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We develop new strategies to build numerical relativity surrogate models for eccentric binary
black hole systems, which are expected to play an increasingly important role in current and future
gravitational-wave detectors. We introduce a new surrogate waveform model, NRSur2dq1Ecc, using
47 nonspinning, equal-mass waveforms with eccentricities up to 0.2 when measured at a reference
time of 5500M before merger. This is the first waveform model that is directly trained on eccentric
numerical relativity simulations and does not require that the binary circularizes before merger. The
model includes the (2, 2), (3, 2), and (4, 4) spin-weighted spherical harmonic modes. We also build
a final black hole model, NRSur2dq1EccRemnant, which models the mass, and spin of the remnant
black hole. We show that our waveform model can accurately predict numerical relativity waveforms
with mismatches ≈ 10−3, while the remnant model can recover the final mass and dimensionless spin
with absolute errors smaller than ≈ 5× 10−4M and ≈ 2× 10−3 respectively. We demonstrate that
the waveform model can also recover subtle effects like mode-mixing in the ringdown signal without
any special ad-hoc modeling steps. Finally, we show that despite being trained only on equal-mass
binaries, NRSur2dq1Ecc can be reasonably extended up to mass ratio q ≈ 3 with mismatches ' 10−2

for eccentricities smaller than ∼ 0.05 as measured at a reference time of 2000M before merger. The
methods developed here should prove useful in the building of future eccentric surrogate models over
larger regions of the parameter space.

I. INTRODUCTION

Detection of gravitational waves (GWs) [1, 2] by the
LIGO [3] and Virgo [4] detectors has opened a new window
in astrophysics to probe binary compact objects – binary
black holes (BBHs) being the most abundant source for
these detectors. Both detection and extraction of source
properties from the GW signal relies on the availability of
accurate inspiral-merger-ringdown (IMR) waveform mod-
els for BBHs. While numerical relativity (NR) provides
the most accurate gravitational waveforms for BBHs, they
are computationally expensive, taking weeks to months to
generate a single waveform. Data-driven surrogate mod-
eling strategies [5–15, 68] have been shown to be capable
of producing waveforms that are nearly indistinguishable
from NR with evaluation times of less than 0.1 seconds.
While NR surrogate waveform models for nonspinning [7],
aligned-spin [10], and precessing BBHs [9, 13] are well
developed, NR surrogate modeling of eccentric systems is
completely unexplored.
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So far, all GW detections of BBHs are consistent with
signals emitted from quasicircular binaries [16–22]. In fact,
eccentricity has been traditionally ignored in most GW
data analyses (for e.g. Refs. [1, 2]). This is motivated by
the expectation that even if a binary is formed with a non-
zero eccentricity, it should circularize before reaching the
frequency band of ground based detectors, as eccentricity
gets radiated away via GWs during the long inspiral [23].
However, this assumption may not always hold, especially
for binaries formed in dense environments like globular
clusters or galactic nuclei [24–31]. Indeed, recent follow-
up analysis of GW190521 [32] claim this event to be
consistent with a BBH source with eccentricity ranging
from ∼ 0.1 [33] up to ∼ 0.7 [34] (see also [35, 36]).

Eccentricity, if present in GW signals, carries precious
astrophysical information about the environment in which
the binary was formed. The detection of an eccentric
merger would not only be a smoking-gun signature of
sources formed via dynamical encounters, but would point
towards specific type of interactions, namely GW cap-
tures [37], taking place in those environments. Catching
eccentric sources in the mHz regime targeted by the LISA
space mission is also a promising avenue to distinguish
astrophysical formation channels [38–44].
Furthermore, ignoring eccentricity in our models can
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lead to systematic biases if the actual signal corresponds
to an eccentric system [45]. Such biases can also lead
to eccentric systems being misidentified as a violation of
general relativity (GR). Even if all binaries are found to be
circular, eccentric models are necessary to place bounds
on the eccentricity. Therefore, including eccentricity in
our GW models is important, especially as the detectors
become more sensitive.
In the last few years, a handful of eccentric inspiral-

only [46–51] and IMR models [52–57] have become avail-
able. We highlight some recent eccentric IMR models in
the following. ENIGMA [54, 55] is a nonspinning eccentric
BBH model that attaches an eccentric post-Newtonian
(PN) inspiral to a quasicircular merger based on an NR
surrogate model [7]. SEOBNRE [57] modifies an aligned-
spin quasicircular EOB waveform model [58] to include
some effects of eccentricity. Similarly, Ref. [56] modifies a
different aligned-spin EOB multipolar waveform model
for quasicircular BBHs [59, 60] to include some effects
of eccentricity. The model is then further improved by
replacing the carrier quasicircular model with a generic
eccentric one [61]. In addition to these models, Ref. [62]
recently developed a method to add eccentric modulations
to existing quasicircular BBH models.

Notably, all of these models rely on the assumption that
the binary circularizes by the merger time. While this is
approximately true for many expected sources [54, 63],
this necessarily places a limit on the range of validity
of these models. In addition, none of these models are
calibrated on eccentric NR simulations, even though their
accuracy is tested by comparing against eccentric simula-
tions.
Apart from the waveform prediction, BBH remnant

modeling from eccentric sources is also of crucial astro-
physical importance [64–67]. For example, recoils from
eccentric mergers can be up to 25% higher than the cir-
cular case [66, 67], which result in a higher likelihood of
ejections from astrophysical hosts like star clusters and
galaxies.

It is, therefore, timely to invest in building faithful ec-
centric BBHs waveform and remnant models that address
some of these limitations. In this paper, we develop a
detailed framework for constructing a surrogate model
with eccentric NR data. We then build a two-dimensional
surrogate model, NRSur2dq1Ecc, over parameters that de-
scribe eccentricity for equal-mass, nonspinning systems to
demonstrate the efficacy of the proposed methods. This
is the first eccentric waveform that is directly trained on
eccentric NR simulations and does not need to assume
that the binary circularizes before merger. The model can
produce waveforms that are of comparable accuracy to
the NR simulations used to train it. Furthermore, despite
being trained only on equal-mass eccentric BBHs, we
find that the model can be reasonably evaluated beyond
its training range upto mass ratio q ≈ 3 provided the
eccentricities are small.
In addition to the waveform model, we build a

surrogate model for the remnant mass and spin,

NRSur2dq1EccRemnant, which can provide accurate pre-
dictions for the final state of eccentric binary mergers.
This work paves the way forward for building future
eccentric surrogate models: we expect that the meth-
ods developed here can be applied straightforwardly to
aligned-spin eccentric BBHs, while the precessing case
requires significantly more work.
The rest of the paper is organized as follows. Sec. II

describes the NR simulations. Sec. III describes data
decomposition, parameterization and construction of the
surrogate model. In Sec. IV, we test the surrogate model
by comparing against NR waveforms. We end with some
concluding remarks in Sec. V.

