities that comprise the LIGO-Virgo in-
terferometers, and cause an acceleration [46, 51]:

~aj(t, ~xj) =
~Fj(t, ~xj)

Mj
' εe qj

Mj
ω| ~A0|Â cos(ωt− ~k · ~xj + φ),

ε2 =
αDP

α
, (9)

where αDP is the dark photon coupling constant, ε2 is
the ratio between the dark photon coupling constant and
the electromagnetic coupling constant α, and qj is the
total charge in the jth mirror of mass Mj . If dark pho-
tons couple to the baryon number, qj is the number of
protons and neutrons in each mirror; if they couple to
the difference between the baryon and lepton numbers,

qj is the number of neutrons in each mirror. Each mir-
ror is in a different location ~x relative to the dark pho-
ton “wind” and thus experiences a different acceleration,
causing a differential strain on the LIGO-Virgo detectors.
Since the mirrors are identical, we drop the subscript j,
so qj/Mj = q/M . For a Silica mirror, q/M = 5.61× 1026

charges/kg for baryon coupling and q/M = 2.80 × 1026

charges/kg for baryon-lepton coupling.
Equation 9 is valid for any number of dark photons that

interact with the mirrors in LIGO-Virgo for less than a
coherence time. However, if we observe dark photon in-
teractions for a time longer than Tcoh, the approxima-
tion of dark photons as a single sinusoid breaks down.
In our case, we can instead treat ultralight dark matter
as a classical field: a superposition of many plane waves,
whose velocities follow a Maxwell-Boltzmann distribu-
tion with a cutoff at the escape velocity for dark matter,
vesc ≈ 1.8 × 10−3c [56], whose phases are uncorrelated,
and whose propagation and polarization directions are
isotropic (as long as the dark matter has fully virialized).
Following [46], we write the vector potential of a single

dark photon, ~Ai(t, ~x), and the sum of ~Ai(t, ~x), ~Atot, as:

~Ai(t, ~x) = | ~Ai0|Âi sin(ωit− ~ki · ~x+ φi), (10)

~Atot =

N∑
i=1

~Ai(t, ~x), (11)

where | ~Ai0| is the magnitude of the ith dark photon’s
dark vector potential (explained further in appendix A),

the subscript 0 refers only to the fact that ~Ai0 is an am-
plitude, Âi is a unit vector pointing in the (random) po-
larization direction of a dark photon, N is the number of
dark photons, φi is a random phase of one dark photon,
~ki is the wave-vector of one dark photon, fixed by the De
Broglie equation, and ωi is the angular frequency of one
dark photon, fixed by a dispersion relation for a massive
particle:

(~ωi)2 = (~c|~ki|)2 + (mAc
2)2, (12)

~ki =
mA~vi
~

, (13)

ωi =
mAc

2

~

(
1 +

1

2

|~vi|2

c2
+O

(
|~vi|4

c4

))
. (14)

By integrating equation 9 twice over time, and averag-
ing over random polarization and propagation directions,
the strain on the detector caused by a dark photon dark
matter signal is [46]:

h = C
q

M

~e
c4
√
ε0

√
2ρDMv0

ε

f0
,

' 6.56× 10−26
( ε

10−22

)(100 Hz

f0

)
, (15)

where C =
√

2/3 is a geometrical factor obtained by
averaging over all possible dark photon propagation and
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polarization directions (the calculation for C is shown in
the appendix of [46]).

C. Frequency modulations by dark photon signals

Dark photons have two sources of frequency variations:
(1) the Maxwell-Boltzmann-distributed velocities of in-
dividual dark photons, and (2) the earth’s revolution
around the sun and rotation relative to the direction
that dark photons come from. These frequency vari-
ations occur on timescales much shorter than the ob-
servation time, which means that we must analyze the
data semi-coherently, or in small chunks of a particular
Fast Fourier Transform length TFFT, and combine our
results from each chunk incoherently (without phase in-
formation). To effectively run a semi-coherent search for
quasi-monochromatic signals, we require that the power
due to a signal is confined to one frequency bin during
each Fast Fourier Transform time TFFT. We will explain
in the following subsections these frequency variations.

1. Dark photon velocities

Based on equation 14, we can determine the character-
istic frequency variation due to the different velocities of
individual dark photons. As observed in a frame at rest
with respect to the dark photons, the minimal frequency
f0 is given by [44, 46]:

f0 =
mAc

2

2π~
, (16)

with a positive deviation from f0 of:

∆fv =
1

2

(v0
c

)2
f0 ≈ 2.94× 10−7f0. (17)

This frequency deviation occurs because we assume that
the velocities of the dark photons follow a Maxwell-
Boltzmann distribution- see appendix A for more details.

