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3Dipartimento di Fisica, “Sapienza” Università di Roma & Sezione INFN Roma1, Piazzale Aldo Moro 5, 00185, Roma, Italy
4Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

5Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Ultralight bosons, which are predicted in a variety of beyond-Standard-Model scenarios as dark-
matter candidates, can trigger the superradiant instability around spinning black holes. This in-
stability gives rise to oscillating boson condensates which then dissipate through the emission of
nearly monochromatic gravitational waves. Such systems are promising sources for current and
future gravitational-wave detectors. In this work, we consider minimally-coupled, massive vector
bosons, which can produce a significantly stronger gravitational-wave signal compared to the scalar
case. We adopt recently obtained numerical results for the gravitational-wave flux, and astrophys-
ical models of black hole populations that include both isolated black holes and binary merger
remnants, to compute and study in detail the stochastic gravitational-wave background emitted by
these sources. Using a Bayesian framework, we search for such a background signal emitted using
data from the first and second observing runs of Advanced LIGO. We find no evidence for such a
signal. Therefore, the results allow us to constrain minimally coupled vector fields with masses in
the range 0.8× 10−13 eV ≤ mb ≤ 6.0× 10−13 eV at 95% credibility, assuming optimistically that
the dimensionless spin distribution for the isolated black hole population is uniform in the range
[0, 1]. With more pessimistic assumptions, a narrower range around mb ≈ 10−13 eV can still be
excluded as long as the upper end of the uniform distribution for dimensionless black hole spin is
& 0.2.
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I. INTRODUCTION

The detection of gravitational waves (GWs) emitted
by binary black-hole (BBH) and binary neutron stars co-
alescence events [1–13] has opened a new era of discover-
ies with far-reaching implications for astrophysics [14–17]
and fundamental physics [16, 18–23]. In the very near fu-
ture [24], Advanced LIGO [25] and Advanced Virgo [26]
will be joined in observing by additional detectors, such
as KAGRA [27] and LIGO-India [28], and there are plans
for a third generation of ground-based detectors [29, 30].
Together with the planned space-based GW detectors
LISA [31], and pulsar-timing arrays [32], this will allow
us to access a large range of the GW frequency spectrum.

A major target for this network of detectors is the
detection of a stochastic gravitational-wave background
(SGWB) produced by the incoherent superposition of
many sources too faint to be resolved individually (see
e.g. [33] for a recent review). In the LIGO/Virgo
frequency band, one of the most promising targets is
the background emitted by compact binary coalescences
(CBCs) [34–37]. Here we consider another possible
source for the SGWB that would be present if ultra-
light bosons in certain mass ranges exist in the Uni-
verse [38, 39] (see also Ref. [40]).
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The main mechanism responsible for this SGWB is the
superradiant instability of spinning black holes (BHs) in
the presence of massive bosons [41–60]. The superra-
diant instability relies on the fact that massive bosons
with rest mass mb can form (quasi-)bound states around
BHs with oscillation frequency ωR ∼ mbc

2/~, allowing
for continuous energy extraction whenever ωR satisfies
the superradiant condition

0 < ωR < mΩH , (1)

where m is the azimuthal index of the boson field, and
ΩH is the BH’s horizon angular velocity (see Ref. [61]
for a review). As the system becomes unstable, the bo-
son modes start growing exponentially. The superradi-
ant instability is most effective when the boson’s reduced
Compton wavelength λ ≡ ~/(mbc) is comparable to the
BH’s gravitational radius rg ≡ 2GM/c2, i.e., when

mbc
2 ∼

~c3

2GM
∼ 10−12 eV ×

(

M

70 M⊙

)−1

, (2)

for a BH with mass M . In general, for a given boson rest
mass, only for a relatively narrow window of BH masses
will the superradiant instability timescale be sufficiently
short in an astrophysical context (see e.g. Ref [61]).

During the instability phase, the BH spins down, trans-
ferring energy and angular momentum to the boson field
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until the point where the superradiant condition satu-
rates ωR ∼ ΩH , resulting in the formation of an oscil-
lating non-axisymmetric boson “cloud” which acts as a
source of nearly-monochromatic GWs with frequency

fGW ∼ ωR/π ∼ 484 Hz

(

mbc
2

10−12 eV

)

. (3)

Combining the above equation with Eq. (2), it follows
that Advanced LIGO is especially sensitive to the GW
emission from bosons with mb ∼ O(10−12 ) eV surround-
ing BHs with masses from O(10)M⊙ up to O(100)M⊙.
These GWs have been shown to be observable with
current and future ground-based GW detectors in two
regimes—a “resolvable” regime, in which nearby sources
can be directly detected [45, 54, 60, 62–71], and an
“unresolvable” regime, where the incoherent superposi-
tion of all other sources in the Universe contribute to a
SGWB [38, 39, 60, 65].

These considerations are especially important given
that light boson fields in a wide range of masses have been
proposed as potential dark matter candidates [45, 72–76],
and are predicted in many extensions to the Standard
Model of particle physics [45, 72, 75, 77–80]. Prototypi-
cal examples include not only the hypothetical QCD ax-
ion [81, 82], axion-like particles arising in string theory
scenarios [45], but also models involving ultralight vec-
tor fields, such as dark photons as dark matter candi-
dates [72, 79, 80, 83–85], and more generic hidden vector
fields which also arise as a generic prediction of string
theory [77]. Being a purely gravitational effect, the su-
perradiant instability and subsequent GW emission from
boson clouds provide a powerful way to search for such
particles and complements more conventional searches
which normally rely on (non-gravitational) couplings of
these fields with Standard Model particles.

Most studies and searches for GW signals from bo-
son clouds in LIGO data have so far focused on mas-
sive scalar fields. In particular, Ref. [39] conducted a
search for the SGWB model in the data from LIGO’s
first observation run. No signal was found, which al-
lowed them to constrain scalar fields with masses in
the range 2.0 × 10−13 eV to 3.8 × 10−13 eV in an opti-
mistic scenario. Excluding some range of ultralight bo-
son masses in the absence of the detection of GW signal
requires one to make assumptions about the BH popula-
tion and, in particular, the BH spin distribution. Simi-
larly in this work, we will consider several different ways
of parameterizing the unknown BH population statistics.
Searches for (resolvable) continuous GWs emitted by in-
dividual BH-scalar cloud systems have also been con-
ducted [67, 70, 71] but no signal has been found so far
either, suggesting constraints on scalar bosons in a simi-
lar mass range (∼ [10−13, 10−12] eV).

Making use of recent theoretical developments in the
understanding of superradiant instabilities from vector
fields [57, 58, 86], in this paper we extend those results
by modeling in detail the SGWB emitted by vector fields
and searching for this signal in Advanced LIGO’s data.

Compared to the scalar field case, the superradiant insta-
bility and GW emission timescales for vector fields can be
significantly shorter. Intuitively, this is because ultralight
vector clouds can carry spin angular momentum (while
scalar clouds can only carry orbital angular momentum),
and thus vectors form more compact clouds with greater
fluxes across the BH horizons. As we will show, these
faster timescales allow us to constrain a wider range of
boson masses.