II. NUMERICAL RELATIVITY DATA

NR simulations for this work are performed using the
Spectral Einstein Code (SpEC) [69] developed by the
Simulating eXterme Spacetimes (SXS) collaboration [70].
We follow the procedure outlined in Ref. [71] to construct
initial orbital parameters that result in a desired eccen-
tricity. The constraint equations are solved employing
the extended conformal thin sandwich formalism [72, 73]
with superposed harmonic Kerr free data [74]. The evo-
lution equations are solved employing the generalized
harmonic formulation [75, 76]. The time steps during
the simulations are chosen nonuniformly using an adap-
tive time-stepper [77]. Further details can be found in
Ref. [77] and references within. We perform 47 new eccen-
tric NR simulations that have been assigned the identifiers
SXS:BBH:2266 - SXS:BBH:2312, and will be made avail-
able through the SXS public catalog [78].
The component BH masses, m1 and m2, and dimen-

sionless spins, χ1 and χ2, are measured on the apparent
horizons [77] of the BHs, where index 1 (2) corresponds
to the heavier (lighter) BH. The component masses at
the relaxation time [77] are used to define the mass ratio
q = m1/m2 ≥ 1 and total mass M = m1 + m2. Unless
otherwise specified, all masses in this paper are given
in units of the total mass. When training the surrogate
model, we restrict ourselves to q = 1, χ1,χ2 = 0 in this
work.

The waveform is extracted at several extraction spheres
at varying finite radii from the origin and then extrapo-
lated to future null infinity [77, 79]. These extrapolated
waveforms are then corrected to account for the initial
drift of the center of mass [80, 81]. The spin-weighted
spherical harmonic modes at future null infinity, scaled
to unit mass and unit distance, are denoted as h`m(t) in
this paper.
The complex strain h = h+ − ih× is given by:

h(t, ι, ϕ0) =
∞∑
`=2

l∑
m=−l

h`m(t) −2Y`m(ι, ϕ0), (1)

where h+ (h×) is the plus (cross) polarization of the
waveform, −2Y`m are the spin=−2 weighted spherical
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harmonics, and ι and ϕ0 are the polar and azimuthal an-
gles on the sky in the source frame. We model modes with
(`,m) = (2, 2), (3, 2), (4, 4). Because of the symmetries
of equal-mass, nonspinning BBHs, all odd-m modes are
identically zero, and the m < 0 modes can be obtained
from the m > 0 modes. Therefore, we model all non-zero
` ≤ 3 and (4,±4) modes, except the m = 0 modes. We
exclude m = 0 memory modes because (non-oscillatory)
Christodoulou memory is not accumulated sufficiently in
our NR simulations [82]; this defect was recently addressed
in both Cauchy characteristic extraction (CCE) [83–85]
and extrapolation [86] approaches. The (4, 2) mode, on
the other hand, was found to have significant numerical
error in the extrapolation procedure [77, 79]. We expect
this issue to be resolved with CCE as well. Therefore, in
future models, we should be able to include the m = 0
modes as well as modes like the (4,2) mode.

The remnant massmf and spin χf are determined from
the common apparent horizon long after the ringdown,
as described in Ref. [77]. For nonprecessing systems like
the ones considered here, the final spin is directed along
the direction of the orbital angular momentum. Unlike
previous surrogate models [13, 87, 88], we do not model
the recoil kick in this work, as the symmetries of equal-
mass, nonspinning BBHs restrict the kick to be zero.

III. SURROGATE METHODOLOGY FOR
ECCENTRIC WAVEFORMS

In this section, we describe our new framework to build
NR surrogate models for eccentric BBHs. We begin by
applying the following post processing steps that simplify
the modeling procedure.

A. Processing the training data

In order to construct parametric fits (cf. Sec. IIID)
for the surrogate model, it is necessary to align all the
waveforms such that their peaks occur at the same time.
We define the peak of each waveform, τpeak, to be the
time when the quadrature sum,

Atot(τ) =
√∑

l,m

|h`m(τ)|2 , (2)

reaches its maximum. Here the summation is taken over
all the modes being modeled. We then choose a new time
coordinate,

t = τ − τpeak , (3)

such that Atot(t) for each waveform peaks at t = 0.
Next, we use cubic splines to interpolate the real and

imaginary parts of the waveform modes onto a common
time grid of [−5500M , 75M ] with a uniform time spac-
ing of dt = 0.1M ; this is dense enough to capture all

frequencies of interest, including near merger. The initial
time of −5500M is chosen so that we can safely eliminate
spurious initial transients in the waveform, also known as
junk radiation [77], for each waveform in our dataset.

Once all the waveforms are interpolated onto a common
time grid, we perform a frame rotation of the waveform
modes about the z-axis such that the orbital phase is zero
at t = −5500M . The orbital phase is obtained from the
(2, 2) mode [cf. Eq. (14)]. Because of the symmetry of the
equal-mass, equal-spin systems considered here, the odd-
m modes are identically zero and so we need not worry
about remaining φorb → φorb + π rotational freedom as
was necessary in Refs. [7–10, 13]. This preprocessing of
time and phase ensures that the waveform varies smoothly
across the parameter space, which in turn makes modeling
easier.

B. Measuring eccentricity and mean anomaly

Departure of NR orbits from circularity is measured
by a time-dependent eccentricity and mean anomaly. Ec-
centricity takes values between [0, 1] where the boundary
values correspond to a quasicircular binary and an un-
bound orbit [89], respectively. Mean anomaly, on the
other hand, is bounded by [0, 2π). While it may seem
most natural to estimate orbital parameters from the BH
trajectories, this task is complicated by the fact that any
such measurement will be impacted by the gauge condi-
tions chosen by the NR simulation. We instead choose
to estimate eccentricity and anomaly parameters directly
from the waveform data at future null infinity.

1. Measuring eccentricity

Various methods to extract the eccentricity from NR
simulations have been proposed in the literature [63, 90–
92]. As the eccentricity evolves during the binary’s or-
bit [23], these methods use dynamical quantities such as
some combination of the (2, 2) mode’s amplitude, phase,
or frequency. All of these methods reduce to the eccen-
tricity parameter in the Newtonian limit. The estimated
value of the eccentricity may differ slightly depending on
the method used and the noise in the numerical data.
However, as long as they provide a consistent measure-
ment of eccentricity that decays monotonically with time,
one can use any of the eccentricity estimators for con-
structing a surrogate waveform model. For this work,
we use the following definition of eccentricity based on
orbital frequency [93]:

e(t) =
√
ωp(t)−

√
ωa(t)√

ωp(t) +
√
ωa(t)

, (4)

where ωa and ωp are the orbital frequencies at apocenter
(i.e. point of furthest approach) and pericenter (i.e. point
of closest approach), respectively. Unlike several other
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Figure 1. Time evolution of the eccentricity e(t) (upper panel)
and the orbital frequency ωorb(t) (lower panel) for NR Simula-
tion SXS:BBH:2304. ωp and ωa denote, respectively, the the
orbital frequency at pericenter (local maxima, cyan circles)
and apocenter passages (local minima, green circles). From
this data we construct spline interpolants to obtain ωp(t) (cyan
curve) and ωa(t) (green curve). The eccentricity is then esti-
mated using Eq. (4). The red dashed vertical line corresponds
to the reference time tref = −5500M at which the surrogate
model is parameterized.

eccentricity estimators proposed in literature [63, 90–92],
the one defined in Eq. (4) is normalized and reduces to
the eccentricity parameter in the Newtonian limit at both
low and high eccentricities [45].