2. Earth/dark photon Doppler effect

The earth rotates and moves around the sun relative to
whichever direction the dark photons are coming from.
The sum of the earth’s orbital and rotational velocities,
~vE = ~vorb + ~vrot = ωorbRorb + ωrotRE ≈ 10−4c, induces
a change in kinetic energy of the incoming dark pho-
tons with respect to the detector. Here, we calculate
the maximum possible frequency shift by considering the
magnitudes of the earth’s and dark photons’ velocities:

KEDP =
1

2
mAv

2
0 , (18)

KEDP+E =
1

2
mA(v0 + vE)2, (19)

∆KE = KEDP+E −KEDP ≈ mAv0vE , (20)

where KEDP is the intrinsic kinetic energy of dark pho-
tons, KEDP+E is the maximum kinetic energy of dark
photons with respect to the Earth, and ∆KE is the max-
imum change in the dark photons’ intrinsic kinetic energy
due to the earth’s motion. We have neglected the O(v2E)
term because it is a factor of vE/(2v0) ∼ 0.07 smaller
than mAv0vE . The change in kinetic energy of the dark
photons, given by equation 20, produces a change in fre-
quency, as observed in a frame at rest with respect to the
dark photons, of:

∆fe =
1

2π

v0vE
c2

f0 ≈ 10−8f0. (21)

∆fe is about an order of magnitude smaller than the
frequency shift induced by many dark photons travelling
at Maxwell-Boltzmann distributed speeds.

Figure 1 shows the times series h(t) and the resulting
modulus of the Fast Fourier Transform of a simulated
dark photon dark matter signal withmA = 3.063× 10−12

eV/c2, ε = 3× 10−21, and duration ∼ 105 s. We can see
a lot of structure, i.e. deviations from a pure sinusoid,
because we simulate the signal for a duration longer than
a coherence time. In the frequency domain, the power of
the signal is split across many frequency bins. We will
aim to control this power spreading in our analysis by
choosing an appropriate TFFT.

III. SEARCH METHOD

We describe our method, originally developed to look
for the gravitational-wave emission from depleting boson
clouds around black holes [11], to search for dark photon
dark matter. An overview of the search is shown in figure
2. The inputs to the search are Band Sampled Data files,
which contain complex-valued time series sampled at 0.1
s in 10-Hz bands, the so-called “reduced analytic sig-
nal” [57, 58], explained further in section III A. We take
Fast Fourier Transforms of this data, whose durations are
calculated specifically for each dark photon mass such
that the signal power is confined to one frequency bin
within each TFFT. From these power spectra, we con-
struct a time/frequency “peakmap”, in which we select
local maxima above a certain threshold. We use differ-
ent Fast Fourier Transform durations, explained further
in section III B, to make peakmaps in different portions
of the frequency space. We project these peakmaps onto
the frequency axis and select candidates, as detailed in
section III C. We repeat this process for each detector,
and then look for candidates that have similar frequencies
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(a) (b)

FIG. 1. The left-hand plot shows a part of the strain time series h(t) of a dark photon dark matter signal, without noise.
The right-hand plot shows the resulting modulus of a Fast Fourier Transform (FFT) of the time series, of duration ∼ 105 s.
Based on this Fourier Transform time, the frequency resolution is δf = 10−5 Hz. The structure in the frequency domain results
from the superposition of 1000 dark photons traveling with distinct Maxwell-Boltzmann-distributed velocities, which cause
small frequency deviations away from the minimal frequency f0 = 740.436 Hz (mA = 3.063× 10−12 eV/c2). The coherence
time and length of this signal are: Tcoh = 4595.46 s and Lcoh = 5.281× 108 m; the coupling strength is ε = 3× 10−21, and
| ~Ai0| = 2.587× 10−2 kg·m/(s·C). We simulate the signal for ∼ 233 days, though we only show the first day of its time evolution.
The features of this figure are explained in sections II B and II C.

within a given coincidence window. We follow-up candi-
dates present in both detectors to confirm or reject them
with certain techniques, as described in section III E. Fi-
nally, in section III F, we calculate the computational
cost of performing a real search.

A. Time/frequency peakmaps

To construct time/frequency peakmaps, we begin with
Band Sampled Data files [57], which represent the data
as a reduced-analytic signal, a complex-valued time se-
ries with only positive frequency components whose ini-
tial frequency has been shifted to 0 Hz. This data struc-
ture allows us to sample at the maximum frequency of
the band, as opposed to data in the form of real or ana-
lytic signals, which require a sampling frequency of twice
that of the maximum frequency of the band. To con-
struct Band Sampled Data files, we start with h(t), take
a Fourier Transform, extract a 10-Hz band, keep only
the positive frequency components, and inverse Fourier
Transform to obtain the reduced analytic signal. We
store the data in 10-Hz/1-month bands.

