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We continue our study of the optical properties of the solar gravitational lens (SGL). Taking the
next step beyond representing it as an idealized monopole, we now characterize the gravitational
field of the Sun using an infinite series of multipole moments. We consider the propagation of
electromagnetic (EM) waves in this gravitational field within the first post-Newtonian approximation
of the general theory of relativity. The problem is formulated within the Mie diffraction theory. We
solve Maxwell’s equations for the EM wave propagating in the background of a static gravitational
field of an extended gravitating body, while accounting for multipole contributions. Using a wave-
theoretical approach and the eikonal approximation, we find an exact closed form solution for the
Debye potentials and determine the EM field at an image plane in the strong interference region
of the lens. The resulting EM field is characterized by a new diffraction integral. We study this
solution and show how the presence of multipoles affects the optical properties of the lens, resulting
in distinct diffraction patterns. We identify the gravitational deflection angle with the individual
contributions due to each of the multipoles. Treating the Sun as an extended, axisymmetric, rotating
body, we show that each zonal harmonics causes light to diffract into an area whose boundary is
a caustic of a particular shape. The appearance of the caustics modifies the point-spread function
(PSF) of the lens, thus affecting its optical properties. The new wave-theoretical solution allows the
study gravitational lensing by a realistic lens that possesses an arbitrary number of gravitational
multipoles. This angular eikonal method represents an improved treatment of realistic gravitational
lensing. It may be used for a wave-optical description of many astrophysical lenses.

I. INTRODUCTION

Studied for over a century [1, 2], gravitational lensing today is well understood [3–5]. It occurs when light travels
in the vicinity of a gravitating body. In the post-Newtonian limit of the general theory of relativity, the gravitational
field serves as a refracting medium [6, 7] that deflects light rays towards the body.
Following a methodical approach, we began our investigation by treating the solar gravitational field as a spherically

symmetric field of a gravitational monopole, or point mass [8, 9]. After passing by such a monopole, light rays are
focused in what we call the region of strong interference (Fig. 1), with impressive optical properties including significant
light amplification. However, even gravitational monopole lenses are subject to optical aberrations. As the deflection
angle is inversely proportional to the impact parameter, light rays with larger impact parameters with respect to
the lens are focused at larger distances from it. This causes spherical aberration, leading to blurred images and the
requirement to employ appropriately designed deconvolution algorithms [10].
With this model, we were able to establish the basic properties of the solar gravitational lens (SGL) and understand

image formation and image recovery. We considered gravitational lensing by the Sun as the means to obtain high-
resolution images of faint objects, such a exoplanets. To enable practical applications of the SGL, we developed a
wave-optical treatment of the diffraction of light in the presence of the solar gravity field. We studied the impact of
the solar corona on light propagation in the vicinity of the Sun. We showed that diffraction in the solar atmosphere
defocuses EM waves for wavelengths greater than 1 mm, but its impact is negligible at optical and IR wavelengths
[11, 12]. We extended our formulation to the case of extended sources at large but finite distances [13]. We studied
image formation with the SGL [14, 15] and addressed the realistic sensitivity of prospective imaging observations [10].
In addition, we studied the image recovery process and have shown that the SGL may be used for multipixel imaging
of exoplanets [16] that may be conducted in the context of a realistic space mission [17].
The next step is dictated by the realization that nothing is perfect in life, not even the Sun. Its rotation, the

resulting oblateness, and its internal mass distribution result in a gravitational field that deviates from the idealized
monopole. These deviations are small (in fact, the Sun is almost perfect), but given the distance and length scales
involved, their impact cannot be neglected. The dimensionless magnitude of corrections due to deviations from the
monopole is of O(10−7). This is not much until we consider that deflection of light by the SGL amounts to displacing
a ray of light by at least as much as the solar radius by the time that ray approaches the focal region. An O(10−7)
correction on this scale amounts to an additional deflection by tens if not hundreds of meters, which is quite significant
when compared to the scale (typically, 1–10 km across) of the projected image size of a desired target.
Therefore, it is necessary to develop a formalism to modify the point-spread function (PSF) of the SGL, taking
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FIG. 1: The different optical regions of the SGL (from [13]) with the strong interference region formed beyond 547.8 AU.

into account that, on the one hand, we deal with very large distances (measured in light years for distant imaging
targets or in many hundreds of astronomical units (AU)) when it comes to the distance of the focal region from the
Sun) and, on the other hand, distances measured on the scale of meters or less (such as the telescope aperture or the
centimeter-scale Airy pattern that appears in the image plane, itself a result of observing a signal with a wavelength of
O(1 µm)). Consequently, even higher-order multipole moments (octupole, dodecapole, hexadecapole moments) of the
Sun may have to be considered for accurate image modeling and reconstruction of some exoplanetary targets. These
moments break the azimuthal symmetry of the PSF, introducing caustics instead of the regular Bessel J0 pattern [9].
This is why we are turning the page on the chapter dealing with monopole gravitational lenses. With the present
paper, we open a new, exciting area of investigation, aimed at developing a comprehensive description of realistic
gravitational lenses possessing an arbitrary number of gravitational multipole moments.
This paper is organized as follows: In Section II we discuss the solution of Maxwell’s equations in the curved

spacetime of the solar gravitational field, described at the first post-Newtonian approximation of the general theory of
relativity. We develop a solution for the Debye potential using the eikonal approximation. In Section III, we formulate
a generic solution for EM waves in the field of a static, extended gravitational lens. In Section IV we develop a general
solution for the EM field, characterizing the scattering of EM waves on an extended lens. In Section V, we study
the EM field in the interference region. We develop a new integral formulation that describes light diffraction in
the strong interference region. In Section VI we discuss the results obtained and the next steps in our investigation.
To aid with the flow of material in this paper, we placed some important derivations in appendices. Appendix A
discusses an approach to Maxwell’s equations for EM waves propagating on the background of the static gravitational
field of an extended lens. In Appendix B, we discuss the eikonal phase for i) a generic axisymmetric gravitating body
whose gravitational potential given by a set of gravitational multipoles, and ii) generic spatial-trace free (STF) tensors
representing bodies with arbitrary gravitational fields. Finally, in Appendix C, we explore the connection between
our results and the path integral formalism.

II. ELECTROMAGNETIC WAVES IN A STATIC GRAVITATIONAL FIELD

To describe the optical properties of the solar gravitational lens (SGL), we use a static harmonic metric1 in the first
post-Newtonian approximation of the general theory of relativity. The line element for this metric may be given, in
spherical coordinates (r, θ, φ), as [6, 18]:

ds2 = u−2c2dt2 − u2
(

dr2 + r2(dθ2 + sin2 θdφ2)
)

, (1)

1 The notational conventions used in this paper are the same as in [7, 18]: Latin indices (i, j, k, ...) are spacetime indices that run from 0
to 3. Greek indices α, β, ... are spatial indices that run from 1 to 3. In case of repeated indices in products, the Einstein summation rule
applies: e.g., ambm =

∑
3

m=0
ambm. Bold letters denote spatial (three-dimensional) vectors: e.g., a = (a1, a2, a3),b = (b1, b2, b3). The

dot (·) and cross (×) are used to indicate the Euclidean inner product and cross product of spatial vectors; following the convention
of [6], these are enclosed in round and square brackets, respectively. Latin indices are raised and lowered using the metric gmn. The
Minkowski (flat) spacetime metric is given by γmn = diag(1,−1,−1,−1), so that γµνaµbν = −(a · b). We use powers of the inverse of
the speed of light, c−1, and the gravitational constant, G, as bookkeeping devices for order terms: in the low-velocity (v ≪ c), weak-field
(rg/r = 2GM/rc2 ≪ 1) approximation, a quantity of O(c−2) ≃ O(G), for instance, has a magnitude comparable to v2/c2 or GM/c2r.
The notation O(ak , bℓ) is used to indicate that the preceding expression is free of terms containing powers of a greater than or equal to
k, and powers of b greater than or equal to ℓ. Other notations are explained in the paper.
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where, to the accuracy sufficient to describe light propagation in the solar system, the quantity u can be given in
terms of the Newtonian potential U as

u = 1 + c−2U +O(c−4), where U(x) = G

∫

ρ(x′)d3x′

|x− x′| , (2)

and ρ(x) is the mass density that is the source of the gravitational field.
The metric (1)–(2) allows us to consider effects on the propagation of light by the gravitational field of the Sun,

due to an arbitrary static gravitational field. Furthermore, it was shown in [20] that to first order in the gravitational
constant G, a rotating and a nonrotating lens cannot be distinguished. Thus, to the extent that it contributes to the
quadrupole moment, solar rotation is automatically accounted for in our formalism.
The gravitational field of the Sun is weak: its potential is GM/c2r . 2× 10−6 everywhere in the solar system. This

allows us to carry out calculations to the first post-Newtonian order, while dropping higher-order terms.
We use the generally covariant form of Maxwell’s equations for the electromagnetic (EM) field [7, 9] and consider

the propagation of an EM wave in the vacuum in the absence of charges and currents, i.e., jk = (ρ, j) = 0. As we
showed in [9, 11], for the metric (1) we obtain the following form for Maxwell’s equations:

curlD = −u2∂B
c∂t

+O(G2), div
(

u2 D
)

= O(G2), (3)

curlB = u2
∂D

c∂t
+O(G2), div

(

u2 B
)

= O(G2), (4)

where the differential operators curlF and divF are with respect to the usual 3-space Euclidean flat metric (see [9]
for technical details).

A. Representation of the EM field in terms of Debye potentials

To describe the problem of an EM wave propagating in the gravitational field of an extended lens that induces the
static gravitational field with metric (1), we follow the Mie diffraction theory [21, 22] that allows us to determine
the three-dimensional structure of the EM field diffracted on a spherical obstruction. This technique is done based
representing the Maxwell equations (3)–(4) in terms of the Debye potentials (see [9, 11] and references therein).
Relying on the approach that we previously developed (see [9, 11]), in Appendix A we obtain the complete solution

of these equations in terms of the electric and magnetic Debye potentials [22], eΠ and mΠ. We follow closely the
derivation in [9] (see Appendix E therein) and also in [11] (see Appendix A therein).
We treat the lens as a compact gravitating body whose gravitational potential admits a representation in the form

of an infinite series of zonal and tesseral harmonics (e.g., as given by (B1)). The result is a system of equations for
the components of a monochromatic EM field, characterized by the wavenumber k = ω/c:

D̂r =
1

u

{ ∂2

∂r2

[r eΠ

u

]

+
(

k2u4 − u
(1

u

)′′
)[r eΠ

u

]}

, (5)

D̂θ =
1

u2r

∂2
(

r eΠ
)

∂r∂θ
+

ik

r sin θ

∂
(

rmΠ
)

∂φ
, (6)

D̂φ =
1

u2r sin θ

∂2
(

r eΠ
)

∂r∂φ
− ik

r

∂
(

rmΠ
)

∂θ
, (7)

B̂r =
1

u

{ ∂2

∂r2

[rmΠ

u

]

+
(

k2u4 − u
( 1

u

)′′
)[rmΠ

u

]}

, (8)

B̂θ = − ik

r sin θ

∂
(

r eΠ
)

∂φ
+

1

u2r

∂2
(

rmΠ
)

∂r∂θ
, (9)

B̂φ =
ik

r

∂
(

r eΠ
)

∂θ
+

1

u2r sin θ

∂2
(

rmΠ
)

∂r∂φ
, (10)

where the electric and magnetic Debye potentials Π(r) = (eΠ;mΠ) satisfy the following wave equation:

(

∆+ k2u4
)

[Π

u

]

= O
(

r2g ,
J2
r3

Π

u

)

, (11)
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with the quantity u given by (2). The Newtonian potential U in (2) at this point is unconstrained and can describe an
arbitrary (weak, static) gravitational field. Here, rg = 2GM/c2 is the Schwarzschild radius of the lens; J2 characterizes
the quadrupole component of the gravitational potential, U , of an extended gravitational lens.
Essentially the solution (5)–(10) together with (11) was obtained under the thin lens or eikonal approximation

where the primary emphasis was on the effect of the gravitational field on the phase of the EM wave rather than its
amplitude. This approximation is well-justified as the source and the image plane are at very large distances from
the lens. Our analysis showed that the effects of the higher order gravitational multipoles, starting from J2, depend
on the distance to the lens and, thus, may be neglected.
As a result, the entire solution to Maxwell’s equations describing light propagation in the weak gravitational field

with the post-Newtonian metric tensor (1) depends on the solution of the wave equation for the Debye potential (11).
Using the expression for u from (2), this equation is given as (see (A40))

(

∆+ k2
(

1 +
4U

c2
)

)[Π

u

]

= O
(

r2g ,
J2
r3

Π

u

)

. (12)

Expressions (5)–(10) together (12) represent the solution of the Mie problem in terms of Debye potentials [21, 22], in
the presence of the gravitational field of an extended gravitating body, taken at the first post-Newtonian approximation
of the general theory of relativity [8, 9] under the eikonal (or, essentially, the thin lens) approximation.
The set of equations (5)–(10) with (12) determines the Debye potential for the entire problem. We see that the

solution of (12) now depends on the entire Newtonian potential, U(r), that may have arbitrary complexity. No exact
solution of this time-independent Schrödinger equation with exist. Thus, we need to develop an approximate solution
that is suitable for our situation. We found an approach to develop such a solution using the eikonal approximation.

B. Separating variables in the equation for the Debye potential

To consider the eikonal approximation, we present the Newtonian potential, U , as

U(r) =
GM

r
+ δU(r), (13)

where the first term is the spherically symmetric monopole contribution and the second term, δU(r), represents the
combined contribution of all the other terms in a suitable expansion of U(r).
If δU(r) is absent, (A40) reduces to the case of diffraction of the EM waves by a gravitational monopole (i.e.,

Schrödinger’s equation with a Coulomb potential—see details in [9]):

(

∆+ k2
(

1 +
2rg
r

)

)[Π0

u

]

= 0. (14)

This equation describes light scattering that is dominated by a spherical relativistic potential due to a gravitational
monopole (which is equivalent to an attractive Coulomb potential, discussed in quantum mechanics [23–25]). In our
case, this equation describes the incident wave that travels towards the lens from the source.
The solution to (14) is well known (see [9] for details). In this case, Eq. (12) is typically solved by separating

variables [22], which, in spherical polar coordinates, takes the form [9, 12]:

Π0

u
=

1

r
R(r)Θ(θ)Φ(φ), (15)

with integration constants and coefficients that are determined by boundary conditions. Direct substitution into (14)
reveals that the functions R,Θ and Φ must satisfy the following ordinary differential equations:

d2R

dr2
+
(

k2(1 +
2rg
r

)− α

r2

)

R = O(r2g), (16)

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+
(

α− β

sin2 θ

)

Θ = O(r2g), (17)

d2Φ

dφ2
+ βΦ = O(r2g). (18)

As we discussed in [9], the solution to (18) is given as usual [22, 24]:

Φm(φ) = e±imφ → Φm(φ) = am cos(mφ) + bm sin(mφ), (19)
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where β = m2, m is an integer and am and bm are integration constants.
Equation (17) is well known for spherical harmonics. Single-valued solutions to this equation exist when α = l(l+1)

with (l > |m|, integer). With this condition, the solution to (17) becomes

Θlm(θ) = P
(m)
l (cos θ). (20)

We now focus on the equation for the radial function (16), where, because of (17), we have α = ℓ(ℓ + 1). As a
result, (16) takes the form

d2R

dr2
+
(

k2(1 +
2rg
r

)− ℓ(ℓ+ 1)

r2

)

R = O(r2g). (21)

The solution to this equation is given in the form of a Coulomb function Fℓ(krg, kr) [9].
Collecting results for Φm(φ), Θlm(θ) and Rℓ = Fℓ(krg, kr), we can assemble the ultimate solution to (14), as was

done in [9, 11]. This solution is used to describe the electric and magnetic potentials of the incident wave, eΠ0 and
mΠ0, which may be given in terms of a single potential Π0(r, θ) (see [9] for details):

( eΠ0

mΠ0

)

=

(

cosφ

sinφ

)

Π0(r, θ), where Π0(r, θ) =
E0

k2
u

r

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓFℓ(krg, kr)P

(1)
ℓ (cos θ) +O(r2g). (22)

Therefore, in the case when deviations from the monopole gravitational field represented by the term δU(r) in (13)
are absent, we can find a solution for the Debye potential (14) by separating variables with the ansatz (15) that is
used to deal with the Coulomb potential [8, 9]. The structure of the resulting solution (22) reflects the spherical
symmetry that is preserved in this case. The presence of the monopole is manifested by the potential term 2rg/r in
the equation for the radial function (16). Note that the other equations (17) and (18) are not affected by gravity.
The situation changes drastically when the term δU(r) is present in (13). In this case, (12) becomes highly nonlinear

and separation of variables (15) does not work. No exact solution of this equation is known. However, in some cases
this equation may be solved using well-justified approximation methods. One such method, the eikonal approximation,
is particularly useful for high-energy atomic scattering [26–28] and it is applicable in our case, which corresponds to
the high-energy approximation in optical scattering [29–31].

