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The data from ground based gravitational-wave detectors such as Advanced LIGO and Virgo must be cal-
ibrated to convert the digital output of photodetectors into a relative displacement of the test masses in the
detectors, producing the quantity of interest for inference of astrophysical gravitational wave sources. Both
statistical uncertainties and systematic errors are associated with the calibration process, which would in turn
affect the analysis of detected sources, if not accounted for. Currently, source characterization algorithms either
entirely neglect the possibility of calibration uncertainties or account for them in a way that does not use knowl-
edge of the calibration process itself. We present physiCal, a new approach to account for calibration errors
during the source characterization step, which directly uses all the information available about the instrument
calibration process. Rather than modeling the overall detector’s response function, we consider the individual
components that contribute to the response. We implement this method and apply it to the compact binaries
detected by LIGO and Virgo during the second observation run, as well as to simulated binary neutron stars
for which the sky position and distance are known exactly. We find that the physiCal model performs as well
as the method currently used within the LIGO-Virgo collaboration, but additionally it enables improving the
measurement of specific components of the instrument control through astrophysical calibration.

I. INTRODUCTION

The advanced gravitational-wave (GW) detectors LIGO [1,
2] and Virgo [3] have concluded their third observation run as
of March 2020, reporting the detection of 56 candidate GW
sources [4], most of which, if confirmed, are binary black
holes (BBHs). Owing to planned increases in sensitivity for
LIGO and Virgo, and the addition of the Japanese detector
KAGRA [5] to the global network, the detection rate will be
even higher in the next few years [6]. Having access to a large
number of GW sources will allow for unprecedented measure-
ments of the mass and spin distribution of compact objects, as
well as their formation channels [7]. The potential of detect-
ing many binary neutron star mergers (BNSs) together with
electromagnetic (EM) counterparts opens the way to precise
measurements of the Hubble constant [8–12]. Some of the
detected sources will have high signal-to-noise ratio (SNR),
which would enable precise tests of general relativity and of
the nature of individual objects.

For gravitational-wave astrophysics to fulfill its potential,
one must control all of the (known) sources of systematics. In
this work we focus on instrumental calibration uncertainties.
The complex function that relates the voltage measured at the
output of LIGO and Virgo photodetectors to the strain needed
for astrophysical inference is the response function, R(f). In
the Fourier domain, the relation between these quantities is
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simply

d(f) ≡ ∆L

L
= R(f) v(f) (1)

where v(f) is the photodetector readout, d(f) is the
gravitational-wave strain, ∆L is the differential arm (DARM)
displacement of the mirrors, and L is the nominal length
of the interferometer arms [13]. The calibration process in-
cludes collecting a set of measurements performed on the
detectors to inform a reference model of the response func-
tion, R(model) [14]. This includes tracking the slow time-
dependence of the detector response with respect to that
model [15]; the use of that model to create a near-real-time
data stream is an estimate of d(f) at any time [16]; and char-
acterizing the systematic error and statistical uncertainty in
the model, or equivalently in the data stream used for as-
trophysical analysis [17]. The fundamental reference fidu-
cials for the calibration process are independent laser systems,
called photon calibrators (Pcal), to calibrate LIGO and Virgo
by applying a known radiation pressure directly into the test
masses [14, 18, 19]. Errors, bias, or uncertainty in any part
of this calibration process to develop the estimated strain (in-
cluding that in the Pcal systems) directly affect the strain, and
hence if unaccounted for, bias the estimation of the source pa-
rameters. Ref [20] has shown how the parameters that would
suffer the largest biases are those mostly related to the am-
plitude of GW signals. For compact binaries coalescences
(CBCs), those would be luminosity distance (DL), orbital in-
clination (ι), and sky position. In turn, those parameters are
related to some of the key science goals mentioned above:
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identification of an EM counterpart and cosmology.
Statistical uncertainties and systematic errors in the mea-

surement of the response function result in both amplitude and
phase offsets, so that the model response function at a specific
time and frequency is related to the true response function by:

R(true)(f, t) = (1 + δA(f, t)) eiδφ(f,t)R(model)(f, t) (2)

where δA is the the relative amplitude error and δφ the
phase error. In turn, this affects the GW data strain as:

d(true) = d(model) (1 + δA(f, t)) eiδφ(f,t) (3)

where d(model) is the calibrated data strain produced using
the model response function.