We then take 50%-interlaced Fast Fourier Transforms
of different lengths of the data stored in Band Sampled
Data files, estimate the average spectrum [59], obtain the
equalized spectrum by dividing the square modulus of the
Fast Fourier Transform by the average spectrum, and se-
lect local maxima above a certain threshold, θthr = 2.5,
in the equalized spectrum [59]. Time/frequency points

above this threshold are called “peaks”. We select peaks
in this way as a compromise between maintaining sen-
sitivity towards a monochromatic signal, reducing the
number of total peaks selected, and improving robust-
ness towards strong noise lines in the data. We show
an example peakmap in figure 3(a) for an injected dark
photon dark matter signal with the same parameters as
the signal in figure 1. The color represents the equalized
power spectrum.

B. Creating databases of peakmaps

We would like to take advantage of the fact that the
dark photon signal is essentially monochromatic up to
variations in frequency given by equations 17 and 21.
Moreover, we would like to account for the uncertainties
in v0 and vesc [56], and thus find the maximum TFFT
we can take such that for a particular TFFT, the signal
will be contained within one frequency bin. Since the
frequency resolution is δf = 1/TFFT, we must consider
the largest possible frequency modulation, which means
that we allow v0 → vesc in equations 17 and 21:

∆fv + ∆fe ≤ δf =
1

TFFT,max
, (22)

TFFT,max .
2

f0

c2

v2esc
' 6× 105

f0
s. (23)
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FIG. 2. Scheme of the analysis procedure to search for dark
photons. Step 1: the Band Sampled Data files, which con-
tain the time series data in 10-Hz/1-month bands, are con-
structed and combined over the whole observation time. The
Band Sampled Data files are the input to our analysis. Step
2: for each 10 Hz band, we create a time/frequency peakmap
by selecting local maxima in the equalized spectrum above a
certain threshold θthr = 2.5 with an optimally chosen TFFT.
Steps 3 and 4: we project the peakmap onto the frequency
axis, and select candidates uniformly in the frequency do-
main. We perform steps 1-4 for each detector separately. Af-
terwards, in step 5, we look for similar candidates in each
detector, i.e. coincidences in the frequency domain. In step
6, we follow-up any candidates present in both detectors.

In figure 4, we plot TFFT,max as a function of frequency,
allowing for uncertainty in vesc and the relative motion of
the earth and dark photons. Our estimate of TFFT,max is
conservative with respect to that employed in [51], hence
it should be possible to take a longer TFFT, which will be
highlighted in section III E.

C. Peakmap projection

We can view the peakmap as a collection of “ones” and
“zeros”, where “ones” represent frequencies at which the
power in the equalized spectrum has exceeded a given
threshold at a particular time. For this part of the anal-
ysis, the power in each bin does not matter: only the
presence of a peak or not. By making this choice, we
reduce the impact of noise disturbances: a noise line in a
particular Fast Fourier Transform will always be given a
value of 1 in the peakmap, regardless of its strength.

Now, we project the peakmap onto the frequency axis,
which is shown in figure 3(b). After the projection, we
calculate a detection statistic, called the critical ratio
CR:

CR =
y − µ
σ

, (24)

where y is the number of peaks at a particular frequency,
and µ and σ are the median and standard deviation of the

number of peaks across a frequency band, respectively.
σ is calculated using equation D1 of [60]. The CR, a
random variable, gives us an estimate of significance for
each candidate. It should follow a Gaussian distribution,
with zero mean and unit variance, if the frequency bands
on which we perform the analysis do not contain a signal
or narrow noise lines.

D. Candidate selection and coincidences

We repeat this projection for each detector separately,
and look for candidates whose frequencies are close
enough to each other, i.e. coincidence candidates. For
two candidates with frequencies f1 and f2, we calculate
the “distance” d between them as:

d =
|f2 − f1|
δf

. (25)

To determine an optimal threshold on the coincidence
distance, we inject many simulated signals at a variety
of amplitudes and frequencies into real O2 Livingston
data, and perform the analysis steps described in sections
III A-III C. We then calculate the distances between the
frequencies of the candidates and injected signals with
equation 25, and create a histogram of these distances,
as shown in figure 5. Most candidates fall within one
frequency bin of the injection, implying that a threshold
of one bin is large enough to detect dark photon signals.
By chance, O(few%) of candidates fall within one bin
of an injection for the weakest signals. In other words,
we expect a flat distribution in the histogram in figure
5 when no signal is present, and a deviation from this
distribution in the presence of signals. The false alarm
probability represents the portion of candidates that will
inevitably fall within one bin of the injection.

We further investigate the threshold on coincidence
distance as a function of the false dismissal probability,
which is shown in figure 6, for a variety of injections.
Here, we can see the relationship between coincidence
distance threshold and the false dismissal probability for
a fixed frequency band (140-141 Hz) at a variety of am-
plitudes. The false dismissal probability decreases as we
increase the threshold, implying the need to use a low co-
incidence threshold. We therefore conclude that a thresh-
old of one bin allows the detection of simulated signals,
and keeps the false alarm probability low, O(few%).

