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24 Quai Ansermet, CH-1211 Genève 4, Switzerland

Antony Lewis
Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK

Mathew S. Madhavacheril
Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5

In recent years, weak lensing of the cosmic microwave background (CMB) has emerged as a
powerful tool to probe fundamental physics, such as neutrino masses, primordial non-Gaussianity,
dark energy, and modified gravity. The prime target of CMB lensing surveys is the lensing potential,
which is reconstructed from the observed CMB temperature T and polarization E and B fields.
Until very recently, this reconstruction has been performed with quadratic estimators (QEs), which,
although known to be suboptimal for high-sensitivity experiments, are numerically efficient, and
useful to make forecasts and cross-check the results of more sophisticated likelihood-based methods.
It is expected that ongoing and near-future CMB experiments such as AdvACT, SPT-3G and the
Simons Observatory (SO), will also rely on QEs. In this work, we review different QEs, and clarify
and quantify their differences. In particular, we show that the Hu-Okamoto (HO02) estimator is not
the absolute optimal lensing estimator that can be constructed out of quadratic combinations of T,E
and B fields. Instead, we derive the global-minimum-variance (GMV) lensing quadratic estimator.
Although this estimator can be found elsewhere in the literature, it was erroneously described as
equivalent to the HO02 estimator, and has never been used in real data analyses. Here, we show
explicitly that the HO02 estimator is suboptimal to the GMV estimator, with a reconstruction noise
larger by up to ∼ 9% for a SO-like experiment. We further show that the QE used in the Planck, and
recent SPT lensing analysis is suboptimal to both the HO02 and GMV estimator, and would have a
reconstruction noise up to ∼ 11% larger than that of the GMV estimator for a SO-like experiment.
In addition to clarifying differences between different QEs, this work should thus provide motivation
to implement the GMV estimator in future lensing analyses relying on QEs.

I. INTRODUCTION

Weak gravitational lensing of the cosmic microwave
background (CMB) arises from the deflection of CMB
photons as they travel to us from the last scattering
surface, through the inhomogeneous Universe [1]; see
e.g. Ref. [2] for a review. The deflection angle is propor-
tional to the gradient of the lensing potential φ, which is
determined by the projected mass distribution along the
line of sight. Reconstructing φ is therefore a powerful
cosmological tool, as it gives direct access to the pro-
jected distribution of the total matter – baryonic and
dark – without relying on biased tracers [3]. Among
other applications, the power spectrum of the lensing
potential and its cross-correlation with other tracers of
large-scale structure are a sensitive probe of the growth
of matter fluctuations, primordial non-Gaussianity, neu-
trino masses, dark energy, and modified gravity [2, 4, 5].
CMB lensing has been successfully measured by ACT,
SPT, Planck, BICEP and POLARBEAR [6–17]. Cur-
rent and upcoming wide-field CMB experiments such as
AdvACT [18], SPT-3G [19] and the Simons Observa-

tory (SO) [20] will measure the lensing potential with
even higher signal-to-noise ratio. Looking ahead, next-
generation “Stage-4” instrumental concepts with un-
precedented depth and angular resolution are currently
under development [21], with CMB lensing as one of their
main science goals [22].

One of the main signatures of weak lensing is the in-
duced correlations between unequal Fourier modes of the
CMB temperature and polarization fields. It is there-
fore natural to seek to estimate φ out of linear com-
binations of terms quadratic in different modes of the
observed fields [23, 24]; and indeed, almost all CMB
lensing analyses thus far have relied on such quadratic
estimators. For the next-generation Stage-4-like CMB
experiments (CMBS4), quadratic estimators are known
to be suboptimal, especially for polarization [25]. More
elaborate algorithms are being developed, such as the
gradient-inversion method [26], or likelihood-based meth-
ods [25, 27–29]. Meanwhile, quadratic estimators remain
the workhorse tool for current and near-future CMB ex-
periments like AdvACT, SPT-3G, and SO. They have the
advantages of being very simple to implement and com-
putationally efficient, and will serve as useful cross-checks
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even when more accurate and computationally demand-
ing methods are employed with future data.

The main goal of this paper is to clarify and quan-
tify the differences between several quadratic estimators
commonly used for CMB lensing reconstruction. Our
most important point is that the well-known Hu and
Okamoto [30] (hereafter, HO02) estimator is not the op-
timal quadratic estimator that can be constructed from
temperature and polarization maps, even if generalized
to the full sky, and even when using non-perturbative re-
sponse functions [31, 32]. Instead, we derive the global-
minimum-variance (hereafter GMV) quadratic estima-
tor built out of all possible quadratic combination of
T,E and B. The GMV estimator was in fact first de-
rived in Hirata and Seljak [25], as the weak-signal limit
of their likelihood-based method. Nevertheless, it was
stated there and in subsequent works that this estimator
is equivalent to that of HO02. We explicitly show that
this is not the case, and that the reconstruction noise
of the GMV estimator can be up to ∼ 9% lower than
that of the HO02 estimator on large angular scales. We
also generalize it to be accurately unbiased accounting for
higher-order lensing effects. Furthermore, we show that
the quadratic estimator used in the Planck collaboration
[9, 10] and SPT collaboration [13] lensing analyses, ob-
tained by neglecting CTE` in the inverse filter matrix, is
suboptimal to both the GMV and HO02 estimators. For
a SO-like experiment, this suboptimal estimator is up to
∼ 11% noisier that the GMV estimator. This may moti-
vate implementing the GMV estimator in future analyses,
despite the possible added complexity of jointly filtering
temperature and polarization maps.

The remainder of this paper is organized as follows.
After introducing our notation and convention in Sec. II,
we review the HO02 estimator and its close cousin, the
Okamoto-Hu [33] (hereafter OH03) estimator in Sec. III.
We then derive the GMV estimator in Sec. IV and ex-
plicitly show how it differs from the HO02 estimator. We
describe the suboptimal lensing estimator of Ref. [10] in
Sec. V. Finally, we compare estimators in Sec. VI for
different instrumental setups, and conclude in Sec. VII.