This paper is structured as follows. In Sec. II, we pro-
vide a brief overview of the superradiant instability and
subsequent GW emission by massive vector bosons pre-
sented in Ref. [86]. In Sec. III, we discuss in detail the
predicted SGWB signal from vector clouds and compare
it to the scalar field case. In Sec. IV, we present the
Bayesian framework that we use to search for this back-
ground in GW data. Using this framework, in Sec. V we
study the vector mass range that this search method is
sensitive to, and explore the capacity of Bayesian model
selection to distinguish between the background due to
the superradiant instability and that due to unresolved
CBCs. A search using real data is presented in Sec. VI,
where we show the range of excluded vector masses using
data from Advanced LIGO’s first and second observing
runs. Finally, Sec. VII summarizes our findings and the
implications of our results.

In what follows, we use units G = c = 1 unless other-
wise stated.

II. SUPERRADIANT INSTABILITY AND GW

EMISSION

In this section, we briefly review how a vector cloud
would spontaneously grow around a spinning BH through
the superradiant instability, eventually saturate, and
then dissipate through the emission of GWs. The su-
perradiant instability can occur for bosons with spin-0
(scalar) [38, 41–44, 63–65, 87] or spin-1 (vector) [48, 52–
56, 59] (see also Refs. [50, 60] for massive spin-2 fields).
The qualitative picture is the same in either case, the
main difference being the generically shorter timescales
for the vector field case. We then describe our specific
model for the GW signal from a vector cloud, which is
based on Ref. [86].

A. Evolution of the Proca cloud

We consider a single (real) massive vector Aµ, or Proca
field, which is minimally coupled, and ignore any cou-
pling with Standard Model particles, as well as any non-
trivial self-interactions beyond the mass term. Around
a spinning BH, bound Proca states with oscillation fre-
quency ωR satisfying Eq. (1) can spontaneously grow,
exhibiting exponential growth with imaginary frequency
ωI . The BH-cloud system is then characterized by three
distinct timescales: The oscillation timescale τosc. = ω−1

R ,
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FIG. 1. A schematic representation of the evolution of the superradiance instability and subsequent GW emission. Initial
(e.g. quantum) fluctuations in the Proca field seed the instability, leading to an exponentially growing boson cloud around
the spinning BH (with growth timescale τinst). The Proca cloud grows at the expense of BH angular momentum and mass:
Mi − Mf = Esat.

A > 0. After saturation, in the GW emission phase the cloud slowly decays with timescale τGW by emitting
monochromatic gravitational radiation at frequency ωGW ≈ 2µ (see also Eq. (12)), until the cloud’s mass is too small to emit
detectable GWs, or an unstable higher azimuthal mode begins dominating the dynamics.

the superradiant instability growth timescale τinst = ω−1
I ,

and the GW emission timescale τGW (defined below).
The hierarchy of these timescales, τosc. ≪ τinst ≪ τGW,
enables us to treat the extraction of angular momentum
from the spinning BH in a quasi-adiabatic form and ig-
nore gravitational radiation during the evolution of the
superradiant instability [88]. See Fig. 1 for a cartoon
representation of the dynamics of the BH-cloud system
from the onset of the superradiant instability, through
saturation and to the GW emission phase. Assuming
that the instability is triggered by some small initial
Proca field configuration [e.g. a quantum fluctuation
with O(1) massive vector bosons], it grows exponentially
with timescale τinst. In the limit Mµ ≪ 1 the typical
instability timescales are roughly given by (see e.g. [59])

τSinst ≈ 30 days

(

M

10M⊙

)(

0.1

Mµ

)9(
0.9

χi

)

, (4)

τVinst ≈ 280 s

(

M

10M⊙

)(

0.1

Mµ

)7(
0.9

χi

)

, (5)

where the superscripts S and V each stands for the
scalar and vector field case, respectively. While doing
so, it extracts angular momentum δJ from the Kerr BH.
For linear fluxes across the BH horizon, it follows that
δJ = mτosc.δM . Hence, we can assume that the BH-
cloud system moves through a sequence of Kerr space-
times with decreasing angular momentum J and mass
M (but increasing irreducible mass).

The amplitude of the Proca field Aµ increases by
roughly 180 e-folds from the onset of the instability to
saturation. As was noted in Refs. [53, 56, 89], the BH-
cloud system is well-modeled by the linear Proca solution
on the background of a Kerr BH with mass and angular
momentum that slowly decreases until the synchroniza-
tion criterion

ΩH(Mf , Jf ) = ΩH(Mi + δM, Ji + δJ) = ωR/m, (6)

is satisfied and the instability shuts off. Here Mi and

Ji are the initial BH mass and angular momentum, and
Mf and Jf are the final BH parameters, and ΩH(M,J) =

J/[2M(M2+(M4−J2)1/2)] is the BH horizon frequency.
This expression, combined with knowledge of ωR (which
has implicit dependence on M and J) determines the
energy Esat.

A = −δM that is extracted from the BH. De-
pending on the parameters, the cloud can contain up to
∼ 10% of the original BH’s mass, while oscillating with
frequency ωR around the BH. This induces strong gravi-
tational radiation that can potentially be observed.1. Af-
ter saturation, the only dynamical timescales are τosc.
and τGW. Since the GW power is proportional to the
square of the cloud energy, ĖGW ∝ E2

A, the cloud energy
reduces as

EA(t) =
Esat.

A

1 + t/τGW
, τGW =

Esat.
A

ĖGW(t = tsat.)
. (7)

The GW power for vector clouds is to be contrasted
with the scalar field case, for which the GW power is
much smaller [86]. This difference in the GW power
translates in a large difference in the typical GW emis-
sion timescale, of which the non-relativistic estimates (i.e.
Mµ ≪ 1) roughly read:

τSGW ≈ 105 yr

(

M

10M⊙

)(

0.1

Mµ

)15(
0.5

χi − χf

)

, (8)

τVGW ≈ 8 days

(

M

10M⊙

)(

0.1

Mµ

)11(
0.5

χi − χf

)

, (9)

where again the superscripts S and V each stands for
the scalar and vector field case, and χi and χf stand

1 Note, a complex massive vector field undergoes the same ex-
ponential growth as its real counterpart. However, if the real
and imaginary components of the field are arranged such that
the resulting stress-energy distribution is axisymmetric (assum-
ing similar initial conditions as above), the GW emission is highly
suppressed compared to the case considered here [53].
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for the BH spin at birth and the end of the instability
phase, respectively. Comparing these to the instability
timescales, Eqs. (4) and (5), it clearly follows that τGW ≫
τinst, and hence during the exponential evolution of the
Proca cloud, the GW emission can be neglected. This is
true even beyond the non-relativistic regime [86].

B. Proca-BH bound states

In our approach, which follows closely the Proca mode
analysis in Refs. [58, 86], we use BH perturbation theory
to compute the bound Proca states. The underlying field
equations are

∇αF
αβ = µ2Aβ , (10)

where Fαβ = 2∇[αAβ] is the Proca field strength tensor,
µ = mb/~, and geometric quantities are computed using
the Kerr metric of a spinning BH. Lunin discovered a sep-
aration ansatz in Ref. [90] for the Maxwell equations in
Kerr spacetimes (and generalizations thereof) that makes
a direct reconstruction of the 4-potential trivial after
solving the respective second order ordinary differential
equations (ODEs).2 In Refs. [57, 92], this ansatz was
shown to separate the massive vector field equations in
Kerr spacetimes (which are not separable in the Teukol-
sky formalism). The vector potential ansatz takes the
form

Aµ = Bµν∇νZ, Z = e−iωt+imϕR(r)S(θ), (11)

where Bµν is a polarization tensor constructed from
the hidden symmetries of the Kerr-NUT-(A)dS family
of spacetimes (see Ref. [58] for the explicit form used
here). With this ansatz, Eq. (10) reduces to two sepa-
rated ODEs parameterized by the vector boson mass Mµ
and dimensionless BH spin χ = J/M2, and coupled only
by the respective separation constants: the azimuthal
mode number m ≥ 1, the overtone number n̂ ≥ 0, the
polarization state S ∈ {−1, 0, 1}, and the real and imag-
inary parts of the frequency ω = ωR + iωI .