Furthermore, we must consider the number of candi-
dates to select per frequency band in a real search, which
is typically motivated by the number of follow-ups that
we can afford to do. We should also ensure that the num-
ber of coincidences, Kcoin, is uniform across the frequency
space. In Gaussian noise, [60]:

Kcoin ≈
K1K2

Ktot
, (26)

where K1 and K2 are the number of candidates we select
per detector, and Ktot is the number of points in our
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(a) (b)

FIG. 3. The left-hand plot shows a zoom of the peakmap (time/frequency map), constructed with TFFT = 1208 s, of a strong
dark photon dark matter signal injected into real O2 Livingston data with ε2 = 9 × 10−42 and f0 = 740.436 Hz. The color
represents the equalized spectrum. This injection is for illustrative purposes only: we expect a true dark photon dark matter
signal to be much weaker than that shown here, based on upper limits in [51]. The right-hand plot shows the result of the
projection of the peakmap onto the frequency axis. The strongest candidate’s frequency was in the same bin as the injection.
We see a small peak in the counts in an adjacent frequency bin to the signal because we use a longer TFFT than the maximum
one allowed, TFFT = 1.5TFFT,max, as discussed in section III E 1, and because the frequencies discretized.

FIG. 4. Maximum allowed Fourier Transform length,
TFFT,max, given in equation 23, as a function of boson mass
and frequency. The red shaded area represents the 90% uncer-
tainty in the measurements of the escape velocity (the max-
imum velocity of dark photons) made by the RAVE collab-
oration [56]. Though the velocities of the dark photons are
distributed around the virial velocity, we use the escape ve-
locity to set the TFFT,max because it is the maximum velocity
that an individual dark photon could have.

parameter space. Considering a bandwidth B, the total
number of points per B Hz band is:

Ktot =
B

δf
. (27)

FIG. 5. A histogram of the distances, calculated with equa-
tion 25, between the frequencies of injections and those of
the recovered candidates using our method. We injected sig-
nals in real O2 Livingston data with a variety of coupling
strengths, ε2 = [10−46, 10−38], in the frequency bands 40-41
Hz, 90-91 Hz, etc. until 1990-1991 Hz. Most candidates tend
to be within one frequency bin of the injection. On average,
O(few%) of candidates fall within one frequency bin by chance
for the weakest, undetectable signals, which is consistent with
the expected false alarm probability.

We typically select the same number of candidates in
each detector, K1 = K2 = K, meaning that:
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FIG. 6. False dismissal probability as a function of coinci-
dence distance threshold for different coupling strengths (col-
ored lines, square markers), for the frequency band 140-141
Hz, in real O2 Livingston data. Higher coupling strengths
imply lower false dismissal probabilities.

FIG. 7. Number of candidates per 10-Hz band to select as
a function of frequency, assuming Gaussian noise. Different
colored lines correspond to different desired number of co-
incidences in each band (between one and five here). The
candidates are selected uniformly in each 10-Hz band.

K ≈

√
Kcoin

B

δf
=
√
KcoinTFFTB. (28)

We plot the number of candidates we should select per
detector in each B = 10 Hz band in figure 7, as a function
of frequency, to ensure a certain number of coincidences.
The Fast Fourier Transform times are calculated using
equation 23. We see an order of magnitude change in
the number of candidates to select across the frequency
domain, which occurs because the Fast Fourier Trans-
form time, and therefore the number of frequency bins,
is smaller at higher frequencies than at lower ones.

E. Follow-up

In this subsection, we describe and evaluate two pos-
sible follow-up techniques to confirm or reject possible
dark photon signals. In the first technique, we obtain
our detection statistic as a function of increasing Fast
Fourier Transform times; in the second one, we average
power spectra from dark photon signals in order to look
for a statistically significant peak at a frequency that has
been shifted by ∆fv, given in equation 17.

1. Critical ratio vs. TFFT behavior

Until this point, our method has constrained the power
of the signal to one frequency bin in each TFFT. But, af-
ter we have a potential candidate, we can increase TFFT
to see if we can observe the power spreading that is shown
in figure 1(b), which would manifest itself as a character-
istic decrease in the critical ratio with increasing TFFT.
We will therefore veto candidates whose critical ratios do
not follow this behavior. In figure 8, we can see the dif-
ference in critical ratio as a function of TFFT between a
monochromatic signal, e.g. a noise line, and a dark pho-
ton signal. To create the dark photon curve, we inject
a dark photon signal, make a time/frequency peakmap,
perform the projection, select candidates within one bin
of the injection’s frequency, and calculate the candidates’
critical ratios. We note that the critical ratio is maxi-
mized at TFFT ' 1.5TFFT,max, and decreases for larger
TFFT. For TFFT > 10TFFT,max, the injection and re-
turned candidate are no longer in the same frequency
bin. The critical ratio appears to change as a function
of increasing TFFT length because the strain amplitude
periodically decreases (see the left-hand panel of figure
1) at some times, and not others. Therefore, increasing
TFFT will not always result in increasing signal power, as
would happen for a purely monochromatic signal.