II. NOTATION AND CONVENTIONS

We denote by capital letters X,Y = T,E,B the ob-
served (lensed and noisy) CMB temperature and polar-
ization fields, and by φ the projected lensing potential.
Throughout we work in the flat-sky approximation; we
denote two-dimensional Fourier wavenumbers by l for
CMB fields and L for the lensing potential.

The power spectra of the observed temperature and
polarization fields are defined as

〈X(l)Y (l′)〉 = (2π)2δ(l+ l′)CXYl , (1)

where CXYl is the total cross-power spectrum of the
lensed fields, including detector noise added in quadra-
ture (for X = Y ). It can also include contributions

α fα(l1, l2)

TT C̃T∇T
l1

(L · l1) + C̃T∇T
l2

(L · l2)

TE C̃T∇E
l1

cos 2ϕl1l2(L · l1) + C̃T∇E
l2

(L · l2)

EE [C̃E∇E
l1

(L · l1) + C̃E∇E
l2

(L · l2)] cos 2ϕl1l2

TB C̃T∇E
l1

sin 2ϕl1l2(L · l1)

EB [C̃E∇E
l1

(L · l1) + C̃B∇B
l2

(L · l2)] sin 2ϕl1l2

TABLE I: CMB lensing correlation coefficients. ϕl1l2 is

the angle between l1 and l2. The quantity C̃X∇Y is the
lensed gradient spectrum, defined in Refs. [31, 32]. Note

that we do not include curl-like terms C̃TP⊥
l , C̃PP⊥

l ,
which are always subdominant [32].

from other sources of variance such as residual foreground
contamination. In this expression the angular brack-
ets denote taking ensemble averages over the primordial
CMB, detector noise, along with the underlying large
scale structure.

Gravitational lensing affects the auto- and cross-power
spectra of CMB fields, and moreover produces correla-
tions between non-opposite l modes, proportional to the
projected lensing potential. The response of the non-
opposite correlations to lensing can be quantified by non-
perturbative response functions fXY defined by〈

δ

δφ(L)

(
X(l)Y (l′)

)〉
= δ(l+ l′ −L)fXY (l, l′). (2)

The coupling coefficients fXY appearing in Eq. (2) are
given explicitly in Table I. They depend on the lensed

gradient spectra C̃X∇Yl defined in Refs. [31, 32], which
generalize the unlensed spectra used in the original work
of HO02 so that the response function for each lensing
mode includes the important higher-order effect of other
lensing modes. The BB term has negligible contribu-
tion to the signal-to-noise ratio of the reconstructed φ
field and thus we neglect it in our analysis. Note that
different foregrounds can also contribute to off-diagonal
correlations [e.g. 34, 35], but we do not include them in
this work.

In the remainder of this work we will describe different
estimators φ̂α for the lensing potential. All these estima-

tors are required to be unbiased, i.e. such that 〈φ̂α〉 = φ.
They are however noisy, and we define their variance (or
reconstruction noise) Nα(L) through

〈(φ̂α−φ)(L)(φ̂α−φ)(L′)〉 = (2π)2δD(L+L′)Nα(L). (3)

Here, for optimizing the signal to noise, we only consider
the primary Gaussian disconnected contractions of the

lensed fields, N
(0)
α (L); in Appendix. A we give an ex-

plicit form for the N
(1)
α (L) contractions [36] that should

also be included in any full data likelihood analysis. The
superscript values 0 and 1 represent the order to which

the variance Nα(L) explicitly depends on CφφL .
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We will often deal with convolutions in Fourier space,
and for brevity, introduce the compact notation∫

l1+l2
=L

... ≡
∫∫

d2l1d
2l2

(2π)2
δD(l1 + l2 −L)... (4)

We define the Fourier transform of a configuration-
space function A(n̂) as

F [A(n̂)](l) ≡
∫
d2n̂ A(n̂)e−il·n̂, (5)

and the inverse-Fourier transform of a harmonic-space
function B(l) as

F−1[B(l)](n̂) ≡
∫

d2l

(2π)2
B(l)eil·n̂. (6)

III. HU AND OKAMOTO ESTIMATORS

We now briefly rederive the HO02 and OH03 quadratic
estimators for the lensing potential, setting the stage
for our subsequent derivation of the global-minimum-
variance estimator.

The approach of HO02 consists in constructing the

single-pair estimators φ̂α(L) separately for each pair
α = TT, TE,EE, TB,EB, and then combining them to-
gether to form their minimum variance estimator.

OH03 moreover derive efficient full-sky single-pair esti-
mators in configuration space. They are identical to the
HO02 estimators, except for the TE estimator, which
is slightly sub-optimal. We give explicit expressions for
these estimators in the flat-sky limit in Section III B. Here
again, the final OH03 estimator is obtained by combining
these single-pair estimators. Note that HO02 and OH03
used unlensed spectra in the response functions rather
than the lensed gradient spectra. We still refer to the es-
timators constructed with the lensed gradient spectra as
the HO02 and OH03 estimators, given that the procedure
is identical.

A. Single-pair minimum-variance quadratic
estimators in harmonic space

We start by constructing quadratic estimators out of
a single pair XY , of the form

φ̂XY (L) ≡
∫
l1+l2
=L

X(l1)Y (l2)FXY (l1, l2). (7)

For the estimator to be unbiased, the weights FXY must
satisfy the constraint∫

l1+l2
=L

fXY (l1, l2)FXY (l1, l2) = 1. (8)

The noise of this estimator (defined as in Eq. (3)) is

NXY (L) =

∫
l1+l2
=L

FXY (l1, l2)
(
FXY (l1, l2)CXXl1 CY Yl2

+FXY (l2, l1)CXYl1 CXYl2

)
. (9)

1. All pairs except TE

For all pairs except TE, either X = Y or CXYl = 0.
As a consequence, the variance of the estimator takes the
form

NXY (L) = (1 + δXY )

∫
l1+l2
=L

CXXl1 CY Yl2 [FXY (l1, l2)]2.(10)

Minimizing this variance under the constraint (8) results
in the following coefficients

FXY (l1, l2) = λXY (L)
fXY (l1, l2)

(1 + δXY )CXXl1 CY Yl2
, (11)

λXY (L) ≡

[∫
l1+l2
=L

[fXY (l1, l2)]2

(1 + δXY )CXXl1 CY Yl2

]−1

. (12)

Inserting back into Eq. (10), we find the corresponding
minimum variance NXY (L) = λXY (L).