We first compute the orbital frequency,

ωorb = dφorb

dt
, (5)

where φorb is the orbital phase inferred from the (2,2)
mode (cf. Eq. (14)), and the derivative is approximated
using second-order finite differences. We then find the
times where ωorb passes through a local maxima (minima)
and associate those to pericenter (apocenter) passages,
to obtain ωp (ωa). We find that using the local max-
ima/minima of the amplitude of the (2, 2) mode to iden-
tify the pericenter/apocenter times leads to a consistent
value for the eccentricity. We then interpolate ωp and ωa
onto the full time grid using cubic splines. This gives us
ωp(t) and ωa(t), which are used in Eq. (4).

Figure 1 shows an example of the measured eccentricity
for the NR simulation SXS:BBH:2304. We see that our
method provides a smooth, monotonically decreasing e(t).
The estimate become unreliable near merger where finding
local maxima/minima in ωorb becomes problematic as the
orbit transitions from inspiral to plunge. The estimate
also becomes problematic whenever the eccentricity is
extremely small, thereby preventing the appearance of an
identifiable local maxima/minima. This does not affect
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Figure 2. Time evolution of the mean anomaly l(t) (upper
panel) and the orbital frequency ωorb(t) (lower panel) for the
NR Simulation SXS:BBH:2304. Green dashed vertical lines
indicate the times for pericenter passages. The anomaly l(t)
grows linearly with time over [0, 2π) in between two successive
pericenters. The red dashed vertical line corresponds to the
reference time tref = −5500M at which the surrogate model
is parametrized.

our modeling, however, as we only require an eccentricity
value at a reference time while the binary is still in the in-
spiral phase. We select a reference time of tref = −5500M
and parameterize our waveform model by

eref = e(tref) . (6)

While estimating eref , we include the data segment slightly
before tref as this allows us to interpolate, rather than
extrapolate, when constructing e(t) in Eq. (4).

2. Measuring mean anomaly

In the Newtonian context, the mean anomaly l of an
eccentric orbit is defined as

l ≡ 2π t− t0
P

, (7)

where t0 is a time corresponding to the previous pericenter
passage and P is the radial period, which is defined to be
the time between two successive pericenter passages. In
the Newtonian case P is a constant, but in GR it changes
as the binary inspirals. However, one can continue to use
Eq. (7) as a meaningful measurement of the radial oscil-
lation’s phase for the purpose of constructing a waveform
model [53].
For each NR waveform, we compute the times for

all pericenter passages using the same procedure as in
Sec. III B 1. We divide the time array into different orbital
windows defined as [tperi

i , tperi
i+1), where tperi

i is the time for
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ith pericenter passage. The orbital period in each window
is given by Pi = tperi

i+1 − t
peri
i , and the mean anomaly by

li(t) = 2π t− t
peri
i

Pi
. (8)

Note that each li(t) grows linearly with time over [0, 2π)
for the window [tperi

i , tperi
i+1). To obtain the full l(t), we

simply join each li(t) for consecutive orbits. Finally, the
value for mean anomaly parameterizing our waveform
model is then simply the evaluation of the mean anomaly
at tref = −5500M .

lref = l(tref) . (9)

Figure 2 shows an example application of our method
to estimate the mean anomaly of the NR simulation
SXS:BBH:2304.

3. Targeted parameter space

In Fig. 3, we show the measured values for eccentricity
and mean anomaly at tref for all 47 NR waveforms, which
leads to the following 2d parameter space for our model:

• eccentricity: eref ∈ [0, 0.2];

• mean anomaly: lref ∈ [0, 2π).

Fig. 3 shows a large gap in the parameter space, which
reflects an inherent limitation in our current approach
to achieve target eccentricity parameters from the initial
data. The method we use to construct initial orbital pa-
rameters [71] seeks to achieve target values of (eref , lref)
at a time 500M after the start of the simulation. The
initial orbital frequency is chosen such that time to merger
is 6000M , as predicted by a leading-order PN calcula-
tion. Unfortunately, this is only approximate, leading to
different merger times for different simulations. Conse-
quently, when we estimate the eccentricity parameters
at tref = −5500M , this is no longer a fixed time from
the start of the simulation. The eccentricity parameters
evolve differently for different simulations during this time,
leading to the clustering in Fig. 3. In the future, we plan
to resolve this using a higher order PN expression, or an
eccentric waveform model [54–56] to predict the time to
merger.

C. Waveform data decomposition

Building a surrogate model becomes more challenging
for oscillatory and complicated waveform data. One so-
lution is to transform or decompose the waveform data
into several simpler “waveform data pieces” that also vary
smoothly over the parameter space. These simpler data
pieces can then be modeled more easily and recombined
to get back the original waveform. Successful decompo-
sition strategies have been developed for quasi-circular
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Figure 3. The parameter space covered by the 47 NR wave-
forms (circle markers) used in the construction of our surrogate
model. The axes show the eccentricity and mean anomaly
values at tref . We also show the dependence of the maximum
(over the sky of the source frame) flat-noise mismatches on the
parameters eccentricity and mean anomaly (cf. Sec. IVA2).
The colors indicate the maximum mismatch, which systemati-
cally increases near the high eccentricity boundary where few
training data points are available.

NR surrogates [7–10, 13]. In order to develop similar
strategies for eccentric waveform data, we have pursued a
variety of options. We now summarize the most successful
decomposition technique we have tried, while relegating
some alternatives to Appendix A.