We would like to further study the peak in critical ra-
tio at TFFT ' 1.5TFFT,max with injections at a variety
of amplitudes. Therefore, we determine the critical ratio
as a function of TFFT, as in figure 8, and we record the
factor TFFT/TFFT,max that maximizes the critical ratio.
We then histogram these factors in figure 9, which shows
that for the majority of signals, the ideal TFFT in a real
search is ∼ 1.5TFFT,max. Employing a TFFT longer than
TFFT,max is reasonable because we gain more in sensitiv-
ity by making the frequency bins narrower than we lose
by allowing the signal power to spread into adjacent bins.

2. Combining power spectra

The second technique takes advantage of the statisti-
cal properties of dark photons. Statistically, we expect
that for many measurements of the dark photon dark
matter signal, the power spectrum will be peaked at a
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FIG. 8. The critical ratio is shown as a function of a fac-
tor of TFFT,max = 806 s for both dark photons (red dot-
dashed line, real O2 Livingston data) and a monochromatic
noise line (orange, theoretical, no noise). For dark photons,
the critical ratio peaks at ∼ 1.5TFFT,max and decreases as
TFFT & 1.5TFFT,max. The oscillatory nature of the critical
ratio at certain points occurs because the signal periodically
has low values of strain (see the left-hand panel of figure 1),
that do not create peaks in the peakmap. In contrast, the
critical ratio of a monochromatic signal will increase with the
fourth root of TFFT. For TFFT . TFFT,max, we see that the
critical ratio tends to build upwards towards its maximum at
∼ 1.5TFFT,max. We can therefore use the critical ratio as a
function of TFFT to distinguish narrow noise lines from dark
photon dark matter signals, and veto candidates whose criti-
cal ratios do not behave similarly to the red curve. Note that
beyond TFFT & 10TFFT,max, the recovered candidates are not
in the same bin as the simulated signal. For this injection,
f0 = 740.436 Hz and ε2 = 1× 10−42.

frequency ftrue = f0

(
1 + 1

2
v20
c2

)
. If we average power

spectra on shorter timescales than the observation time,
but on longer timescales than TFFT,max, we should be
able to see this peak.

To illustrate the second technique, we simulate a sig-
nal with a minimal frequency f0 = 740.436 Hz lasting
for 233.793 days, without noise. Based on the relation
in equation 23, the maximum TFFT possible without los-
ing signal power is TFFT,max = 806 s. Starting from
TFFT,max, we increase TFFT by various factors, ranging
from 5 to 50, and average the resulting power spectra per
TFFT. When we do this average, we would see a “true”
peak in the power spectrum at ftrue. In figure 10, we
show the error in frequency bins between ftrue and the
frequency corresponding to the maximum in the averaged
power spectrum, as a function of TFFT/TFFT,max (black,
square curve). The red, circle curve shows the number
of Fast Fourier Transforms averaged. We can see that
the error in bins is very small for smaller TFFT, and gets
worse as we increase TFFT, corresponding to less Fast
Fourier Transforms to average. We can therefore expect
to see a peak at ftrue within one frequency bin of ftrue
up to 50TFFT,max in this example, without noise, which

FIG. 9. Histogram of TFFT/TFFT,max values, normalized by
the bin width, that correspond to the maximum value of
the critical ratio. The optimal TFFT appears to be around
1.5TFFT,max, regardless of the amplitude or frequency of the
signal. We obtained this histogram using thirty injections
per amplitude at sixteen different amplitudes in seven differ-
ent one-Hz bands in real O2 Livingston data. We expect an
optimal TFFT higher than TFFT,max because we gain more in
sensitivity due to a longer TFFT than we lose due to increased
power spreading because our frequency bins are finer. In this
plot, the couplings range from ε2 = [10−46, 10−38] for 40-41
Hz, 90-91 Hz, etc. until 1990-1991 Hz.

is the best we could possibly do.

We also consider this follow-up technique in the real-
istic case when noise is present by simulating many sig-
nals and determining the factor by which we can increase
TFFT as a function of signal amplitude and frequency in
real O2 Livingston data. The left-hand panel of figure 11
shows in color TFFT/TFFT,max as a function of the cou-
pling strength/frequency parameter space. Depending on
ε, TFFT/TFFT,max can be between 2-20, on average. Addi-
tionally, in the right-hand panel of figure 11, we evaluate
the efficiency of this follow-up technique by determining
the fraction of injections, for a corresponding TFFT, that
can be localized to within one frequency bin of the injec-
tion. These plots serve to characterize the limits of the
follow-up as a function of the signal parameter space.