Here we are explicitly reporting a time dependence to stress
that the behavior of GW detectors, and hence their transfer
functions, varies over timescales of minutes [15]. Therefore,
while it is generally a good approximation to treat the re-
sponse function as constant in time (not in frequency) when
analyzing a single CBC event, since its duration will usually
be shorter than 2 minutes (for a BNS detected by advanced
detectors), one should not assume that the response function
is the same throughout an observing run. In fact, the response
function of the LIGO and Virgo detectors is characterized con-
tinuously in a few small frequency bins throughout the run,
and across all frequencies weekly, as a precaution against un-
expected changes [17, 21].

Currently, the results presented by the LIGO-Virgo collab-
oration (LVC) obtained with the LALInference [22] or
Bilby [23, 24] source characterization algorithms marginal-
ize over calibration errors with a spline interpolant informed
by the frequency-dependent 68% credible interval contours of
the systematic error and uncertainty in each response func-
tion [25] (henceforth splineCal method). While that approach
has the advantage of accounting for calibration uncertainties,
it also has some limitations. First, it introduces a signifi-
cant number of nuisance parameters that must be marginalized
over numerically: roughly 20 parameters per interferometer.
Second, the frequencies at which the spline points are
anchored do not use any information about characteris-
tic physical correlation lengths in the instrument (they
are simply chosen uniformly in log space). Third, the
spline marginalization method treats the uncertainties in the
phase and amplitude of the response function as independent
and uncorrelated. Fourth, should any constraints be placed on
the response function through a so called astrophysical cali-
bration (see below) it would be hard or impossible to related
those constraints to specific components of the detector.

In this paper we propose a new approach to account for
uncertainties in the response function, which builds upon
recent progress in measurement and modeling of the re-
sponse function, and does not suffer from the same limita-
tions of the spline approach. We implement the new method,
called “physical calibration” (Henceforth, physiCal) in the
LALInference software and apply it to the CBCs detected
by LIGO and Virgo in their second observing run, as well as
on simulated binary neutron star sources.

The rest of this paper is organized as follows: in Sec. II A
we summarize the measurements and algorithms used to cali-
brate the LIGO instruments; in Sec. II B we present the imple-
mentation of the physiCal method; in Sec. III A and Sec. III B
we report results from the analysis of LIGO-Virgo sources and
simulated signals, respectively; finally in Sec. IV we summa-
rize the main conclusions.

II. METHOD

A. Calibration physical model

While a full description of systematic error and uncertainty
in the calibration of the LIGO detectors is beyond the scope
of this paper, we will review the main points, and refer the
interested reader to Ref. [17] for more details.

In the frequency domain, the complex-valued detector re-
sponse can be written as

R(f) =
1

C(f)
+A(f)D(f). (4)

The sensing function C converts the suppressed DARM resid-
ual displacement1 to digitized photo-detector output signals.
The actuation function A converts the requested digital con-
trol signal to the force applied to the test masses, producing a
control displacement meant to suppress the DARM displace-
ment. The total A function consists of three actuation stages,
the upper intermediate (U), penultimate (P), and test mass (T)
stages in the quadruple suspension [26]. The function D rep-
resents a set of digital, feedback control filters, which can be
assumed as perfectly known. The DARM strain, and thus
the calibrated data in Eq. 1, are reconstructed using the mod-
eled sensing and actuation functions, C(model) and A(model),
in the detector calibration pipeline. Here A(model) denotes
the model of the total A function, in which each stage Aa is
modeled independently (a = U,P, T ). The time-dependent,
frequency-dependent systematic errors on our model of the
response function are written as

ηR =
R(true)

R(model)
, (5)

where R(true) is the true detector response, and
R(model) = 1/C(model) +A(model)D is the modeled re-
sponse [17]. The relative amplitude error and phase error in
Eq. 3 can thus be written as

δA =|ηR| − 1,

δφ =∠ηR.
(6)

where ∠z indicates the phase of the complex number z.
Throughout the observing run, ηR and its associated uncer-
tainty is evaluated at a 1-hour cadence.