2. Special case of XY = TE

We may decompose FTE into a symmetric and anti-
symmetric piece:

FTE(l1, l2) = F+
TE(l1, l2) + F−TE(l1, l2), (13)

F±TE(l1, l2) ≡ 1

2
(FTE(l1, l2)± FTE(l2, l1)) . (14)

For each pair (l1, l2), we further define the 2-dimensional
vector

F (l1, l2) ≡
(
F+
TE(l1, l2), F−TE(l1, l2)

)
. (15)

After some algebra, and only keeping even functions of
(l1, l2) in the integral, Eq. (9) can be rewritten as

NTE(L) =

∫
l1+l2
=L

F (l1, l2) ·M(l1, l2) · F (l1, l2), (16)

where for each pair (l1, l2), the 2 by 2 matrix M(l1, l2)
is given by

M(l1, l2) =(
CTT(l1

CEEl2) + CTEl1 CTEl2 CTT[l1
CEEl2]

CTT[l1
CEEl2] CTT(l1

CEEl2) − C
TE
l1

CTEl2

)
, (17)

where A(l1l2) ≡ (Al1l2 + Al2l1)/2 and A[l1l2] ≡ (Al1l2 −
Al2l1)/2 are the symmetric and antisymmetric parts of
Al1l2 .
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Similarly, we may define the symmetric and antisym-
metric parts of the correlation coefficients f±TE(l1, l2) and

the two-dimensional vector f = (f+
TE , f

−
TE), for each pair

(l1, l2), and rewrite the constraint (8) as∫
l1+l2
=L

F (l1, l2) · f(l1, l2) = 1. (18)

Minimizing the variance (16) under this constraint leads
to the solution

F (l1, l2) = λ(L) M−1(l1, l2) · f(l1, l2), (19)

where the Lagrange multiplier λ is obtained from the
constraint (18):

λ(L) =

(∫
l1+l2
=L

f(l1, l2) ·M−1(l1, l2) · f(l1, l2)

)−1

.

(20)
The 2 by 2 matrix M(l1, l2) is easily invertible, and after
re-expressing Eq. (19) in terms of the original FXY (l1, l2)
and fTE(l1, l2), one recovers the HO02 optimal weights
for TE, namely, with our notation,

FTE(l1, l2) = λTE(L)
CEEl1 CTTl2 fTE(l1, l2)− CTEl1 CTEl2 fTE(l2, l1)

CTTl1 CEEl2 CEEl1 CTTl2 −
(
CTEl1 CTEl2

)2 , (21)

λTE(L) ≡

[∫
l1+l2
=L

fTE(l1, l2)
CEEl1 CTTl2 fTE(l1, l2)− CTEl1 CTEl2 fTE(l2, l1)

CTTl1 CEEl2 CEEl1 CTTl2 −
(
CTEl1 CTEl2

)2
]−1

. (22)

Inserting Eq. (19) into Eq. (16), we see that the noise
of the minimum-variance estimator is just NTE(L) =
λTE(L).

B. Single-pair efficient configuration-space
estimators

1. All pairs except TE

The response coefficients fXY (l1, l2) can all be writ-
ten as linear combinations of products of functions of l1
with functions of l2, with coefficients depending on L.
From Eq. (11), we see that this property transfers to
the optimal weights FXY for all pairs except TE. As a
consequence, all single-pair estimators except TE can be
written as sums of convolutions of functions of l1 with
functions of l2. This implies that they can be written as
a sum of products of functions of configuration space –
they are “separable” in configuration space. This allows
to use Fast Fourier Transforms (FFTs) (or fast harmonic
transforms for full-sky expressions [33]) to compute them
efficiently.

Similar to OH03, we define the following bilinear op-
erator of harmonic-space functions:

P [A(l1), B(l2)](n̂) ≡∇F−1[A(l1)](n̂)×F−1[B(l2)](n̂).
(23)

The single-pair estimators can all be written in the form

φ̂XY (n̂) = −∇ · F−1 [λXY (L)F [ψXY (n̂)]] , (24)

with

ψTT = P
[
C̃T∇Tl1

CTTl1
T (l1),

T (l2)

CTTl2

]
, (25)

ψEE =
1

2

∑
ε=±1

P
[

e2iεϕl1
C̃E∇El1

CEEl1
E(l1), e−2iεϕl2

E(l2)

CEEl2

]
,(26)

ψTB =
1

2i

∑
ε=±1

εP
[

e2iεϕl1
C̃T∇El1

CTTl1
T (l1), e−2iεϕl2

B(l2)

CBBl2

]
,(27)

ψEB =
1

2i

∑
ε=±1

εP
[

e2iεϕl1
C̃E∇El1

CEEl1
E(l1), e−2iεϕl2

B(l2)

CBBl2

]
.(28)

These expressions are the flat-sky limit of the OH03
full-sky expressions.

2. Case of XY = TE

The separability property is not satisfied by the TE
estimator, due to the non-factorizable term in the de-
nominator of FTE in Eq. (21). Instead of the optimal
FTE , one can use a slightly suboptimal coefficient, ob-
tained by setting CTEl = 0 in Eq. (21), namely

F eff
TE(l1, l2) = λeff

TE(L)
fTE(l1, l2)

CTTl1 CEEl2
, (29)

λeff
TE(L) ≡

[∫
l1+l2
=L

[fTE(l1, l2)]2

CTTl1 CEEl2

]−1

. (30)
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The resulting suboptimal estimator φ̂eff
TE also takes the

form Eq. (24), with

ψeff
TE =

1

2

∑
ε=±1

P
[

e2iεϕl1
C̃T∇El1

CTTl1
T (l1), e−2iεϕl2

E(l2)

CEEl2

]

+P
[
C̃T∇El2

CEEl2
E(l2),

T (l1)

CTTl1

]
. (31)

C. Optimal combination of single-pair estimators

Given the five single-pair estimators φ̂α(L) constructed
for each α ∈ {TT, TE,EE, TB,EB}, HO02 combine
them to form the estimator

φ̂HO02(L) =
∑
α

wα(L)φ̂α(L) , (32)

where the optimal weights wα(L) are obtained by min-
imizing the variance of the linear combination with the
constraint that they sum up to unity i.e.