In a real search, we can implement this technique in
the following way: assuming that we obtain a possible
candidate, we can map its critical ratio to a particular
amplitude/ coupling strength by performing injections at
the frequency of the candidate with different amplitudes
to obtain a “calibration” of the critical ratio. Then, we
can look at the left-hand panel of figure 11 to determine
the maximum TFFT we can use for the averaging proce-
dure, and with what efficacy we can apply this technique.
Afterwards, we can perform averages of amplitude spec-
tral densities, and check whether at each TFFT, the max-
imum in the power spectrum corresponds to ftrue. We
can also calculate the difference in bins between the fre-
quency corresponding to the maximum in the averaged
power spectrum and ftrue, which should get larger with
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FIG. 10. The black curve shows the error in frequency bins
between the true frequency ftrue and the frequency of the peak
in the signal-only (no noise) averaged power spectrum, as a
function of the factor by which we have increased TFFT from
TFFT,max. We also plot in red the number of Fast Fourier
Transforms we average for each TFFT. The aforementioned
error, which is less than one frequency bin up to TFFT .
50TFFT,max, is much smaller than that derived from taking a
single power spectrum, which is at least 2-10 bins off for the
same choices of TFFT.

longer TFFT, as shown in figure 10. We note that a noise
line will not be shifted by ∆fv, which could help us to
distinguish between dark photons and noise disturbances.
Of course, the efficiency in the right-hand panel of figure
11 and the signal amplitude must be high enough to ap-
ply this technique, as is the case for all standard follow-up
methods.

F. Computational cost

Running the main part of the search, i.e. steps 1-4 in
figure 2, does not require much time. We simply load
the data from the Band Sampled Data files, and create
many different peakmaps with different TFFT in 10-Hz
bands. We have determined that performing this search
on one year of data from a single detector, in 10-Hz bands
between 10 and 2000 Hz, would take less than a few
days when running on hundreds of Xeon CPU E5-2695
v2 cores.

We estimated the computational cost for a single detec-
tor, though in practice, we will run our search on at least
two detectors. Because we perform a coincidence-based
analysis, the total computational cost scales linearly with
the number of detectors in our network [60]. In contrast,
the cost of cross-correlation searches [51] scales roughly
by a factor of P (P − 1)/2, where P is the number of de-
tectors in the network. As the gravitational-wave detec-
tor network grows to include KAGRA [61], LIGO India
[62], Einstein Telescope [63] and Cosmic Explorer [64],
our method will have a distinct advantage from a com-
putational point of view.

IV. SENSITIVITY

To calculate the sensitivity of our method, we adapt
formulas given by equations 17 and 67 in [11, 60], respec-
tively. Our sensitivity formula assumes that the signal is
monochromatic during one Fast Fourier Transform, and
includes averages over the polarization and propagation
directions of the N dark photons:

h0,min ≈
2.80

M1/4θ
1/2
thr

√
Sn(f)

TFFT,max

(
p0(1− p0)

p21

)1/4√
CRthr −

√
2erfc−1(2Γ),

M =
Tobs

TFFT,max
,

p0 = e−θthr − e−2θthr +
1

3
e−3θthr = 0.0755 for θthr = 2.5,

p1 = e−θthr − 2e−2θthr + e−3θthr = 0.0692 for θthr = 2.5, (29)

where M is half the number of Fast Fourier Trans-
forms during the observation time Tobs (because the Fast
Fourier Transforms are interlaced), θthr = 2.5 is the
threshold for peak selection to create the peakmap, Sn is
the noise power spectral density of the detector, Γ is the
chosen confidence level, p0 is the probability of selecting
a peak in the equalized spectrum (above θthr) that is a
local maximum if the data contain only noise, and p1 re-
lates to the probability of selecting a peak (above θthr) in
the presence of a signal. This probability depends on the
signal spectral amplitude, which we assume to be much

smaller than the noise level, and is given by equation 20
in [60]. We note that p1 is shorthand for the expression
given in the last row of equation 29.

In addition to our theoretical sensitivity calculation,
we perform simulations to obtain the true sensitivity in
real O2 Livingston data. We inject one hundred signals
in each 1-Hz band every 50 Hz ([40-41] Hz, [90-91] Hz,
etc. up to [1990-1991] Hz) and select a certain number
of candidates per 1-Hz band such that one coincidence
would on average occur in Gaussian noise (see equation
28). We simulate 1000 dark photons per injection, which
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(a) (b)

FIG. 11. The left-hand plot shows the average factor TFFT/TFFT,max as a function of the coupling strength and frequency of
simulated dark photon signals that we injected in real O2 Livingston data. The right-hand plot shows the efficiency of averaging
power spectra using any TFFT/TFFT,max above one. From these panels, we determine that we can apply follow-up technique to
a good portion of the frequency/coupling strength parameter space, with an efficiency determined primarily by the coupling
strength.

should be enough to emulate a realistic signal, as shown
in [46]. We use a varying TFFT between 450 s and 21836
s that depends on the maximum frequency of each band
(higher frequency implies larger frequency change, so a
smaller TFFT is required).