1. Decomposing the quadrupolar mode h22

The complex (2, 2) waveform mode,

h22 = A22 e
−iφ22 , (10)

can be decomposed into an amplitude, A22, and phase,
φ22. For non-precessing systems in quasicircular orbit,
A22 and φ22 are slowly varying functions of time, and
have therefore been used as waveform data pieces for
many modeling efforts. For eccentric waveforms, however,
both amplitude and phase show highly oscillatory mod-
ulations on the orbital time scale (cf. Figs. 1 and 2 for
the frequency, which is a time-derivative of the phase).
This demands further decomposition of the waveforms
into even simpler data pieces. One natural solution could
have been to build interpolated functions of the local
maxima and minima of A22 and φ22. The secular trend
of these functions can then be subtracted out from the
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original amplitude and phase. The resulting residual
amplitude and phase data may be easier to model. Un-
fortunately, as mentioned in Sec. III B 1, finding the local
maxima/minima becomes problematic near the merger.
We instead follow a simpler approach whereby the

amplitude and phase of a quasicircular q = 1, nonspinning
NR waveform (SXS:BBH:1155) is used as a proxy for
the secular trend of the amplitude and phase. We then
compute the residual amplitude and phase,

∆A22 = A22 −A0
22, (11)

∆φ22 = φ22 − φ0
22, (12)

where A0
22 and φ0

22 are the amplitude and phase of
the noneccentric waveform, respectively, which have
been aligned according the same procedure outlined in
Sec. IIIA. In the upper-left panel of Fig. 4, we show
the amplitude of an eccentric waveform (SXS:BBH:2304)
along with the amplitude of its noneccentric counterpart
(SXS:BBH:1155) which traces the secular trend of the
nonmonotonically increasing eccentric amplitude. The dif-
ference of these two amplitudes, ∆A22, is then plotted in
the lower-left panel. ∆A22 is simpler to model than A22,
as it isolates the oscillatory component1 of A22. Similarly,
in the right panels of Fig. 4, we show the phase evolu-
tion of the same eccentric waveform (SXS:BBH:2304),
its noneccentric counterpart (SXS:BBH:1155), and their
difference ∆φ22 which isolates the oscillatory component
of φ22. Note that noneccentric waveform data is plenti-
ful [77] and accurate surrogate models have been built
for noneccentric NR waveforms [10, 13]. So extending the
residual amplitude and phase computation to spinning,
unequal-mass systems is straightforward. For instance
the surrogate model of Ref. [10] can be used to generate
A0

22 and φ0
22 for generic aligned-spin systems.

2. Decomposing the higher order modes

In this paper, we model the quadrupolar mode and
the higher-order modes differently. For h22, we model
data pieces closely associated with the amplitude and
phase as described above. On the other hand, for higher
order modes, we first transform the waveform into a
co-orbital frame in which the waveform is described by
a much simpler and slowly varying function. This is
done by applying a time-dependent rotation given by the

1 In fact, the relatively simple oscillatory behavior of ∆A22 suggests
the use of a Hilbert transform for further simplification. However,
we found that this does not improve the accuracy of our model.
Such further simplifications, may become necessary for larger
eccentricities than considered in this work, as the modulations
will be more pronounced.

instantaneous orbital phase:

hC`m = h`m eimφorb , (13)

φorb = φ22

2 , (14)

where φ22 is the phase of the (2, 2) mode (cf. Eq. (10)),
φorb is the orbital phase, and hC`m represents the complex
modes in the co-orbital frame.
We use the real and imaginary parts of hC`m as our

waveform data pieces for the nonquadrupole modes. As
shown in Fig. 5, the hC`m data have less structure, making
them easier to model. We find that using quasicircular
hC`m to subtract off the secular trend does not provide
any modeling advantage. We, therefore, model the real
and imaginary parts of hC`m without any further data
decomposition.

3. Summary of waveform data pieces

To summarize, the full set of waveform data pieces we
model is as follows: ∆A22, ∆φ22 for the (2,2) mode, and
real and imaginary parts of hC`m for the (3,2) and (4,4)
modes.

D. Building the waveform model

We decompose the inertial frame waveform data into
many waveform data pieces as summarized in Sec. III C 3.
For each of these data pieces, we now build a surrogate
model using reduced basis, empirical interpolation, and
parametric fits across the parameter space. The detailed
procedure is outlined in Refs. [5, 9], which we only briefly
describe here.
For each waveform data piece, we employ a greedy

algorithm to construct a reduced basis [94] such that the
projection errors (cf. Eq. (5) of Ref. [9]) for the entire
data set onto this basis are below a given tolerance. We
use a basis tolerance of 10−2 radians for ∆φ22 , 1.5×10−3

for ∆A22 and 2 × 10−5 for the real part of hC32. For all
other data pieces, basis tolerance is set to 5× 10−5.
These choices are made so that we include sufficient

number of basis functions for each data piece [9 for ∆A22,
12 for ∆φ22, 7 (5) for the real (imaginary) part of hC32
and 10 (6) for the real (imaginary) part of hC44] to cap-
ture the underlying physical features in the simulations
while avoiding over fitting. We perform additional visual
inspection of the basis functions to ensure that they are
not noisy in which case modeling accuracy can become
comprised (cf. Appendix B of Ref. [9]).
The next step is to construct an empirical interpolant

in time using a greedy algorithm which picks the most
representative time nodes [5, 95–97]. The number of the
time nodes for each data piece is equal to the number of
basis functions used. The final surrogate-building step is
to construct parametric fits for each data piece at each
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Figure 4. Example decomposition of the amplitude and phase of the (2, 2) mode. Upper left: Amplitude A22 of the eccentric wave-
form SXS:BBH:2304 (with eccentricity eref = 0.181) along with the amplitude A0

22 of the noneccentric waveform SXS:BBH:1155.
Lower left: The residual amplitude ∆A22 = A22 −A0

22. Upper right: Phase φ22 of the eccentric waveform SXS:BBH:2304 and
the phase φ0

22 of the noneccentric waveform SXS:BBH:1155. Lower right: The residual phase ∆φ22 = φ22 − φ0
22. In this work we

model ∆A22 and ∆φ22

of the empirical time nodes across the two-dimensional
parameter space {eref , lref}. We do this using the Gaussian
process regression (GPR) fitting method as described in
Refs. [87, 98].

E. Evaluating the waveform surrogate

To evaluate the NRSur2dq1Ecc surrogate model, we
provide the eccentricity eref and mean anomaly lref as
inputs. We then evaluate the parametric fits for each
waveform data pieces at each time node. Next, the empir-
ical interpolant is used to reconstruct the full waveform
data pieces (cf. Sec. III C 3).

We compute the amplitude and phase of the (2, 2) mode,

AS22 = ∆AS22 +A0
22, (15)

φS22 = ∆φS22 + φ0
22, (16)

where ∆AS22 ≈ ∆A22 and ∆φS22 ≈ ∆φ22 are the surrogate
models for ∆A22 and ∆φ22 respectively while A0

22 and
φ0

22 are the amplitude and phase of the quasicircular
NR waveform used in the decompositions [cf. Eqs. (11-
12)]. We obtain the (2,2) mode complex strain as hS22 =
AS22 e

−iφS
22 .

For the nonquadrupole modes, we similarly evaluate
the surrogate models for the real and imaginary parts
of the co-orbital frame waveform data pieces hC,S`m ≈ hC`m
and treat it as hC`m. Finally, we use Eqs. (10), (13), and
(14) to obtain the surrogate prediction for the inertial
frame strain hS`m for these modes.

