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The possibility for Lorentz/CPT-breaking, which is motivated by unification theories, can be
systematically tested within the standard-model extension framework. In the pure gravity sector, the
mass dimension 5 operators produce new Lorentz and CPT-breaking terms in the 2-body equations
of motion that depend on the relative velocity of the bodies, and hence, they can be constrained with
gravity experiments. In this Letter, we report new constraints on 15 independent SME coefficients
for Lorentz/CPT-violations with mass dimension 5 using lunar laser ranging. We perform a global
analysis of lunar ranging data within the SME framework using more than 26,000 normal points
between 1969 and 2018. We also perform a jackknife analysis in order to provide realistic estimates of
the systematic uncertainties. No deviation from Lorentz/CPT symmetries is reported. In addition,
when fitting simultaneously for the 15 canonical SME coefficients for Lorentz/CPT-violations, we
improve up to three orders of magnitude previous post-fit constraints from radio pulsars.

Lorentz Symmetry (LS) is at the core of two pillars
of modern physics: General Relativity (GR) and the
Standard Model of particle physics. GR, the current
paradigm for the gravitational interaction, describes ac-
curately gravitational phenomena over a very large range
of distance scales [1]. On the other hand, the Standard
Model provides an astonishingly accurate description of
matter at the microscopic level and of non-gravitational
interactions. While these two pillars of modern physics
are known to be extremely successful, it is commonly
admitted that they are not the ultimate description of
Nature but rather some effective theories valid only in
the low-energy limit. This assumption is motivated by
the construction of a quantum theory of gravitation that
would unify all the fundamental interactions; such a the-
ory has not been successfully developed so far. In ad-
dition, observations requiring the introduction of Dark
Matter and/or Dark Energy cannot be explained using
GR and the Standard Model. Therefore, in the last
decades, there have been an increasing interest to ex-
perimentally search for deviations from the fundamental
principles of GR and the Standard Model in order to
constrain possible new scenarii.

LS being at the core of both GR and the Standard
Model, testing it is a way to probe a very large class
of theoretical extensions of both. In order to search for
a breaking of LS in an agnostic way, an effective field
theory named the Standard-Model Extension (SME) has
been developed [2, 3] to systematically consider all pos-
sible violations of LS including violations due to CPT-
breaking. It contains GR, the Standard Model and all
possible Lorentz/CPT-violating terms that can be con-
structed at the level of the Lagrangian, introducing a
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large numbers of new coefficients that can be constrained
experimentally [4]. In the pure gravitational sector, the
SME Lagrangian extends the standard Einstein-Hilbert
action by including Lorentz/CPT-violating terms con-
structed by contracting new fields with some operators
built from curvature tensors with increasing mass dimen-
sion [5–7].

The lower mass dimension term, the d = 4 term also
known as the minimal SME, breaks the LS but preserves
the CPT symmetry. This term has been widely studied
[5] and the related SME coefficients (s̄µν) have been con-
strained by various measurements: Lunar Laser Ranging
(LLR) [8, 9], planetary ephemerides [10], pulsars timing
[11, 12], Gravity Probe B [13], Very Long Baseline In-
terferometry [14], gravimeters [15], gravitational waves
[6, 16] and cosmic rays [17] (see [18, 19] for a review).

The next-to-leading term in the SME action, the d = 5
term, has recently been studied in [7, 20]. It breaks
both Lorentz and CPT symmetries, leading to new phe-
nomenological signatures that can be used to test the
emergence of a new Physics. In particular, it leads to a
modification of the 2-body equations of motion that de-
pend on the relative velocity of the bodies. Hence, short-
range laboratory experiments [5, 21, 22], which should
be the best to constrain higher-dimensional operators
with mass dimension larger than 4, are mainly insensitive
to these new velocity-dependent Lorentz/CPT-breaking
terms. Instead, LLR and pulsars timing are expected
to be among the most sensitive probes [7]. While pul-
sars timing has already provided constraints on these
Lorentz/CPT-violating coefficients [12], LLR has not.