In figure 12(a), the black curve (O2 empirical sensi-
tivity) shows the minimum coupling ε2 as a function of
frequency at 95% confidence using injections. The cyan-
shaded area represents the spacing in ε2 when choosing
the strength of the injections. The red curve (O1 upper
limits) shows the upper limits from [51], in which only
∼ 37 days (893 hours) of data were used. Here, we simu-
lated signals for ∼ 233 days, though the amount of usable
data was around 135 days [50]. Additionally, the maxi-
mum velocity of dark photons signals affects our sensitiv-
ity because it dictates our choice of TFFT (see equation
23). If we had used a smaller maximum velocity, around
1.8v0 as in [46], we could have increased TFFT by a factor

of 2, improving the sensitivity estimation of ε2 by ∼
√

2.
Considering all of these factors, we find that our method
and the cross-correlation one produce consistent results.

Furthermore, assuming that O2 Livingston data did
not contain a dark photon signal, we produce Feldman-
Cousins [65] upper limits in these frequency bands to
compare with the sensitivity estimated through injec-
tions. They also serve as a constraint on the dark matter
coupling constant in O2 Livingston data, and are a me-
dian factor of ∼ 2 better than the sensitivity estimation.

This median factor of ∼ 2 improvement in the
Feldman-Cousins limits, compared to the empirical sen-
sitivity estimation, arises from different choices of CRthr.
When we obtain the empirical sensitivity estimation, we
require that the frequency of the recovered candidate

be within one frequency bin of the injection, and that
the critical ratio of the candidate exceeds CRthr = 5.
Instead, when we calculate the Feldman-Cousins limits,
we map the measured critical ratios returned during the
analysis to inferred critical ratios. This mapping ensures
perfect coverage at the chosen confidence level, and that
the critical ratio used in equation 29 can only take val-
ues greater than 0. In practice, the measured critical
ratio is, on average, 0, in Gaussian noise, which maps to
an inferred critical ratio of ∼ 2 at the 95% confidence
level. If we look at the square of equation 29, and use
CRthr = 2 (as representative of the Feldman-Cousins lim-
its), instead of CRthr = 5 (as used in the sensitivity es-
timation), we obtain an improvement factor of ∼ 1.82 in
ε2, which is consistent with the median factor of ∼ 2 by
which the Feldman-Cousins limits and empirical sensitiv-
ity estimation differ.

We note that these derived limits may improve signif-
icantly if the finite propagation time for light down the
interferometers is accounted for [66].

In figure 12(b), we calculate h0,min from equation 29
(orange curve, O2 theoretical sensitivity), with an ampli-
tude spectral density curve for O2 Livingston [67]. We
use the following parameters: CRthr = 5, θthr = 2.5, and
Γ = 0.95, and see that the theoretical and empirical sen-
sitivity estimations agree well.

We also plot empirically-derived Receiver Operating
Characteristic curves for our method in figure 13: the
detection efficiency as a function of false alarm probabil-
ity. These curves come from 100 injections at a variety of
ε2 values in the 90-91 Hz band, and serve to characterize
the sensitivity of our method in a complementary way to
the estimation shown in figure 12.
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FIG. 12. In the left-hand plot, we plot the coupling ε2 as a function of frequency at the 95% confidence level, obtained with 100
injections every 50 Hz, i.e. in the bands [40-41], [90-91 Hz], etc. (black dot-dashed curve, O2 empirical sensitivity). The cyan
shading denotes the uncertainty arising from the spacing of ε2 when doing injections. The red curve (O1 upper limits) comes
from [51] and represents a 95% upper limit derived from cross-correlated O1 data [50]. We also plot for comparison Feldman-
Cousins-derived upper limits [65] in O2 Livingston that assume that our detection statistic follows a Gaussian distribution,
and that no dark photon signal existed in this dataset. In the right-hand plot, we show the minimum detectable amplitude,
h0, both empirically and theoretically, which agree well. The sensitivity deteriorates at 40 Hz because there are at least five
noise lines in the 40-41 Hz band that are within a few mHz of some injections.

FIG. 13. Receiver Operating Characteristic curves for differ-
ent values of ε2 derived from injections in O2 Livingston data
using TFFT = 9838 s in the 90-91 Hz band. The observation
time is ∼ 233 days, though the amount of usable data was
only ∼ 135 days because the detector was not always on [50].

V. CONCLUSIONS

We have adapted a method to detect dark photons
interacting with gravitational-wave detectors. In this
method, we carefully select a Fast Fourier Transform
duration as a function of dark photon mass, such that
the frequency evolution of dark photons would be con-
tained within one frequency bin in each TFFT. Our

work provides a complementary, independent check on
the cross-correlation search for dark photons, and ad-
vances a movement to use gravitational-wave detectors
for purposes other than measuring gravitational waves,
without having to modify any of the existing hardware.