F. Building the remnant surrogate

In addition to the waveform model, we also construct
the first model for the remnant quantities of eccentric
BBHs. The new remnant model, NRSur2dq1EccRemnant,
predicts the final mass mf and the component of the
final spin, χfz, along the orbital angular momentum di-
rection. The remnant model takes eccentricity eref and
mean anomaly lref as its inputs and maps to the final
state of the binary. The final mass and spin fits are also
constructed using the GPR fitting method as described
in Refs. [87, 98].

IV. RESULTS

In this section we demonstrate the accuracy of
NRSur2dq1Ecc and NRSur2dq1EccRemnant by comparing
against the eccentric NR simulations described in Sec. II.
We do this by performing a leave-one-out cross-validation
study. In this study, we hold out one NR waveform from
the training set and build a trial surrogate from the re-
maining 46 eccentric NR waveforms. We then evaluate
the trial surrogate at the parameter value corresponding
to the held out data, and compare its prediction with the
highest-resolution NR waveform. We refer to the errors
obtained by comparing against the left-out NR waveforms
as cross-validation errors. These represent conservative er-
ror estimates for the surrogate models against NR. Since
we have 47 eccentric NR waveforms, we build 47 trial
surrogates for each error study. We compare these errors
to the NR resolution error, estimated by comparing the
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Figure 5. The waveform modes for NR Simulation
SXS:BBH:2304 (eref = 0.181) are shown. The top panel
shows the dominant (2, 2) mode in the inertial frame. Two
higher-order modes (3, 2) and (4, 4) in the co-orbital frame
are shown in the middle and lower panels respectively. The
waveform is aligned such that the peak of the amplitude occurs
at t = 0 and the orbital phase is zero at tref = −5500M .

two highest available NR simulations.

A. NRSur2dq1Ecc errors

1. Time domain error without time/phase optimization

In order to quantify the accuracy of NRSur2dq1Ecc, we
first compute the normalized L2-norm between the NR
data and surrogate approximation

E [h , h̃ ] = 1
2

∑
`,m

∫ t2
t1
|h`m(t)− h̃`m(t)|2dt∑

`,m

∫ t2
t1
|hlm(t)|2dt

, (17)

where h(t) and h̃(t) correspond to the complex strain for
NR and NRSur2dq1Ecc waveforms, respectively. Here, t1
and t2 denote the start and end of the waveform data. As
the NR waveforms are already aligned in time and phase,
the surrogate reproduces this alignment. Therefore, we
compute the time-domain error E without any further
time/phase shifts.
In Fig. 6, we report both the full waveform and indi-

vidual mode errors for NRSur2dq1Ecc. For comparison,
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Figure 6. Time-domain leave-one-out errors E , defined in
Eq. (17), for the full waveform as well as the individual modes
considered in the model. For comparison, we also show the
NR error between the two highest resolutions. The largest
errors are found near the parameter domain’s boundary where
the trial surrogate, built as part of the cross-validation study,
is extrapolating.

we also show the NR resolution errors. When comput-
ing the full waveform error we use all modes included
in the surrogate model (`,m) = (2, 2), (3, 2), (4, 4) in
Eq. (17). To compute errors for individual modes, we
restrict the sum in Eq. (17) to only the mode of inter-
est. The NRSur2dq1Ecc errors are comparable to the NR
errors in Fig. 6.
However, we find that the surrogate errors have an

extended tail around two orders of magnitude larger than
the largest NR mismatch. While this could imply over-
fitting, we find that highest mismatches correspond to the
parameter space adjacent to the higher eccentricity eref
boundary where only few (to none) training waveforms
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Figure 7. Left panel: Flat noise mismatch between the NRSur2dq1Ecc model (following the leave-one-out validation procedure)
and the highest-resolution NR waveform data. For comparison, we also show the NR resolution error, obtained by comparing
the two highest available resolutions. Right panel: NRSur2dq1Ecc (validation) mismatches computed using the advanced LIGO
design sensitivity noise curve, as a function of the total mass of the binary. For comparison, we also show the NR mismatches.
For each mass, the distribution of mismatches are shown as a smoothed vertical histogram (or a violin). The histograms are
normalized so that all violins have equal width. The largest errors are found near the parameter domain’s boundary where the
trial surrogate, built as part of the cross-validation study, is extrapolating.

are used. As will be discussed in Sec. IVA2, the sparsely
sampled region of the training domain around (eref =
0.2, lref . 2) leads to this extended high-error tail in
Fig. 6.

We further note in Fig. 6 that the highest error in each
mode corresponds to the same point in the parameter
space indicating consistency in our modeling. Further-
more, as we only deal with mass ratio q = 1 waveforms,
the contribution of the higher modes are expected to be
negligible compared to the dominant (2, 2) mode (see for
example, Ref. [99]). Therefore, even though the (3, 3)
and (4, 4) modes have larger relative errors compared to
the (2, 2) mode, their contribution to the total error is
much smaller. This can be verified by comparing the full
waveform errors to the (2,2) mode errors in Fig. 6.

2. Frequency domain mismatch with time/phase
optimization

In this section, we estimate leave-one-out cross-
validation errors by computing mismatches between the
NR waveform and the trial surrogate waveform in the fre-
quency domain. The frequency domain mismatch between
two waveforms, h1 and h2 is defined as:

〈h1, h2〉 = 4Re
∫ fmax

fmin

h̃1(f)h̃∗2 (f)
Sn(f) df, (18)

where h̃(f) indicates the Fourier transform of the com-
plex strain h(t), ∗ indicates a complex conjugation, Re
indicates the real part, and Sn(f) is the one-sided power
spectral density of a GW detector.

Before transforming the time domain waveform to the

frequency domain, we first taper the time domain wave-
form using a Planck window [100], and then zero-pad to
the nearest power of two. The tapering at the start of the
waveform is done over 1.5 cycles of the (2, 2) mode. The
tapering at the end is done over the last 20M . Once
we obtain the frequency domain waveforms, we com-
pute mismatches following the procedure described in
Appendix D of Ref. [9]. The mismatches are optimized
over shifts in time, polarization angle, and initial orbital
phase. We compute the mismatches at 37 points uni-
formly distributed on the sky of the source frame, and
use all available modes for the surrogate model.

We consider a flat noise curve Sn(f) = 1 as well as the
Advanced-LIGO design sensitivity Zero-Detuned-HighP
noise curve from Ref. [101]. We take fmin to be the
frequency of the (2, 2) mode at the end of the initial
tapering window while fmax is set at 4fpeak

22 , where fpeak
22

is the frequency of the (2, 2) mode at its peak. This
ensures that the peak frequencies of all modes considered
in our model are captured well, and we have confirmed
that our mismatch values do not change for larger values
of fmax. Note that when computing mismatches using
Advanced LIGO noise curve, for masses below ∼ 70M�,
fmin is greater than 20Hz, meaning that the signal starts
within the detector sensitivity band.