C. Finding the Debye potential with the eikonal approximation

We may now use the result (22) as the basis to find solutions when U is not restricted to a monopole gravitational
field. We extend the discussion in the preceding subsection by considering the complete post-Newtonian potential U
of an extended body as the sum of two terms that includes the monopole field, GM/r, which is long-range [9], and
deviations from the monopole, which constitute a short-range potential, Vsr(r) = δU(r)/c2. This yields the following
form for the potential term in (A40):

4U

c2
=

2rg
r

+ 4Vsr. (23)

This decomposition allows us to proceed with solving (A40) that now takes the form

(

∆+ k2
(

1 +
2rg
r

+ 4Vsr(r)
)

)

Π(r) = O
(

r2g ,
J2
r3

Π
)

, (24)

where Vsr is from (23). In explicit form this short-range potential is given by either by (B23) that is valid for any
generic gravitational field, or expressed in terms of zonal harmonic coefficients Jn using (B10), which is more suitable
to describe the gravitational field of a rotating, axisymmetric mass, such as the Sun.
To solve (24), we will treat Vsr(r) as a perturbation to the monopole term and will use the eikonal approximation

[7, 22, 30, 32, 33]. To implement this approach, we consider a trial solution in the form

Π(r) = Π0(r)φ(r), (25)

where Π0(r) is the “free” Debye potential for the monopole gravitation given by (22) [9, 11]. In other words, in the
eikonal approximation the Debye potential Π0(r), becomes “distorted” in the presence of the potential Vsr given in
Eq. (B23), by φ, a slowly varying function of r, such that

∣

∣∇2φ
∣

∣≪ k |∇φ| . (26)



6

When substituted into (24), the trial solution (25) yields

{

∆Π0(r) + k2
(

1 +
2rg
r

)

Π0(r)
}

φ(r) + Π0(r)∆φ(r) +

+2
(

∇Π0(r) ·∇φ(r)
)

+ 4k2Vsr(r)Π0(r)φ(r) = O
(

r2g ,
J2
r3

Π
)

. (27)

As Π0(r) is the solution of the homogeneous equation for the monopole gravitational field (22) [9, 11], the first term
in (27) is zero. Then, we neglect the second term, Π0(r)∆φ(r), because of (26). As a result, from the last two terms
we have

(

∇ lnΠ0(r) ·∇ lnφ(r)
)

= −2k2Vsr(r) +O(r2g). (28)

As we discussed above, we assume that contributions from deviations from the monopole are small and it is
sufficient to keep only terms to O

(

r2g , (J2/r
3)Π

)

. Thus, to formally solve (28) we may present the solution for Π0(r)
at a large distance from the monopole, which yields the well-known solution for the incident wave in the presence of
a gravitational monopole (see Eq. (23) in [9]):

Π0(r) = e±ik
(

z−rg ln k(r−z)
)

+O(r2g). (29)

To compute the gradient of Π0(r), following [9], we represent the unperturbed trajectory of a ray of light as

r(t) = r0 + kc(t− t0) +O(rg), (30)

where k is the unit vector in the incident direction of the light ray’s propagation path and r0 represents the starting
point. Following [9, 34, 35], we define b = [[k × r0] × k] to be the impact parameter of the unperturbed trajectory
of the light ray. The vector b is directed from the origin of the coordinate system toward the point of the closest
approach of the unperturbed path of light ray to that origin.
With (30), we introduce the parameter τ = τ(t) along the path of the light ray (see details in Appendix B in [9]):

τ = (k · r) = (k · r0) + c(t− t0), (31)

which may be positive or negative. Note that τ = z cosα where α is the angle between ez and k. Furthermore, τ = z
when the z-axis of the chosen Cartesian coordinate system is oriented along the incident direction of the light ray.
We can see that the quantity τ evolves from a negative value (representing a source at a large distance from the lens,
α ≃ π), through τ = 0 (the shortest distance from the lens where α = π/2), to positive values (with α ≃ 0 at the
image plane.) The parameter τ allows us to rewrite (30) as

r(τ) = b+ kτ +O(rg), with ||r(τ)|| ≡ r(τ) =
√

b2 + τ2 +O(rg). (32)

Using (32), the gradient of Π(1)(r) from (29) may be computed as

∇ lnΠ0(r) = ±ik
(

k(1 +
rg
r
)− rg

b2
b
(

1 +
τ

r

)

)

+O(r2g). (33)

As a result, (28) takes the form

±ik
(

(

k(1 +
rg
r
)− rg

b2
b
(

1 +
τ

r

))

·∇ lnφ(r)
)

= −2Vsr(r) +O(r2g). (34)

As we want to identify the largest contribution from corrections to the monopole to light propagation, we keep only
linear terms with respect to gravity. As a result, neglecting the rg-dependent terms in (34), we may present (28) as

±ik(k ·∇) lnφ = −2k2Vsr +O(r2g). (35)

We may now compute the eikonal phase due to the short-range potential Vsr. Using the representation of the light
ray’s path as r = (b, τ) given by (32), we observe that (as was also shown in [9]) the gradient ∇ may be expressed in
terms of the variables along the path as ∇ = ∇b + k d/dτ + O(rg), where ∇b is the gradient along the direction of
the impact parameter b and τ being the parameter taken along the path. Thus, the differential operator on the left
side of (35) is the derivative along the light ray’s path, namely (k ·∇) = d/dτ .
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As a result, for (35) we have

d lnφ±

dτ
= ±ik 2Vsr +O(r2g), (36)

the solutions of which are

φ±(b, τ) = exp
(

± ik

∫ τ

0

2Vsr(b, τ
′)dτ ′

)

. (37)

We therefore have the following two particular eikonal solutions of (24) for Π(r):

Π(r) = Π0(r) exp
(

± iξb(b, τ)
)

+O
(

r2g ,
J2
r3

Π
)

, (38)

where we introduced the eikonal phase

ξb(b, τ) = k

∫ τ

0

2Vsr(b, τ
′)dτ ′ +O(r2g). (39)

The solution given by (38)–(39) was obtained under the eikonal condition (26) that allows us to consider the effect
of the short-range potential due to gravitational multipoles (as shown in (23)–(24)) on the phase of the EM wave only,
and not on its amplitude. This is similar to the thin lens approximation that is extensively used in the description of
many problems on modern optics [22] and gravitational lensing [5]. That fact is captured by (39) where we assume
that light moves in a straight line before it reaches the lens and then it changes direction at τ = (k · r) = 0 and moves
again on a straight line towards the observer. Thus, the phase shift (39) occurs only on the second part of the path.
Considering the structure of solutions (22) and (38), we note that the eikonal phase, ξb(b, s) from (39), depends on

the vector of the impact parameter b and its orientation with respect to the solar rotational axis. Thus, the presence
of ξb(b, s) in (38) is understood in the context of solution (22), where the sum over ℓ = kb also acts on the b-dependent
eikonal phase. In general, this approach is similar to that of the Born approximation [25–27, 31] or path integrals in
quantum mechanics [36–39]. This point will become more evident in Section V.
In Appendix B 1, we compute the eikonal phases for two possible forms of the gravitational potential, valid in the

generic case. In the case of the spatial trace-free (STF) multipole moments from (B5), the eikonal phase is given by
(B27). However, in the case of the SGL, the gravitational potential of the Sun is that of an axisymmetric body best
characterized using zonal harmonics (B2) and may be expressed [40, 41] in terms of the usual dimensionless multipole
moments Jℓ:

U =
GM

r

{

1−
∞
∑

ℓ=2

Jℓ

(Rℓ

r

)ℓ

Pℓ

(s · x
r

)}

+O(c−4), (40)

where s denotes the unit vector along the x3-axis, Pℓ are the Legendre polynomials and the quantities M,J2..., Jℓ
correspond to the multipole moments. Note that, in the case of an axisymmetric and rotating body with “north-south
symmetry” (i.e., a body that is symmetric under a reflection with respect to the plane of rotation), the expression
(B2) contains only the ℓ = 2, 4, 6, 8... even moments.
To determine the eikonal phase (39), we use a heliocentric coordinate system with its z-axis aligned with the

wavevector k, so that k = (0, 0, 1). We introduce a unit vector in the direction of the impact parameter, b = bnξ,
coordinates on the image plane, x that is located at the distance z from the Sun, and the unit vector in the direction
of the solar rotation axis, s:

b = b(cosφξ, sinφξ, 0), (41)

x = ρ(cosφ, sinφ, 0), (42)

s = (sinβs cosφs, sinβs sinφs, cosβs). (43)

In this coordinate system, the eikonal phase shift (39) accumulated by an EM wave propagating in the gravitational
field of an axisymmetric body takes an elegant form (see discussion in Appendix B and the result (B21)):

ξb(b, s) = −krg
∞
∑

n=2

Jn
n

(R⊙

b

)n

sinn βs cos[n(φξ − φs)] +O(r2g). (44)

This result provides the context for our investigation below as it shows the explicit dependencies of the eikonal phase
on the orientation of the vector of the impact parameter with respect to the lens’ rotational axis.
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III. ELECTROMAGNETIC WAVE IN THE FIELD OF A STATIC EXTENDED GRAVITY LENS

Our next goal is to find a solution to the EM field in that region. We accomplish this objective using the approach
developed for classical diffraction theory, by finding the set of equations that determine the EM field via Debye
potentials and then matching these equations with the incident wave.
At this point, we already have all the key components needed to develop the solution for the Debye potentials in the

case of the long-range, spherically symmetric gravitational field produced by the solar monopole, and the static long-
range gravitational field produced by deviations from the monopole, characterized using zonal harmonics. Following
[9, 11], a particular solution for the Debye potential, Π, is obtained by combining results for Φ(φ) from (19) and Θ(θ)
from (20). The solution for the Debye potential takes the form

Π

u
=

1

r

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

µℓRℓ(r,b)
[

P
(m)
l (cos θ)

][

am cos(mφ) + bm sin(mφ)
]

+O
(

r2g ,
J2
r3

Π
)

, (45)

where the yet to be constructed Rℓ(r,b) is the radial function and µℓ, am, bm are arbitrary and as yet unknown
constants. Note that the structure of the solution (45) preserves the angular symmetries of the monopole case given
by Φ(φ) and Θ(θ). The presence of the gravitational zonal harmonics is accounted for by the generalized radial
function Rℓ(r,b) that now depends on b via the eikonal phase, as shown in (38).
In the vacuum, the solutions for the electric and magnetic potentials of the incident wave, eΠ0 and mΠ0, were found

to be given in terms of a single potential Π0(r, θ) that is given by (22). In other words, the incident EM wave is not
affected by the gravitational field from the zonal harmonics of the extended Sun. Its form is identical to that of the
free EM wave propagating in monopole gravity, discussed in [9].
Considering deviations from spherical symmery, we notice that, for large r, the potential Vsr(r) in (24) can be

neglected in comparison to the Coulomb potential Uc(r) = 2k2rg/r and this equation reduces to the Coulomb equation
discussed in [9] with the solution given by (22). The solution of (24) that is regular at the origin can thus be
written asymptotically as a linear combination of the regular and irregular Coulomb wave functions Fe(krg, kr)
and Gℓ(krg , kr), respectively [11, 26–28, 42], which are solutions of (24) in the absence of the potential Vsr(r).
Asymptotically, at large values of the argument (kr), these functions behave as [9, 11]:

Fℓ(krg, kr) ∼ sin
(

k(r + rg ln 2kr) +
ℓ(ℓ+ 1)

2kr
− πℓ

2
+ σℓ

)

, (46)

Gℓ(krg, kr) ∼ cos
(

k(r + rg ln 2kr) +
ℓ(ℓ+ 1)

2kr
− πℓ

2
+ σℓ

)

. (47)

In the case of centrally symmetric potentials, since the Coulomb potential falls off slower than the centrifugal
potential (i.e., the ℓ(ℓ+ 1)/r2 term in (46) and (47)) at large distances, it dominates the asymptotic behavior of the
effective potential in every partial wave. Hence, we can generally look for a solution satisfying the following boundary
conditions [28]:

Rℓ(r) ∼
r→0

nrℓ+1, (48)

Rℓ(r) ∼
r→∞

Fℓ(krg, kr) + tan δℓGℓ(krg, kr) ∝
kr→∞

sin
(

k(r + rg ln 2kr) +
ℓ(ℓ+ 1)

2kr
− πℓ

2
+ σℓ + δℓ

)

, (49)

where n is a normalization factor and Fℓ(krg , kr) and Gℓ(krg, kr) are solutions of (24) in the absence of the potential
Vsr(r), which, as we discussed above, are respectively regular and irregular at the origin. The real quantities δℓ(k)
introduced by these equations are the phase shifts due to the short-range potential Vsr(r) (B23) in the presence of
the Coulomb potential Uc(r) = 2k2rg/r in (24). We note that δℓ(k) fully describes the non-Coulombic part of the
scattering and vanishes when this short-range potential is absent.
In the case of generic gravitational fields, we can satisfy the conditions (48)–(49) by choosing the function Rℓ(r)

as a linear combination of the two solutions (38), where δℓ(k) is replaced by the eikonal phase, ξb(b). One way to do
that is by relying on the two solutions to (38), taken in the form of the incident and scattered waves [43], which are
correspondingly given by the functions H−

ℓ (krg , kr) and H
+
ℓ (krg, kr), and to show explicit dependence on the eikonal

phase shift, ξb(b), which can be captured in the following form:

Rℓ(r,b) =
1

2i

(

H+
ℓ (krg, kr)e

iξb(b) −H−
ℓ (krg, kr)e

−iξb(b)
)

, (50)

where the Coulomb–Hankel functions H
(±)
ℓ are related to the Coulomb functions by H±

ℓ (krg, kr) = Gℓ(krg, kr) ±
iFℓ(krg, kr) (for discussion, see Appendix A of [9]) and their asymptotic behavior is given by (see Appendix F of [9]):

H±

ℓ (krg, kr) ∼
kr→∞

exp
{

± i
(

k(r + rg ln 2kr) +
ℓ(ℓ+ 1)

2kr
− πℓ

2
+ σℓ

)}

, (51)



9

where ξb(b) in (50) is the eikonal phase shift that is accumulated by the EM wave along its entire path. The expression
for this quantity is given by (39), which, for axisymmetric body, is computed by (44).
The form of the radial function Rℓ from (50) captures our expectation that, in the presence of a potential Vsr from

(B23), the Coulomb–Hankel functions (which represent the radial free-particle wavefunction solutions of the homo-
geneous equation (24)), become “distorted” by this short-range potential due to the gravitational mass multipoles.
We can verify that Rℓ in the form of (50) also satisfies the asymptotic boundary conditions (48)–(49). Indeed, as the
gravitational potential for the inner region of the Sun vanishes, the eikonal phase ξb is zero for r < R⊙. Therefore, as
r → 0, the radial function (50) becomes Rℓ(r,b) → Fℓ(krg , kr), where the function Fℓ(krg, kr) obeys the condition
(48). Next, we consider another limit, when r → ∞. Using the asymptotic behavior of H±

ℓ from (51), we see that, as
r → ∞, the radial function obeys the asymptotic condition (49) taking the form where the phase shift δℓ is given by
the eikonal phase ξb introduced by (39).
We may put the result (50) in the following equivalent form:

Rℓ(r,b) = cos ξb(b)Fℓ(krg, kr) + sin ξb(b)Gℓ(krg, kr), (52)

which explicitly shows the phase shift, ξb(b), induced by the short-range extended gravity potential, clearly satisfying
the boundary condition (49) with the quantity ξ(b) from (39) being the anticipated phase shift.
To match the potentials (45) of the incident and scattered waves outside, the latter must be expressed in a similar

form but with arbitrary coefficients. Only the function Fℓ(krg , kr) may be used in the expression for the potential
inside the sphere since Gℓ(krg , kr) becomes infinite at the origin. On the other hand, the scattered wave must vanish at
infinity. The Coulomb–Hankel functions H+

ℓ (krg, kr) are characterized by precisely this property, which makes them

suitable as representations of scattered waves. For large values of the argument kr, the result behaves as eik(r+rg ln 2kr)

and the Debye potential Π ∝ eik(r+rg ln 2kr)/r for large r. Thus, at large distances from the sphere the scattered wave
is spherical (with the ln term in the phase due to the modification by the Coulomb potential), with its center at the
origin r = 0. Accordingly, we use it in the expression for the scattered wave.
Collecting results for the functions Φ(φ) and Θ(θ), respectively given by (19) and (20), and Rℓ(r,b) =

H+
ℓ (krg, kr)e

iξb(b) from (38), to O(r2g , (J2/r
3)Π), we obtain the Debye potential for the scattered wave:

Πs =
u

r

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓH
+
ℓ (krg, kr)e

iξb(b)
[

P
(m)
ℓ (cos θ)

][

a′m cos(mφ) + b′m sin(mφ)
]

, (53)

where aℓ, a
′
m, b

′
m are arbitrary and as yet unknown constants.