In the non-relativistic limit, i.e., if Mµ ≪ 1, [47, 48,
54, 55, 59]

ωR = µ

(

1 −
µ2M2

2(|m| + n̂ + S + 1)2

)

+ O[(Mµ)4] (12)

ωI = Cm,n̂,S(J,M, ωR)(Mµ)4m+2S+5(ωR −mΩH).
(13)

where Cm,n̂,S(J,M, ωR) is a set of coefficients [54, 55, 59],
and the modes with S = −1 polarization, n̂ = 0, and

2 This can be contrasted with the well-established Teukolsky for-
malism [91] that provides only a single polarization and re-
quires an elaborate reconstruction mechanism to construct the
4-potential.

lowest value of m that satisfies ωR < mΩH are the most
unstable (fastest growing). Here we focus on such modes
and restrict to m = 1 and 2.3 Note that in the non-
relativistic limit, the fastest growing vector mode cor-
responds to a hydrogen-like cloud with orbital number
ℓ = 0 spatial dependence, but with j = m = 1, due to
the spin contribution, where j is the total angular mo-
mentum number [54]. In contrast, the fastest growing
scalar mode has ℓ = 1, and therefore the cloud sits far-
ther from the BH due to the centrifugal barrier. Hence,
in the vector case the relative flux across the BH horizon
is greater, leading to faster superradiant growth, and the
cloud is more compact, leading to greater gravitational
radiation.

We additionally restrict ourselves to GWs emitted by
BH-cloud systems in the saturated state (again due to
the hierarchy of timescales mentioned above). This im-
plies that the angular momentum dependency of ω can be
removed by solving for Jsat. using Eq. (6). We thus need
only the real frequency ωR, and can ignore the instability
timescale. (For a detailed analysis of the growth rates as
a function of Proca mass and BH spin in the relativistic
regime, see Refs. [52, 55, 57, 58, 86].) We use the numeri-
cal data in Ref. [86], obtained from solving the Proca field
equations as described above for the marginally unstable
modes, to fit the following functional form, which already
includes the leading-order, non-relativistic behavior:

ωsat.
R

µ
= 1 −

(Mµ)2

2m2
+

10
∑

α=4

cmα (Mµ)α (14)

where the fitted coefficients are given in Table I (see also
Appendix A in Ref. [86] for fits covering the whole param-
eter space). This value is used to compute the saturation
energy and angular momentum of the cloud, as well as
the GW frequency, as described below.

C. Gravitational Radiation

In order to compute the GW power from the boson
cloud, we use the stress-energy tensor calculated from

m\α 4 5 6 7 8 9 10

1 −2.56 13.85 −97.65 349.53 −615.29 532.55 −183.08
2 −0.076 0.0071 0.029 −0.051 0.14 −0.12 0.034

TABLE I. The coefficients, cmα , defined in Eq. (14), of the
higher order terms in ωR for the m = 1 and m = 2 mode
respectively.

3 We note that, as shown in Ref. [86], there are regions of the pa-
rameter space where the fundamental mode (n̂ = 0) grows slower
than one or more of the overtones for m ≥ 2 in the relativistic
regime. This raises the possibility of several modes being pop-
ulated simultaneously, generating a unique beating GW signal.
We do not consider such signals here since they will have a small
contribution to the stochastic GW background.
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the Proca field solutions described above, and numeri-
cally solve the Teukolsky equation for the GW pertur-
bations with this as a source. See Ref. [86] for details.
Since the stress-energy is quadratic in the field, the (an-
gular) frequency of the GW radiation is ωGW = 2ωR.
The angular dependence of the GWs has spheroidal har-
monic components with azimuthal number ±2m, and is
dominated by the ℓ = 2m contribution, though higher
ℓ components can be significant in the relativistic and
high-spin regime (and are included in our calculation
of the power). Because the GW energy flux scales as

ĖGW ∝ EA(t)2 in this treatment, we can phrase these
results in terms of the mass-rescaled (dimensionless) GW

power ˙̃EGW = ĖGW × (M/EA)2. In the relativistic
regime—in particular for Mµ > 0.05 if m = 1, and
µM > 0.67 if m = 2—we use the following polynomial
fitting function for convenience

˙̃Em
GW =

Nm
∑

α=0

dmα (Mµ)α , (15)

where the respective coefficients, determined from the
numerical data of Ref. [86], are given in Table II. In order
to extrapolate our results to the non-relativistic limit, we
use the following expressions

˙̃Em=1
GW = 1.3 × 10−12

(

Mµ

0.05

)10

, Mµ ≤ 0.05,

˙̃Em=2
GW =

(Mµ)14

1.0 × 105
+ 6.4 × 10−4(Mµ)16, Mµ ≤ 0.67.

(16)

The exponent of the lowest order term in the respective
expressions was chosen to match that of the analytic cal-
culation in Ref. [54], but the coefficients were determined
by fitting against the numerical data of Ref. [86] up to
Mµ ≈ 0.1(0.7) for m = 1(2) respectively (since even in
non-relativistic limit one expects leading order correc-
tions to the flatspace results in Ref. [54]). Because the
GW power is heavily suppressed in this regime, our re-
sults are not overly sensitive to how this extrapolation is
done.

Finally, the total GW energy emitted over a time ∆t
is given by

EGW =

∫ ∆t

t=0

dt
dEGW

dt
=

Esat.
A ∆t

∆t + τGW
. (17)

m\α 0 1 2 3 4 5 6
1 −9.6× 10−6 −0.000064 0.018 −0.27 2.36 −12.8 41.5
2 −0.00014 −0.019 0.080 0.00011 1.00 −1.95 −9.31

m\α 7 8 9 10 11 12 13 14
1 −76.9 70.0 −15.9 −10.2 - - - -
2 60.5 −165.1 275.5 −304.2 −224.6 −107.1 29.9 −3.72

TABLE II. The coefficients, dmα , for the GW power ansatz in
Eq. (15), fitted against the numerical data of Ref. [86]. Here,
Nm=1 = 10 and Nm=2 = 14.

For our purposes, we will define the signal duration to be
the lifetime of each BH, namely ∆t = t0− t(zf), where t0
is the age of the Universe, t0 ≈ 13.8 Gyr, and t(zf ) is the
cosmic time at the redshift of the BH formation. For all
cases of interest, the instability timescale is much smaller
than the BH lifetime, so we neglect the small delay be-
tween BH formation and saturation of the superradiant
instability. For BHs whose age is comparable to the in-
stability timescale, the overestimated GW radiation is
negligibly small in any case, and therefore this approxi-
mation does not affect our estimate of the overall energy
density ΩGW. The SGWB is then determined from sum-
ming over the energy emitted by each BH-cloud system
over the population of spinning BHs, as we describe in
the next section.