The first d = 5 term in the nonminimal SME expan-
sion of the gravity sector can be written as a quadratic
effective action which reads as [5–7]

L(5) = − c4

128πG
hµνq

µρανβσγ∂βRρασγ (1)
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with c the speed of light in a vacuum, G the Newton grav-
itational constant, Rαβγδ the linearized Riemann tensor
built from the space-time metric gµν = ηµν + hµν with
ηµν the Minkowski metric. The Lorentz/CPT-breaking
coefficients qµρανβσγ have length dimension and only 60
of them are independent due to symmetries of the Rie-
mann tensor. Some combinations of the qµρανβσγ occur
frequently in the formalism so that it is appropriate to
introduce the effective coefficients Kjklm as follows [7, 12]

Kjklm = −1

6
(q0jk0l0m + qn0knljm + qnjknl0m+

permutations) , (2)

where “permutations” mean all symmetric permutations
in the last three indices klm.

It can be shown that the orbital dynamics at the lin-
earized order actually depends on 15 independent combi-
nations of the fundamental SME coefficients [7, 12]. The
expressions of these 15 canonical coefficients in terms
of the qµρανβσγ and in terms of all Kjklm are given in
Tabs. I and V, respectively. The contribution to the 2-
body equations of motion due to the mass dimension 5
operators for Lorentz/CPT-violations reads as[

d2rj

dt2

]
d=5

=
GMvk

c r3

(
15nlnmnnn[jKk]lmn − 3K[jk]ll

+ 9nlnmK[jk]lm − 9n[jKk]lln
m
)

(3)

with r = |r|, where r = r2−r1 is the relative position of
the two bodies, n = r/r, and v = v2 − v1 their relative
velocity [7]. The total mass is M = m1 +m2 and A[ij] =
1
2 (Aij −Aji).

The deviation from GR is non-static, proportional to
the velocity and inversely proportional to the cubic dis-
tance between the two bodies. This term and the as-
sociated phenomenology is therefore extremely different
from all GR corrections, PPN deviations [1], violations
of the universality of free fall [23] and others LS-violating
terms with mass dimension 4 that have already been con-
sidered in previous LLR analyzes [9]. In this paper, we
use 50 years of LLR measurements in order to estimate
the d = 5 SME gravity coefficients.

LLR observations consist of high-precision measure-
ments of the two-way light travel-time of short laser
pulses between a LLR station on Earth and a corner
cube retroreflector on the surface of the Moon. The
monitoring of this travel-time has allowed scientists to
study the Earth-Moon system and in particular to in-
fer Moon’s internal properties [24, 25] and to test the
gravitational interaction by testing the universality of
free fall [26] and by performing several tests of LS [8, 9]
(see [27] for a review). Currently, the LLR dataset con-
tains more than 26,000 normal points acquired by 6 LLR
stations (McDonald Observatory in Texas, Observatoire
de la Côte d’Azur in France, Haleakala Observatory in
Hawaii, Apache-Point Observatory in New Mexico, Mat-
era in Italy, and Wettzell in Germany) using 5 retrore-
flectors (Apollo XI, XIV, XV, and Lunokhod 1, 2). The

data consists of normal points that combine time series of
measured light travel time of photons averaged over sev-
eral minutes in order to achieve a higher signal-to-noise
ratio measurement of the lunar range at some charac-
teristic epoch. Each normal point is thus characterized
by one emission time and one time delay (together with
some additional observational parameters such like the
laser wavelength or the temperature and pressure at the
site of observation). In 2015, a significant upgrade was
made by the French LLR staff observers who demon-
strated the efficiency of conducting observations at in-
frared (IR) wavelength [28]. Owing notably to a better
atmospheric transmission than the green wavelength, the
IR wavelength allows one to increase the station efficiency
and to improve the temporal homogeneity of the LLR ob-
servations over a synodic month [29]. The German LLR
station, which has been running since 2018, also makes
use of the IR wavelength. Nowadays, more than fifty
years after his first detection that occurred on August
1969 and thanks to the common effort carried out by the
LLR staff observers all around the world, LLR is still one
of the most precise techniques for testing GR [27].