Representing the potential via Fℓ(krg, kr) is appropriate. The trial solution to (24) for the electric and magnetic
Debye potentials relies on the radial function Rℓ(r,b) given by (52) and has the form

Πin =
u

r

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

bℓ

{

cos ξb(b)Fℓ(krg, kr) + sin ξb(b)Gℓ(krg, kr)
}

[

P
(m)
ℓ (cos θ)

][

am cos(mφ) + bm sin(mφ)
]

, (54)

where bℓ, am, bm are arbitrary and yet unknown constants.
The boundary (continuity) conditions (see discussion in [9, 22]), imposed on the quantities (A41) at some radius

r = R⋆⊙ = R⊙ + rg, are written in full as

∂

∂r

[r eΠ0

u
+
reΠs√
ǫu

]
∣

∣

∣

r=R⋆
⊙

=
∂

∂r

[r eΠin√
ǫu

]
∣

∣

∣

r=R⋆
⊙

, (55)

∂

∂r

[rmΠ0

u
+
rmΠs√
µu

]∣

∣

∣

r=R⋆
⊙

=
∂

∂r

[rmΠin√
µu

]∣

∣

∣

r=R⋆
⊙

, (56)

[r eΠ0

u
+
reΠs√
ǫu

]∣

∣

∣

r=R⋆
⊙

=
[r eΠin√

ǫu

]∣

∣

∣

r=R⋆
⊙

, (57)

[rmΠ0

u
+

mΠs√
µu

]∣

∣

∣

r=R⋆
⊙

=
[rmΠin√

µu

]∣

∣

∣

r=R⋆
⊙

. (58)

We now make use of the symmetry of the geometry of the problem [22] and by applying the boundary conditions
(55)–(58). We recall that we can use a single Debye potential Π in (53) and (54) to represent electric and magnetic
fields. We find that the constants am and bm for the electric Debye potentials are a1 = 1, b1 = 0 and am = bm = 0
for m ≥ 2. For the magnetic Debye potentials, we obtain a1 = 0, b1 = 1 and am = bm = 0 for m ≥ 2. The values are
identical for a′m and b′m.
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As a result, the solutions for the electric and magnetic potentials of the scattered wave, eΠs and
mΠs, may be given

in terms of a single potential Πs(r, θ) (see [9] for details), which, to O(r2g , (J2/r
3)Π), is given by

( eΠs

mΠs

)

=

(

cosφ

sinφ

)

Πs(r, θ), where Πs(r, θ) =
u

r

∞
∑

ℓ=1

aℓH
+
ℓ (krg , kr)e

iξb(b)P
(1)
ℓ (cos θ). (59)

In a relevant scattering scenario, the EM wave and the Sun are well separated initially, so the Debye potential
for the incident wave can be expected to have the same form as for the pure monopole case that includes only the
Coulomb potential that is given by (22). Therefore, the Debye potential for the inner region has the form:

( eΠin

mΠin

)

=

(

cosφ

sinφ

)

Πin(r, θ), (60)

with the potential Πin given, to O(r2g , (J2/r
3)Π), as

Πin(r, θ) =
u

r

∞
∑

ℓ=1

bℓ

{

cos ξb(b)Fℓ(krg, kr) + sin ξb(b)Gℓ(krg, kr)
}

P
(1)
ℓ (cos θ). (61)

We thus expressed all the potentials in the series (45) and any unknown constants can now be determined easily.
If we now substitute the expressions (22), (59) and (60)–(61) into the boundary conditions (55)–(58), we obtain the
following linear relationships between the coefficients aℓ and bℓ:

[E0

k2
iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓF ′

ℓ(krg, kr) + aℓ

(

H+
ℓ (krg , kr)e

iξb(b)
)′]∣
∣

∣

r=R⋆
⊙

= bℓR
′
ℓ(r,b)

∣

∣

∣

r=R⋆
⊙

, (62)

[E0

k2
iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓFℓ(krg, kr) + aℓH

+
ℓ (krg, kr)e

iξb(b)
]
∣

∣

∣

r=R⋆
⊙

= bℓRℓ(r,b)
∣

∣

∣

r=R⋆
⊙

, (63)

where Rℓ(r) is from (52) and ′ = d/dr. We now define, for convenience, αℓ and βℓ as

aℓ =
E0

k2
iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓαℓ and bℓ =

E0

k2
iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓβℓ. (64)

From (62)–(63), we have:

F ′
ℓ(R

⋆
⊙) + αℓH

+
ℓ

′
(R⋆⊙)e

iξb(b) = βℓR
′
ℓ(R

⋆
⊙,b), (65)

Fℓ(R
⋆
⊙) + αℓH

+
ℓ (R

⋆
⊙)e

iξb(b) = βℓRℓ(R
⋆
⊙,b), (66)

where Fℓ(R
⋆
⊙) = Fℓ(krg, kR

⋆
⊙) and H+

ℓ (R
⋆
⊙) = H+

ℓ (krg, kR
⋆
⊙) with similar definitions for the derivatives of these

functions. Equations (65)–(66) may now be solved to determine the two sets of coefficients αℓ and βℓ:

αℓ = e−iξb(b)
Fℓ(R

⋆
⊙)R

′
ℓ(R

⋆
⊙,b)− F ′

ℓ(R
⋆
⊙)Rℓ(R

⋆
⊙,b)

Rℓ(R⋆⊙,b)H
+
ℓ

′
(R⋆⊙)−R′

ℓ(R
⋆
⊙,b)H

+
ℓ (R

⋆
⊙)
, (67)

βℓ =
Fℓ(R

⋆
⊙)H

+′

ℓ(R
⋆
⊙)− F ′

ℓ(R
⋆
⊙)H

+
ℓ (R

⋆
⊙)

Rℓ(R⋆⊙,b)H
+
ℓ

′
(R⋆⊙)−R′

ℓ(R
⋆
⊙)H

+
ℓ (R

⋆
⊙,b)

. (68)

Taking into account the asymptotic behavior of all the functions involved: namely (51) for H+
ℓ and (46)–(47) for

Fℓ and Gℓ, we have the following solution for the coefficients αℓ and βℓ:

αℓ = sin ξb(b), βℓ = eiξb(b), (69)

with ξb(b) is the phase shift induced by the gravitational multipoles to the phase of the EM wave propagating through
the solar system.
Therefore, using the value for aℓ from (64), together with αℓ from (69), we determine that the solution for the

scattered potential (59) takes the form

Πs(r, θ) =
E0

k2
u

r

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓ sin ξb(b)H

+
ℓ (krg, kr)e

iξb(b)P
(1)
ℓ (cos θ), (70)
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which we can present as

Πs(r, θ) =
E0

2ik2
u

r

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓH+

ℓ (krg, kr)
(

e2iξb(b) − 1
)

P
(1)
ℓ (cos θ). (71)

In the region outside the Sun, r > R⋆⊙, we may take the asymptotic form for the Coulomb–Hankel function and
present (71) as

Πs(r, θ) = − E0

2k2
u

r
eik(r+rg ln 2kr)

∞
∑

ℓ=1

2ℓ+ 1

ℓ(ℓ+ 1)
ei(2σℓ+

ℓ(ℓ+1)
2kr

)
(

e2iξb(b) − 1
)

P
(1)
ℓ (cos θ). (72)

As a result, using (22) and (71), we present the Debye potential in the region outside the Sun, r > R⊙, in the
following form:

Πout(r, θ) = Π0(r, θ) + Πs(r, θ) =

=
E0

k2
u

r

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓ

{

Fℓ(krg, kr) +
1

2i

(

e2iξb(b) − 1
)

H+
ℓ (krg, kr)

}

P
(1)
ℓ (cos θ). (73)

Similarly, substituting the value for bℓ from (64), together with βℓ from (69), we determine the solution for the
inner Debye potential (69) in the form

Πin(r, θ) =
E0

k2
u

r

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
ei(σℓ+ξb(b))

{

cos ξb(b)Fℓ(krg , kr) + sin ξb(b)Gℓ(krg, kr)
}

P
(1)
ℓ (cos θ). (74)

As solar gravity is rather weak, we may use the asymptotic expressions for Fℓ, Gℓ and H
±

ℓ for r ≥ R⊙. Therefore,
the radial function Rℓ(r,b) from (50) (or, equivalently, from (52)) may be given as

Rℓ(r,b) =
1

2i

(

H+
ℓ (krg, kr)e

iξb(b) −H−

ℓ (krg, kr)e
−iξb(b)

)

= e−iξb(b)
{

Fℓ(krg, kr) +
1

2i

(

e2iξb(b) − 1
)

H+
ℓ (krg, kr)

}

,

(75)

where ξb = ξb(b) is the eikonal phase.
As a result, outside the Sun, we may present (74) in the following equivalent form:

Πin(r, θ) =
E0

k2
u

r

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓ

{

Fℓ(krg, kr) +
1

2i

(

e2iξb(b) − 1
)

H+
ℓ (krg, kr)

}

P
(1)
ℓ (cos θ). (76)

The solution for the Debye potential, Π(r, θ) from (76), describing the propagation of the EM wave on the back-
ground of the static gravitational monopole and the short-range multipole gravitational field takes the form

Πin(r, θ) =
E0

k2
u

r

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓFℓ(krg, kr)P

(1)
ℓ (cos θ) +

+
E0

2ik2
u

r

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓ

(

e2iξb(b) − 1
)

H
(+)
ℓ (krg, kr)P

(1)
ℓ (cos θ) +O

(

r2g ,
J2
r3

Π
)

. (77)

The first term in (76) is the Debye potential of an EM wave propagating in a vacuum but modified by the gravity
of extended Sun. The second term represents the effect of the solar gravitational multipoles on the propagation of
the EM waves. Notice that, as the distance increases, this term approaches the form of the Debye potential Πs for
the scattered EM field given by (72).
Thus, we have identified all the Debye potentials involved in the Mie problem [21], namely the potential Π0 given

by (22) representing the incident EM field, the potential Πs from (72) describing the scattered EM field, and the
potential Πin from (76) total field.
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IV. GENERAL SOLUTION FOR THE EM FIELD

To describe the scattering of light by the extended Sun, we use solutions for the Debye potential representing the
scattered EM wave (72), and the EM wave (77). The presence of the Sun itself is not yet captured. For this, we need
to set additional boundary conditions that describe the interaction of the Sun with the incident radiation. Similarly
to [9, 12], we apply the fully absorbing boundary conditions that represent the physical size and the surface properties
of the Sun [11, 44].
We begin with the area that lies outside the Sun where three regions are present, namely (i) the shadow region, (ii)

the geometric optics region, and (iii) the interference region. Clearly, as far as imaging with the SGL is concerned, the
interference region is of the greatest importance. This is where the SGL focuses light coming from a distant object,
forming an image.

A. Fully absorbing boundary conditions

Boundary conditions representing the opaque Sun were introduced in [45] and were used in [9, 12]. Here we use
these conditions again. Specifically, to set the boundary conditions, we rely on the semiclassical analogy between the
partial momentum, ℓ, and the impact parameter, b, that is given as ℓ = kb [24, 25].
To set the boundary conditions, we require that rays with impact parameters b ≤ R⋆⊙ = R⊙ + rg are completely

absorbed by the Sun [9]. Thus, the fully absorbing boundary condition signifies that all the radiation intercepted by
the body of the Sun is fully absorbed by it and no reflection or coherent reemission occurs. All intercepted radiation is
transformed into some other forms of energy, notably heat. Thus, we require that no scattered waves exist with impact
parameter b ≪ R⋆⊙ or, equivalently, for ℓ ≤ kR⋆⊙. Such formulation relies on the concept of the semiclassical impact
parameter b and its relationship with the partial momentum, ℓ, as ℓ = kb. (A relevant discussion on this relation
between ℓ and b is on p. 29 of [46] with reference to [47].) In terms of the boundary conditions, this means that we
need to subtract the scattered waves from the incident wave for ℓ ≤ kR⋆⊙, as was discussed in [9]. Furthermore, as it
was shown in [44], the fully absorbing boundary conditions introduce a fictitious EM field that precisely compensates
the incident field in the area behind the Sun. This area has the shape of a rotational hyperboloid that starts directly
at the solar surface behind the Sun and extends to the vertex of the hyperboloid at z0 = R2

⊙/2rg ≃ 547.8 AU.

B. The Debye potential for the region outside the Sun

To implement the boundary conditions for the EM wave outside the Sun, we realize that the total EM field in this
region is given as the sum of the incident and scattered waves, Π = Π0 +Πs, with these two potentials given by (22)
and (72), correspondingly. Accordingly, we use (73), which represents the Debye potential in the region of interest
and is given as

Π(r, θ) = Π0(r, θ) + Πs(r, θ) =
E0

k2
u

r

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓ

{

Fℓ(krg, kr) +
1

2i

(

e2iξb(b) − 1
)

H+
ℓ (krg , kr)

}

P
(1)
ℓ (cos θ). (78)

Next, relying on the representation of the regular Coulomb function Fℓ via incoming, H+
ℓ , and outgoing, H−

ℓ , waves

as Fℓ = (H+
ℓ − H−

ℓ )/2i (discussed in [9] and also by the expression given after (50)), we may express the Debye
potential (78) as

Π(r, θ) =
E0

2ik2
u

r

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓ

{

e2iξb(b)H+
ℓ (krg, kr)−H−

ℓ (krg, kr)
}

P
(1)
ℓ (cos θ). (79)

This form of the combined Debye potential is convenient for implementing the fully absorbing boundary conditions

discussed in Sec. IVA. Specifically, subtracting from (79) the outgoing wave (i.e., ∝ H
(+)
ℓ ) for the impact parameters

b ≤ R⋆⊙ or equivalently for ℓ ∈ [1, kR⋆⊙], we have

Π(r, θ) =
E0

2ik2
u

r

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓ

{

e2iξb(b)H+
ℓ (krg, kr)−H−

ℓ (krg, kr)
}

P
(1)
ℓ (cos θ)−

− E0

2ik2
u

r

kR⋆
⊙

∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓe2iξb(b)H+

ℓ (krg, kr)P
(1)
ℓ (cos θ), (80)
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or, equivalently, coming back to the form (78),

Π(r, θ) = Π0(r, θ) +
E0

2ik2
u

r

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓ

(

e2iξb(b) − 1
)

H+
ℓ (krg, kr)P

(1)
ℓ (cos θ)−

− E0

2ik2
u

r

kR⋆
⊙

∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓe2iξb(b)H+

ℓ (krg, kr)P
(1)
ℓ (cos θ). (81)

This is a rather complex expression. It requires the tools of numerical analysis to fully explore its behavior and
the resulting EM field [46–48]. However, in most practically important applications, we need to know the field in
the forward direction. Furthermore, our main interest is to study the largest impact of the extended gravity on light
propagation, which corresponds to the smallest values of the impact parameter. In this situation, we may simplify
the result (81) by taking into account the asymptotic behavior of the function H+

ℓ (krg , kr), considering the field at
large heliocentric distances, such that kr ≫ ℓ, where ℓ is the order of the Coulomb function (see p. 631 of [49]). For

kr → ∞ and also for r ≫ rt =
√

ℓ(ℓ+ 1)/k (see [9, 12]), such an expression is given in the form [11]):

lim
kr→∞

H±

ℓ (krg , kr) ∼ exp
[

± ik
(

r + rg ln 2kr
)

+
ℓ(ℓ+ 1)

2kr
+ σℓ −

πℓ

2

)]

+O
(

(kr)−2, r2g
)

, (82)

which includes the contribution from the centrifugal potential in the radial equation (21) (see e.g., Appendix C of
[11], Appendix A in [50] or [48]). In fact, expression (82) extends the argument of (51) to shorter distances, closer
to the turning point of the potential (see the relevant discussion in Appendix F of [9]). By including the extended
centrifugal term in (82) (i.e., shown by the terms with various powers of ℓ(ℓ + 1)/2kr), we can now better describe
the bending of the trajectory of a light ray under the combined influence of extended gravity.
We use the approximate behavior of H+