III. MODELING THE STOCHASTIC

BACKGROUND

In this section, we describe our SGWB model from
the whole population of BH-cloud systems. The model
follows the construction in Refs. [38, 39], where the su-
perradiant instability of ultralight scalar bosons was con-
sidered. In particular, we will see that some differences
between the background emitted by scalar and vector
clouds arise, mainly due to the larger GW power emitted
by vector bosons when compared to the scalar case.

A. General formulation

Under the assumptions that the SGWB is (a) isotropic,
(b) unpolarized, (c) stationary, and (d) Gaussian, the
background spectrum can be described in terms of the
GW energy density per logarithmic frequency interval.
This can be computed by integrating the SGWB spec-
trum from individual sources over the entire popula-
tion [93],

ΩGW(f) ≡
1

ρc

dρGW

d ln(f)

=
f

ρc

∫

dz
dt

dz

∫

dθp(θ)R(z; θ)
dEs

dfs
(θ).

(18)

Here ρc is the critical energy density required to have a
spatially flat Universe, R(z; θ) is the event rate of GW
emission per unit comoving volume per unit source frame

time, and p(θ) is the multivariate probability distribution
of the source parameters θ. Since the individual sources
emit GWs with nearly constant frequencies, the energy
spectrum from individual signals can be approximated
by

dEs

dfs
≈ EGWδ(f(1 + z) − f0) (19)

where f0 = ωR/π [computed using Eq. (14)] and EGW

is given by Eq. (17). Note that, due to the cosmologi-
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cal redshift z, the observed frequency f is related to the
source frame frequency fs such that f = fs/(1 + z).

B. BH population models

To compute the stochastic background, we consider
two possible BH formation channels: isolated extra-
galactic BHs, and BBH merger remnants. We treat their
contribution to the total GW energy density indepen-
dently. Importantly, we do not consider the galactic BH
population (e.g. as recently described in Ref. [71]), as our
method to search for a SGWB (described in Sec. IV) is
optimized for a Gaussian distributed signal. The signal
emitted from galactic BHs is expected to add a mostly
non-Gaussian and non-isotropically distributed compo-
nent to the stochastic background.4 This non-Gaussian
component would typically be vetoed in the process of
data conditioning in the SGWB search pipeline we use
[94]. Studying the specific features of this component
goes beyond the scope of this paper, but adding it to the
search pipeline is certainly an important addition for fu-
ture work and could make the constraints we here present
even stronger.

Let us then briefly explain the prescription for each
channel (see Ref. [39] for more details). In the isolated
BH channel, Eq. (18) can be written as

Ωiso
GW(f) =

f

ρc

∫

dz
dt

dz

∫

dM dχp(χ)
dṅ

dM

dEs

dfs
, (20)

where dṅ
dM is the BH formation rate per BH mass, which

we construct following Ref. [39] using a BH mass function
that spans masses in the range [3 − 60]M⊙. Since not
much is known about the spin distribution at birth of
isolated BHs5, for the probability density of the natal
BH spin χ we assume a uniform distribution

p(χ) =

{

0 (χ < χll, χul < χ)
1

χul−χll

(χll ≤ χ ≤ χul),
(21)

where χll and χul are the lower and upper limit of the
distribution, respectively. Given that these limits in the
natal spin distribution of isolated BHs are extremely un-
certain, for simplicity when searching for this SGWB, we
will parametrize the distribution in two different ways:

4 We should also note that, for a given boson mass, the GW signals
emitted by the galactic population would tend to accumulate in
a very narrow frequency window around ωR [see Eq. (3)] [71],
unlike the extra-galactic component which should be spread over
a broader range of frequencies due to the cosmological redshift.
Our search method is better suited for signals that emit in a
broad range of frequencies.

5 Some predictions for the natal BH spin distribution can be found
in Ref. [95] (see their Figs. 1 and 2), where it is shown that the BH
spin distribution depends very strongly on the assumed model for
the angular momentum transport in the progenitor stars.

(a) leave the lower limit χll as a free parameter, but
fix χul = 1; (b) leave the upper limit χul as a free pa-
rameter, but fix χll = 0. In the remainder of the text,
we will denote these parametrizations as the χll and χul

parametrizations, respectively. In general, the first case
allows for a larger amplitude for the background than the
second case, since it ensures a population of BHs born
with high-spin, from which it is possible to extract more
energy through the superradiant instability. Different
choices for χll,ul can significantly affect the background
spectrum. Hence, as we will show in Sec. VI, constraints
on the vector boson mass obtained when searching for
such background in LIGO data crucially depend on the
parametrization one uses.

For the BBH merger remnant channel, Eq. (18) reduces
to

Ωrem
GW(f) =

f

ρc

∫

dz
dt

dz

×

∫

dm dχp (m)Rm(z;m)p(χ)
dEs

dfs
,

(22)

where m denotes the component masses of the BBH
system, p(m) is the component mass distribution, and
Rm(z;m) is the BBH merger rate density for a given
m and cosmological redshift z. Compared to the spin
distribution of isolated BHs, the spin distribution p(χ)
for this channel can be more easily constrained, using
measurements of the spin of remnant BHs observed by
Advanced LIGO and Virgo [1–6, 8, 9, 12]. For a pop-
ulation of merging BHs dominated by near-equal mass
BHs that are not rapidly spinning, as the majority of the
observations made so far suggest, the spin magnitude of
the final remnant BHs is clustered around 0.7 [96, 97].
Therefore, for simplicity, we assume that all the remnant
BHs initially have χ = 0.7, that is

p(χ) = δ(χ− 0.7). (23)

To model the BBH merger rate, we follow the prescrip-
tion described in Ref. [34, 37], calibrating it with the local
merger rate inferred from the BBHs detected in the first
two observing runs6 of Advanced LIGO and Virgo. We
adopt the rate estimated in Ref. [8], in particular the
one derived from the BH mass function with a power law
distribution, such that

∫

p(m)Rm(z = 0;m) dm = 56 Gpc−3yr−1. (24)

The two assumptions made above contribute to a sys-
tematic uncertainty in the prediction of the energy den-
sity spectrum, Ωrem

gw (f). However, as we will show in the

6 During the writing of this paper, the BBH merger rate was up-
dated based on GWTC-2 [17], RBBH = 23.9Gpc−3yr−1. Al-
though we do not use this new rate estimate in the search pre-
sented here, the update wouldn’t change the detectability of the
signal model significantly, as the contribution from the BBH rem-
nant population is mostly subdominant.
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next subsection, the contribution from the BBH remnant
channel is subdominant (compared to the isolated BH
channel) for the range of vector masses to which current
GW detectors are sensitive. Therefore, this uncertainty
does not affect the results from our search, and hence,
the constraints on the vector boson mass.

C. Total background model

We derive the total background by summing over the
contributions from the two channels, namely

ΩGW(f) = Ωiso
GW(f) + Ωrem

GW(f), (25)

where the superscripts represent each of the isolated
BH and BBH merger remnant populations defined by
Eqs. (20) and (22), respectively. Fig. 2 compares the
contribution to the total energy density spectrum from
each of these two channels, where we assumed a uniform
distribution for the natal BH spin χ ∈ [0, 1] in the iso-
lated BH channel. As one can see, the isolated BH chan-
nel (solid lines) dominates over the BBH merger remnant
channel (dashed lines) for mb & 10−13.5 eV, correspond-
ing to frequencies & 10 Hz. Since current GW detectors
are mainly sensitive in this frequency range (see Fig. 4),
the detectable SGWB from ultralight vector bosons is
expected to be dominated by the isolated BH channel.