The Lorentz/CPT-violating terms in (3) and the cor-
responding partial derivatives have been added to the
set of integrated equations of motion within ELPN
(Ephéméride Lunaire Parisienne Numérique) software
[9]. ELPN is a numerical ephemeris being fully relativis-
tic at the first post-Newtonian order. It solves for a state
vector which includes the orbital dynamics of the main
solar system bodies, the rotational motion of the Moon,
and the evolution of the difference between the terrestrial
time and the barycentric dynamical time. The partial
derivatives of the state vector with respect to initial con-
ditions and physical parameters are integrated as well.
The numerical modeling includes all contributions pro-
ducing theoretical effects larger than the millimeter level
such as the relativistic point-mass interactions between
the relevant bodies, the Newtonian accelerations due to
gravity field inhomogeneities of Earth and Moon, or the
secular tidal acceleration of the orbit of the Moon. The
numerical integration provides the position, velocity and
orientation of the Moon which are then transformed into
an estimation of the LLR normal points following the rec-
ommendations of the International Earth Rotation and
Reference Systems Service [30]. The residuals are de-
duced by comparing the theoretical estimations with the
measurements and are finally minimized with a standard
weighted least-squares fit.

The modus operandi for estimating the d = 5 SME
gravity coefficients proceeds as follows. First, a solution
in pure GR is built by estimating 68 parameters which
include: the lunar positions of the retroreflectors, the
geocentric positions of the Apache-point and Haleakala
stations (these two stations are currently not defined in
the International Terrestrial Reference Frame), one light-
time correction (offset) per instrument, the initial con-
ditions for the orbit of the Moon and rotation (man-
tle and core), the masses of the Moon and the Earth-
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TABLE I. Definition and estimates of the 15 canonical independent coefficients. Estimates are derived from a global LLR data
analysis. Realistic estimate of each canonical SME coefficient xi is reported such as xi ± σstat(xi) ± σsyst(xi).

Canonical Definition Value and uncertainties (m)