ℓ given by (82) and use it in (81) to present the solution for the Debye
potential in the following form:

Π(r, θ) = Π0(r, θ) +
ueik(r+rg ln 2kr)

r

{ E0

2k2

kR⋆
⊙

∑

ℓ=1

2ℓ+ 1

ℓ(ℓ+ 1)
ei
(

2σℓ+
ℓ(ℓ+1)
2kr

)

P
(1)
ℓ (cos θ)−

− E0

2k2

∞
∑

ℓ=kR⋆
⊙

2ℓ+ 1

ℓ(ℓ+ 1)
ei
(

2σℓ+
ℓ(ℓ+1)
2kr

)

(

ei2ξb(b) − 1
)

P
(1)
ℓ (cos θ)

}

+O
(

r2g ,
J2
r3

Π
)

=

= Π0(r, θ) + Πbc(r, θ) + ΠG(r, θ). (83)

The first term in (83), Π0(r, θ), is the Debye potential that represents the incident EM wave propagating in the
vacuum on the background of a post-Newtonian gravity field produced by a gravitational monopole. The solution for
Π0(r, θ) is known and is given by (22) in the form of infinite series with respect to partial momenta, ℓ (see [9, 11]).
The second term in (83), Πbc(r, θ), is due to the physical obscuration introduced by the Sun and was derived by

applying the fully absorbing boundary conditions. This term is responsible for the geometric shadow behind the Sun.
The third term in (83), ΠG(r, θ), quantifies the contribution of the extended gravitational field to the scattering of

the EM wave.
With the solution for the Debye potential given by (83), and with the help of (5)–(10) (also see [9]), we may now

compute the EM field in the various regions involved. Given the smallness of the ratio rgJ2R
2
⊙/r

3, we may neglect
the distance-dependent effects of the solar extended gravity on the amplitude of the EM wave. Thus, the extended
gravity contributes to the delay of the EM wave and is fully accounted for by the solution for the Debye potentials.
Therefore, we can use the following expressions to construct the EM field in the static, gravity field produced by an
extended gravity (see details in [9, 11]):

(

D̂r

B̂r

)

=

(

cosφ

sinφ

)

e−iωtα(r, θ, φ),

(

D̂θ

B̂θ

)

=

(

cosφ

sinφ

)

e−iωtβ(r, θ, φ),

(

D̂φ

B̂φ

)

=

(− sinφ

cosφ

)

e−iωtγ(r, θ, φ), (84)

with the quantities α, β and γ computed from the known Debye potential, Π, as

α(r, θ, φ) =
1

u

{ ∂2

∂r2

[rΠ

u

]

+ k2u4
[rΠ

u

]}

+O
(

( 1

u

)′′
)

, (85)

β(r, θ, φ) =
1

u2r

∂2
(

rΠ
)

∂r∂θ
+
ik
(

rΠ
)

r sin θ
, (86)
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γ(r, θ, φ) =
1

u2r sin θ

∂
(

rΠ
)

∂r
+
ik

r

∂
(

rΠ
)

∂θ
. (87)

This completes the solution for the Debye potentials on the background of a spherically symmetric, static gravita-
tional field of the Sun. We will use (84)–(87) to compute the relevant EM fields.

C. EM field in the shadow region

In the shadow behind the Sun (i.e., for impact parameters b ≤ R⋆⊙) the EM field is represented by the Debye
potential of the shadow, Πsh, which is given as

Πsh(r, θ) = Π0(r, θ) +
ueik(r+rg ln 2kr)

r

E0

2k2

kR⋆
⊙

∑

ℓ=1

2ℓ+ 1

ℓ(ℓ+ 1)
ei
(

2σℓ+
ℓ(ℓ+1)
2kr

)

P
(1)
ℓ (cos θ) +O

(

r2g ,
J2
r3

Π
)

, (88)

where Π0(r, θ) is well represented by (22). As discussed in [9, 44], the potential (88) produces no EM field. In other
words, there is no light in the shadow. Furthermore, as the solar boundary is rather diffuse, there is no expectation
for a Poisson–Arago bright spot to form in this region.

D. EM field outside the shadow

In the region behind the Sun but outside the solar shadow (i.e., for light rays with impact parameters b > R⊙)
which includes both the geometric optics and interference regions (in the immediate vicinity of the focal line), the
EM field is derived from the Debye potential given by the remaining terms in (83) to O(r2g , J2/r

3) as

Π(r, θ) = Π0(r, θ)−
ueik(r+rg ln 2kr)

r

E0

2k2

∞
∑

ℓ=kR⋆
⊙

2ℓ+ 1

ℓ(ℓ+ 1)
ei
(

2σℓ+
ℓ(ℓ+1)
2kr

)

(

ei2ξb(b) − 1
)

P
(1)
ℓ (cos θ), (89)

where for the geometric optics region the potential Π0(r, θ) is well represented by (22).
Expression (89) is our main result for the regions outside the shadow region, i.e., b ≥ R⋆⊙. It contains all the

information needed to describe the total EM field originating from an incident Coulomb-modified plane wave that
passed through the region of the extended solar gravity field, characterized by the distance dependence that diminishes
as r−3 or faster.
To evaluate the total solution for the Debye potential (89), we present it in the following compact form:

Π(r, θ) = Π0(r, θ) + E0fG(r, θ, φ)
ueik(r+rg ln 2kr)

r
, (90)

where the extended gravity scattering amplitude fG(r, θ, φ) is given by

fG(r, θ, φ) = − 1

2k2

∞
∑

ℓ=kR⋆
⊙

2ℓ+ 1

ℓ(ℓ+ 1)
ei
(

2σℓ+
ℓ(ℓ+1)
2kr

)

(

ei2ξb(b) − 1
)

P
(1)
ℓ (cos θ) +O

(

r2g ,
J2
r3

Π
)

. (91)

We note that because of the contribution from the centrifugal potential in (82), the scattering amplitude fp(r, θ) is
now also a function of the heliocentric distance [12]. This is not the case in typical problems describing nuclear and
atomic scattering [24, 25, 51, 52]. However, as we observed in [9, 12, 50], when we are interested in the trajectories of
light rays, the presence of such dependence and especially the ∝ 1/r term in the phase of the scattering amplitude (91)
allows us to properly describe the bending of the light rays in the presence of gravity together with the contribution
from deviations from spherical symmetry.
As a result, the Debye potential takes the form

ΠG(r, θ) = E0fG(r, θ, φ)
ueik(r+rg ln 2kr)

r
, (92)

with the extended gravity scattering amplitude fG(r, θ) given by (91). We use these expressions to derive the compo-
nents of the EM field produced by this wave. For this, we substitute (92)–(91) in the expressions (85)–(87) to derive
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the factors α(r, θ, φ), β(r, θ, φ) and γ(r, θ, φ), which to O(r2g , J2/r
3) are computed to be:

α(r, θ, φ) = −E0
ueik(r+rg ln 2kr)

k2r2

∞
∑

ℓ=kR⋆
⊙

(ℓ+ 1
2 )e

i

(

2σℓ+
ℓ(ℓ+1)
2kr

)

(

ei2ξb(b) − 1
)

P
(1)
ℓ (cos θ)

{

1− ℓ(ℓ+ 1)

4k2r2

}

, (93)

β(r, θ, φ) = E0
ueik(r+rg ln 2kr)

ikr
×

×
∞
∑

ℓ=kR⋆
⊙

ℓ+ 1
2

ℓ(ℓ+ 1)
ei
(

2σℓ+
ℓ(ℓ+1)
2kr

)

(

ei2ξb(b) − 1
){∂P

(1)
ℓ (cos θ)

∂θ

(

1− ℓ(ℓ+ 1)

2u2k2r2

)

+
P

(1)
ℓ (cos θ)

sin θ

}

, (94)

γ(r, θ, φ) = E0
ueik(r+rg ln 2kr)

ikr
×

×
∞
∑

ℓ=kR⋆
⊙

ℓ+ 1
2

ℓ(ℓ+ 1)
ei
(

2σℓ+
ℓ(ℓ+1)
2kr

)

(

ei2ξb(b) − 1
){∂P

(1)
ℓ (cos θ)

∂θ
+
P

(1)
ℓ (cos θ)

sin θ

(

1− ℓ(ℓ+ 1)

2u2k2r2

)}

, (95)

where we neglected small terms that behave as ∝ i/(u2kr); terms ∝ ikrg/ℓ
2 were also omitted because of the large

partial momenta involved, ℓ ≥ kR⋆⊙. Terms in both of these groups are negligably small when compared to the leading
terms in each of these expressions above (a similar conclusion was reached in [11, 12].)
This is an important result as it allows us to describe the EM field in all the regions of interest for the SGL, namely

the strong and weak interference regions and the region of geometric optics.

V. EM FIELD IN THE INTERFERENCE REGION

Results from the previous section allow us to study optical properties of the SGL in the case of extended gravitational
lens. Our primary concern is the strong interference region: the area behind the Sun, reachable by light rays with
impact parameters b > R⋆⊙. The focal region of the SGL begins where r > 2b2/2rg and 0 ≤ θ ≃

√

2rg/r. The EM
field is derived from the Debye potential (90)–(91), given by the factors α, β and γ from (93)–(95). In the strong
interference region, these expressions take the following form [9, 11, 13]:

α(r, θ, φ) = −E0
ueik(r+rg ln 2kr)

k2r2

∞
∑

ℓ=kR⋆
⊙

(ℓ+ 1
2 )e

i

(

2σℓ+
ℓ(ℓ+1)
2kr

)

(

ei2ξb(b) − 1
)

P
(1)
ℓ (cos θ)

(

1 +O
(rg
r
, r2g , J2

)

)

, (96)

γ(r, θ, φ) = β(r, θ, φ) = E0
ueik(r+rg ln 2kr)

ikr
×

×
∞
∑

ℓ=kR⋆
⊙

ℓ+ 1
2

ℓ(ℓ+ 1)
ei
(

2σℓ+
ℓ(ℓ+1)
2kr

)

(

ei2ξb(b) − 1
){∂P

(1)
ℓ (cos θ)

∂θ
+
P

(1)
ℓ (cos θ)

sin θ

}(

1 +O
(rg
r
, r2g , J2

)

)

. (97)

We recognize that (96)–(97) represent the scattered EM field in the interference region. As evident in the structure
of the expression (90), the term (ei2ξb(b) − 1) present in these expressions leads to formation of two waves – that one
that is ∝ ei2ξb(b) is the EM wave due to diffraction of light by the gravitational multipoles, while the ∝ −1 results in
the term cancels the incident wave (see [9, 11]). Thus, without loss of generality we may drop the term ∝ −1 in the
term (ei2ξb(b) − 1). This will directly yield the solution with the corresponding scattering amplitude that can be used
to characterize the EM field that was diffracted on the extended solar gravitational field.
At this point, we may replace the sums in (96)–(97) with an integral (accounting for the fact that ℓ≫ 1 and keeping

the terms up to O(θ)) to be evaluated with the method of stationary phase (with β(r, θ, φ) = γ(r, θ, φ)):

α(r, θ, φ) = −E0
ueik(r+rg ln 2kr)

k2r2

∫ ∞

ℓ=kR⋆
⊙

ℓdℓei
(

2σℓ+
ℓ2

2kr
+2ξb(b)

)

P
(1)
ℓ (cos θ)

(

1 +O
(

θ,
rg
r
, r2g , J2

)

)

, (98)

γ(r, θ, φ) = E0
ueik(r+rg ln 2kr)

ikr

∫ ∞

ℓ=kR⋆
⊙

dℓ

ℓ
ei
(

2σℓ+
ℓ2

2kr
+2ξb(b)

)

{∂P
(1)
ℓ (cos θ)

∂θ
+
P

(1)
ℓ (cos θ)

sin θ

}(

1 +O
(

θ,
rg
r
, r2g , J2

)

)

.(99)

To evaluate these expressions in the interference region and for 0 ≤ θ ≃
√

2rg/r, we use the asymptotic represen-
tation for Pℓ(cos θ) and ℓ≫ 1 from [48, 53–55]

Pℓ(cos θ) =

√

θ

sin θ
J0
(

ℓθ
)

+O(θ2). (100)
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For improved explicit two-term uniformly valid asymptotic form of this expression, check [56]. We use the expression

P
(1)
ℓ (cos θ) = −∂Pℓ(cos θ)

∂θ
= ℓJ1(ℓθ) +

1
6θJ0(ℓθ) +O(θ2), (101)

to derive

P
(1)
ℓ (cos θ)

sin θ
= 1

2ℓ
2
(

J0(ℓθ) + J2(ℓθ)
)

,
dP

(1)
ℓ (cos θ)

dθ
= 1

2ℓ
2
(

J0(ℓθ)− J2(ℓθ)
)

. (102)

Using expressions (101) and (102) in (98)–(99), we have

α(r, θ, φ) = −E0
ueik(r+rg ln 2kr)

k2r2

∫ ∞

ℓ=kR⋆
⊙

ℓ2dℓ J1(ℓθ)e
i

(

2σℓ+
ℓ2

2kr
+2ξb(bt)

)

(

1 +O
(

θ,
rg
r
, r2g , J2

)

)

, (103)

γ(r, θ, φ) = E0
ueik(r+rg ln 2kr)

ikr

∫ ∞

ℓ=kR⋆
⊙

ℓdℓ J0(ℓθ)e
i

(

2σℓ+
ℓ2

2kr
+2ξb(b)

)

(

1 +O
(

θ,
rg
r
, r2g , J2

)

)

. (104)

In the case of a pure gravitational monopole, the eikonal phase ξb(b) in (103)–(104) is absent. In that case, these
integrals can be evaluated using the method of stationary phase, leading to the well-known result [9, 11, 57] with the
PSF ∝ J2

0 of a monopole (i.e., a point mass or spherically-symmetric) lens.
However, in the presence of ξb(b), the method of stationary phase is not applicable as the expressions (103)–(104)

now have angular dependence that is not captured by the integrals. Therefore, we need a method that can address
this to by transforming these integrals into an appropriate form that captures such a dependence.
To evaluate these integrals, we developed what we call the angular eikonal method. This approach entails replacing

the Bessel functions J0 and J1 with their integral representations2:

J0(ℓθ) =
1

2π

∫ 2π

0

dφξe
−iℓθ cos(φξ−φ), J1(ℓθ) =

i

2π

∫ 2π

0

dφξ cos(φξ − φ)e−iℓθ cos(φξ−φ). (105)

These expressions recognize the fact that, to describe the geometry of the problem, we selected a heliocentric coordinate
system whose z axis is co-linear with the wavevector, k, of the incident EM wave. The expressions in (105) are integrals
over the azimuthal angle φξ, representing the orientation of the unit vector of the impact parameter b, as given by
(43). The expressions (105) allow us to rewrite (103)–(104), to O

(

θ, rg/r, r
2
g

)

, in the following 2-dimensional form:

α(r, θ, φ) = E0
ueik(r+rg ln 2kr)

ik2r2
1

2π

∫ 2π

0

dφξ cos(φξ − φ)

∫ ∞

ℓ=kR⋆
⊙

ℓ2dℓei
(

2σℓ+
ℓ2

2kr
+2ξb(b)−ℓθ cos(φξ−φ)

)

, (106)

γ(r, θ, φ) = E0
ueik(r+rg ln 2kr)

ikr

1

2π

∫ 2π

0

dφξ

∫ ∞

ℓ=kR⋆
⊙

ℓdℓei
(

2σℓ+
ℓ2

2kr
+2ξb(b)−ℓθ cos(φξ−φ)

)

. (107)

The step presented above correctly captures the functional form of the integrand, which is azimuthally perturbed
by the eikonal phase shift, 2ξb(b), whose presence breaks the spherical symmetry present in the case of a gravitational
monopole. Technically, this step could have been done much earlier, in the Debye potential of the incident wave
(22) that still possesses the symmetries representative of Coulomb-scattering. However, doing it that early would
obscure the presentation of the overall solution. As it is known, solving the time-independent Schrödinger equation
in the presence of the Coulomb potential (representing a point source) is a well-posed problem. As demonstrated by
(15)–(22), this problem reduces to solving the relevant wave equation by implementing separation of variables that
results in a well-known solution [9]. In the case when the scattering potential is not spherically symmetric, separation
of variables, in general, is not possible. Thus, other methods are needed.
For gravitational lensing in a weak gravitational field, characterized by a scattering potential with only small

deviations from spherical symmetry, we may use the eikonal approximation to identify the eikonal phase shift that
corresponds to that particular scattering potential (see details in Section II C). This eikonal phase shift is effectively a
representation of the well-known thin lens approximation [5]. However, our variables in (103)–(104) were still given in
terms of the monopole case. This is where we recognized that the integral expressions (105) may be used to solve the

2 Note that we can use the same representations of these functions with positive sign in the phase. The result is identical as it only
replaces the integrand with its complex conjugate, but it leaves the real-valued result unaffected.
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problem for small deviations from spherical symmetry, which was done in (106)–(107). At this point, it is clear that
the integrals over dφξ in (106)–(107) act not only the monopole part of the phase, −ℓθ cos(φξ − φ) as in (103)–(104),
but on the entire phase, which now includes the eikonal phase shift term 2ξb(b) due to the gravitational multipoles.
This outlines the logic behind the angular eikonal method.
Lastly, we mentioned that the resulting quantities (106)–(107) determine the EM field in the strong interference

region of the SGL. Below, we find that these expressions can be evaluated using the method of stationary phase.
Furthermore, as we know [9, 11], in the interference region the factor α determining the radial components of the EM

field is very small, behaving as α(r, θ, φ) ≃
√

2rg/r γ(r, θ, φ). Thus, this factor will yield a negligible contribution to
the Poynting vector and it may be omitted. Therefore, in the discussion below we focus on the factor β(r, θ, φ) only.