For completeness, in Fig. 2 we also compare the back-
grounds emitted by vector bosons against those pro-
duced by scalar bosons (dash-dotted lines) considered in
Refs. [38, 39]. For mb > 10−12.5 eV, both cases predict
almost identical spectra. This is because in both cases,
the typical instability and GW emission timescales for
these boson masses are sufficiently short, such that for
most BHs that become superradiantly unstable, almost
all the energy in the cloud is dissipated away in GWs
within the lifetime of the BHs we consider in our pop-
ulation models. Since the total amount of energy that
can be extracted through the superradiant instability is
nearly independent of the boson spin, it therefore follows
that total energy emitted in GWs by the whole BH pop-
ulation should be almost independent of the boson spin
for boson masses mb > 10−12.5 eV.

On the other hand, for mb . 10−12.5 eV, there can be
significant differences between the background predicted
in the scalar field case, and the one due to a vector field.
For mb = 10−12.5 eV, this difference is more pronounced
at larger frequencies, because of the fact that the GWs
emitted at higher frequencies are typically sourced by
BHs at smaller redshifts [see Eq. (19)], and hence BHs
with smaller lifetimes. Since the typical GW emission
timescale for scalar bosons is larger than that for vector
bosons, the total energy emitted in GWs for those BHs
tends to be smaller for the scalar case than the vector
case. Hence, the difference at higher frequencies seen
for mb . 10−12.5 eV. For lighter boson masses (mb <
10−12.5 eV), the amplitude of the background predicted
in the scalar field case tends to be much smaller than for

vector fields, because for those boson masses the coupling
Mµ is very small for most of the BHs in our population
[see Eq. (2)] and therefore the total energy emitted in
GWs over the lifetime of those BHs is typically much
smaller for the scalar field case. In particular, for scalar
fields with masses mb = 10−14 eV and 10−13.5 eV, the
typical GW power for the systems in our BH population
models is so small that the background spectra do not
even appear in Fig. 2.

In addition to the comparison between the scalar and
vector cloud models, Fig. 2 also shows a significant differ-
ence between the two BH formation channels. The spec-
tra from the BBH merger remnant channel for vector bo-
son masses mb ≥ 10−11.5 eV are strongly suppressed be-
cause such vector fields tend to induce strong superradi-
ant instabilities only in lighter BHs (M . 10 M⊙), which
are less likely to be produced by this channel. In addi-
tion, one can notice from Fig. 2 that for mb = 10−14 eV,
the background due to the BBH remnant channel pre-
dicts an higher amplitude compared to the background
induced by the isolated BH channel. This is to be con-
trasted with what happens for heavier vector bosons,
where the opposite is true. This can be explained from
the fact that the BHs formed through the isolated BH
channel (typically O(10M⊙)) are on average much lighter
than the ones formed through the BBH merger remnant
channel (typically ∼ O(50M⊙) or more), such that for
mb = 10−14 eV the GW emission timescale is typically
much larger for the isolated BH channel compared to the
BBH merger remnant channel (see Eq. (9)). Therefore,
for this boson mass, BBH merger remnants tend to radi-
ate more energy within the lifetime of the BHs, leading
to the strong suppression of the overall amplitude for the
isolated channel with respect the merger remnant chan-
nel that we see in Fig. 2. This hierarchical flip between
the two BH formation channels also occurs in the scalar
field case, but occurs at mb ∼ 10−13 eV due to the larger
emission timescale for scalar fields (see Ref. [39]).

Lastly, in Fig. 3 we study how astrophysical uncertain-
ties related to the choice of the BH population models
impact the the SGWB spectra. More specifically, while
the BH mass function and local BBH merger rate we
adopt are motivated by the theoretical and observational
constraints as described in Ref. [39], there are currently
several models for the cosmic star formation rate (SFR).
Fig. 3 shows how the energy density spectra changes
assuming four different SFR models: Hopkins et al. 2006
[98] (blue), Wilkins et al. 2008 [99] (yellow), and two
models from Vangioni et al. 2015 [100] (green and red).
Vangioni et al. 2015 A/B represent different ways of cal-
ibrating the nominal SFR function. Model A calibrates
it to the observational rate of gamma-ray bursts [101],
whereas model B calibrates it to observations of the lumi-
nous galaxies [102, 103]. We note that our BH population
modeling implicitly assumes the SFR model of Vangioni
et. al. 2015 A. The contributions from both the iso-
lated BH and BBH remnant channels are included under
the assumption of isolated BH spin uniformly distributed
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over χ ∈ [0, 1]. We find that over the boson mass range
of interest, 10−13 eV to 10−12 eV, the uncertainties in
the SFR would bring an astrophysical uncertainty of ap-
proximately a factor of 10 or less. This is typically much
smaller than the uncertainty related to the unknown BH
spin distribution. The SGWB spectrum predicted with
the SFR model of Vangioni et al. 2015 A lies between
the other SFR models, and thus the model we use in our
analysis can be considered an intermediate scenario given
the astrophysical uncertainty.
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FIG. 2. Contribution of different BH formation channels for
the total background spectrum ΩGW. Solid curves correspond
to the spectrum from the isolated BH channel with different
boson masses represented by the color bar. assuming an uni-
form distribution for the initial BH spin χ ∈ [0, 1], whereas
dashed curves show the spectrum due to the BBH merger
remnant channel. For comparison, we also show the total en-
ergy spectra that scalar bosons with mass mb ≥ 10−13.5 eV
would give rise to (dash-dotted lines), including both BH for-
mation channels, and assuming the same BH mass and spin
distribution as in the vector case.

D. Impact of modes with m > 1

The results shown above only take into account the
mode with the smallest instability timescale, i.e. m = 1.
However, the superradiant instability occurs for any az-
imuthal number m, as long as the superradiance condi-
tion Eq. (1) is satisfied. For some values of the boson
mass and BH parameters, this condition will only be sat-
isfied for m > 1 (either due to the BH’s properties at
birth, or because the BH has been spun down by the
m = 1 mode growing to saturation), making these modes
relevant. As can be seen from Eqs. (13) and (16), the in-
stability and GW emission timescales increase with m
and therefore, in general, we expect the dominant contri-
bution to the background to come from the most unsta-
ble mode m = 1. For the SGWB from ultralight scalar
bosons, since the most unstable mode already has a typ-
ically long GW emission timescale, the contribution of

100 101 102 103
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Vangioni et al (2015) A

Vangioni et al (2015) B

mb = 10−13.0 [eV]

mb = 10−12.5 [eV]

mb = 10−12.0 [eV]

FIG. 3. Energy density spectra assuming different SFR mod-
els. Here, we adopt the following four SFR models: Hopkins
et al. 2006 [98] (blue), Wilkins et al. 2008 [99] (yellow),
and two models from Vangioni et al. 2015 [100] (green and
red). Vangioni et. al. 2015 A/B represent different ways
of calibrating the nominal SFR function, i.e. model A cali-
brates it to the observational rate of gamma-ray bursts [101]
and model B calibrates it to observations of luminous galaxies
[102, 103]. The different linestyles indicate the three vector
masses, 10−13 eV to 10−12 eV. The contributions from both
BH populations (isolated and merger remnant) are included
under the assumption that the isolated BHs’ spins are uni-
formly distributed over χ ∈ [0, 1].

higher modes to the total ΩGW(f) is in general much
smaller, and therefore the contribution from these modes
was not considered in Refs. [38, 39]. Ultralight vector
bosons, on the other hand, exhibit much smaller insta-
bility timescales and therefore one might expect that the
contribution from m > 1 modes could be important.