∑
α wα = 1.

Subject to this constraint, one gets

wα =

∑
β(N−1)αβ∑
βγ(N−1)βγ

, (33)

where for each L, Nαβ(L) is the covariance matrix of

the separate estimators φ̂α, whose elements are obtained
by the generalization of Eq. (3) to the cross-correlation
of two estimators. The overall noise of this estimator is

then NHO ≡
(∑

αβ(N−1)αβ

)−1

.

The final HO02 estimator thus takes the form

φ̂HO02(L) =

∫
l1+l2
=L

∑
XY

FHO02
XY (l1, l2)X(l1)Y (l2), (34)

where the sum runs over the five unique pairs XY =
TT, TE,EE, TB,EB, and the weights are proportional
to the single-pair optimal weights, each with a different
proportionality coefficient:

FHO02
XY (l1, l2) = wXY (L)FXY (l1, l2). (35)

The same procedure can be carried with the single-pair
separable estimators of OH03. These estimators are all
identical to the minimum-variance estimators of HO02,

except for φ̂eff
TE , which is slightly suboptimal relative to

φ̂TE . Upon combining all five estimators, the OH03 es-
timator also takes the form of Eq. (34), with weights

FOH03
XY (l1, l2) = weff

XY (L)λeff
XY (L)

fXY (l1, l2)

(1 + δXY )CXXl1 CY Yl2
.

(36)

IV. GLOBAL MINIMUM-VARIANCE
QUADRATIC ESTIMATOR

It is easy to see that the final HO02 estimator is a linear
combination of terms quadratic in T,E,B. Rather than
splitting the optimization process in two steps, we instead
directly seek the global minimum variance quadratic es-
timator, in one single step. By doing so, we can account
for the correlations between different XY pairs for each
(l1, l2), rather than only after integrating over (l1, l2), as
done in the HO02 estimator. The estimator built this
way is therefore necessarily less noisy than the HO02 es-
timator, as we will show explicitly.

A. Harmonic-space expression

We start by deriving the global-minimum-variance
(hereafter GMV) estimator in harmonic space, following
the steps of Appendix A of Hirata & Seljak [25].

For each Fourier mode l, we define the three-
dimensional vector X(l) = [T (l), E(l), B(l)]. We seek
an estimator of the form

φ̂(L) =

∫
l1+l2
=L

Xi(l1)Ξij(l1, l2)Xj(l2), (37)

where we use the Einstein summation convention. With-
out loss of generality, we may assume Ξji(l2, l1) =
Ξij(l1, l2), as only the part of the integrand symmetric
under exchange of (l1, l2) contributes to the integral.

For l1 + l2 6= 0, we define fij(l1, l2) through〈
δ

δφ(L)

(
Xi(l1)Xj(l2)

)〉
= δ(l1 + l2 −L)fij(l1, l2).

(38)
In other words, if i = 1, 2, 3 correspond to Xi =
T,E,B, we have f11(l1, l2) = fTT (l1, l2), f12(l1, l2) =
fTE(l1, l2) = f21(l2, l1), etc... Here again, we have
fji(l2, l1) = fij(l1, l2).

Requiring the estimator to be unbiased thus leads the
constraint equation∫

l1+l2
=L

Ξij(l1, l2)fij(l1, l2) = 1. (39)

Using the symmetry properties of Ξ, the variance of
this estimator is then

N(L) = 2

∫
l1+l2
=L

Ξij(l1, l2)Ξpq(l1, l2)Cipl1 C
jq
l2
. (40)

Minimizing this variance under the constraint (39) leads
to

Cipl1 Ξpq(l1, l2)Cjql2 =
λ(L)

2
fij(l1, l2), (41)

where λ(L) is a Lagrange multiplier. This equation is
more easily solved in matrix form. For each l, we define
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the three by three symmetric matrix [Cl] with elements

Cijl ; similarly, for each pair (l1, l2), we define the three
by three matrices [Ξ(l1, l2)] and [f(l1, l2)]. Equation (41)
then has the solution

[Ξ(l1, l2)] =
λ(L)

2
[Cl1 ]−1[f(l1, l2)][Cl2 ]−1. (42)

Inserting back into the constraint equation, we obtain

λ(L)−1 =

∫
l1+l2
=L

1

2
Tr
(
[Cl1 ]−1[f(l1, l2)][Cl2 ]−1[f(l2, l1)]

)
.

(43)
The noise of the minimum-variance estimator is then sim-
ply N(L) = NGMV(L) = λ(L).

Putting everything together, the GMV estimator takes
the final form

φ̂GMV(L) =

∫
l1+l2
=L

∑
XY

FGMV
XY (l1, l2)X(l1)Y (l2), (44)

where the sum runs over the five unique pairs XY =
TT, TE,EE, TB,EB. Explicitly, the weights are

FGMV
TT (l1, l2) =

NGMV(L)

2Dl1Dl2

×[
CEEl1 CEEl2 fTT (l1, l2) + CTEl1 CTEl2 fEE(l1, l2)

− CEEl1 CTEl2 fTE(l1, l2)− CEEl2 CTEl1 fTE(l2, l1)
]
, (45)

FGMV
EE (l1, l2) =

NGMV(L)

2Dl1Dl2

×[
CTEl1 CTEl2 fTT (l1, l2) + CTTl1 CTTl2 fEE(l1, l2)

− CTEl1 CTTl2 fTE(l1, l2)− CTEl2 CTTl1 fTE(l2, l1)
]
, (46)