1 That is, the residual differential displacement of the mirrors after the con-
trol signal has been applied, see, e.g., Fig. 3 of Ref. [17].
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The models C(model) and A(model) contain many parame-
ters representing the entire DARM control loop, from the ba-
sic properties of signal processing electronics to complex ac-
tuator dynamics. Most parameters can be measured indepen-
dently to high precision, and do not dominantly contribute to
the systematic error and/or uncertainty in R(model). However,
a set of physical parameters related to specific properties of
the instrument must be determined from interferometric mea-
surements taken while the detectors are in the most sensitive,
nominal operational state [17]. These parameters, discussed
as follows, highly depend on the loosely controlled alignment
and thermal state of the detector and may vary slowly over
time. Hence they are difficult to measure and likely to in-
troduce systematic errors in the calibration model. For the
sensing function, we write the physical parameter vector as

λC = [HC , fcc, fs, Q, δτC ] , (7)

where HC is the overall gain of the sensing function, fcc is
the differential coupled-cavity pole frequency, fs and Q are,
respectively, the pole frequency and quality factor of an opti-
cal spring-like response of any detuning between the coupled
Fabry-Pérot arm cavities and signal recycling cavity [27], and
δτC is the residual time delay in C. For the a−th stage of
the actuation function (a = U,P, T ), the physical parameter
vector is

λAa = [Ha, δτa] , (8)

where Ha is the overall gain for the a−th stage actuator, and
δτa is the residual time delay in that stage. Some parameters
in C and A vary slowly over time, on a time-scale of min-
utes to days, due to various physical mechanisms [28]. The
overall gain variation of HC is tracked by a real-valued scalar
factor κC(t). Parameters fcc, fs, and Q in the sensing func-
tion are also time-varying. The variation of Ha (a = U,P, T )
is tracked by scalar factors κU (t), κP (t), and κT (t) for each
corresponding actuation stage. A full description of C and A,
as well as all the time-independent and time-dependent factors
therein is given in Ref. [17].

While R(model) does an excellent job at reproducing
R(true), the residual systematic error ηR and its uncer-
tainty need to be quantified through the frequency-dependent,
time-independent residuals ηC = C(true)/C(model) and
ηAa = A

(true)
a /A

(model)
a , where C(true) and A(true) are the

true sensing and actuation functions inferred from large col-
lections of interferometric measurements, and the subscript a
indexes the actuation stages (a = U,P, T ). This set of residu-
als is computed via Gaussian Process Regression (GPR) [29,
30], by taking into account potential model-agnostic but
physically motivated frequency-dependent correlations.
The posterior results from the GPR indicate the residual er-
rors and uncertainties in the sensing and actuation models. In
a perfect calibration model, ηC , ηAa

, and hence ηR are at unity
in magnitude and zero in phase.

At any given time t, measurements of the various phys-
ical quantities that we have just described and that affect
the response function (which we will collectively refer to
as physiCal parameters from now on) are used to assess the

complex-valued, frequency-dependent systematic error in the
detector response and its associated uncertainty. Using in-
terferometric measurements, we apply Markov Chain Monte
Carlo (MCMC) methods to obtain the posterior probability
density functions (PDFs) of λC and λAa (a = U,P, T ). The
physiCal parameters are estimated jointly within each vector,
i.e., the posterior probability density can be written as

p(λC ,λAU ,λ
A
P ,λ

A
T ) = p(λC)

∏
a∈{U,P,T}

p(λAa ). (9)

The maximum a posteriori values of λC and λAa are used to
form the model functions C(model) and A(model), and thus
R(model). Since λC and λAa are time-varying, the time-
dependent corrections are taken into consideration when con-
structing R(model) for any given analysis time. We use 104

fair draws from the posterior PDFs of λC and λAa to create
a distribution of draws from R as described below. These R
samples, once divided by R(model), yield a posterior distribu-
tion for ηR(f ; t). The generic i−th sample for the inferred
response function posterior reads [17]

Ri(f ; t) = ηPcali

[
1

ηCi
(f)C(λCi ; f ; t)

+ηAi
(f)A(λAi ; f ; t)D(f)

]
. (10)

The samples for the sensing and actuation functions
C(λCi ; f ; t) andA(λAi ; f ; t) are derived from the MCMC pos-
terior distributions of λC and λAa (a = U,P, T ). The samples
ηCi(f) and ηAi(f) are, respectively, drawn from the GPR pos-
terior distributions. Here in Eq. 10, we do not explicitly split
out the three stages in A, and use i to denote the sample in
total A for simplicity. In practice, the samples in each stage
of A are drawn independently. The 1σ uncertainties of the
time-dependent factors applied in C and A at time t are taken
into account. The real-valued scale factor ηPcal accounts for
the systematic error and uncertainty of the photon calibrator,
common to all interferometric measurements in a detector.

The median frequency-dependent value of the 104 samples
from the distribution of ηR(f ; t) represents our best estimate
for the systematic difference between R(true) and R(model)

at time t, and thus the systematic error in the calibrated data
d(f ; t). Meanwhile, the 16th and 84th percentiles represent
the bounds of systematic error and 1σ statistical uncertainty
in the modeled detector response, and thus d(f ; t).