To study the impact of modes with m > 1, in Fig. 4 we
compare the background produced by the m = 1 (solid
lines) and m = 2 (dashed lines) modes, considering only
the isolated BH channel, and assuming a uniform distri-
bution χ ∈ [0, 0.8] for the natal BH spin. For this BH
population, one can see that the contribution from the
m = 2 mode is generally small for mb . 10−12 eV, but
can be as important as, or even dominate over, the con-
tribution from the m = 1 mode for mb & 10−12 eV. To
understand why this happens, we note that, for a given
BH mass and mode m, the critical BH spin below which
a given mode is stable [Eq. (6)] increases with the boson
mass, whereas for a fixed Mµ it decreases with m. For
example, for mb ∼ 10−11 eV, a majority of the BH popu-
lation is only unstable against m > 1 modes. For the few
BHs that spin sufficiently fast to be unstable against the
m = 1 mode, their natal spin is close to the critical spin,
and hence much less energy is extracted and emitted by
the m = 1 mode compared to the m = 2 mode.

We note, however, that in the band where LIGO is
most sensitive, the m = 1 contribution is in general dom-
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FIG. 4. Contribution to the energy density spectra of different
m modes. The solid curves show the contribution from the
m = 1 mode for the isolated BH model, whereas the dashed
curves represent the contribution from the m = 2 mode. For
the BH spin, we assume an uniform distribution χ ∈ [0, 0.8].
The black solid curves are the (2σ) power-law integrated sen-
sitivity curves [104], obtained using LIGO’s first (O1) and
second (O2) observing runs [36], and for Advanced LIGO at
design sensitivity [105]. For comparison, we also show the
predicted CBC background[37] (gray solid curve), which is
extrapolated down to 1Hz using a power-law spectrum model.

inant (see Fig. 4), and the contribution from the m > 2
modes is expected to be much smaller. Therefore we will
only include the contribution of the m = 1 and m = 2
modes in the signal model used in Secs. V and VII, where
we show the results of injection studies and a search of
this signal in Advanced LIGO’s data.

IV. SEARCH METHOD

In this section, we review the conventional search
method and Bayesian statistics framework we use in or-
der to either claim a detection, or to place constraints on
the SGWB model we presented above, when searching
for such a background in LIGO data.

A. Definitions

For a single baseline with a pair of detectors, the
SGWB is analyzed using the cross-correlation between
two output streams. Although the formalism can be ex-
tended to handle a larger network of detectors [106, 107],
we will consider this simpler case as we only analyze the

data from the two LIGO detectors. Following the nota-
tion in Ref. [108], we define a cross-correlation estimator
that is optimal for a Gaussian background as [107, 109]

Ĉ(f) ≡
f3

T

20π2

3H2
0

s̃∗1(f)s̃2(f) . (26)

Here, s̃i(f) is the Fourier transform of the time series out-
put of the i-th detector, T is the total observation time,
and H0 is the Hubble paramater. This is normalized such
that

〈

Ĉ(f)
〉

= γ(f)ΩGW(f), (27)

where γ(f) is the overlap reduction function [110]. In the
low signal-to-noise ratio limit, the variance of the cross-
correlation estimator Ĉ(f) is approximately given by

σ2(f) ≈
1

2T∆f

(

10π2f3

3H2
0

)2

P1(f)P2(f), (28)

where ∆f is the frequency resolution and Pi(f) is the
power spectral density (PSD) of the i-th detector.

B. Bayesian inference

Following the method in Ref. [111], we discuss a
Bayesian formalism for our detection statistics, param-
eter estimation, and model selection. For our analysis,
Bayes’ theorem states that, using the estimator Ĉ(f),

p(θA|{Ĉ},A) =
L({Ĉ}|θA,A)π(θA|A)

Z({Ĉ}|A)
, (29)

where p(θA|{Ĉ},A) is the posterior probability on
the multi-dimensional space of parameters θA that
describe the SGWB model in the signal hypothesis
A, L({Ĉ}|θA,A) is the likelihood, π(θA|A) is the

prior probability of the parameters θA, and Z({Ĉ}|A)
is the evidence. We use a nested sampling pack-
age PyMultiNest [112] to evaluate the likelihood.
PyMultiNest is a python interface to the nested sam-
pling package MultiNest [113–115], which produces a set
of samples drawn from an estimated posterior.

Let {Ĉ} be the cross-correlation estimator obtained
from the data within an analyzed frequency band. For
a given {Ĉ}, we define a Gaussian likelihood for every
frequency bin, and hence a joint likelihood given by the
product of each likelihood, such that
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ln
[

L({Ĉ}|θA,A)
]

=
∑

f

ln
[

L(Ĉ(f)|θA,A)
]

=
∑

f











−

[

Ĉ(f) − γ(f)ΩA(f ; θA)
]2

2σ2(f)
−

1

2
ln
(

2πσ2(f)
)











. (30)

Here, ΩA(f ; θA) is a model energy-density spectrum for
a given set of parameters θA.

For the priors, we set a log-uniform prior7 on the vector
mass mb, and a linearly uniform prior on the BH spin up-
per/lower limits χul/ll. Therefore, following Bayes’ theo-
rem [Eq. (29)], the posterior probability is inversely pro-
portional to the boson mass:

p(θA|{Ĉ},A) ∝
1

mb
L({Ĉ}|θA,A). (31)

We will also be interested in performing model se-
lection between different signal models. The Bayesian
evidence for a given hypothesis quantifies how well the
model fits the obtained data and is defined as

Z({Ĉ}|A) =

∫

L({Ĉ}|θA,A)π(θA|A)dD
θA . (32)

This expression can also be interpreted as the fully-
marginalized likelihood over the entire parameter space.
In the case where no signal is present (the null hypothe-
sis), the evidence is obtained by fixing ΩA(f ; θA) to zero
in the likelihood [Eq. (30)]. To assess which hypothe-
sis, A or B, better describes the observed data, we can
compute the odds ratio OA

B defined as

OA
B ≡

p(A|{Ĉ})

p(B|{Ĉ})
=

Z({Ĉ}|A)

Z({Ĉ}|B)

π(A)

π(B)
, (33)

where Z({Ĉ}|A) and Z({Ĉ}|B) are the evidences for the
hypotheses A and B respectively, whereas π(A) and π(B)
are the prior probability of the respective hypothesis.
Hereafter, we will set the a priori probability ratio for the
two models, π(A)/π(B), to unity. Therefore, for our case,
the odds ratio will be effectively equivalent to the Bayes
factor (defined as the ratio between the evidences). In
what follows, we will evaluate the statistical significance
for a given hypothesis in terms of the Bayes factor and
follow the convention that a natural logarithmic Bayes
factor ≈ 8 indicates that one model is favored over the
other with great confidence [117].

7 At this point we choose to adopt mostly uninformative priors
for θA, since this is the most conservative choice. However, in
principle, we could also choose a prior that encodes prior knowl-
edge on the boson mass obtained from independent experiments,
such as constraints from BH spin measurements in X-ray bina-
ries [54, 55, 61, 116]. This will be revisited in future work.

V. RESULTS

We are now in a position to study the sensitivity of
Advanced LIGO to the SGWB we described in Sec. III,
using the tools introduced in the previous section. We
first study the range of vector boson masses that LIGO
will be able to probe at its design sensitivity by perform-
ing injections of the SGWB model into synthesized data,
and then explore if one could successfully discriminate
between the SGWB due to CBCs, and the one due to
the superradiant instability.