FGMV
TE (l1, l2) =

NGMV(L)

Dl1Dl2

×[
− CTEl1 CEEl2 fTT (l1, l2)− CTEl1 CTTl2 fEE(l1, l2)

+ CEEl1 CTTl2 fTE(l1, l2) + CTEl1 CTEl2 fTE(l2, l1)
]
, (47)

FGMV
TB (l1, l2) =

NGMV(L)

Dl1C
BB
l2

×[
CEEl1 fTB(l1, l2)− CTEl1 fEB(l1, l2)

]
, (48)

FGMV
EB (l1, l2) =

NGMV(L)

Dl1C
BB
l2

×[
− CTEl1 fTB(l1, l2) + CTTl1 fEB(l1, l2)

]
, (49)

where Dl ≡ CTTl CEEl − [CTEl ]2.
These explicit expressions should make it very clear

that the GMV estimator is different from the HO02 es-
timator. Put differently, the first step of the likelihood-
based iterative technique of Ref. [25] is not equivalent to
the HO02 estimator. Indeed, in the HO02 estimator, the
weight FXY of each pair XY is proportional to fXY only

(times a function of L), even after combining all single-
pair estimators; in contrast, for the GMV estimator, the
weight of each pair is a linear combination of the response
coefficients from all pairs. The weights in the GMV esti-
mator would not separately minimize the variance of an
individual XY pair, but they provide a global optimum
when combining all the pairs together.

These expressions also show that the weights are all
sums of products of function of l1 with functions of l2,
including FGMV

TE . In other words, the GMV estimator is
separable without requiring any additional approxima-
tion, making it well adapted for efficient computations,
as we now discuss.

As a side note, let us point out that the GMV estimator
(just like the HO02 an OH03 estimators) can be split into
two pieces, built from {TT, TE,EE} and {TB,EB}, re-
spectively, which are uncorrelated as CTB` = CEB` = 0.
Our publicly available Python code GlobalLensQuest
first computes these two separate uncorrelated estima-

tors φ̂a ≡ φ̂{TT,TE,EE} and φ̂b ≡ φ̂{TB,EB}, and then
combines them with inverse variance weighting to obtain
the GMV estimator.

B. Compact configuration-space expression

We may write the GMV estimator in even more com-
pact form by defining the inverse-covariance-weighted
fields

X(l) ≡ [Cl]
−1X(l), (50)

and write

T (l1) ≡ X1
(l1) = [CEEl1 T (l1)− CTEl1 E(l1)]/Dl1 , (51)

and similarly E(l1) = X
2
, B(l1) = X

3
. We then have

φ̂GMV(L) =
λ(L)

2

∫
l1+l2
=L

X
i
(l)fij(l1, l2)X

j
(l2). (52)

We moreover define the Wiener-filtered fields

Xi
WF(l) ≡ C̃ijl X

j
, (53)

where C̃11
l ≡ C̃T∇Tl , C̃12

l = C̃21
l ≡ C̃T∇El , etc., and write

TWF(l) ≡ X1
WF(l) ≡ C̃T∇Tl T (l) + C̃T∇El E(l), (54)

and similarly for EWF(l) ≡ X2
WF(l).

In terms of these fields, the GMV estimator takes the
particularly simple form

φ̂GMV(L) =
λ(L)

2

∫
l1+l2
=L

(L · l1)
[
2TWF(l1)T (l2)

+
∑
ε=±1

EWF(l1)e−2iεϕl1

(
E(l2) + iεB(l2)

)
e2iεϕl2

]
.(55)
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This form is well adapted for efficient evaluation, as it is
the sum of convolutions of functions of l1 with functions
of l2. To see this, let us define

±2EWF(l) ≡ EWF(l)e±2iϕl , (56)

±2P (l) ≡ 1

2

(
E(l)± iB(l)

)
e±2iϕl . (57)

We may then express the GMV estimator in terms of
the configuration-space versions of these fields (i.e. their
inverse-Fourier transforms):

φ̂GMV(n̂) = −∇ · F−1 [λ(L)F [ψGMV(n̂)]] , (58)

where

ψGMV(n̂) = ∇TWF(n̂) T (n̂)

+
∑
s=±2

∇[−sEWF(n̂)] sP (n̂). (59)

This expression is the flat-sky equivalent of Eq. (3) in
Ref. [10], derived in Ref. [37]. A similar expression is
derived in Ref. [38], in terms of (T,Q,U) rather than
(T,E,B); nevertheless, it is also incorrectly stated in that
paper that this estimator is identical to an estimator built
out of single-pair estimators, i.e. the HO02 estimator.

V. SUBOPTIMAL QUADRATIC ESTIMATOR
(SQE) USED IN RECENT DATA ANALYSES

While the full expression for the configuration-space
GMV estimator was already known (although it was not
known that it differs from the HO02 estimator) [10, 37],
in practice only an approximate version was used for data
analyses thus far. Instead of using the full covariance
matrix [Cl] in Eq. (50), the Planck collaboration [9, 10]
and SPT collaboration [13] approximate it as diagonal
by setting CTEl = 0 – note that [10] still use the exact re-
sponse coefficients fXY (l1, l2). This simplification allows
to deal with a cut-sky setup with a lower computational
cost; it moreover preserves the configuration space sepa-
rability. We denote this suboptimal quadratic estimator
SQE. Explicitly, the weights of this estimator are

F SQE
XY (l1, l2) = λSQE(L)

fXY (l1, l2)

(1 + δXY )CXXl1 CY Yl2
, (60)

λSQE(L) ≡

(∫
l1+l2
=L

∑
XY

fXY (l1, l2)2

(1 + δXY )CXXl1 CY Yl2

)−1

,(61)

where again the sum runs of the five distinct pairs XY .
By definition, this estimator is suboptimal relative to

the GMV estimator. Furthermore, it should be clear from
Eq. (36) that it is also noisier than the OH03 estimator
(and as we will see, also noisier than the HO02 estima-
tor). Indeed, the OH03 estimator accounts for the co-
variances between different single-pair estimators, which
depend on CTEl ; as a consequence, the L-dependent pro-
portionality constant in Eq. (36) is different for each pair.