For each of the LIGO detectors, we perform the above pro-
cedure and store to file the 104 posterior samples from the pos-
teriors of the physiCal parameters, together with the resulting
posterior samples for the frequency-dependent response func-
tion, Eq. 10. The Virgo detector does not have as sophisticated
an infrastructure, but the detector response can be modeled in
the same way [31]. The next section describes how these are
used in the source characterization algorithm.
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B. Implementation in source characterization code

Given a stretch of interferometric data d containing a CBC
signal, one wants to estimate the posterior distribution of the
unknown source parameters θ (masses, spins, sky position,
etc. See, e.g., Ref [22]). Bayes theorem allows us to write the
posterior probability density as

p(θ|d) =
p(d|θ)π(θ)

p(d)
(11)

where π(θ) is the prior distribution of the CBC parameters
(in what follow we will use the standard priors used by the
LVC [32]) and p(d) is the evidence of the data, which won’t
play a role in parameter estimation [22]. The remaining term
is the likelihood of the data given θ. If one assumes that the
interferometric noise is stationary and Gaussian, then the like-
lihood in the Fourier domain reads:

p(d|θ) ∝ e−〈d(f)−h(f,θ)|d(f)−h(f,θ)〉 (12)

where we have defined the noise-weighted inner product:

〈a|b〉 ≡ 2

∫
df
ab∗ + a∗b

S(f)
. (13)

and h(f,θ) is the gravitational-wave template calculated at
θ. The likelihood weights the difference between data and
GW template (i.e., the data residuals) by the noise power spec-
tral density (PSD) S(f) [33, 34], i.e., the noise auto correla-
tion. These expressions are written for a generic interferom-
eter, and since noise is expected to be uncorrelated between
detectors is extended to a network by taking the product of
likelihoods calculated for each interferometer [22].

If one wants to explicitly account for statistical uncertain-
ties and systematic errors in the response function, the likeli-
hood in Eq. 12 needs to be modified by correcting the data,
Eq. 3, or — which is equivalent [25] — by modifying the GW
template h(f,θ):

h(f,θ)→ h(f,θ)(1 + δA(λA,λC , f))eiδφ(λ
A,λC ,f) (14)

As mentioned in Sec. II A, the calibration pipelines pro-
duces draws from the posterior distribution of the response
function errors, which can be used to obtain frequency-
dependent medians and standard deviations for amplitude and
phase errors, δA and δφ. Current LVC results are produced by
only using these medians and 1-sigma uncertainties to inform
the position and width of the Gaussian priors of the calibration
spline points [32, 35].

Instead, we wish to augment LALInference so that it
can directly use individual draws from R(f), i.e. for δA and
δφ as defined by Eq. (6). In addition to the interferometer-
dependent amplitude errors, we include the possibility of a
common offset in the amplitude of the response functions of
both LIGO detectors introduced by the calibration of LIGO’s

Pcal lasers against the same reference from the National In-
stitute of Standards [18]. We will use the variable ηNIST to
indicate this common offset.

We will thus work with the following template for the like-
lihood of LIGO’s data:

hI(f,θ)→ ηNIST h
I(f,θ)

[
1 + δAI(λA,λC , f)

]
× eiδφ

I(λA,λC ,f) (15)

where an index I = H (Hanford) or L (Livingston) is used to
label quantities which are instrument-dependent.

To run a source characterization analysis on a CBC event
detected at some GPS time t we thus proceed in two steps.
First we build the distribution of frequency dependent sys-
tematic error, ηR, described in Sec II A for each of the LIGO
detectors at time t. As described above, this produces a file
with 104 samples from the posteriors of the physiCal param-
eters and their corresponding response function, which, given
R(true),I at time t, can be recast into posteriors for δAI and
δφI following Eqs. (5) and (6). We then deploy a modified
version of LALInference to generate posterior PDFs for
both the CBC parameters θ and the physiCal parameters.