A. Integral over the vector impact parameter

As we mentioned above, the integral over dφξ in (107) properly acts not only on the monopole term of the phase,

−ℓθ cos(φξ − φ), but on the entire phase 2σℓ +
ℓ2

2kr̃ + 2ξb − ℓθ cos(φξ − φ), that now includes the contributions from
the parts that perturb the spherically symmetric gravitational potential via the eikonal phase, ξb. In the case of an
axisymmetric gravitational field, this perturbation is given by (B21):

ξb(b) = −krg
∞
∑

n=2

Jn
n

(R⊙

b

)n

sinn βs cos[n(φξ − φs)]. (108)

For convenience, we introduce

ξb(b) = −krgψ(b), ψ(b) =
∞
∑

n=2

Jn
n

(R⊙

b

)n

sinn βs cos[n(φξ − φs)]. (109)

Furthermore, for ℓ≫ krg, we evaluate σℓ as [44]:

σℓ = −krg ln ℓ. (110)

This form agrees with the other known forms of σℓ [58, 59] that are approximated for large ℓ.
We rely on the semiclassical approximation that connects the partial momentum, ℓ, to the impact parameter, b for

small angles θ (or large distances from the Sun, R⊙/r < b/r ≪ 1 – see [9] for details). Using semi-classical form that
connects the partial momentum and the impact parameter [9, 23–25]

ℓ ≃ kb, (111)

we obtain

ϕ(b) = 2σℓ +
ℓ2

2kr
+ 2ξb(b)− ℓθ cos(φξ − φ)

)

=

= k
{ b2

2r
− bθ cos(φξ − φ) − 2rg

(

ln kb+
∞
∑

n=2

Jn
n

(R⊙

b

)n

sinn βs cos[n(φξ − φs)]
)}

, (112)

or, compactly, using (109):

ϕ(b) = k
{ b2

2r
− bθ cos(φξ − φ)− 2rg

(

ln kb+ ψ(b)
)

}

. (113)

We recognize that the vector of the impact parameter has the form b = b(cosφξ, sinφξ, 0). Also, we define the
vector θ to a point on the image plane with coordinates (r, θ, φ) that has the form θ = θ(cosφ, sinφ, 0). With these
definitions, we see that bθ cos(φξ − φ) = (b · θ), therefore

ϕ(b) = k
{ 1

2r

(

b2 − 2brθ cos(φξ − φ)
)

− 2rg
(

ln kb+ ψ(b)
)

}

=

≃ k
{ 1

2r

(

b− rθ
)2 − 2rg

(

ln kb+ ψ(b)
)

}

. (114)

Thus, the phase ϕ(b) represents the Fermat potential that governs the gravitational lensing phenomena [3–5, 60].
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b

eb

k

eφξ

FIG. 2: The basis vectors used to characterize the vector deflection angle. eb and k are in the plane spanned by the incident
light ray and the center of the lens; eφξ

is normal to this plane. The multipole moments change the amount by which the
incident ray is deflected compared to the effect of the monopole (dashed arrow), but also lift the ray out of the plane spanned
by the incident ray and the center of the lens.

As a result, we can present (107) as

γ(r, θ, φ) = E0ue
ik(z+rg ln 2kr) k

ir

1

2π

∫

d2b exp
[

ik
( 1

2r
(b− rθ)2 − 2rg

(

ln kb+ ψ(b)
)

)]

. (115)

The integral in (115) is known rather well. It was obtained using different methods and tools by several authors.
For instance, a similar integral formula for the lensed wave amplitude was obtained using the scalar theory of light in
[57, 61–63]; by using the Fresnel–Kirchhoff diffraction formula [22]; and it was also obtained using the path integral
formalism [36, 37] in [38, 39]. However, all previous efforts discussed primarily a monopole case. Our expression (115)
generalizes these previously obtained results via the presence of the eikonal phase shift term, −2rgψ(b), to the case
of a lens with arbitrary multipole structure, which is explicitly captured by (109).
We also note that all the previous results were obtained using the scalar theory, considering only the amplitude

of the EM wave. A unique feature of our approach is that we are able to reconstruct the entire vector structure
of the EM field (e.g., using (84) together with (85)–(87)). This is an important capability when we consider the
three-dimensional behavior of a vector theory, for instance, polarization of the EM wave as it propagates through a
refractive medium without spherical symmetry. Thus, our approach supersedes and generalizes all previous results
obtained for gravitation lensing in post-Newtonian gravity.
To put the entire problem in the proper context related to the geometry of light propagation in the vicinity of a

gravitating body, we consider the total gravitational delay, d(b), acquired by the EM wave as it travels in the gravity
field of the extended lens. This delay contributes to the phase shift ξb(b) = kd(b) and using (112) is identified as

d(b) = −2rg

(

ln kb+
∞
∑

n=2

Jn
n

(R⊙

b

)n

sinn βs cos[n(φξ − φs)]
)

. (116)

This is the generalization of the classic Shapiro time delay to the case of an extended axisymmetric gravitational lens.
This delay corresponds to the total gravitational deflection angle acquired by a light ray or, equivalently, rotation of
the wavefront of the EM wave. Using the expression (32) for the radius vector of the EM wave, together with b given
by (41), we compute this angle as

θg = −∇d(b) = −
{

eb
∂d(b)

∂b
+ eφξ

∂d(b)

b ∂φξ
+ k

∂d(b)

∂τ

}

, (117)

where the basis vector eb is the unit vector in the direction of the vector of the impact parameter b and eφξ
is the

unit vector in the azimuthal direction and is orthogonal to b and k (Fig. 2).
Note that expression (108) for the eikonal phase obtained in Appendix B 2 a was derived under the thin lens

approximation where the distances travelled by the EM wave from the source to the lens, τ0 = (k · r0), and from the
lens to the observer, τ = (k · r), are much larger than the impact parameter, namely b/|τ0| ≪ 1 and b/|τ | ≪ 1. This
is the reason why (116) does not depend on τ , thus yielding a vanishing derivative with respect to τ in (117).
With these considerations in mind, we compute the vector of the total angle of the gravitational deflection of light

as the light ray passes in the vicinity of an extended axisymmetric lens:

θg =
2rg
b

{

eb −
∞
∑

n=2

Jn

(R⊙

b

)n

sinn βs

(

eb cos[n(φξ − φs)] + eφξ
sin[n(φξ − φs)]

)}

. (118)
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The first term in (118) is the Einstein deflection angle in the gravity field of a spherically symmetric matter
distribution (i.e., in the presence of a monopole or point mass). The second term with Jn describes the effect of the
multipole moments as a sum of a) an additional deflection toward or away from the optical axis (the line parallel to
the incoming ray of light that intersects the lens at the center), and b) a deflection away from the plane defined by
the incoming ray and the center of the lens.
To further appreciate the geometry that is represented by this eφξ

term, consider the J2 case, when n = 2. There
are four principal directions (which depend on the orientation of the impact parameter given by the angle φξ) for
which this second term is zero. These directions correspond to the cusps well-known astroid caustic of the quadrupole
lens (see Sec. VE below). For all other angles, light is deflected away from the optical axis, lifted out of the plane
spanned by the direction of the incident light ray and the center of the lens (Fig. 2). These rays of light never intersect
the optical axis; therefore, an observer at the optical axis sees only light from the principal directions. Thus we can
instantly see how Eq. (118) gives rise to the famous Einstein-cross that appears in images formed by gravitational
lenses that do not possess spherical symmetry. This result demonstrates the utility and power of the angular eikonal
method.
Result (118) is new. It correctly accounts for the vector nature of the impact parameter and its orientation with

respect to the body’s rotational axis. Its magnitude is consistent with that reported in [41] where a different approach
was used. Eq. (118) generalizes previous expressions that characterized the deflection of light by the gravitational field
of a compact object. These earlier results mostly dealt with the monopole [45, 64, 65], (see [19] and references therein),
and with the quadrupole contributions [66–68]. Our expression describes the deflection of light in the presence of an
axisymmetric gravitational field with an arbitrary set of zonal harmonics and for an arbitrary direction of the impact
parameter vector.

B. Reducing the double integral using the method of stationary phase

We continue to work with the integral (115). We evaluate one of the two integrals using the method of stationary
phase. We deal with the integral over the magnitude of the impact parameter, b. Introducing θ = ρ/r, we see that
(115) has the following explicit form that is useful for practical consideration:

γ(r, θ, φ) = E0ue
ik(r+rg ln 2kr) k

ir

1

2π

∫ 2π

0

dφξ

∫ ∞

b=R⋆
⊙

bdb eik
(

1
2r

(

b2−2bρ cos(φξ−φ)
)

−2rg

(

ln kb+ψ(b)
))

. (119)

We recognize that (119) is a double integral with respect to the impact parameter, b: namely, db2 = dφξbdb.
One may be tempted to try to evaluate this integral using the 2-dimensional method of stationary phase. However,
the presence of higher multipoles leads to appearance of caustics so that such a stationary phase solution will not
be accurate, especially at the cusps. Thus, only one of the two integrals in (119) should be approximate using the
method of stationary phase. We choose to approximate the integral over db, leaving the integral over dφξ unchanged.
Considering (119), we see that the points of stationary phase, where dϕ(b)/db = 0, are given by the equation

dϕ

db
= k

{1

r

(

b− ρ cos(φξ − φ)
)

− 2rg
b

(

1−
∞
∑

n=2

Jn

(R⊙

b

)n

sinn βs cos[n(φξ − φs)]
)

)}

= 0, (120)

which may be transformed as

b2 − bρ cos(φξ − φ)− 2rgr
(

1−
∞
∑

n=2

Jn

(R⊙

b

)n

sinn βs cos[n(φξ − φs)]
)

)

= 0. (121)

We solve this equation iteratively, by presenting the impact parameter as b = b[0] + b[1], where b[0] is the solution
involving only the monopole term, while b[1] is due to the eikonal phase. Substituting this trial solution in (121) and
equating same orders we get:

b[0]2 − b[0]ρ cos(φξ − φ)− 2rgr = 0, (122)

b[1]
(

2b[0] − ρ cos(φξ − φ)
)

+ 2rgr

∞
∑

n=2

Jn

(R⊙

b[0]

)n

sinn βs cos[n(φξ − φs)] = 0. (123)

From (122), we have

b[0] = ±
√

2rgr +
(

1
2ρ cos(φξ − φ)

)2
+ 1

2ρ cos(φξ − φ). (124)
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In the region of strong interference, the relations 0 ≤ θ ≃
√

2rg/r are satisfied, so that this solution may be given
only to O(ρ2). Also, as the magnitude of the impact parameter may only be positive, we choose the positive sign in
(124), which yields

b[0] =
√

2rgr +
1
2ρ cos(φξ − φ) +O(ρ2). (125)

Substituting this solution into (123), we get

b[1]
√

2rgr + rgr

∞
∑

n=2

Jn

( R⊙
√

2rgr

)n

sinn βs cos[n(φξ − φs)] = 0. (126)

Thus, we have

b[1] = − 1
2

√

2rgr
∞
∑

n=2

Jn

( R⊙
√

2rgr

)n

sinn βs cos[n(φξ − φs)] +O
( ρ
√

2rgr
Jn
)

. (127)

Ultimately, we have the following solution for the impact parameter, b = b[0] + b[1] +O(r2g , ρ
2, ρJn/

√

2rgr):

b =
√

2rgr +
1
2ρ cos(φξ − φ) − 1

2

√

2rgr

∞
∑

n=2

Jn

( R⊙
√

2rgr

)n

sinn βs cos[n(φξ − φs)]. (128)

We compute the stationary phase, ϕ(b) from (113) for the values of b given by (128):

ϕ(b) = k
{

rg − 2rg ln k
√

2rgr −
√

2rg
r

(

ρ cos(φξ − φ) +
√

2rgr

∞
∑

n=2

Jn
n

( R⊙
√

2rgr

)n

sinn βs cos[n(φξ − φs)]
)}

. (129)

Computing the second derivative of the phase ϕ(b) from (120) with respect to b, we have (as we do not account for
the impact of the multipoles on the amplitude of the EM field, we need to know this quantity only to O(Jn)):

d2ϕ

db2
= k

(1

r
+

2rg
b2

+O(Jn)
)

. (130)

Now, using b from (128), to O(r2g , ρ
2, Jn), we have

ϕ′′(b0) =
2k

r

(

1− 1
2

ρ cos(φξ − φ)
√

2rgr

)

⇒
√

2π

|ϕ′′(b0)|
=

√

πr

k

(

1 + 1
4

ρ cos(φξ − φ)
√

2rgr

)

. (131)

We now may compute the amplitude of the integrand in (119), which for b from (128) may be given as

A(b0)

√

2π

|ϕ′′(b0)|
= b0

√

2π

|ϕ′′(ℓ0)|
=
√

2rgr
(

1 + 1
2

ρ cos(φξ − φ)
√

2rgr

)

√

πr

k

(

1 + 1
4

ρ cos(φξ − φ)
√

2rgr

)

=

=
√

2rgr

√

πr

k

(

1 +O
(

r2g ,
ρ

√

2rgr
, Jn

))

. (132)

As a result, the expression for the factor γ(r, θ, φ) given by (119) takes the form

γ(r, θ, φ) = E0

√

2πkrge
iσ0 eikz ×

× 1

2π

∫ 2π

0

dφξ exp
[

− ik

√

2rg
r

(

ρ cos(φξ − φ) +
√

2rgr

∞
∑

n=2

Jn
n

( R⊙
√

2rgr

)n

sinn βs cos[n(φξ − φs)]
)]

, (133)

valid to the order of O
(

r2g , ρ/
√

2rgr, (J2/r
3)Π
)

and the constant σ0 = −krg ln(krg/e)− π
4 (see [9, 11] for details.)

We can present expression (133) in the following compact form:

γ(r, θ, φ) = E0

√

2πkrge
iσ0 eikzB(ρ, φ) +O

(

r2g ,
ρ

√

2rgr
,
J2
r3

Π
)

, (134)
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where B(ρ, φ) = B(x), with x = ρ(cosφ, sin φ, 0) being the coordinates on the image plane, is the complex amplitude
of the EM field that has the form

B(x) =
1

2π

∫ 2π

0

dφξ exp
[

− ik
(

√

2rg
r
ρ cos(φξ − φ) + 2rg

∞
∑

n=2

Jn
n

( R⊙
√

2rgr

)n

sinn βs cos[n(φξ − φs)]
)]

. (135)

The quantity B(x) is the complex amplitude of the EM field after it scatters on the gravitational field of an extended
axisymmetric lens that is represented by a set of gravitational multipoles. If the presence of the gravitational zonal
harmonics be neglected, the result (135) reduces to the familiar form for the monopole (see [9] and references therein),

J0(k
√

2rg/rρ). Eq. (135) is a new diffraction integral formula that extends the previous wave-theoretical description
of gravitational lensing phenomena to the case of a lens with an arbitrary axisymmetric gravitational potential. This
result offers a new, powerful tool to study gravitational lensing in the limit of weak gravitational fields, at the first
post-Newtonian approximation of the general theory of relativity.

C. The EM field in the interference region

Now we are ready to present the components of the EM field in the interference region. The total field in accord
with (84) to O(r2g , rg/r) has the form

(

D̂θ

B̂θ

)

=

(

B̂φ

−D̂φ

)

= E0

√

2πkrge
iσ0B(ρ, φ)ei(kz−ωt)

(

cosφ

sinφ

)

, (136)

with radial components of the EM field behaving as (D̂r, B̂r) ≃ O(r2g , rg/r). The radial components of the EM field
are negligibly small compared to the other two components, which is consistent with the fact that while passing
through the gravity field of higher multipoles the EM wave preserves its transverse structure.
Expression (136) describes the EM field in the interference region of the SGL in the spherical coordinate system.