In contrast, the SQE amounts to neglecting correlations
between single-pair estimators, and simply using their
inverse-variance combination, leading to the same coef-
ficient λSQE(L) for all weights in Eq. (60). Given that
the SQE estimator is effectively a linear combination of
single-pair estimator, and that the OH03 weights rep-
resent the optimal linear combination of single-pair es-
timators, we conclude that the SQE estimator must be
suboptimal to the OH03 estimator.

To compute the noise of this estimator, we must ac-
count for CTEl 6= 0. We find

NSQE(L) = λ2
SQE(L)

∫
l1+l2
=L

∑
XY

fXY (l1, l2)

(1 + δXY )CXXl1 CY Yl2∑
UV

[
fUV (l1, l2)CXUl1 CY Vl2
(1 + δUV )CUUl1 CV Vl2

+
fUV (l2, l1)CXVl1 CY Ul2
(1 + δUV )CUUl2 CV Vl1

]
.(62)

The SQE estimator enables faster evaluation with a cut-
sky, at the cost of only ∼ 3% increase in the reconstruc-
tion noise for Planck [10], as we confirm in Fig. 2. How-
ever, we will see that for more sensitive experimental se-
tups, the reconstruction noise penalty can be more than
10% and thus a full joint filtering analysis of the tem-
perature and polarization maps would be beneficial in
future.

VI. QUANTITATIVE COMPARISON OF
DIFFERENT QUADRATIC ESTIMATORS

A. Experimental setups

In order to evaluate the variance of different quadratic
estimators, we use three different setups which corre-
spond to the Planck, SO-like, and CMBS4-like experi-
ments. In Table II, we provide the adopted specifica-
tions for these setups. The Gaussian random noise of the
detector is calculated as

C
T,E/B
` |noise = (∆T,P )2e`(`+1)σ2/8 ln 2 (63)

where ∆T,P denote the white-noise of the detector in µK-
radian, and σ is the full width at half maximum (FWHM)
of the beam in arcmin.

Experiment `max ∆T ∆P σ

µK-arcmin µK-arcmin arcmin

Planck 3000 35.0 60.0 5.0

SO 3000 8.0 8.0
√

2 1.4

CMBS4 3000 1.0 1.0
√

2 1.0

TABLE II: Experimental specifications used in this
work.

It has been shown that extra-galactic foregrounds can
bias the CMB lensing reconstruction from temperature
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maps and different strategies have been proposed to mit-
igate this issue [e.g. 34, 35, 39–41]. We neglect the fore-
grounds in this study, and simply choose `max = 3000 in
both temperature and polarization. Although it is pos-
sible to go for a much higher `max in polarization than
in temperature due to lack of strongly polarized fore-
grounds, for simplicity we take `Tmax = `Pmax. We have
checked our results with different `max ranges and found
no drastic difference in our results.

B. Comparison of reconstruction noises

We start by comparing the OH03 and HO02
quadratic estimators in Figure 1. We find that
the HO02 estimator is systematically less noisy
than the OH03 estimator for large angular scales
(by less than 0.5%). Interestingly, the OH03 esti-
mator becomes slightly less noisy than the HO02
estimator for L larger than several hundreds. We
have checked that our numerical integrals are con-
verged to better than 0.01% relative accuracy up
to L ≈ 2000, and to better than 0.03% for L . 3000
which we also show in Fig. 4. This gives us con-
fidence that the ∼ 0.08% improvement of OH03
estimator over HO02 seen for a CMBS4-like ex-
periment is real and not a numerical artifact.

The lower noise of OH03 at small angular scales
may appear surprising at first, given that this es-
timator uses a TE estimator suboptimal to that
of HO02. However, the suboptimal TE estimator
does not guarantee that the overall OH03 esti-
mator (obtained by optimally combining the five
single-pair estimators) is noisier than the overall
HO02 estimator: indeed, if the OH03 TE estima-
tor happens to be more correlated with the TT
and EE estimators than the HO02 TE estimator
which is the case here, the overall combination of
OH03 estimators can be less noisy than that of
HO02.

In Fig. 2, we show the ratios of the reconstruction noise
of the GMV and HO02 estimators to that of the SQE es-
timator for different experimental setups. As expected,
we find that the variance of the GMV quadratic estima-
tor is lower than that of the HO02 and SQE estimators.
Also, the variance of HO02 estimator is smaller than the
SQE estimator. For a Planck -like experimental setup,
on large angular scales (L . 500), the difference between
the SQE and GMV estimators is of the order of 3% and
can reach ∼ 6% around L ∼ 2000. However, for more
sensitive experiments, this difference reaches ∼ 11% and
∼ 12% at L . 100 and L ∼ 2000 for SO- or CMBS4-
like experiments, respectively. This result may motivate
using the full covariance matrix [Cl] in Eq. (50) instead
of assuming CTEl = 0, in order to obtain more precise
results in future data analyses.

From Fig. 2, we can also see that for a
Planck-like experimental setup, at small angular

FIG. 1: Fractional difference between the variance of
the OH03 and HO02 estimators. Different colors
correspond to the different experimental setups

described in Sec. VI A.