KXXXY
1
3

(
−qTXYTXTX + qTXYXYXY + qTXYXZXZ − qXYZXZXT

)
(+0.7 ± 0.4 ± 2.9) × 103

KXXXZ
1
3

(
qTXYXYXZ − qTXZTXTX + qTXZXZXZ + qXYZXYXT

)
(+0.8 ± 0.9 ± 5.9) × 103

KXXYY
1
3

(
−2qTXYTXTY + 2qTXYXZYZ + qXYZXYZT − 2qXYZXZYT

)
(−0.4 ± 1.3 ± 8.4) × 103

KXXYZ
1
6

(
−2qTXYTXTZ − 2qTXYXYYZ − 2qTXZTXTY + 2qTXZXZYZ + qXYZXYYT − qXYZXZZT

)
(+0.5 ± 0.2 ± 1.6) × 104

KXXZZ
1
3

(
−2qTXYXZYZ − 2qTXZTXTZ + 2qXYZXYZT − qXYZXZYT

)
(−1.9 ± 0.6 ± 4.1) × 104

KXYYY −qTXYTYTY + qTXYXYXY + qTXYYZYZ − qXYZYZYT (−0.7 ± 0.3 ± 1.2) × 104

KXYYZ
1
3

(
−2qTXYTYTZ + 3qTXYXYXZ − qTXZTYTY + qTXZYZYZ − qXYZYZZT

)
(+4.6 ± 1.6 ± 6.9) × 103

KXYZZ
1
3

(
−qTXYTZTZ + 3qTXYXZXZ + qTXYYZYZ − 2qTXZTYTZ − qXYZYZYT

)
(−0.2 ± 0.8 ± 4.1) × 103

KXZZZ −qTXZTZTZ + qTXZXZXZ + qTXZYZYZ − qXYZYZZT (+1.2 ± 0.3 ± 1.3) × 104

KYXXZ
1
3

(
3qTXYTXTZ + 3qTXYXYYZ − qTXZTXTY + qTXZXZYZ + qXYZXZZT

)
(+0.1 ± 0.3 ± 2.3) × 104

KYXYZ
1
6

(
4qTXYTYTZ − 2qTXYXYXZ − 2qTXZTYTY + 2qTXZYZYZ + qXYZXYXT + qXYZYZZT

)
(−4.7 ± 0.8 ± 4.0) × 103

KYXZZ
1
3

(
3qTXYTZTZ − qTXYXZXZ − 3qTXYYZYZ − 2qTXZTYTZ + qXYZXZXT

)
(−1.6 ± 0.5 ± 2.4) × 103

KYYYZ
1
3

(
qTXYXYYZ − qTXZTYTY + qTYZYZYZ + qXYZXYYT

)
(+0.9 ± 0.3 ± 1.8) × 104

KYYZZ
1
3

(
2qTXYXZYZ − 2qTXZTYTZ + qXYZXYZT + qXYZXZYT

)
(−1.5 ± 0.5 ± 3.4) × 104

KYZZZ −qTXZTZTZ + qTXZXZYZ + qTYZYZYZ + qXYZXZZT (−1.2 ± 0.8 ± 5.1) × 104

Moon barycenter, the Earth and Moon Love number
k2, the Earth rotational time-lag for semi-diurnal de-
formation, the Moon time-lag for solid-body tides, the
Moon undistorted principal moment of inertia, the fric-
tion coefficient between the core and mantle of the Moon,
and finally degree 2 and 3 mass multipole moments of
the Moon. Let us emphasize that the Moon degree 2
and 3 gravity coefficients are not fixed to values deter-
mined from GRAIL (Gravity Recovery and Interior Lab-
oratory) mission [31, 32]. There are two main reasons
for this. First, as pointed out by [33, 34], imposing the
GRAIL gravity field during LLR analysis results in un-
expected signatures in the LLR post-fit residuals sug-
gesting that GRAIL and LLR dynamical models might
be inconsistent. Nevertheless, these signatures can be
absorbed by estimating the lunar degree 3 gravity co-
efficients which, consequently, are not consistent with
GRAIL’s anymore. Secondly, as it can be seen a posteri-
ori, the Lorentz/CPT-violating fields are mostly uncor-
related with Newtonian parameters except for the lunar
degree 2 gravity coefficients. Therefore, estimating de-
gree 2 allows us to ensure that a Lorentz/CPT-violating
signal was not absorbed while determining the same de-
gree in the GR framework from GRAIL. Unlike degree
3, the values of J2 and C22 determined from LLR are
always fully compatible with GRAIL’s estimates. The
ELPN post-fit residuals determined in pure GR are re-
ported in Tab. II.

After convergence is achieved, the 15 SME gravity
canonical coefficients are fitted simultaneously with the
68 Newtonian parameters. Two remarks need to be men-
tioned at this stage: (i) the obtained uncertainties (i.e.
the covariance matrix) are only statistical uncertainties
and do not contain any estimate of systematics and (ii)
the estimates of the 15 canonical SME coefficients are
highly correlated.

The statistical uncertainty estimated from a least-

squares is not sufficient to provide “realistic” parameter
uncertainties. Indeed, it is well known that the standard
errors derived from least-squares analysis are prone to be
too optimistic [35, 36]. As a matter of fact, parameter
uncertainties are also affected by systematic errors which
are not included in a standard least-squares. Therefore,
in order to provide realistic parameter estimates, we look
for systematics by using a jackknife resampling method
[9, 37]. The method proceeds as follows. First, we build
ns subsets of data Dk with k = 1, . . . , ns and ns = 6
where Dk contains all the LLR observation except the
ones from station k. For each subset Dk, we perform a
fit as described previously and we denote x(k) the esti-
mated value of a certain parameter x. Then, considering
that each subset provides an independent determination

TABLE II. ELPN (in pure GR) post-fit residuals per LLR
station and instrument. The mean and the standard deviation
of the residuals are denoted by µ and σ, respectively. For each
station/instrument, N is the number of available observations
and Nr the number of rejected observations (> 3σ).