A. Range of sensitivity for vector boson masses

The results shown in Fig. 4 suggest that, for vec-
tor bosons with masses roughly in the range mb ∼
[10−13, 10−12] eV, the SGWB could be detected by LIGO
at design sensitivity, and that even with the sensitivity
of LIGO’s first and second observing runs, one could al-
ready probe bosons with masses mb ∼ 10−12.5 eV. To
study this in more detail, and assess the vector mass
range that we can probe through this method, we inject
our SGWB model into synthesized data with different
values of the model parameters, and then infer the de-
tectability of the signal by computing Bayes factors be-
tween the signal and noise hypotheses.

We follow the injection scheme described in Ref. [39],
where the simulated cross-correlation spectrum is defined
as

Ĉsim(f) ≡ γHL(f)Ωinj(f ; θinj) + σ(f)n̂ . (34)

Here, γHL(f) is the overlap reduction function for the
LIGO baseline [110], Ωinj(f ; θinj) is the injected back-
ground for the given model parameters θinj, and n̂ is
a random variable drawn from a Gaussian distribution
with zero mean and unit variance. To synthesize data,
we set ∆f as 0.25 Hz for the injection studies in this
and next subsections, and specify σ(f) using Eq. (28)
for a given PSD and observation time. We assume 3
years of observation with the projected design sensitiv-
ity PSD for the LIGO detectors [105] (see Fig. 4). From
this simulated cross-correlation spectrum, our pipeline
computes the likelihood function and the posterior dis-
tribution of the parameters θinj, as well as the Bayesian
evidence Z({Cinj}).
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FIG. 5. The posterior samples recovered for one of the
injections Ωinj(f ; θ) where the injected parameters θinj are
(mb, χul) = (4.58× 10−14 eV, 0.8), and χll = 0 is kept fixed in
the parameter recovery. The star marker indicates the true
values for the injected parameters. The contours represent
the 2 and 3–σ credible regions.

In Fig. 5, we show an example of the parameter esti-
mation results for one of the injections, where the in-
jected parameters θinj are mb = 4.58 × 10−14 eV and
(χul, χll) = (0.8, 0). In the parameter estimation recov-
ery, we adopt the more conservative parametrization for
p(χ) where χll = 0 is kept fixed while χul is allowed to
vary. In order to obtain evidence for the noise hypoth-
esis, we also perform the same analysis for the identical
noise realization without the injection. The star marker
represents the true parameters of the injection, which lie
within the 2 and 3–σ contours. For this recovered injec-
tion, we estimate the signal-to-noise ratio to be 20.2, and
find that the log Bayes factor of the signal versus noise
hypotheses is approximately 500, showing that the signal
is detected with great confidence.

We repeat this injection recovery varying the vector
boson mass of each injection, but using the same BH spin
distribution for all injections, namely a uniform distribu-
tion with χll = 0 and χul = 0.8 [see Eq. (21)]. Our results
are summarized in Fig. 6, where we show the log Bayes
factor as a function of the vector boson mass for this set
of injections. These results indicate that, given the detec-
tion criteria of lnOSIG

N = 8, we could detect vector bosons
with masses in the range 5 × 10−14 eV to 10−12 eV. We
note that this detectable mass range is wider than that
for ultralight scalar bosons due to the enhanced energy
spectrum for masses below mb . 10−13 eV (cf. Fig. 5 in
Ref. [39]).
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FIG. 6. The Bayes factor of the recovered signal as a function
of injected mb[eV], fixing χll = 0 and χul = 0.8 in the injected
signals. The red horizontal line shows our detection criterion
lnOSIG

N = 8. Injections that have a Bayes factor above the
red line are confidently detected.

B. Distinguishing the background from vector

clouds and CBCs

In the previous subsection, we neglected the fact that
besides the SGWB signal due to the formation of vector
clouds, CBCs also produce a background that is expected
to be detectable by Advanced LIGO at design sensitivity,
and so in reality we should consider both types of SGWBs
in our simulation. Fig. 4 illustrates that the SGWB signal
from the vector clouds can dominate over the projected
CBC background for some choices of the vector mass and
BH spin distribution, and therefore a natural question to
ask is whether we can distinguish between these two sig-
nal models based on the Bayesian framework of Sec. V B.
A similar study was done in Ref. [39] for the case of scalar
boson clouds, and here we repeat this study for the vector
boson model.

We consider an energy density spectrum that consists
of the contributions from both the vector cloud and the
projected CBC background, which reads

Ωinj(f ; θ) = ΩVC
inj (f ; θ) + ΩCBC

inj (f). (35)

ΩVC
inj (f ; θ) is the background due to superradiant insta-

bilities under a χul parametrization of the natal spin
distribution for isolated BHs [Eq. (25)], and ΩCBC

inj (f) is
the fixed CBC background approximated as a power-law
spectrum,

ΩCBC
GW (f) = 1.8 × 10−9

(

f

25Hz

)2/3

, (36)

as inferred from [37].
Due to the computational expense, for the injection

recovery of the vector cloud background, we only con-
sider the isolated BH channel, [Eq. (20)]. Since the
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merger remnant channel is subdominant for the boson
masses of interest (see Fig. 2), and slightly below the
projected CBC background, we do not expect the in-
clusion of this additional channel to change the results
significantly. Like we did in the previous subsection, we
adopt the χul parametrization for p(χ), i.e. we use a
parametrization where χll = 0 is kept fixed while χul is
allowed to vary. The injected CBC background is recov-
ered with the following parametrization8

ΩCBC
rec (f ; Ω0, α) ≡ Ω0

(

f

25Hz

)α

. (37)

To see whether we can detect the vector cloud back-
ground in the presence of the CBC background, we will
compute a log Bayes factor between two hypotheses: a
CBC-only hypothesis, corresponding to the hypothesis
that only the CBC background is present in the data, and
a joint vector cloud and CBC hypothesis (VC+CBC),
corresponding to the hypothesis that both the CBC and
vector cloud backgrounds are present in the data. The
parameters considered when evaluating the evidence for
each background model are listed in Table III. We re-
peat this computation for several injections, varying the
parameters (mb, χul) until we explore a grid over the en-
tire prior space. The results of this study are shown in
Fig. 7, where we plot a gray-scale map of the log Bayes
factors, highlighting the contours where lnOVC+CBC

CBC = 8

(magenta contour) and lnOVC+CBC
CBC = 0 (cyan contour).

The parameter space inside the magenta contour indi-
cates the region where one can confidently discern the
vector cloud background from the projected CBC back-
ground. As expected, for large χul the range of boson
masses for which one could claim a confident detection
agrees with the one obtained in the previous subsection.

Models CBC-only VC+CBC
Parameters Ω0, α mb, χul,Ω0, α

TABLE III. Parameters in each recovered background model.

VI. CONSTRAINTS ON ULTRALIGHT

VECTOR BOSONS USING LIGO DATA

Using the Bayesian framework presented in Sec. IV, we
now conduct a search for the vector cloud background
[Eq. (18)] using the cross-correlation spectra obtained
from the first (O1) and second (O2) observing runs of

8 We refer to Eq. (37) as a CBC model, even though this could
be generally called a “power-law spectrum model.” It has been
shown that the systematic error potentially caused by this bias
is below the statistical error and hence would not affect the de-
tectability of the background [118, 119].
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FIG. 7. Gray scale map of a log Bayes factor between CBC-
only and the joint VC+CBC models with two contours of
lnOVC+CBC

CBC = 8 (magenta) and 0 (cyan). The parameter
space inside the magenta contour indicates the region where
one can confidently discern the vector cloud background from
the projected CBC background.