We provide an end-to-end analysis framework for per-
forming a search for dark photon dark matter signals,
beginning with the optimal creation of time/frequency
peakmaps, and ending with follow-up techniques de-
signed to distinguish between dark photons and other
quasi-monochromatic signals, and between dark photons
and noise disturbances.

We stress that this search is computationally light, tak-
ing only a couple of days to run on the computing clus-
ter at the Université catholique de Louvain’s. It is po-
tentially quicker than the cross-correlation search, espe-
cially as the number of detectors in our network increases.
Indeed, the computational cost of our search scales lin-
early with the number of detectors, while the cost is ap-
proximately proportional to the square of the number
of detectors for cross-correlation searches. Furthermore,
cross-correlation searches require that detectors be on at
exactly the same time, which significantly reduces the
amount of usable data. And, cross-correlating different
detector pairs, e.g. Hanford-Virgo and Livingston-Virgo,
may not be that sensitive due to the small amount of
overlap between detectors, which could further limit the
sensitivity of cross-correlation analyses as more detectors
come online.

For the first time, we present a theoretical estimate
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of sensitivity for dark photon dark matter searches, and
compare this estimate with that obtained through soft-
ware injections in real O2 Livingston data. Both ap-
proaches agree well, and provide a way to compare our
method with the cross-correlation technique.

Future work includes rigorously developing a matched
filter to optimally follow-up candidates returned from the
search pipeline described here. With the matched filter,
we will even be able to independently estimate the value
of v0 by constructing templates that allow v0 to vary.
Moreover, matched filters will help us to distinguish be-
tween the types of dark matter particles that directly
interact with the detector, as discussed in section I. We
would also like to take advantage of the directional de-
pendence of the dark photon wind with our follow-up
techniques.
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Appendix A: Dark photon dark matter signal
simulations

We simulate a dark photon dark matter signal in the
same way as in [46]. For each of N dark photons we se-

lect a random polarization Âi and propagation direction

k̂i independently by uniformly selecting the spherical co-
ordinates cos θi = [−1, 1] and φi = [0, 2π].

Âi, k̂i = (sin θi cosφi, sin θi sinφi, cos θi). (A1)

To calculate ~ki = m|~vi|
~ k̂i, we select the magnitude of ve-

locities |~vi| = v according to a Maxwell-Boltzmann dis-
tribution that cuts off at vesc:

f(v) ∼ v2e−v
2/v20Θ(vesc − v). (A2)

We need to normalize equation 11 by the density of dark
matter in the universe, ρDM By integrating equation 11
over a coherence volume Vcoh = L3

coh and a coherence
time Tcoh, we can obtain the magnitude of each dark

photon’s | ~Ai0|:

| ~Ai0| =
~

mAc2
1
√
ε0

√
ρDM

I
, (A3)

where the integral I is:

I =
1

VcohTcoh

∫
Vcoh

∫
Tcoh

∣∣∣∣∣
N∑
i=1

Âi0 sin(ωit− ~ki · ~x+ φi)

∣∣∣∣∣
2

dtdV. (A4)
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We also can calculate | ~Ai0| directly for any number N of
dark photons:

| ~Ai0| '
~

mAc2
1
√
ε0

√
ρDM

N/2
. (A5)

The numerical integration and direct calculations agree
to within 1% for N = 1000, the desired number of dark
photons to simulate. Therefore, to save computation
time, we do not perform the numerical integration. Based
on equations A3 and A5, I ≈ N/2.

Since there are N dark photons in the simulation, the
amplitude of the overall dark vector potential will in-
crease by

√
N , so:

| ~A0| =
√
N | ~Ai0| '

~
mAc2

1
√
ε0

√
2ρDM. (A6)

| ~A0| is directly proportional to the amplitude of the sig-
nal, which can also be expressed through the energy den-
sity of dark matter, as shown in equation A4 in [46].

Note that as in [46, 51], we simulate the detector mo-
tion as a function of time, given the locations of the de-
tectors relative to the center of the earth [72, 73].

Appendix B: Additional studies on false dismissal
and false alarm probabilities

In figure 14, we show similar results to figure 6 to
demonstrate how false dismissal probability changes as a
function of coincidence distance threshold for two other
frequency bands: 690-691 Hz and 1990-1991 Hz. Choos-
ing one bin as a coincidence threshold ensures a low false
dismissal probability in these sample frequency bands.
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(a) (b)

FIG. 14. False dismissal probability for two other frequency bands (left: 690-691 Hz; right: 1990-1991 Hz) that were considered
to determine an optimal coincidence distance threshold, and obtained with injections in real O2 Livingston data. Different
lines with square markers correspond to different coupling strengths.
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