The mismatches computed using the flat noise curve are
shown in the left panel of Fig. 7. The histograms include
mismatches for all 47 NR waveforms and source-frame sky
locations. We find that the typical surrogate mismatches
are 10−5− 10−3, which are comparable to but larger than
the NR errors. As an example, Fig. 8 shows the surrogate
and NR waveforms for the case that leads to the largest
mismatch in the left panel of Fig. 7.
In Fig. 3, we show the dependence of the mismatches
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Figure 8. Real part of the waveform modes for the case that results in the largest flat noise mismatch (∼ 0.04) for NRSur2dq1Ecc
(red dashed line) in the left panel of Fig 7. We also show the corresponding NR waveform, SXS:BBH:2308 (black solid line).
The parameter values for this waveform are: eref = 0.176 and lref = 2.51. Note that this plot is generated using a trial surrogate
that was not trained using this NR waveform data.

on the parameter space. It can be easily recognized
that the surrogate yields largest errors at and around
(eref = 0.2, lref . 2) where the training grid becomes
sparse. Further, when these sparse data points themselves
are left out when computing the cross-validation errors,
the surrogate is effectively extrapolating in parameter
space. This indicates that the surrogate accuracy could
be improved by adding new NR simulations in this high-
eccentricity region. However, achieving target values of
eref and lref has proven difficult. We return to this issue
in the conclusions.
The right panel of Fig. 7 shows the mismatches com-

puted using advanced LIGO design sensitivity noise
curve [101] for different total masses M of the binary. For
each M , we compute the mismatches for all 47 NR wave-
forms and source-frame sky locations and show the distri-
bution of mismatches using vertical histograms known as
violin plots. Over the mass range 20− 180M�, the sur-
rogate mismatches are at the level of ∼ 10−4 − 10−3 but
with an extending tail as before. However, we note that
these errors are typically smaller than the mismatches for
other eccentric waveform models [54–56].

B. Mode mixing

NR waveforms are extracted as spin-weighted spher-
ical harmonic modes [102, 103]. However, during the
ringdown, the system can be considered a single Kerr
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t (M)
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10−1

|h l
m
|

(2,2)

(3,2)
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Figure 9. The absolute values of different spherical-harmonic
modes are shown as dashed (solid) curves for the surrogate
(NR) for SXS:BBH:2308, for which the surrogate produces
largest flat noise mismatch (∼ 0.04). The parameter values for
this waveform are: eref = 0.176 and lref = 2.51. Mode mixing
for the (3, 2) mode is clearly seen in the ringdown signal of the
NR waveform and is accurately reproduced by the surrogate.

black hole perturbed by quasinormal modes; perturba-
tion theory tells us that the angular eigenfunctions for
these modes are the spin-weighted spheroidal harmon-
ics [104, 105]. A spherical harmonic mode h`m can be
written as a linear combination of all spheroidal harmonic
modes with the same m index. During the ringdown, each
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Figure 10. Leave-one-out error histograms of NRSur2dq1EccRemnant (red) for the remnant mass mf (left) and remnant spin χfz

(right). For comparison we plot the NR errors (black), estimated by comparing the two highest resolution NR simulations, and
errors for the noneccentric model NRSur3dq8cRemnant (green).

(spheroidal-harmonic) quasinormal mode decays exponen-
tially in time, but each spherical-harmonic mode has a
more complicated behavior because it is a superposition
of multiple spheroidal-harmonic modes (of the same m
index) with different decay rates. This more complicated
behavior is referred to as mode mixing, since power flows
between different spherical-harmonic modes [106]. This
mixing is particularly evident in the (3, 2) mode as sig-
nificant power of the dominant (2, 2) spherical-harmonic
mode can leak into the (3, 2) spherical-harmonic mode.
As the surrogate accurately reproduces the spherical har-
monic modes from the NR simulations, it is also expected
to capture the effect of mode mixing without any addi-
tional effort [10]. We demonstrate this for an example
case in Fig. 9 where we plot the amplitude of individual
modes of the waveform during the ringdown. We show
that the mode mixing in the (3, 2) mode is effectively
recovered by the surrogate model.

C. NRSur2dq1EccRemnant errors

In addition to the waveform surrogate, we also build
a remnant surrogate model, NRSur2dq1EccRemnant, that
predicts the mass and spin of the final BH left behind
after the merger. This is the first such model for eccen-
tric BBHs (but see e.g. Refs. [66, 67]). Figure 10 shows
the cross-validation errors of NRSur2dq1EccRemnant in
predicting the remnant mass and spin. We find that
NRSur2dq1EccRemnant can predict the final mass and
spin with an accuracy of . 5× 10−4M and . 2 × 10−3

respectively. We further compute the errors for a nonec-
centric remnant model, NRSur3dq8Remnant [87], when
compared against the same eccentric NR simulations,
finding that errors in NRSur3dq8Remnant are comparable
with NRSur2dq1EccRemnant errors. This suggests that
noneccentric remnant models may be sufficient for equal-
mass nonspinning binaries with eccentricities eref ≤ 0.2.

However, we expect such models to disagree with eccen-
tric simulations in the more general case of unequal-mass,
spinning binaries (see for e.g. Ref. [45]).
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Figure 11. Mismatches against NR for the NRSur2dq1Ecc+
model (a simple extension of NRSur2dq1Ecc) when the surro-
gate is evaluated beyond its training parameter range (q = 1).
The mismatches are shown as a function of the binary total
mass M (at ι = π/3, ϕ0 = 0.0), and are computed using
the advanced LIGO design sensitivity noise curve. We show
mismatches for q = 2 (q = 3) as solid lines (dashed lines). We
use star markers to denote waveforms with eref smaller than
∼ 0.05 and diamond markers for the rest. All eccentricity
values are computed at a reference time of tref = −2000M .
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Figure 12. We show the NRSur2dq1Ecc+ prediction (red dashed line) beyond training range (q = 1) of the surrogate for the
case that results in the largest mismatch (Fig. 11) in the region defined by eref (at tref = −2000M) smaller than ∼ 0.05. We
also show the corresponding NR waveform SXS:BBH:1371 (black solid line). The parameters for this waveform are: q = 3,
eref = 0.050 and lref = 2.45 (at tref = −2000M).