Advanced LIGO [36]. (The data products used in this
paper are publicly available at Ref. [120].) The analy-
sis is conducted following the prescription presented in
the injection studies done in Secs. V A and V B, except
for the likelihood evaluation. Since in this case the in-
dependent cross-correlation spectrum is obtained from
each observing run, the full likelihood expression takes
the form

L(ĈO1, ĈO2|θ,HVC) = L(ĈO1|θ,HVC)L(ĈO2|θ,HVC) ,
(38)

where each likelihood in the right hand side follows the
definition of Eq. (30). These cross-correlation spectra are
provided over the frequency range from 20 Hz to 700 Hz
with the frequency resolution of ∆f = 1/32Hz.

We do not find statistically significant evidence for a
vector cloud background. Therefore, we place constraints
on the two dimensional space (mb, χul,ll) using the esti-
mated posterior probability distribution. Figures 8 and
9 show the posteriors under the χul and χll parametriza-
tions, respectively [see Eq. (21) and corresponding discus-
sion]. In particular, the results shown in Fig. 8 indicate
that, when using the χul parametrization, the data disfa-
vors boson masses close to mb ≈ 10−13 eV and relatively
high χul & 0.2. We note, however, that the marginalized
1D posterior for mb does not indicate a strong constraint
at the 95% confidence level. On the other hand, when
we fix χul = 1 and allow the lower bound χll to vary,
then Fig. 9 suggests that the mass range 0.8 × 10−13 eV
to 6.5 × 10−13 eV is excluded (95% credible interval) re-
gardless of the spin’s lower bound χll, as can be seen in
the 1D marginalized posterior of mb.

In summary, these results suggest that minimally cou-
pled vector bosons with masses around mb ≈ 10−13 eV
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FIG. 8. Posterior results obtained with the data from the
first and second observing runs of Advanced LIGO, recov-
ered with the χul parameterization. The contour on the two-
dimensional posterior represents the 95% confidence level.

are highly disfavored, unless most stellar-mass BHs are
born with a small spin.

VII. CONCLUSION

In this paper, we computed and studied in detail
the SGWB produced by the superposition of GW sig-
nals from extragalactic BH-ultralight vector cloud sys-
tems formed through the superradiant instability. Us-
ing a Bayesian framework, we performed the first search
for such signal in LIGO data. This extends previous
works [38, 39] where a similar background for scalar
bosons was studied. We also improved on those works
by adding the contribution of the second most unsta-
ble mode, m = 2 (in addition to the most unstable one,
m = 1) to the SGWB model, which was not considered
in Refs. [38, 39]. In particular, we found that the contri-
bution from the m = 2 mode can be as important as, or
even dominate over, the m = 1 mode for mb ≥ 10−12 eV,
and therefore affect the detectability and potential con-
straints on the vector boson mass.

To estimate the potential detectable window, we per-
formed injection tests on simulated Advanced LIGO data
at design sensitivity, and found that Advanced LIGO is
especially sensitive to the background emitted by min-
imally coupled vector bosons with masses in the range
∼ [5×10−14, 10−12] eV (see Fig. 6). This detectable mass
range is broader than that for ultralight scalar bosons (cf.
Fig 5 in Ref. [39]), especially at small masses, due to the

FIG. 9. Posterior results, analogous to Fig. 8, for the χll spin
parameterization.

considerably larger GW power for vector bosons. We
also studied the capability to claim a detection for this
background model in the presence of a (fiducial) CBC
background model. Our results suggest that we can dis-
tinguish between both models in a large part of the pa-
rameter space (see Fig. 7).

Additionally, in the future we may be able to place
constraints using only BBH merger remnants, which are
much less sensitive to unknown BH population statistics.
We performed similar simulations using the LIGO’s de-
sign sensitivity with and without an injection to search
for the BBH remnant component alone. With the injec-
tion of the SGWB for mb = 10−13 eV, we recovered it
with a Bayes factor of 10.4 and consistent vector mass
estimation. On the other hand, without the injection,
we ruled out mb ∼ 10−13 eV at the 95% confidence level.
Although we leave the model selection test between this
and the CBC background as future work, these results
indicate that we will potentially be able to make a de-
tection, or place more robust constraints on the vector
mass, by probing the BBH remnant signal model.

Lastly, we presented results obtained by analyzing data
from Advanced LIGO’s first and second observing runs.
We did not find any signal consistent with our vector
cloud model, independent of the parametrizations em-
ployed for the BH spin distribution. For the more opti-
mistic parametrization (the χul parametrization), we rule
out (minimally coupled) ultralight vector bosons in the
mass range 0.8 × 10−13 eV to 6.5 × 10−13 eV with 95%
percent credibility. A less optimistic parametrization χll,
which allows for the possibility that all isolated BHs have
negligible spins, does not give strong constraints. How-
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ever, boson masses around ∼ 10−13 eV are highly disfa-
vored by our results, unless all isolated BHs form with
spins . 0.2. We note that these constraints depend on
our specific choice for the BH spin distribution, as well
as the astrophysical models we adopted in this analysis.

Aside from these constraints, the observation of stellar-
mass BHs in X-ray binaries spinning above the super-
radiant threshold already disfavors the existence of ul-
tralight vector fields in the range ∼ [10−14, 10−11]eV
[54, 55, 61, 116], which overlaps with the range of masses
we are able to probe with the SGWB. However, we should
note that such constraints should be interpreted with
caution, since BH spin measurements from X-ray bina-
ries are often susceptible to large systematic uncertain-
ties (see e.g. Ref. [121]). GW searches should therefore
be seen as complementary to those measurements. Given
sufficiently robust estimates of all the relevant uncertain-
ties, it could be interesting to include GW searches and
BH spin measurements in the same Bayesian framework,
which would in principle lead to stronger constraints.

We only considered a minimally coupled ultralight
vector field, neglecting possible (non-gravitational) cou-
plings with other particles, as well as any non-trivial self-
interactions beyond the mass term. Our results apply to
any massive vector field as long as any additional interac-
tions are negligible compared to the gravitational inter-
action between the BH and vector field. Sufficiently large
non-gravitational interactions could change the picture,
in particular by affecting the evolution of the superradi-
ant instability. For example, for ultralight scalar fields it
has been shown that self-interactions [62, 122, 123] and
couplings to photons [124–126] can quench the super-
radiant instability, and effectively increase the timescale
needed to extract a substantial amount of energy and an-
gular momentum from the BH [127, 128]. The effect of
such interactions has been less studied for massive vec-
tor fields—with the exception of some consideration of
the case where the vector boson mass arises through a

Higgs mechanism [54, 127]—but one might expect that
similar results also apply for this case. It would be impor-
tant to study this question in more detail in the future.
Finally, we should note that if ultralight dark matter pho-
tons couple directly to ordinary matter, they could also
produce another kind of observable signal in GW inter-
ferometers by inducing displacements on the LIGO mir-
rors [129–132]. Since our results mainly apply to ultra-
light bosons for which non-gravitational interactions are
negligible, our constraints complement those searches.
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