To study this field in the image plane, we need to transform this result to a cylindrical coordinate system. To do
that, we follow the approach demonstrated in [9], where instead of spherical coordinates (r, θ, φ), we introduced a
cylindrical coordinate system (ρ, φ, z), more convenient for these purposes. In the region r ≫ rg, this was done by
defining R = ur = r + rg/2 +O(r2g) and introducing the coordinate transformations ρ = R sin θ, z = R cos θ, which,
from (1), result in the following line element:

ds2 = u−2c2dt2 − u2
(

dr2 + r2(dθ2 + sin2 θdφ2)
)

= u−2c2dt2 −
(

dρ2 + ρ2dφ2 + nu2dz2
)

+O(r2g). (137)

As a result, using (136), for a high-frequency EM wave (i.e., neglecting terms ∝ (kr)−1) and for r ≫ rg, we derive
the field near the optical axis, which up to terms of O(ρ2/z2), takes the form

(

Eρ

Hρ

)

=

(

Hφ

−Eφ

)

= E0

√

2πkrge
iσ0B(ρ, φ)ei(kz−ωt)

(

cosφ

sinφ

)

, (138)

with (Ez , Hz) = O(ρ/z) and where r =
√

z2 + ρ2 = z(1 + ρ2/2z2) = z + O(ρ2/z)) and θ = ρ/z + O(ρ2/z2).
Note that these expressions were obtained using the approximations (102) and are valid for forward scattering when

θ ≤
√

2rg/r, or when ρ ≤ rg. For completeness, one may obtain a more general expression that will be valid for much
larger deviations from the optical axis, say ρ ∼ R⊙. This work is ongoing and results will be reported.
Considering the image plane, we see that the quantity B(ρ, φ) in (138) given by (135) is a function of the coordinates

on the image plane, x = ρ(cosφ, sinφ, 0). Therefore, the entire amplitude of the EM wave, as a function of the
coordinates on the image plane B(ρ, φ) ≡ B(x), is given by a single integral (135).
This is our main result. It determines the amplitude of the EM field in the image plane in the strong interference

region of the SGL. This function determines the structure of the point-spread function (PSF) of the SGL, which
governs the optical properties of the SGL as far as imaging is concerned. This expression describes light from a
distant point source, projected onto the image plane by the SGL. Furthermore, it is presented in a form using units
and parameters that relate directly to physically relevant quantities, making the result readily applicable to study
gravitational lensing by real astrophysical objects, such as the Sun.
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a) b)

FIG. 3: Even and odd caustics representing individual contributions of the multipoles of a gravitational field to the PSF of
the extended axisymmetric gravitational lens, obtained through numerical integration of PSF = |B(x)|2 with B(x) from (141).
Images of a point source formed in the image plane of the lens. From top left, clockwise: a) J2, J4, J6 and J8; b) monopole,
J3, J5 and J7. For the odd-numbered caustics, a change in sign flips the image in the north-south direction.

FIG. 4: Interaction between caustics and the effects of sign, calculated by numerically integrating |B(x)|2 using (141). Top row
depicts the effect of J3, distorting the J2 astroid starting with a negative value similar in magnitude to J2, going through 0 and
reaching a positive value. Bottom row depicts the effect of J4 on J2 in a similar fashion. These images demonstrate that the
sign of the J3 caustic reverses its vertical, “north–south” orientation, whereas the sign of the J4 caustic determines if it is the
astroid’s vertical or horizontal pair of cusps that are “split” as the astroid is stretched in the horizontal vs. vertical direction.

D. Multipole contributions

Using the result (138), we may now compute the energy flux in the image region of the lens. With overline and
brackets denoting time-averaging and ensemble averaging, the relevant components of the time-averaged Poynting
vector for the EM field in the image volume may be given in the following form (see [9–11] for details):

Sz(x) =
c

4π

〈

[ReE× ReH]z
〉

=
c

4π
E2

0 2πkrg
〈(

Re
[

B(x)ei(kz−ωt)
])2〉

, (139)
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FIG. 5: The PSF of the SGL with multipole gravitational moments, obtained by integrating |B(x)|2 using (141), using realistic
solar parameters. These examples show light from a λ = 1 µm point source, projected by the SGL to 650 AU from the Sun.
Left: sin βs = 0.1 (i.e., βs ∼ 5.74◦ from the solar axis of rotation) in an 8× 8 meter area; at a resolution of 4 mm, fine details
due to diffraction are visible both inside and outside the caustic boundary. Right: sin βs = 0.387 (βs ∼ 22.78◦) in a 120×120 m
area, at 6 cm resolution.

with S̄ρ = S̄φ = 0 for all practical purposes. Defining the light amplification as usual [9–11], µz(x) = Sz(x)/|S0(x)|,
where S0(x) being the Poynting vector carried by a plane wave in a vacuum in a flat space-time, we have the light
amplification factor of the lens that, for short wavelengths (i.e., krg ≫ 1) is given as

µz(x) = 2πkrg |B(x)|2, (140)

with |B(x)|2 = B(x)B∗(x), where B∗(x) is the complex conjugate of B(x), given by (135) that we repeat here for
convenience:

B(x) =
1

2π

∫ 2π

0

dφξ exp
[

− ik
(

√

2rg
r
ρ cos(φξ − φ) + 2rg

∞
∑

n=2

Jn
n

( R⊙
√

2rgr

)n

sinn βs cos[n(φξ − φs)]
)]

. (141)

As we see, the amplification of the lens is driven by the factor 2πkrg in (140). However, in the case of the monopole,

the complex amplitude of the EM field (141) was ∝ J0(
√

2rg/rρ); thus it was reaching its maximum of 1 on the optical
axis, ρ = 0. In the case of an extended gravitating body, the complex amplitude is given by (141), where B(x), in
general, is a complex quantity whose magnitude is |B(x)| < 1. As we see in Fig. 3, it reaches its maximum value not
on the optical axis, but on the caustic that is formed in the image plane. For lenses dominated by the contribution of
a single multipole moment, these caustics acquire the shapes of hypocycloids (e.g., the astroid, characterizing the J2
quadrupole). However, when several multipole moments are present, their interaction results in more complex shapes;
see Fig. 4 for some examples. In general, all the light from an extended source is still there on the image plane, but
now it is scrambled, that for imaging will require deconvolution tools.
The quantity |B(x)|2 is the point-spread function (PSF) that characterizes the optical properties of the gravitational

lens and can be used to assess its imaging capabilities. The PSF of the lens is extended from the J2
0 (k
√

2rg/rρ) form
for the monopole lens, discussed in [9] and takes the form of |B(ρ, φ)|2 that now provides a complete description
of the intensity distribution in the image plane and accounts for gravitational lensing by an arbitrary axisymmetric
gravitational potential.
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FIG. 6: The PSF of the SGL in color, evaluated in multiple wavelengths between 400 and 675 nm in 25 nm increments, each
assigned an approximate RGB color. The parameters used are sin βs = 0.05 (βs ∼ 2.87◦) at 650 AU from the Sun, φs = 30◦; a
2 × 2 meter area is depicted at 1 mm resolution. Whereas a rainbow pattern is visible in many parts of the image, the cusps
are achromatic white, indicating that their position and appearance is not wavelength-dependent.

E. Extended Sun contribution to image formation

When applying these results to the SGL, we need to recognize the fact that the Sun axisymmetric rotating body
that also has north-south symmetry. As such, it will have only even multipole moments J2n. The solar multipole
moments are determined using available tracking data from interplanetary spacecraft: J2 = (2.25± 0.09)× 10−7 [69],
and J4 = −4.44 × 10−9, J6 = −2.79 × 10−10, J8 = 1.48 × 10−11 [40]. The deflection of light by these multipoles
may lead to light rays missing the optical axis by many meters, resulting in large caustics on the image plane in
the strong interference region of the SGL. With the contribution from J2 being the dominant one to consider (see
Fig. 5), depending on the target’s position with respect to the solar rotational axis (captured by the angle βs), some
of these multipoles may be needed for developing a comprehensive physical model needed for image deconvolution.
The multipole moments of the Sun may also be varying temporally [70], which requires further analysis. On the
other hand, the magnitudes of light deflection due to J10 and higher multipoles are very small at IR, optical or longer
wavelengths. These fall within the diffraction pattern of the solar monopole, and thus may be omitted.
With these considerations in mind, the most comprehensive form of the complex amplitude of the EM field in the

strong interference region of the SGL is given by (141) were multipole summation is from n = 2 to n = 8, which is
correct to the order of O(J10).
Clearly, there is no closed-form analytical solution for this integral. It can, however, be readily evaluated using

numerical methods. It is also clear that, as J4, J6, J8 are small, the resulting diffraction pattern will be dominated by
the quadrupole with other multipoles contributing only small corrections (see Fig. 5).
The result (141) depends on the wavelength of incident light. However, the geometric shape of the resulting caustic is

wavelength-independent. This becomes evident when we evaluate (141) in multiple wavelengths (Fig. 6). Wavelength-
dependent features (represented by approximate RGB color in this figure) are clearly evident both inside and outside
the caustic boundary. However, the caustic boundary’s location does not change, and the cusps, in particular, are
achromatic white.
Finally, we mention that expression (141) may be easily generalized to the case of extended sources at large but

finite distances from the Sun. Examining this integral, we see that it contains the expression ρ cos(φξ − φ), which
may be transformed as

ρ cos(φξ − φ) = (nξ · x), where x = ρ(cosφ, sinφ, 0). (142)

The form (141) allows us to extend the new formulation to the case of sources at large but finite distances, z0. A
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formal way to extend the result (141) to the case of extended source is to rotate the coordinate system by a small
angle (z̄/z0)x

′, as discussed in [13], where z̄ is the heliocentric distance to the image in the strong interference region
of the SGL, z0 is the heliocentric distance to the source plane and x′ is a particular point on that source plane. As a
result, to deal with extended sources we start with (141) and extend the argument as follows:

x ⇒ x+
z̄

z0
x′, where x′ = ρ′(cosφ′, sinφ′, 0), (143)

which, equivalently, may be expressed as (nξ ·x) → (nξ ·x)+(z̄/z0)(nξ ·x′), where nξ = (cosφξ, sin ξξ, 0). As a result,
this rotation leads to a modification of the expression (141) for the amplitude of the EM field, which now takes the
form

B(x,x′) =
1

2π

∫ 2π

0

dφξ exp
[

− ik
{

√

2rg
r

(

nξ ·
(

x+
z̄

z0
x′
)

)

+

+2rg

∞
∑

n=2

Jn
n

( R⊙
√

2rgr

)n

sinn βs cos[n(φξ − φs)]
}]

. (144)

This expression allows us to consider imaging of extended bodies that are positioned at large, but finite distances
from the SGL, with the SGL now treated as that produced by a gravitating body that is axisymmetric and rotating
thus admitting characterization of its external gravitational field by zonal harmonics.

VI. DISCUSSION AND CONCLUSIONS

This paper represents a continuation of our efforts to provide a reliable, accurate, complete theoretical description
of the image formation capabilities of gravitational lenses within the post-Newtonian approximation of the general
theory of relativity. This work is especially relevant to our on-going work on the study of the optical properties of the
SGL in the context of use for a resolved imaging of distant faint sources.
In previous papers [8, 9], we offered a complete wave-theoretical description of the SGL under the simplifying

assumption that the Sun’s gravitational field is accurately represented as a gravitational monopole that was modeled
as a point mass. Clearly, this is not exactly the case: the actual gravitational field of the Sun deviates from the
monopole slightly. Though the effect is very small compared to the size of the solar system, it has considerable impact
on the image formation capabilities of the SGL. Therefore, an accurate and complete description of the SGL must
properly take into account these small deviations from spherical symmetry.
It was long understood that the tools of geometric optics are limited when it comes to caustics and the full wave-

optical treatment is required [71, 72]. It was in light of this limitation that we developed our new method to describe
gravitational lensing within the weak-field and slow motion (i.e., a post-Newtonian) approximation of the general
theory of relativity. The new method addresses light propagation in a weak gravitational field of arbitrary shape, not
restricted by spherical symmetry. Our formalism allows us to describe the contribution of deviations from spherical
symmetry on the optical properties of corresponding lens using the language of spherical harmonics. In particular,
we can use zonal harmonics in the case of an axisymmetric body, such as the Sun.
Key to our approach is what we dubbed the angular eikonal method: a convolution of the eikonal phase (which is

used to characterize deviations from spherical symmetry) and integral representations of Bessel-functions (that rely
on the symmetries that exist in the case of a monopole lens). This allows us to correctly capture the functional
dependence of the integrand and, in effect, to solve the wave equations within a slightly modified symmetry that is
extended from spherical to an azimuthally perturbed one (that is due to the presence of the multipole moments.)
The method is consistent with the thin lens or eikonal approximations used with in the scalar theory of diffraction
[7, 22, 29–31] that are frequently used to describe gravitational lensing.
Our method preserves the structure and vector nature of the EM field and allows us to treat the diffracted EM field

using regular tools of modern optics [22]. The entire diffraction behavior is captured in the form of a single integral
(141), which extends the set of analytical tools developed for gravitational lenses. The approach that we present and
and the resulting expressions are applicable to a wide variety of astrophysical lenses. Applying the method to the case
of an axisymmetric body, represented using zonal harmonics, we arrive at our main result, Eq. (144), which reduces
the problem of the finding the EM field in the image plane placed in the string interference region of the SGL. This
solution preserves the vector nature of the EM field, thus, going beyond the approaches relying on the scalar theories.
An important outcomes of the new solution is that it allows us to evaluate the behavior of the PSF of an extended

gravitating lens. Applying this method to the SGL, we treat the solar gravitational field as that produced by an
axisymmetric rotating body whose external gravity field is determined by the infinite set of zonal spherical harmonics.
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The PSF of the SGL is now determined by a single, well-behaved integral that can be readily evaluated using numerical
methods, especially near the optical axis of the gravitational lens in what we call the region of strong interference.
Concerning the imaging of extended sources with the SGL of the extended Sun, we note that the total energy

deposited in the image plane is still almost the same as it was in the case of the monopole SGL. However, the PSF
of the extended SGL scrambles light on the image plane more than it did in the case of treating the Sun as the point
mass. This will adversely affect the signal-to-noice ratio as far as as the realistic imaging capabilities of the extended
SGL are concerned. The impact on the observing scenario and the integration time are being investigated.
Concluding, we note that the new method can be used to investigate image formation processes for extended

sources by the SGL, at a variety of wavelengths, using physically realistic observational scenarios. The approach
that we presented may also be used in reverse: observing astrophysical lensing of distant objects may allow one to
reconstruct the multipoles of the gravitational field of the lens and infer its mass distribution, possibly offering a new
practical method in modern astrophysics. Our solution may also help in other areas, such as the modeling of particle
collisions in high energy particle physics experiments on potentials with complex structure. Results of our studies in
these and other directions, once available, will be published elsewhere.
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Appendix A: Representation of the field in terms of Debye potentials

To represent the EM field equations in terms of Debye potentials, we start with (3)–(4), where we treat gravity
to be static, thus u̇ = 0. Assuming, as usual (we follow closely the discussion presented in [9, 11, 22], adapted for
the gravitational lens), the time dependence of the field in the form exp(−iωt) where k = ω/c, the time-independent
parts of the electric and magnetic vectors satisfy Maxwell’s equations:

curlD = ik u2 B+O(G2), (A1)

curlB = −ik u2 D+O(G2). (A2)

As shown in [9], in spherical coordinates, the field equations (A1)–(A2) to O(G2) become

−ik u2D̂r =
1

r2 sin θ

( ∂

∂θ
(r sin θB̂φ)−

∂

∂φ
(rB̂θ)

)

, (A3)

−ik u2D̂θ =
1

r sin θ

(∂B̂r
∂φ

− ∂

∂r
(r sin θB̂φ)

)

, (A4)

−ik u2D̂φ =
1

r

( ∂

∂r
(rB̂θ)−

∂B̂r
∂θ

)

, (A5)

ik u2B̂r =
1

r2 sin θ

( ∂

∂θ
(r sin θD̂φ)−

∂

∂φ
(rD̂θ)

)

, (A6)

ik u2B̂θ =
1

r sin θ

(∂D̂r

∂φ
− ∂

∂r
(r sin θD̂φ)

)

, (A7)

ik u2B̂φ =
1

r

( ∂

∂r
(rD̂θ)−

∂D̂r

∂θ

)