FIG. 2: Ratio of the minimum variance reconstruction
noise of the GMV and SQE estimators, and HO02 and

SQE estimators for different experimental setups.

scales (L & 1000) the GMV and HO02 estima-
tors perform almost equally well, while for SO-
and CMBS4-like experiment GMV outperforms
HO02 everywhere. On large angular scales, the
difference between the GMV and HO02 is much
more significant for all the experiments consid-
ered here. For Planck, polarization noise is sig-
nificant, so the difference in lensing estimators
is quite small on all scales. However, although
CMBS4-like experiments are EB-dominated for
the purpose of lensing reconstruction, the im-
provement of the GMV over HO02 is driven by
a significant difference in the TT-TE-EE part
of the minimum-variance estimator (rather than
improved filtering of E improving EB; see Ap-
pendix C). The effect on the combined MV esti-
mator is largest at L . 200 where the MV estima-
tor has the largest contribution from TT-TE-EE.
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VII. CONCLUSIONS

Quadratic estimators (QEs) are widely used to recon-
struct the CMB lensing potential from CMB tempera-
ture and polarization maps. In fact, up until the very
recent POLARBEAR [17] and SPTPol [14] results, all
maps of the CMB lensing potential have been constructed
using QEs. In this work, we present a clear comparison
between different QEs, both in terms of explicit equa-
tions, and quantitatively, by comparing their reconstruc-
tion noise. Importantly, we show that the Hu-Okamoto
[30] (HO02) optimization method, consisting in first con-
structing optimal single-pair quadratic estimators, and
then their optimal linear combination, does not lead to
the absolute minimum-variance QE. Instead, we derive
the global-minimum-variance (GMV) QE, which mini-
mizes the variance of quadratic temperature and polar-
ization combinations in one single step.

Interestingly, the GMV estimator derived here had
been hiding in plain sight in previous works. It is equiv-
alent to the first step (or weak-signal limit) of likelihood-
based methods [25, 28, 38], which is therefore not equiv-
alent to the HO02 estimator, contrary to what was previ-
ously thought (although technically the GMV estimator
with non-perturbative lensed gradient weights presented
here is a modification to the first-step of likelihood based
estimators so that the result is non-perturbatively un-
biased). Our work is the first to note that the HO02
estimator is not the global-optimum quadratic estima-
tor, and make this point sharply clear through explicit
expressions, as well as numerical comparisons. Indeed,
we show that the reconstruction noise of the GMV esti-
mator is lower than that of the HO02 estimator by up to
∼ 9% for a SO-like experiment.

We also study the suboptimal QE used in the 2018
Planck [9, 10, 28] and recent SPT [13] lensing analyses
(SQE), which is obtained from the GMV quadratic es-
timator (appropriately generalized to account for beam
and pixel convolution), with the additional approxima-
tion of neglecting CTEl = 0 in the inverse filter matrix.
We show that this approximation makes the SQE subop-
timal not only relative to the GMV estimator, but also
relative to the HO02 and OH03 estimators. We evalu-
ate the reconstruction noise of the different estimators
for ongoing and planned CMB experimental setups and
find that while the improvement in the reconstruction
noise between the SQE and HO02 estimator is of order
∼ 1−8%, the difference between the SQE and GMV esti-
mators is ∼ 9−12% for more sensitive experiments, espe-
cially on large angular scales L . 102 and scales around
L ∼ 2000. This improvement amounts to achieving a
better sensitivity for the same experiment at no addi-
tional cost. This should motivate overcoming the added
complexity associated with joint filtering of cut-sky tem-
perature and polarization maps, in order to be able to use
the GMV estimator in future lensing data analyses. Our

Python code GlobalLensQuest1 to compare and com-
pute the noise variances of the HO02, OH03, GMV, and
SQE estimators and Julien Carron’s codes LensIt2 and
plancklens3 which can perform the optimal GMV op-
eration with anisotropic noise and cut-sky are publicly
available.

While in this work we have chosen to present rele-
vant equations in the flat-sky limit for conciseness, it
is straightforward to generalize our results to the full-
sky case. The flat-sky fields X(l) are to be replaced by
the full-sky harmonic coefficients X`m; the generalization
of Eq. (2) and of the coupling coefficients fXY (l, l′) are
then provided in Ref. [33]. While [33] provide the full-sky
expressions for the HO02 estimator, [37] provide the full-
sky expressions for the GMV estimator incorporating the
instrumental beam response and anisotropic noise. We
expect a comparable improvement over the full-sky ver-
sion of the HO02 estimator [33] when using the GMV
estimator [37].

The approach presented here for the GMV estimator
would also apply to any other joint estimator constructed
from similar linear combinations of other estimators. For
example, the foreground-immune hybrid QE of Ref. [35]
splits the TT lensing estimator into magnification-only
and shear-only estimators, and then form a hybrid esti-
mator through a minimum-variance linear combination
of these two estimators. Their hybrid estimator can be
further optimized by following the logic presented here,
i.e. searching for the global-minimum-variance shear and
magnification estimator, accounting for correlations for
each (l1, l2), rather than after integration over l1, l2.

For SO- and CMBS4-like experiments, on large angu-
lar scales (L < 100) the reconstruction is expected to be

signal dominated [20, 22]. The power spectrum CφφL un-
certainty is therefore dominated by cosmic variance and
using the GMV estimator rather than the HO02 or SQE
estimators would not drastically affect the measurement

of CφφL on these large angular scales. However, the re-
duction in the noise of the reconstructed φ field on the
signal-dominated large angular scales will be beneficial
for science goals which involve cross-correlation of the φ
field with other tracers of large-scale structure [5, 20],
utilizing the sample variance cancellation through cross-
correlations. Also, lensing induced B-modes act as a
source of noise and limit the measurement of the pri-
mordial B-modes [42] which is a major scientific goal for
CMB experiments. These modes can be removed using
map-level estimates of both the primordial E-modes and
lensing potential φ with a technique called delensing and
depend on the estimate of the particular realization of φ
in the given patch of the sky [20, 22, 43]. Lower noise
estimates of the φ field will therefore be crucial for such

1 https://github.com/abhimaniyar/GlobalLensQuest
2 https://github.com/carronj/LensIt
3 https://github.com/carronj/plancklens

https://github.com/abhimaniyar/GlobalLensQuest
https://github.com/carronj/LensIt
https://github.com/carronj/plancklens
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operations and motivate using the GMV estimator in-
stead of other QEs.

Even if future CMBS4 experiments will likely use
likelihood-based iterative methods to reconstruct the
lensing potential, QEs will remain very useful as a fore-
casting and cross-checking tool. More immediately, QEs
are still the primary lensing reconstruction tool for cur-
rent and near-future CMB experiments. The GMV esti-
mator will therefore be a useful tool to harvest even more
information out of the CMB data.
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Appendix A: Explicit form for the GMV N (1)(L)

As pointed out in Sec. II, in the main text we only optimize relative to the reconstruction noise N (0)(L). Here we
give an explicit expression for the additional N (1)(L) bias [36] for the GMV estimator, for which an explicit expression
has not been provided in the literature.