D. Extending NRSur2dq1Ecc to comparable mass
systems

We now assess the performance of NRSur2dq1Ecc when
evaluated beyond its training parameter range (q = 1). To
generate surrogate predictions at a given (q, eref , lref), we
first evaluate NRSur2dq1Ecc at (q=1, eref , lref) and refer
to the output as hSlm(q= 1, eref , lref). We then evaluate
the noneccentric surrogate model NRHybSur3dq8 [10] at
the given mass ratio q and mass ratio q = 1, and refer to
the output as h0

`m(q) and h0
`m(q = 1). We then compute

the difference in amplitude and phase between hSlm(q=
1, eref , lref) and h0

`m(q = 1):

∆ASlm(q=1, eref , lref)
= ASlm(q=1, eref , lref)−A0

lm(q=1) , (19)

∆φSlm(q=1, eref , lref)
= φSlm(q=1, eref , lref)− φ0

lm(q=1). (20)

Even though these amplitude and phase differences are
computed at q = 1, we treat them as a proxy for the
modulations due to eccentricity at any q. We then add
these modulations to the amplitude and phase of h0

`m(q),
the noneccentric surrogate model evaluated at the given
q, to get the full amplitude and phase:

ASlm(q, eref , lref)
= ∆ASlm(q=1, eref , lref) +A0

lm(q) , (21)

φSlm(q, eref , lref)
= ∆φSlm(q=1, eref , lref) + φ0

lm(q). (22)

The final surrogate prediction, which we view as a new,
simple model NRSur2dq1Ecc+, is then:

hS`m(q, eref , lref) = ASlm(q, eref , lref)e−iφS
lm(q,eref ,lref). (23)

To assess the accuracy of NRSur2dq1Ecc+ we compare
against eight publicly available eccentric NR simulations
with q = 2 and q = 3 [53, 77]. These NR waveforms are
shorter in length than the ones used to train our surrogate
model. To ensure fair comparison between surrogate
predictions and NR waveforms, we build a test surrogate2

which is parameterized by eref and lref at tref = −2000M .
In Fig. 11, we show mismatches computed using the

advanced LIGO design sensitivity noise curve, between
the NRSur2dq1Ecc+ model and eccentric NR data at q =
2, 3. We include all modes available in the model while
computing the mismatch. For simplicity, we only consider
a single point in the source-frame sky, with an inclination
angle of π/3. For eref (at tref = −2000M) smaller than

2 While building the test surrogate, we exclude SXS:BBH:2294
(eref = 7 × 10−4, lref = 5.766 at tref = −5500M) from the
training set as the binary circularizes enough by t = −2000M
such that our eccentricity estimator defined in Eq.(4) becomes
unreliable.
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Figure 13. Importance of mean anomaly for waveform modeling and data analysis. Left panel: Flat noise mismatch (optimized
over time, phase and polarization angle shifts) between NRSur2dq1Ecc predictions with lref = 0.0 and lref = ∆lref , at fixed
q = 1 and eref = 0.1. While the mismatch, as expected, is ∼ 0 for ∆lref = 0.0 and ∆lref = 2π, it reaches values ∼ 0.1 near
∆lref = π. Right panel: The (2, 2) amplitude of the waveforms leading to the maximum mismatch, i.e. lref = 0 and lref = π.
These differences cannot be accounted for by a time or phase shift, therefore, mean anomaly is an important parameter to
include for waveform modeling and data analysis of eccentric binaries.

∼ 0.05, mismatches are always smaller than 10−2. As we
increase eref (at tref = −2000M) to 0.09, the mismatches
become significantly worse, especially for q = 3, reaching
values∼ 10−1. As an example, Fig. 12 shows the surrogate
prediction (and NR waveform) for the case that leads
to the largest mismatch in Fig. 11 with eref (at tref =
−2000M) smaller than ∼ 0.05.

This suggests that our scheme to extend the surrogate
model to comparable mass systems produces reasonable
waveforms for small eccentricities. However, we advise
caution with extrapolation-type procedures in general.

E. Importance of mean anomaly for data analysis

Many existing waveform models [54–57] for eccentric
binaries parameterize eccentric characteristics of the wave-
form by only one parameter eref while keeping lref fixed.
We, however, use both eref and lref as parameters in our
model. We find that not allowing lref as an indepen-
dent parameter results in large modeling error, indicating
that the mean anomaly is important to consider when
modeling the GW signal from eccentric binaries.

To demonstrate the importance of mean anomaly also
in data analysis, we present a simple study. We gener-
ate NRSur2dq1Ecc predictions hS`m(q = 1, eref = 0.1, lref)
with lref ∈ [0.0, 2π]. The left panel of Fig. 13 shows mis-
matches between the waveform at lref = 0 and various
lref , parametrized by ∆lref = lref − 0. For simplicity, we
only consider a single point in the source-frame sky, at
ι = π/3, ϕ0 = 0.0. As expected, we find that ∆lref = 0.0
and ∆lref = 2π produce identical waveforms. However,
the mismatch reaches a value of ∼ 0.1 at ∆lref = π. As we
already account for allowed time and frame shifts when
computing the mismatch, ignoring this difference can lead
to modeling errors or biased parameter estimation. In the
right panel of Fig. 13, we show the waveform amplitude

for the cases with lref = 0 and lref = π. The clear differ-
ences in the amplitude reinforce our assertion that this
mismatch cannot be accounted for by a time or frame
shift.

V. CONCLUSION

We present NRSur2dq1Ecc, the first eccentric NR sur-
rogate waveform model. This model is trained on 47
NR waveforms of equal-mass nonspinning BBH systems
with eccentricity eref ≤ 0.2, defined at a reference time
tref = −5500M before the waveform peak. The model
includes the (2, 2), (3, 2) and (4, 4) spin-weighted spher-
ical harmonic modes. Due to the symmetries of the
equal-mass, nonspinning systems considered here, this
is equivalent to including all ` ≤ 3 and (4,±4) modes,
except the m = 0 modes. This is the first eccentric BBH
model that is directly trained on eccentric NR simulations
and does not require that the binary circularizes before
merger. We also present NRSur2dq1EccRemnant, the first
NR surrogate model for the final BH properties of eccen-
tric BBH mergers. This model is also trained on the same
set of simulations. We use Gaussian process regression
to construct the parametric fits for both models. Both
NRSur2dq1Ecc and NRSur2dq1EccRemnant will be made
publicly available in the near future.

Through a leave-one-out cross-validation study, we show
that NRSur2dq1Ecc accurately reproduces NR waveforms
with a typical mismatch of ∼ 10−3. We further demon-
strate that our remnant model, NRSur2dq1EccRemnant,
can accurately predict the final mass and spin of the
merger remnant with errors . 5×10−4M and . 2×10−3

respectively. We showed that despite being trained on
equal-mass binaries, NRSur2dq1Ecc can be reasonably ex-
tended up to mass ratio q ≈ 3 with mismatches ' 10−2

for eccentricities eref . 0.05 at tref = −2000M . Finally,
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we demonstrate that the mean anomaly, which is often
ignored in waveform modeling and parameter estimation
of eccentric binaries, is an important parameter to include.
Exclusion of mean anomaly can result in poor modeling
accuracy and/or biased parameter inference.