Station (Instrument) Period N Nr µ (cm) σ (cm)
McDonald (2.7-m) 1969-1985 3604 92 14.0 34.7
McDonald (MLRS1) 1983-1988 631 74 7.3 29.3
McDonald (MLRS2) 1988-2015 3670 467 -1.0 5.5
Grasse (Rubis) 1984-1986 1188 21 4.5 16.0
Grasse (Yag) 1987-2005 8324 51 0.0 4.1
Grasse (MeO green) 2009-2018 1937 23 0.2 1.8
Grasse (MeO IR) 2015-2018 3837 25 -0.2 1.7
Haleakala 1984-1990 770 23 -2.8 8.1
Matera 2003-2018 224 15 -0.4 4.7
Apache-point (P1) 2006-2010 941 2 0.9 2.2
Apache-point (P2) 2010-2012 513 15 0.9 2.9
Apache-point (P3) 2012-2013 360 9 0.7 2.3
Apache-point (P4) 2013-2016 834 7 1.0 1.7
Wetzell 2018-2018 22 0 1.7 1.2
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TABLE III. Values of VT ’s components from LLR global analysis. Values larger than 0.1 have been highlighted for readability.

KXXXY KXXXZ KXXYY KXXYZ KXXZZ KXYYY KXYYZ KXYZZ KXZZZ KYXXZ KYXYZ KYXZZ KYYYZ KYYZZ KYZZZ

c1 0.00 0.01 0.09 -0.21 0.50 0.01 -0.01 0.00 -0.02 0.25 0.01 0.00 -0.19 0.43 0.65
c2 0.06 -0.13 0.07 -0.03 -0.26 0.49 -0.29 -0.11 -0.60 0.29 0.13 0.07 0.18 -0.16 0.20
c3 -0.02 0.04 0.15 -0.08 -0.45 -0.32 0.19 0.09 0.34 0.45 -0.02 0.00 0.36 -0.19 0.37
c4 0.01 -0.03 -0.28 0.27 0.22 0.04 0.00 -0.09 0.11 0.56 -0.13 -0.08 -0.46 -0.46 -0.08
c5 -0.17 0.39 0.09 -0.06 -0.11 0.33 -0.13 -0.29 0.15 -0.11 -0.61 -0.41 0.03 0.00 0.11
c6 0.24 -0.57 -0.07 0.14 0.09 0.21 -0.01 -0.28 0.31 0.21 -0.17 -0.05 0.35 0.35 -0.22
c7 -0.18 0.49 -0.21 0.23 0.13 -0.14 -0.03 0.12 -0.26 0.39 0.03 -0.07 0.36 0.37 -0.30
c8 0.33 0.11 0.03 -0.14 0.06 -0.45 -0.75 -0.23 0.06 0.01 -0.08 0.17 0.04 -0.07 -0.04
c9 -0.08 0.01 -0.78 -0.37 -0.27 0.17 -0.13 0.15 0.18 -0.02 -0.02 0.18 -0.07 0.14 0.08
c10 0.10 -0.15 -0.25 -0.45 0.11 -0.32 0.27 -0.30 -0.35 -0.01 0.02 -0.50 0.13 -0.15 -0.05
c11 -0.14 0.06 0.18 -0.51 0.44 0.27 -0.01 0.22 0.17 0.12 -0.03 0.20 0.31 -0.34 -0.26
c12 0.66 0.32 -0.05 -0.04 -0.01 0.09 0.43 -0.10 -0.14 0.00 -0.28 0.41 0.00 0.00 0.00
c13 -0.14 0.21 -0.24 0.25 0.23 0.09 0.07 -0.53 0.18 -0.22 0.39 0.16 0.32 -0.23 0.26
c14 -0.54 -0.18 0.06 -0.09 -0.07 -0.22 0.13 -0.37 -0.21 0.07 -0.34 0.52 -0.10 0.07 -0.08
c15 0.02 0.23 0.24 -0.31 -0.24 0.15 0.07 -0.39 0.20 0.24 0.46 -0.04 -0.33 0.24 -0.30

of x, an estimation of the variance of the systematic error
due to stations is given by [37]

σ2
s (x) =

ns − 1

ns

ns∑
k=1

[
x(k) − 1

ns

ns∑
l=1

x(l)

]2
. (4)