The covariance of the GMV estimator given by Eq. (37) becomes

〈φ̂(L)φ̂(L′)〉 =

∫
l1+l2
=L

∫
l′1+l′2
=L′

〈Xi(l1)Xj(l2)Xp(l′1)Xq(l′2)〉Ξij(l1, l2)Ξpq(l
′
1, l
′
2) . (A1)

Evaluating the expectation value in the brackets

〈Xi(l1)Xj(l2)Xp(l′1)Xq(l′2)〉 = (2π)4
[
Cijl1C

pq
l′1
δD(L)δD(L′) + Cipl1 C

jq
l′1
δD(l1 + l′1)δD(l2 + l′2)

+Ciql1C
jp
l′1
δD(l1 + l′2)δD(l2 + l′1)

]
+ (2π)2T ijpq(l1, l2, l

′
1, l
′
2)δD(L+L′) , (A2)

where the first term in the square brackets disappears because L 6= 0 and rest of the terms in the square bracket
represent N (0)(L) and T ijpq(l1, l2, l

′
1, l
′
2), the trispectrum containing terms that contribute to the lensing power

spectrum signal and the signal-dependent N (1)(L) bias. Following [36], the trispectrum term can be written in terms

of fij(l1, l2) to first order in explicit CφφL as

T ijpq(l1, l2, l
′
1, l
′
2) = Cφφ|l1+l2|fij(l1, l2)fpq(l

′
1, l
′
2) + Cφφ|l1+l′1|

fip(l1, l
′
1)fjq(l2, l

′
2) + Cφφ|l1+l′2|

fiq(l1, l
′
2)fjp(l2, l

′
1). (A3)

Substituting Eqs. (A2) and (A3) in Eq. (A1) we have

〈φ̂(L)φ̂(L′)〉 = (2π)2δD(L+L′)[CφφL +N (0)(L) +N (1)(L)] , (A4)

where

N (1)(L) ≡
∫
l1+l2
=L

∫
l′1+l′2
=L′

Ξij(l1, l2)Ξpq(l
′
1, l
′
2)×

[
Cφφ|l1+l′1|

fip(l1, l
′
1)fjq(l2, l

′
2) + Cφφ|l1+l′2|

fiq(l1, l
′
2)fjp(l2, l

′
1)
]
, (A5)

The optimal weight matrix Ξij(l1, l2) was determined in order to minimize the variance while only considering

N (0)(L).
In the left panel of Fig. 3, we show the comparison between the N (0)(L) and N (1)(L) curves for the GMV estimator

for our given experimental configurations. We find that for Planck -like experiments N (1)(L) is a couple of orders of
magnitude smaller than N (0)(L), while for more sensitive (less noisy) SO- and CMBS4-like experiments, N (1)(L) is a
factor of few to an order of magnitude smaller than N (0)(L). On small scales it can however become comparable to
the signal spectrum and is important to model in any likelihood analysis. It would be straightforward to apply the
perturbative likelihood approximation of [9, 10] (which accounts consistently for the signal dependence of N (1)(L)) to
the GMV estimator. In the right panel of Fig. 3, we show the ratio of the N (1)(L) for SQE and GMV estimators for
different experiments considered here. For SO- and CMBS4-like experiments, N (1)(L) bias for the GMV estimator is
smaller than for the SQE estimator for L . 1800. For Planck -like experiments, apart from the large angular scales
L . 200 where GMV estimator gives smaller N (1)(L) bias than the SQE estimator, both the estimators have almost
the same N (1)(L) bias.
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FIG. 3: Comparison of the N (0)(L) and N (1)(L) curves for the GMV estimator (left) and ratio of the N (1)(L) for
SQE and GMV estimators (right) for given experimental configurations.

Appendix B: Numerical convergence

In Fig. 4, we show the result of the convergence test we perform for our Python code. It shows the
% change in the noise calculation of HO02 (dashed curves) and OH03 (solid curves) estimators when
we double the number of steps in the angular part of the integration for the given `max and L . 3000.
The dashed HO02 curves mostly overlap with the solid OH03 curves and thus are not distinctly visible.
This shows that our numerical integrals are converged to better than 0.01% relative accuracy up to
L ≈ 2000, and to better than 0.03% for L . 3000, and thus makes us confident that the improvement
observed for OH03 over HO02 for small angular scales is not a numerical artifact.

Appendix C: GMV to HO02 comparison

We perform the following exercise to compare the GMV and HO02 estimators. As mentioned at the

end of Sec. IV A, the GMV estimator can be split into two independent estimators φ̂GMV
{TT,TE,EE} and

φ̂GMV
{TB,EB}. We compare the minimum variance reconstruction noise of these individual estimators with

their HO02 counterparts i.e. φ̂HO02
{TT,TE,EE} and φ̂HO02

{TB,EB}. This is shown in Fig. 5, where we plot the ratio

of the reconstruction noises for the GMV and HO02 versions of these two estimators. As we can see,
HO02 performs almost equally well as the GMV estimator for {TB,EB} pair. The overall improvement
of the GMV estimator over HO02 estimator is thus mainly driven by {TT, TE,EE}, especially for
more sensitive SO- and CMBS4-like experiments. We also show an ideal case setup in Fig. 5 which
corresponds to a noise-less experiment with the same multipole ranges as other experiments considered.
HO02 estimator for a CMBS4-like setup considered here performs almost as well as the GMV estimator
for {TB,EB} pair and very slightly under-performs for the {TT, TE,EE} set when compared to the
ideal case setup.
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FIG. 4: % change in the noise curves for HO02 and OH03 estimators when we double the number of integration
steps in our Python code.
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FIG. 5: Ratio of the minimum variance reconstruction noise of the GMV and HO02 estimators for φ̂{TT,TE,EE} and

φ̂{TB,EB} estimators for different experimental setups. The ideal setup corresponds to a noise-less case.
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