The NR simulations used for this work were performed
using the Spectral Einstein Code (SpEC) [69]. SpEC’s
development efforts have been primarily focused on evo-
lutions of binary black hole systems in quasi-circular or-
bits [77]. To efficiently generate accurate training data for
high eccentricity systems, it may be necessary to improve
certain algorithmic subroutines. For example, as noted in
Sec. III B 3, we found it difficult to achieve target values
of (eref , lref) at a reference time before merger. We also
noticed that the waveform’s numerical error was notice-
ably larger near pericenters, suggesting better adaptive
mesh refinement algorithms [107] may be necessary for
highly eccentric simulations.

We have also explored several data decomposition tech-
niques and parametrizations for building eccentric NR
surrogate models, which can guide strategies for future
models. Our final framework for building eccentric NR
surrogates is quite general, and we expect that it can be
applied straightforwardly to higher dimensional param-
eter spaces including unequal masses and aligned-spins.
We leave these explorations to future work.

ACKNOWLEDGMENTS

We thank Geraint Pratten for comments on the
manuscript. We thank Nur Rifat and Feroz Shaik for
helpful discussions. We thank Katerina Chatziioannou
for the implementation of an improved eccentricity con-
trol system used in many of our simulations. T.I. is
supported by NSF grant PHY-1806665 and a doctoral fel-
lowship provided by UMassD Graduate Studies. V.V. is
supported by a Klarman Fellowship at Cornell, the Sher-
man Fairchild Foundation, and NSF grants PHY–170212
and PHY–1708213 at Caltech. J.L. is supported by the
Caltech Summer Undergraduate Research Fellowship Pro-
gram and the Rose Hills Foundation. S.F. is supported
by NSF grants No. PHY-1806665 and No. DMS-1912716.
G.K. acknowledges research support from NSF Grants
No. PHY-2106755 and No. DMS-1912716. M.S. is sup-
ported by Sherman Fairchild Foundation and by NSF
Grants PHY-2011961, PHY-2011968, and OAC-1931266
at Caltech. D.G. is supported by European Union H2020
ERC Starting Grant No. 945155–GWmining, Leverhulme
Trust Grant No. RPG-2019-350, and Royal Society Grant
No. RGS-R2-202004. L.K. is supported by the Sherman
Fairchild Foundation, and NSF Grants PHY-1912081 and
OAC-1931280 at Cornell. A portion of this work was
carried out while a subset of the authors were in residence
at the Institute for Computational and Experimental
Research in Mathematics (ICERM) in Providence, RI,
during the Advances in Computational Relativity pro-
gram. ICERM is supported by the National Science

Foundation under Grant No. DMS-1439786. Simulations
were performed on the Wheeler cluster at Caltech, which
is supported by the Sherman Fairchild Foundation and
by Caltech; and on CARNiE at the Center for Scien-
tific Computing and Visualization Research (CSCVR) of
UMassD, which is supported by the ONR/DURIP Grant
No. N00014181255. Computations for building the model
were performed on both CARNiE and Wheeler.

APPENDIX

In this Appendix, we describe various alternate model-
ing strategies we pursued before deciding on the formalism
presented in the main text.

Appendix A: Choice of data decomposition

In this work, we have modeled the amplitude (A22) and
phase (φ22) of the (2, 2) mode by modeling the residual
(∆A22, ∆φ22) of these quantities with respect to a quasi-
circular NR waveform (cf. Sec. III C). Alternatively, one
could instead model the amplitude and frequency (or their
residuals), and then integrate the frequency to obtain the
phase. The frequency of the (2,2) mode is given by

ω22 = dφ22

dt
, (A1)

where φ22 is defined in Eq. (10). The corresponding
residual is given by:

∆ω22 = ω22 − ω0
22, (A2)

where ω0
22 is the frequency of (2, 2) mode for the quasicir-

cular NR waveform.
We, therefore, explore four different data decomposition

strategies for the (2, 2) mode, summarized below:

• Model {A22, φ22} directly.

• Model {∆A22,∆φ22} and then add them to the am-
plitude and phase of the quasicircular NR waveform
to obtain {A22, φ22}.

• Model {A22, ω22} and integrate the frequency data
to get {A22, φ22}.

• Model {∆A22,∆ω22}; add them to the amplitude
and frequency of the quasicircular NR waveforms,
and finally integrate the frequency data to obtain
{A22, φ22}.

In order to explore the effectiveness of these strategies,
we build a separate surrogate model using each strategy.
When building the frequency surrogates (ω22 or ∆ω22)
we use a basis tolerance of 10−3 rad/M . For A22 (φ22)
we use the same tolerance as used for ∆A22 (∆φ22) in
Section IIID. We compute the normalized L2-norm be-
tween the NR data and each surrogate approximation
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Figure 14. Histograms of surrogate errors (defined in Eqs. (17))
for the four different decomposition strategies we consider. We
find that modeling the residual amplitude ∆A22 and residual
phase ∆φ22 yields the least errors.

using Eq. (17). In Fig. 14, we show the surrogate errors
for all four different strategies. We find that modeling the
frequency ω22 or residual frequency ∆ω22 yields at least
two-to-three orders of magnitude larger E than when we
model the phase φ22 or ∆φ22. Furthermore, modeling
the residual amplitude ∆A22 proves to be slightly more
accurate than the case where we model the amplitude A22
directly. Therefore, in the main text, we build surrogate
models of the residual {∆A22,∆φ22} (cf. Sec. III C).

Appendix B: Choice of fit parameterization

When building the surrogate models in main text, fits
across parameter space are required for the waveform
model as well as the remnant model (cf. Sec. III D). These
fits are parameterized by the eccentricity (eref) and mean
anomaly (lref) at the reference time tref . While {eref , lref}
is a natural choice, we also explore the following choices
of parameterizations:

• {eref , lref},

• {eref , sin(lref/2)},

• {log10(1− eref), lref},

• {log10(1− eref), sin(lref/2)},

Here sin(lref/2) is considered because it maps the periodic
parameter lref ∈ [0, 2π) uniquely to the range [0, 1], while
still mapping the physically equivalent points lref = 0
and lref = 2π to the same point (sin(lref/2) = 0). The
same is not true for other possible parameterizations
such as sin(lref), cos(lref), or cos(lref/2). log10(1− eref) is
considered because it flattens the spread in eccentricity,
which can be useful if the eccentricity varies over several
orders of magnitude in the NR dataset.
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Figure 15. Histograms of the error for the full waveform, for
the six different fit parameterizations we consider.

Similarly to the previous section, to explore the effec-
tiveness of these strategies, we build a separate surrogate
model using each strategy. Here, however, we consider all
modes included (`,m) = (2, 2), (3, 2), (4, 4) and evaluate E
errors [cf. Eq. (17)]. In Fig. 15, we show E errors for each
parameterization strategy. We find that while the alter-
native strategies using either log10(1−eref), or sin(lref/2),
or both, may be comparable, none of the them result in
errors smaller than the original choice {eref , lref}. As we
do not achieve a noticeable improvement with these alter-
native parameterizations, we stick to the original choice
{eref , lref} in the main text.
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