The exact same methodology is applied by building 5 ad-
ditional subsets of data by lunar retroreflectors (nr = 5),
and by determining σ2

r (x) the estimate of the system-
atic uncertainty due to retroreflectors. Finally, the to-
tal systematic variance of x is σ2

syst(x) = σ2
r (x) + σ2

s (x)
such that the realistic variance is eventually given by
σ2
real(x) = σ2

stat(x) + σ2
syst(x), where σstat(x) is the sta-

tistical uncertainty of x.
The estimates of the 15 canonical SME coefficients and

their corresponding marginalized uncertainties are pre-
sented in Tab. I. No deviation from GR is reported at

TABLE IV. Realistic estimates of linear combinations of SME
coefficients (see Tab. III) from a global LLR data analysis.
Realistic estimate of each linear combination ci is reported
such as ci ± σstat(ci) ± σsyst(ci).

Linear combination Value and uncertainties (m)
c1 (−2.7 ± 1.1 ± 7.8) × 104

c2 (−0.6 ± 0.4 ± 1.4) × 104

c3 (+1.8 ± 0.4 ± 2.7) × 104

c4 (+3.4 ± 1.2 ± 5.9) × 103

c5 (+3.6 ± 1.2 ± 4.6) × 103

c6 (+2.4 ± 0.7 ± 8.7) × 103

c7 (−2.0 ± 0.7 ± 2.9) × 103

c8 (+0.9 ± 0.2 ± 1.6) × 103

c9 (−2.0 ± 0.8 ± 2.1) × 102

c10 (−3.5 ± 1.0 ± 5.6) × 102

c11 (−1.8 ± 0.9 ± 5.0) × 102

c12 (+0.1 ± 0.2 ± 2.0) × 103

c13 (+0.4 ± 0.1 ± 1.5) × 102

c14 (−1.0 ± 0.4 ± 3.9) × 102

c15 (−0.3 ± 0.1 ± 1.0) × 102

68% Bayesian confidence level. The full 2-D posterior is
presented in Fig. 1 from the Appendix. This figure and
estimates in Tab. I can be compared to Fig. 2 and Tab.
VI of Shao and Bailey [12], respectively. The estimates
of the 15 canonical SME coefficients from LLR global
data analysis improve by 2 to 3 (see KXXXY and KYXZZ)
orders of magnitude previous constraints from radio pul-
sars. This improvement is mainly due to the fact that
the huge number of LLR data and the timespan lead to a
better decorrelation of the various SME coefficients while
the pulsars analysis from [12] relies only on 15 (although
extremely powerful) estimates of pulsars linear drift of
the argument of periastron and of the projected semi-
major axis. Finally, let us mention a major conceptual
difference between the two data processing pipelines. We
are analyzing LLR data directly in the SME framework
by estimating simultaneously Newtonian parameters and
SME coefficients. On the other hand, constraints inferred
in [12] rely on post-fit estimates based on a previous GR
analysis which is known to be prone to return uncertain-
ties that are too optimistic [14]. In that sense global fit
analysis are usually much more robust.

The SME coefficients estimated using LLR are still
highly correlated (see Fig. 1). One can use a single value
decomposition of the covariance matrix to set estimates
on independent linear combinations of them. Let a be
the set of the 15 canonical coefficients and c be the set of
the 15 independent linear combinations of a. The inde-
pendent linear combinations are thus given by c = VT ·a,
where the matrix V is determined by diagonalizing the
covariance matrix C by performing a singular value de-
composition [35], that is to say C = V ·W · VT . The
matrix V contains the eigenvectors of C and the diagonal
matrix W contains the eigenvalues of C, hence the sta-
tistical uncertainty associated to the independent linear
combinations ci is given by σ2

stat(ci) = Wii. The detailed
linear combinations are presented in Tab. III and their
estimations are given in Tab. IV. The advantage of using
the linear combinations relies in the fact that their esti-
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mations are independent. Uncertainty estimates in Tab.
IV range between 79 km to 110 m, in agreement with [7].