, (A8)

while the remaining two equations from Eq. (3)–(4) take the form

∂

∂r

(

u2r2 sin θBr

)

+
∂

∂θ

(

u2r sin θBθ

)

+
∂

∂φ

(

u2rBφ

)

= 0, (A9)

∂

∂r

(

u2r2 sin θDr

)

+
∂

∂θ

(

u2r sin θDθ

)

+
∂

∂φ

(

u2rDφ

)

= 0. (A10)

Our goal is to find a general solution to these equations in the form of a superposition of two linearly independent
solutions

(

eD, eB
)

and
(

mD,mB
)

that satisfy the following relationships:

eD̂r = D̂r,
eB̂r = 0, (A11)

mD̂r = 0, mB̂r = B̂r. (A12)

With B̂r =
eB̂r = 0, (A4) and (A5) become

ik u2 eD̂θ =
1

r

∂

∂r

(

r eB̂φ
)

, (A13)

ik u2 eD̂φ = −1

r

∂

∂r

(

r eB̂θ
)

. (A14)

Substituting these relationships into (A7) and (A8) we obtain

∂

∂r

[ 1

u2
∂

∂r

(

r eB̂θ
)

]

+ k2u2(r eB̂θ) = − ik

sin θ

∂ eD̂r

∂φ
, (A15)

∂

∂r

[ 1

u2
∂

∂r

(

r eB̂φ
)

]

+ k2u2(r eB̂φ) = ik
∂ eD̂r

∂θ
. (A16)
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From div(u2eB) = 0 given by Eq. (4) (which in the expanded form is given by Eq. (A9)) and using our assumption

that eB̂r = 0, we have

∂

∂θ

(

u2 sin θ eB̂θ
)

+
∂

∂φ

(

u2 eB̂φ
)

= 0, (A17)

which ensures that (A6) is also satisfied at the needed level of accuracy. As we know, this equation is valid for a
spherically symmetric gravitational field. Terms that characterize deviations from the monopole in the generic form
of the Newtonian potential, U , lack spherical symmetry. For these terms, the condition (A17) may be satisfied only
approximately. Indeed, after substitution from (A13), (A14), in (A6), we have

1

r2 sin θ
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∂θ
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=
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∂θ

(

u2 sin θ eB̂θ
)

+
∂

∂φ

(

u2eB̂φ
)

)]

+

+2
∂

∂r

[

r
(

sin θ eB̂θ
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(
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∂2 lnu2

∂r∂θ
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∂2 lnu2

∂r∂φ

)}

. (A18)

The first term in this expression vanishes because of (A17) (as it was in the case of a monopole, see [9]). Considering
the remaining terms, and taking into account the form of u from (2) with the Newtonian potential, U , given either
(B5) or (B4), we see that the following relation is true:

∂

∂θ

(

r sin θ eD̂φ

)

− ∂

∂φ

(

r eD̂θ
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=
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ik u2
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≃ 1

ik u2
O
(J2R

2
⊙

r3

)

, (A19)

where J2 is the gravitational quadrupole moment of the mass distribution inside the lens (which typically is the largest
term after the monopole). Clearly, as r gets larger, this expression vanishes, justifying the validity of (A6), namely

lim
r→∞

1

r2 sin θ

( ∂

∂θ

(

r sin θ eD̂φ

)

− ∂

∂φ

(

r eD̂θ

)

)

≃ 1

ik u2
1

r2 sin θ
O
(J2R

2
⊙

r3

)

→ 0. (A20)

In all practical scenarios, the limit (A20) is satisfied for r & R⊙. Thus, for scenarios relevant for the SGL, (A18) is
equal to 0. As a result, when describing the SGL and considering light propagation in a weak gravitational field, we
may neglect the effect of the gravitational field on the amplitude of the EM wave. In this case, our primary interest is
the phase of the wave, thus this expression constitutes the condition consistent with the eikonal approximation. The
complementary case with mD̂r = 0 is treated identically, in accordance with (A12).
When the radial magnetic field vanishes, the solution is called the electric wave (or transverse magnetic wave);

correspondingly, when the radial electric field vanishes, the solution is called the magnetic wave (or transverse electric
wave). These can both be derived from the corresponding Debye scalar potentials eΠ and mΠ.

Given eB̂r = 0, eD̂φ and eD̂θ in (A6) can be represented as a scalar field’s gradient:

eD̂φ =
1

r sin θ

∂U

∂φ
+

1

ik u2
1

r sin θ
O
(J2R

2
⊙

r3

)

, eD̂θ =
1

r

∂U

∂θ
+

1

ik u2
1

r
O
(J2R

2
⊙

r3

)

, (A21)

where U is some function. Introducing the electric Debye potential eΠ that relates to U as

U =
1

u2
∂

∂r

(

r eΠ
)

. (A22)

We use this expression in (A21) and obtain

eD̂θ =
1

u2r

{∂2
(

r eΠ
)

∂r∂θ
− ∂ lnu2

∂θ

∂

∂r

(

reΠ
)

}

, eD̂φ =
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u2r sin θ

{∂2
(

r eΠ
)

∂r∂φ
− ∂ lnu2

∂φ

∂

∂r

(

reΠ
)

}

, (A23)

which satisfy Eq. (A6) with eB̂r = 0 and thus also (A19).
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It can be seen that (A13) and (A14) are satisfied by

eB̂φ =
ik

r

∂
(

r eΠ
)

∂θ
+O

(J2
r3

eΠ
)

, eB̂θ = − ik

r sin θ

∂
(

r eΠ
)

∂φ
+O

(J2
r3

eΠ
)

. (A24)

If we substitute both of (A24) into (A3) we obtain

eD̂r = − 1

u2r2 sin θ

[ ∂

∂θ

(

sin θ
∂(r eΠ)

∂θ

)

+
1

sin θ

∂2(r eΠ)

∂φ2

]

+O
(J2
r3

eΠ
)

. (A25)

Substituting expressions (A24) into (A15)–(A16) yields

−ik
sin θ

∂

∂φ

{ ∂

∂r

[ 1

u2
∂
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(

r eΠ
)

]

+ k2u2(r eΠ)− eD̂r

}

= O
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)

, (A26)

ik
∂

∂θ

{ ∂

∂r
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∂
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(

r eΠ
)

]

+ k2u2(reΠ)− eD̂r

}

= O
(J2
r3

eΠ
)

, (A27)

i.e., the derivative of the same expression with respect to both φ and θ vanishes. This is clearly satisfied if we set the
expression itself to O

(

(J2/r
3)eΠ

)

. Dividing by u2 and using (A25) leads to

1

u2
∂

∂r

[ 1

u2
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∂r

]
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1
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(
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)

+
1

sin θ
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}

+ k2(r eΠ) = O
(J2
r3

eΠ
)

. (A28)

Defining u′ = ∂u/∂r and u′′ = ∂2u/∂r2, this equation may be rewritten as

1

r2
∂

∂r

(

r2
∂

∂r

[ eΠ

u

])

+
1

r2 sin θ
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(
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u
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+
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u
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+
(

k2u4 − u
( 1

u
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)[ eΠ

u

]

= O
(J2
r3

eΠ

u

)

, (A29)

which is the wave equation for the quantity eΠ/u:

(

∆+ k2u4 − u
(1

u

)′′
)[ eΠ

u

]

= O
(

r2g ,
J2
r3

eΠ

u

)

. (A30)

We are concerned only with the field produced by the extended gravitational field. Thus, the quantity u has the
from u(r) = 1 + U/c2 +O(c−4), as given by (2). With this, we can rewrite (A30) as

(

∆+ k2
(

1 +
4U

c2
)

− u
( 1

u

)′′
)[ eΠ

u

]

= O
(

r2g ,
J2
r3

eΠ

u

)

. (A31)

Equation (A31) is similar to the Schrödinger equation of quantum mechanics, used to describe scattering on the
Coulomb potential. However, this equation has an extra potential of −u(u−1)′′ ≃ rg/r

3. It is known [25] that the
presence of potentials of ∝ 1/r3 in (A31) does not alter the asymptotic behavior of the solutions. Neglecting the
u(u−1)′′ ≃ r−3 term in (A31) reduces this equation to the form of a time-independent Schrödinger equation that
describes scattering in a Newtonian potential:

(

∆+ k2
(

1 +
4U

c2
)

)[ eΠ

u

]

= O
(

r2g ,
J2
r3

eΠ

u

)

. (A32)

In the case of the SGL, we will always be at distances that are much larger than the Sun’s Schwarzschild radius.
Therefore, we may neglect the term u(u−1)′′ ≃ rg/r

3 in (A31). We use (A32) for the purposes of establishing the
properties of the EM wave diffracted by the solar gravitational lens. An identical equation may be obtained for mΠ.
This solution is consistent with the eikonal approximation, the use of which to describe the scattering of high-energy
particles or processes related to the diffraction of light is well-justified.
By means of (A28), Eq. (A25) may be written as

eD̂r =
∂

∂r

[ 1

u2
∂(r eΠ)

∂r

]

+ k2u2(r eΠ) +O
(J2
r3

eΠ

u

)

. (A33)

It can be verified by substituting (A23)–(A28) and (A33) into (A3)–(A8) that we have obtained a solution of our set
of equations. In a similar way, we may consider the magnetic wave. We find that this wave can be derived from a
potential mΠ which satisfies the same differential equation (A28) as eΠ.
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The complete solution of the EM field equations is obtained by adding the two fields (as discussed in [21, 22, 48]),
namely D = eD+ mD; and B = eB+ mB. This yields, to O

(

r2g , (J2/r
3)(eΠ/u)

)

,

D̂r =
1

u

{ ∂2

∂r2

[r eΠ

u

]

+
(

k2u4 − u
(1

u

)′′
)[r eΠ

u

]}

, (A34)

D̂θ =
1

u2r

∂2
(

r eΠ
)

∂r∂θ
+

ik

r sin θ

∂
(

rmΠ
)

∂φ
, (A35)

D̂φ =
1

u2r sin θ

∂2
(

r eΠ
)

∂r∂φ
− ik

r

∂
(

rmΠ
)

∂θ
, (A36)

B̂r =
1

u

{ ∂2

∂r2

[rmΠ

u

]

+
(

k2u4 − u
( 1

u

)′′
)[rmΠ

u

]}

, (A37)

B̂θ = − ik

r sin θ

∂
(

r eΠ
)

∂φ
+

1

u2r

∂2
(

rmΠ
)

∂r∂θ
, (A38)

B̂φ =
ik

r

∂
(

r eΠ
)

∂θ
+

1

u2r sin θ

∂2
(

rmΠ
)

∂r∂φ
. (A39)

Both potentials Π =
(

eΠ, mΠ
)

are solutions of the differential equation (A30), which, in the case of the weak gravity
characteristic for the SGL, is given by (A32) and in terms of potential Π takes the form:

(

∆+ k2
(

1 +
4U

c2
)

)[Π

u

]

= O
(

r2g ,
J2
r3

Π

u

)

. (A40)

This completes decomposition of the Maxwell equations (3)–(4) on the curved background in the weak gravitational
field of the solar system. Eqs. (A34)–(A39) together with (A40) is our primary result that will use throughout this
paper. Again, note that in (A40), we discarded the term u(u−1)′′ ∼ 1/r3, representing the tail of the gravitational
potential, as insignificant (see discussions in Appendix F of Ref. [9] and in Appendix C of [11]).

Finally, for the components D̂θ, D̂φ and B̂θ, B̂φ to be continuous over a spherical surface at some large distance
from the origin, r = R⋆, it is evidently sufficient that the four quantities [9]

ǫ(r eΠ), µ(rmΠ),
∂(r eΠ)

∂r
,

∂(rmΠ)

∂r
, (A41)

shall also be continuous over this surface. Thus, our boundary conditions also split into independent conditions on eΠ
and mΠ. Our problem is thus reduced to the problem of finding two mutually independent solutions of the equations
(A28) with prescribed boundary conditions.

Appendix B: Computing the eikonal phase

1. Different forms of the gravitational potential

Before we proceed with solving (A40), we recognize that the gravitational potential U from (2) in spherical coor-
dinates (r ≡ |x|, φ, θ) may be given in the most general case in the form of spherical harmonics:

U = G

∫

ρ(x′)d3x′

|x− x′| +O(c−4) =
GM

r

(

1 +

∞
∑

ℓ=2

+ℓ
∑

k=0

(R

r

)ℓ

Pℓk(cos θ)(Cℓk cos kφ+ Sℓk sin kφ)
)

+O(c−4), (B1)

where ρ(x) is the mass density inside the body, M is its mass, R is its radius, Pℓk are the Legendre polynomials, while
Cℓk and Sℓk are relativistic normalized spherical harmonic coefficients that characterize the body.
In the case of an axisymmetric body (i.e., the Sun), its external gravitational potential is reduced to the k = 0

zonal harmonics and may be expressed [40, 41] in terms of the usual dimensionless multipole moments Jℓ:

U =
GM

r

{

1−
∞
∑

ℓ=2

Jℓ

(Rℓ

r

)ℓ

Pℓ

(k3 · x
r

)}

+O(c−4), (B2)



32

where k3 denotes the unit vector along the x3-axis, Pℓ are the Legendre polynomials and the quantities M,J2..., Jℓ
correspond to the generalized Blanchet–Damour mass multipole moments in general relativity [73, 74]. Furthermore,
in the case of an axisymmetric and rotating body with “north-south symmetry”, such as the Sun, the expression (B2)
contains only the ℓ = 2, 4, 6, 8... even moments [40].
Following [75], we take into account the identity

∂ℓ

∂zℓ

(1

r

)

=
(−1)ℓℓ!

r1+ℓ
Pℓ

(k3 · x
r

)

, z = x3, (B3)

and present U as the following expansion in a series of derivatives of 1/r

U = GM
{1

r
−

∞
∑

ℓ=2

(−1)ℓ

ℓ!
JℓR

ℓ ∂
ℓ

∂zℓ

(1

r

)}

+O(c−4). (B4)

As we shall see below, this form is much more convenient for the computation of integrals involving U .
Considering the generic case, it was shown [76] that the scalar gravitational potential (B1) may equivalently be

given in the following form:

U = GM
{1

r
+

∞
∑

ℓ=2

(−1)ℓ

ℓ!
T <a1...aℓ>

∂ℓ

∂x<a1...∂xaℓ>

(1

r

)}

+O(c−4), (B5)

where r = |x|, M is the post-Newtonian mass of the body, and T <a1...aℓ> are the symmetric trace-free (STF) mass
multipole moments of the body [34, 73, 74, 77] defined as

M =

∫

V

d3x ρ(x), T <a1...aℓ> =
1

M

∫

V

d3x ρ(x)x<a1...aℓ>, (B6)

where x<a1...aℓ> = x<a1xa2...xaℓ>, the angle brackets < ... > denote the STF operator, and V means the total volume
of the isolated gravitating body under consideration. The dipole moment T a is absent in the expansion (B5) since
we took the origin of the coordinates to be at the center of mass of the body.

2. Computing the eikonal phase

Based on the form of the post-Newtonian potentials (B1), (B5), and (B4), it is convenient to separate the monopole
term from the rest of the multipoles. As we know [9], the action of the monopole term is similar to that of the
Coulomb potential which is a long-range potential that is felt as far as the source. The remaining multipole terms
form the short-range potential, Vsrc

2, yielding the decomposition U/c2 = rg/2r + Vsr for the Newtonian potential,
which allows to present the potential term in (A40) in the following form:

4U

c2
=

2rg
r

+ 4Vsr. (B7)

The short-range potential forms the eikonal phase given by (39) that has the form

ξb(τ) = k

∫ τ

0

2Vsr(b, τ
′)dτ ′ +O(r2g). (B8)

a. Computing the eikonal phase for an axisymmetric body

Here we develop an expression for the eikonal phase in the case of an axisymmetric body, with its potential given
by (B4). In this case, the decomposition of the post-Newtonian potential takes the from

4U

c2
=

2rg
r

− 2rg

∞
∑

ℓ=2

(−1)ℓ

ℓ!
JℓR

ℓ ∂
ℓ

∂sℓ

(1

r

)

. (B9)

In the case the short-range potential, Vsr from (B5) is given as

Vsr = −rg
2

∞
∑

ℓ=2

(−1)ℓ

ℓ!
JℓR

ℓ ∂
ℓ

∂sℓ

(1

r

)

. (B10)
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We now compute the leading term of this expansion. For that, we define the vector s to be a unit vector in the
direction of the axis of rotation. Remembering that r =

√
b2 + τ2+O(rg) from (32), we evaluate directional derivatives

∂/∂s along s ≡ k3, which have the form

∂

∂s
= (s ·∇) =

(

s · ∂
∂r

)

. (B11)

This relation allows us to compute the relevant partial derivatives for the leading tersm in (B4):

∂

∂s

1

r
= − (s · r)

r3
,

∂2

∂s2
1

r
=

3(s · r)2
r5

− 1

r3
,

∂3

∂s3
1

r
= −3

(5(s · r)3
r7

− 3(s · r)
r5

)

, (B12)

∂4

∂s4
1

r
= 3

(35(s · r)4
r9

− 30(s · r)2
r7

+
3

r5

)

,
∂5

∂s5
1

r
= −15

(63(s · r)5
r11

− 70(s · r)3
r9

+
15(s · r)
r7

)

, (B13)

∂6

∂s6
1

r
= 45

(231(s · r)6
r13

− 315(s · r)4
r11

+
105(s · r)2

r9
− 5

r7

)

, (B14)

∂7

∂s7
1

r
= −315

(429(s · r)7
r15

− 693(s · r)5
r13

+
315(s · r)3

r11
− 35(s · r)

r9

)

, (B15)

∂8

∂s8
1

r
= 315

(6435(s · r)8
r17

− 12012(s · r)6
r15

+
6930(s · r)4

r13
− 1260(s · r)2

r11
+

35

r9

)

. (B16)

Using these expressions in (B10), we have

2Vsr(b, τ) = −rg
{

J2R
2 1

2

(3(s · r)2
r5

− 1

r3

)

+ J3R
3 1

2

(5(s · r)3
r7

− 3(s · r)
r5

)

+

+ J4R
4 1

8

(35(s · r)4
r9

− 30(s · r)2
r7

+
3

r5

)

+ J5R
5 1

8

(63(s · r)5
r11

− 70(s · r)3
r9

+
15(s · r)
r7

)

+

+ J6R
6 1

16

(231(s · r)6
r13

− 315(s · r)4
r11

+
105(s · r)2

r9
− 5

r7

)

+

+ J7R
7 1

16

(429(s · r)7
r15

− 693(s · r)5
r13

+
315(s · r)3

r11
− 35(s · r)

r9

)

+

+ J8R
8 1

128

(6435(s · r)8
r17

− 12012(s · r)6
r15

+
6930(s · r)4

r13
− 1260(s · r)2

r11
+

35

r9

)

+

+

∞
∑

ℓ=9

(−1)ℓ

ℓ!
JℓR

ℓ ∂
ℓ

∂sℓ

(1

r

)}

. (B17)

We can now substitute result (B17) into expression (B8) and integrate it. We observe that, technically, it is more
straightforward to compute the eikonal phase shift integration along the entire path from τ0 to τ . Note that this way
one computes the double shift, 2ξb(τ). This integration results in many terms that depend on the distance to the

source, r0 =
√

b2 + τ20 , and that to the image plane, r =
√
b2 + τ2. The resulting expression is greatly simplified in

the case when both the source and the observer on the image plane are located at very large distances from the lens
and the following inequalities are satisfied: b/

√
b2 + τ2 ≃ b/τ ≪ 1 and b/

√

b2 + τ20 ≃ b/τ0 ≪ 1. This step, essentially,
constitutes the thin lens approximation.3 This allows us to greatly simplify the result of the integration, yielding

ξb(τ) = −krg
{

J2

(R

b

)2 1

2

[

2(s · b)2 1

b2
+ (s · k)2 − 1

]

+ J3

(R

b

)3 1

3

[ (s · b)
b

(

4(s · b)2 1

b2
+ 3(s · k)2 − 3

)]

+

+ J4

(R

b

)4 1

4

[

(

(s · b)2 1

b2
+ (s · k)2 − 1

)

(s · b)2 8

b2
+
(

(s · k)2 − 1
)2
]

+

+ J5

(R

b

)5 1

5

[ (s · b)
b

(

(s · b)4 16
b4

+
(

(s · k)2 − 1
)

(s · b)2 20
b2

+ 5
(

(s · k)2 − 1
)2
)]

+

+ J6

(R

b

)6 1

6

[

(s · b)6 32
b6

+
(

(s · k)2 − 1
)

(s · b)4 48
b4

+
(

(s · k)2 − 1
)2
(s · b)2 18

b2
+
(

(s · k)2 − 1
)3
]

+

3 If needed, one can use all those terms to evaluate the eikonal phase, ξb(τ), for shorter distances, when τ ∼ τ0 ≃ b. For problems related
to gravitational lensing this is unnecessary, but may be needed for some solar system spacecraft tracking applications [78–80].
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+ J7

(R

b

)7 1

7

[ (s · b)
b

(

(s · b)6 64
b6

+
(

(s · k)2 − 1
)

(s · b)4 112
b4

+
(

(s · k)2 − 1
)2
(s · b)2 56

b2
+ 7
(

(s · k)2 − 1
)3
)]

+

+ J8

(R

b

)8 1

8

[

(s · b)8 128
b8

+
(

(s · k)2 − 1
)

(s · b)6 256
b6

+
(

(s · k)2 − 1
)2
(s · b)4 160

b4
+

+
(

(s · k)2 − 1
)3
(s · b)2 32

b2
+
(

(s · k)2 − 1
)4
]

+

+

∞
∑

ℓ=9

(−1)ℓ

2ℓ!
JℓR

ℓ

∫ τ

τ0

∂ℓ

∂sℓ

(1

r

)

dτ ′
}

+O(r2g). (B18)

Note that a similar result for the quadrupole J2 term was obtained in [66–68]. Expression (B18) extends all the
previous computations to the higher order terms including J8.
We use the heliocentric spherical coordinate system and define the vectors of impact parameter, b, the wavevector,

k, and the unit vector long the solar rotational axis, s, as follows:

b = b(cosφξ, sinφξ, 0), k = (0, 0, 1), s = (sinβs cosφs, sinβs sinφs, cosβs). (B19)

With these definitions, the eikonal phase (B24) for the case of axisymmetric body whose gravitational potential is
given by (B4) as4

ξb(r) = −krg
{

J2
1

2

(R⊙

b

)2

sin2 βs cos[2(φξ − φs)] + J3
1

3

(R⊙

b

)3

sin3 βs cos[3(φξ − φs)] +

+ J4
1

4

(R⊙

b

)4

sin4 βs cos[4(φξ − φs)] + J5
1

5

(R⊙

b

)5

sin5 βs cos[5(φξ − φs)] +

+ J6
1

6

(R⊙

b

)6

sin6 βs cos[6(φξ − φs)] + J7
1

7

(R⊙

b

)7

sin7 βs cos[7(φξ − φs)] +

+ J8
1

8

(R⊙

b

)8

sin8 βs cos[8(φξ − φs)] +
∞
∑

n=9

1

n
Jn

(R⊙

b

)n

sinn βs cos[n(φξ − φs)]
}

+O(r2g). (B20)

Assuming that the pattern evident in these expressions continues for higher multipoles, we obtain the following
compact expression for the eikonal phase:

ξb(b, s) = −krg
∞
∑

n=2

Jn
n

(R⊙

b

)n

sinn βs cos[n(φξ − φs)] +O(r2g). (B21)

Note that the sum in (B21) contains contributions from all multipole moments, n = 2, 3, 4, 5... and is valid for any
axisymmetric body with respect to the z = x3 axis represented by s. If in addition to being axisymmetric, that
body also has “north-south” symmetry (symmetry under a reflection with respect to the plane of rotation), that sum
contains only even terms, n = 2, 4, 6, 8..., [40].

b. Computing the eikonal phase using STF tensors

Using the representations (B1), (B5) or (B4), it is convenient to separate the monopole term in the potential U . In
fact, to determine the solution to (A40), similarly to [11, 12], we first separate the monopole contribution and present
the U -dependent term in (A40) as

4U

c2
=

2rg
r

+ 2rg

∞
∑

ℓ=2

(−1)ℓ

ℓ!
T <a1...aℓ>

∂ℓ

∂x<a1...∂xaℓ>

(1

r

)

, (B22)

where rg = 2GM/c2 is the Schwarzschild radius of the body and the short-range potential Vsr from (B5) is given by

Vsr =
rg
2

∞
∑

ℓ=2

(−1)ℓ

ℓ!
T <a1...aℓ>

∂ℓ

∂x<a1...∂xaℓ>

(1

r

)

. (B23)

4 To derive the results in a compact form we used multiple angle formulae: https://mathworld.wolfram.com/Multiple-AngleFormulas.html
and also https://www.anirdesh.com/math/trig/cosine-identities.php
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As such, this form is valid for any deviation from spherical symmetry in the gravitational field.
Given Vsr(r) from (B23), we reduced the problem to evaluating a single integral to determine the Debye potential

Π(r) from (25), which is a great simplification. Given the fact that b is constant and by taking the short-range
potential Vsr(r) from (B23), we evaluate (39) as

ξb(r) = krg

∞
∑

ℓ=2

(−1)ℓ

2ℓ!
T <a1...aℓ>

∫ τ

τ0

∂ℓ

∂x<a1...∂xaℓ>

(1

r

)

dτ ′. (B24)

In fact, we may generalize expression ∇ = ∇b + k d/dτ +O(rg) and write

∂ℓ

∂x<a1...∂xaℓ>
≡ ∇

<a1....∇
aℓ> =

ℓ
∑

p=0

ℓ!

p!(ℓ− p)!
k<a1 ...kap∂ap+1 ...∂aℓ>

∂p

∂τp
+O(rg), (B25)

where a new shorthand notation ∂a ≡ ∂/∂ba has been used and τ is defined by (31).

Using representation (B25), we can compute the relevant integral (with r =
√
b2 + τ2 and r0 =

√

b2 + τ20 , as
discussed in Sec. II C)

∫ τ

τ0

∂ℓ

∂x<a1...∂xaℓ>

(1

r

)

dτ ′ =

∫ τ

τ0

ℓ
∑

p=0

ℓ!

p!(ℓ − p)!
k<a1 ...kap∂ap+1 ...∂aℓ>

∂p

∂τ ′p

( 1√
b2 + τ ′2

)

dτ ′ =

= k<a1 ...kap∂ap+1 ...∂aℓ> ln
r + τ

r0 + τ0
+

ℓ
∑

p=1

ℓ!

p!(ℓ− p)!
k<a1 ...kap∂ap+1 ...∂aℓ>

[ ∂p−1

∂τp−1

(1

r

)

− ∂p−1

∂τp−1
0

( 1

r0

)]

. (B26)

As a result, the eikonal phase (B24) takes the form:

ξb(r) = krg

∞
∑

ℓ=2

(−1)ℓ

2ℓ!
T <a1...aℓ>

{

k<a1 ...kap∂ap+1 ...∂aℓ> ln
r + τ

r0 + τ0
+

+

ℓ
∑

p=1

ℓ!

p!(ℓ− p)!
k<a1 ...kap∂ap+1 ...∂aℓ>

[ ∂p−1

∂τp−1

(1

r

)

− ∂p−1

∂τp−1
0

( 1

r0

)]}

+O(r2g). (B27)

Note that expression (B27) is derived for an arbitrary matter distribution within a gravitating body. One may use
this result to derive the eikonal phase for any of the terms in the Newtonian potential (B1). Such a generic potential
may be suitable for analysis of the gravitational lensing by a lens with an arbitrary intrinsic matter distribution.

Appendix C: Using the path integral formalism

As we mentioned before, Eq. (12) is nearly identical to the time-independent Schrödinger equation that in nuclear
describes the scattering problem on a potential U [25, 81, 82]. Here we further explore this analogy. For that, we
note that in the absence of the scattering potential, U , solution (12) may be given in the from of a plane EM wave
given as ψ0(r) = E0e

ik·r. Next, we introduce a cylindrical coordinate system (ρ, φ, z), whose z-axes is directed along
the wavevector k. Then, by defining the amplification factor due to scattering on the gravitational potential U of the
lens as µ(r) = [Π(r)/u]/ψ0(r), we rewrite (12) as

{

∆ψ0(r) + k2ψ0(r)
}

µ(r) + ψ0(r)∆µ(r) + 2
(

∇ψ0(r) ·∇µ(r)
)

+ k2
4U(r)

c2
µ(r)ψ0(r) = 0. (C1)

As ψ0(r) is the solution of the homogeneous wave equation in flat, vacuum spacetime, the first term in (C1) is zero.
Then, we can divide the remaining terms of (C1) by ψ0(r), which yields:

∆µ(r) + 2
(

∇ lnψ0(r) ·∇µ(r)
)

+ k2
4U(r)

c2
µ(r) = 0. (C2)

Clearly, ∇ lnψ0(r) = ikk, where k = ω/c is the wavenumber and k is the unit vector in the direction of the wavevector.
From discussion in Section II C, we know that (k·∇) = d/dτ . We remember the form of the Laplacian in the cylindrical
coordinate system (ρ, z) that in our case is given as

∆µ(r) = ∆ρµ(r) +
∂2µ(r)

∂z2
, where ∆ρµ(r) =

1

ρ

∂

∂ρ

(

ρ
∂µ(r)

∂ρ

)

+
1

ρ2
∂2µ(r)

∂φ2
. (C3)
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Substituting these results into (C2), we have

∂2µ(r)

∂z2
+∆ρµ(r) + 2ik

dµ(r)

dτ
+ k2

4U(r)

c2
µ(r) = 0. (C4)

We assume that k/|∂ lnµ/∂z| ∼ (scale at which µ varies)/(wavelength) ≫ 1, we neglect the first term compared with
the second term, which constitutes the eikonal approximation. Then Eq. (C4) takes a familiar form:

i
dµ(τ,ρ)

dτ
=
(

− 1

2k
∆ρ − 2kU(τ,ρ)

c2

)

µ(τ,ρ), (C5)

which is the Schrödinger equation with the “time” coordinate τ , the “particle mass” k, and the “time-dependent
potential” −2kc−2U(τ,ρ). The corresponding Lagrangian that yields the classical equation of motion is given as

L(τ,ρ, ρ̇) = k
(

1
2 ρ̇

2 + 2c−2U(τ,ρ)
)

, (C6)

where ρ̇ = dρ/dτ . This Lagrangian describes the motion of a pendulum in a gravity field with potential−2kc−2U(τ,ρ).
This is a mechanical analogy for forming the caustics on the image plane of the SGL. This is similar to a motion of
a connected pendulum where each of the multipoles characterized by a unique natural spacial frequency, affects the
motion of the entire pendulum in a carefully prescribed fashion [83].
In the path integral formulation [37], the solution to (C5) may formally be written as

µ(r) =

∫

Dρ(τ) exp
[

i

∫ τ

τ0

L(τ,ρ, ρ̇)dτ
]

. (C7)

Following the established rules of evaluating path integrals [37, 84], we have

∫ τ

τ0

k 1
2 ρ̇

2dτ =
k

2τ

(

ρ(τ)− ρ(0)
)2

≃ k

2r
(b− rθ)2, (C8)

with ρ(τ) = rθ, ρ(0) = b and where we realize that for very small angles θ = ρ/r, τ = (k · x) ≃ r is a valid
approximation. Integrating (C8), we also use a thin lens approximation while assuming that the effect of the lens
on light is instantaneous and affects light only after it has passed through the lens. Initially the light continues on a
straight line, so that ρ(0)−ρ(τ0) = 0, then, there is a sudden path change after which the light continues on a different
straight line until it reaches the observer on the image plane. Integrating the potential terms, we use representation
(23), that is, 4U/c2 = 2rg/r + 4Vsr and the approach presented in Appendix B2 a, which yeilds

∫ τ

τ0

k2c−2U(τ,ρ)dτ = krg ln 2kr + krg ln 2kr0 − 2krg
(

ln kb+ ψ(b)
)

, (C9)

where ψ(b) is given by (109). As a result, after applying the appropriate normalization factor A =
√

k/2πir to each
of the two dimensions involved [37, 84], the expression (C7) results in

µ(r) = E0e
ikrg ln 2kr k

ir

1

2π

∫

d2b exp
[

ik
( 1

2r
(b− rθ)2 − 2rg

(

ln kb+ ψ(b)
)

)]

. (C10)

Combining this expression with ψ0(r) = E0e
ik·r, we get for the Debye potential Π(r) an expression that is equivalent

to (115) for the factor γ(r, θ, φ), providing the connection between the two different methods used to derive this result.
The derivation presented here shows a deep connection between various methods of modern theoretical physics used

to provide a wave-optical description of diffraction of light, namely the Kirchhoff–Fresnel diffraction formula [7, 22, 62],
the path integrals [36–39, 84], the Mie theory [9, 21, 22] relying on the Debye potentials and the eikonal approximation
[29–31]. The approach that we presented in this paper has the advantage as it can be used to evaluate the vector
nature of the EM field diffracted by the gravity field of an extended lens. This connection will be investigated further.