In conclusion, in this Letter, we use 50 years of LLR
data to search for a velocity-dependent Lorentz/CPT-
breaking signature. Such a phenomenology, induced by
order 5 terms in the pure gravity SME Lagrangian [7],
is relatively novel and has only been considered in pul-
sars analysis [12]. Fitting simultaneously the SME coef-
ficients with all standard LLR parameters, we report no
breaking of Lorentz/CPT symmetries and report realistic
estimates on the 15 canonical coefficients at the level of

103−4 m improving similar constraints from pulsars by up
to 3 orders of magnitude. This improvement is mainly
due to the large numbers of data used in our analysis
which leads to smaller correlation between the various K
coefficients, while pulsar individual constraints are more
stringent. This would suggest performing a combine fit
using both LLR and pulsars data simultaneously.
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TABLE V. Components Kjklm in terms of the 15 independent canonical SME coefficients.

Kjklm Canonical Kjklm Canonical Kjklm Canonical Kjklm Canonical
KXXXX 0 KXZXZ KXXZZ KYYYY 0 KZXZX −KXXZZ

KXXXY KXXXY KXZYX KXXYZ KYYYZ KYYYZ KZXZY − 1
2
KXYZZ − 1

2
KYXZZ

KXXXZ KXXXZ KXZYY KXYYZ KYYZX KYXYZ KZXZZ − 1
3
KXZZZ

KXXYX KXXXY KXZYZ KXYZZ KYYZY KYYYZ KZYXX −2KXXYZ −KYXXZ

KXXYY KXXYY KXZZX KXXZZ KYYZZ KYYZZ KZYXY −KXYYZ − 2KYXYZ

KXXYZ KXXYZ KXZZY KXYZZ KYZXX KYXXZ KZYXZ − 1
2
KXYZZ − 1

2
KYXZZ

KXXZX KXXXZ KXZZZ KXZZZ KYZXY KYXYZ KZYYX −KXYYZ − 2KYXYZ

KXXZY KXXYZ KYXXX −3KXXXY KYZXZ KYXZZ KZYYY −3KYYYZ

KXXZZ KXXYZ KYXXY −KXXYY KYZYX KYXYZ KZYYZ −KYYZZ

KXYXX KXXXY KYXXZ KYXXZ KYZYY KYYYZ KZYZX − 1
2
KXYZZ − 1

2
KYXZZ

KXYXY KXXYY KYXYX −KXXYY KYZYZ KYYZZ KZYZY −KYYZZ

KXYXZ KXXYZ KYXYY − 1
3
KXYYY KYZZX KYXZZ KZYZZ − 1

3
KYZZZ

KXYYX KXXYY KYXYZ KYXYZ KYZZY KYYZZ KZZXX −KXXZZ

KXYYY KXYYY KYXZX KYXXZ KYZZZ KYZZZ KZZXY − 1
2
KXYZZ − 1

2
KYXZZ

KXYYZ KXYYZ KYXZY KYXYZ KZXXX −3KXXXZ KZZXZ − 1
3
KXZZZ

KXYZX KXXYZ KYXZZ KYXZZ KZXXY −2KXXYZ −KYXXZ KZZYX − 1
2
KXYZZ − 1

2
KYXZZ

KXYZY KXYYZ KYYXX −KXXYY KZXXZ −KXXZZ KZZYY −KYYZZ

KXYZZ KXYZZ KYYXY − 1
3
KXYYY KZXYX −2KXXYZ −KYXXZ KZZYZ − 1

3
KYZZZ

KXZXX KXXXZ KYYXZ KYXYZ KZXYY −2KYXYZ −KXYYZ KZZZX − 1
3
KXZZZ

KXZXY KXXYZ KYYYX − 1
3
KXYYY KZXYZ − 1

2
KXYZZ − 1

2
KYXZZ KZZZY − 1

3
KYZZZ

KZZZZ 0
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FIG. 1. Marginal 2D contours and marginal 1D posterior distribution of the set of 15 independent canonical SME coefficients
from a LLR global LLR data analysis. Contours show the 68%, 90%, and 95% Bayesian confidence levels. The canonical SME
coefficients are expressed in 104 m.
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