More specifically we modify the likelihood function, priors,
and the sampler of LALInference so that it can use the files
containing ηIR and RI,(model) directly. For each of the LIGO
detectors:

• We load to memory the corresponding physiCal file. We
label each of the samples produced by the calibration
pipeline with an integer from 1 to 104;

• We introduce a new sampling parameter, an integer be-
tween 1 and 104, and assign it a uniform prior. We call
it the physiCal ID of this interferometer;

The common ηNIST parameter is assigned a uniform prior
in the range [−0.9914, 1.0086] consistent with the uncertain-
ties on the calibration of the LIGO photon calibrators at the
time of our analysis. With these changes implemented the
parameter estimation algorithm proceeds as usual: at each it-
eration of the MCMC chain (or update of a Nested sampling
live point [22, 36]), we update θ, the calibration physiCal IDs,
ηNIST, calculate the modified waveform templates for each
interferometer, and hence the corresponding likelihood. Our
updates allow the user to use a different calibration marginal-
ization scheme (splineCal, physiCal, no marginalization) for
each detector independently when running a network analy-
sis. For the runs described in the remainder of this paper we
only use the physiCal method for the LIGO detectors, and the
spline method for Virgo. In total our scheme introduces a sin-
gle new parameter for each instrument for which the physiCal
method is used, plus ηNIST. This should be compared with the
∼ 20 new parameters used for each instrument if the spline
method is used.
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III. RESULTS

A. Analysis of LIGO-Virgo’s sources

In this section we apply the physiCal method to all of the
CBCs found by the LVC during their second observing run
(O2), using the corresponding public data release [32, 35,
37]2. LIGO-only data is available for GW170104, GW170608
and GW170823, whereas LIGO-Virgo data is available
for GW170729, GW170809, GW170814, GW170817, and
GW170818.

The Bayesian priors on the CBC parameters are chosen to
match those used by the LVC, whereas the priors on the phys-
iCal parameters have been described in the previous section.
We use the IMRPhenomPv2 waveform approximant [38–40]
for all BBH analyses, with the reduced order quadrature
(ROQ) likelihood implementation [41], while we use IMR-
Phenom NRTidal [38–40, 42, 43] for the binary neutron star
merger GW1708173.

For all sources, we find that the posterior distributions of
the astrophysical parameters θ obtained with the physiCal
method are virtually indistinguishable from those reported by
the LVC using the splineCal method. To quantify the level
of similarity, we compute the Jensen–Shannon (JS) di-
vergence [44], a general symmetrized extension of the
Kullback-Leibler divergence [45], between the two sets
of one-dimensional probability distributions. The JS di-
vergence is defined between 0 bits of information differ-
ence (i.e. the distributions are statistically identical) and
1 bit (no statistical overlap). The maximum JS diver-
gence for the astrophysical parameters inferred from the
O2 LVC observations is calculated to be 0.012 bits, with
the vast majority of divergences more than an order of
magnitude smaller than this (c.f. Table IV of [46] where a
similar conclusion is reached). Hence, we conclude that
the physiCal and splineCal methods recover posterior
distributions that are similar enough that no astrophys-
ical statement would depend on the method used. For
example, in Fig. 1 we show the marginal posterior distribution
of the luminosity distance of GW170729, the most distant of
the sources in the GWTC-1 catalog, obtained with physiCal
and with the spline method.

This can be explained by noticing that for both the spline
and the physiCal method no constraints can be placed on any
of the calibration parameters, and the respective priors are re-
covered. Since the priors are informed by the same underly-
ing calibration model, the two approaches yield consistent re-
sults. The CBC sources LIGO and Virgo detected in O2 [32]
had network SNRs in the range ∼ [10, 33]. This suggests that
even higher SNRs and/or some auxiliary information about
the sources is needed to constrain the physiCal parameters

2 We cannot re-analyze the sources detected in the first observing run, since
the distribution of systematic error and uncertainty, ηR, was not recorded.

3 The ROQ likelihood in LALInference is distinct from the likelihood
that is used for most waveform families. Our implementation of the physi-
Cal method works for both the ROQ and the “classic” likelihood.
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FIG. 1: Marginal posterior density function for the
luminosity distance of GW170729 inferred using the LVC’s

spline marginalization of the calibration uncertainty
(splineCal [25, 35]) and the physiCal method described in

this work. The vertical lines denote the 90% credible interval
for each analysis.

(see Sec. III B and Sec. IV of [46]). Ref. [47] analyzed
the BNS GW170817 with a different approach, and similarly
found that nothing can be learned about the response function.

In Fig. 2 we show a comparison of the posteriors for the
response function’s errors when analyzing GW170814. Am-
plitude and phase errors are reported — for the two LIGO
detectors individually — in the top and bottom rows respec-
tively. The blue lines refer to the spline method and the orange
lines to the physiCal method. In both cases, the solid lines are
the medians and the dashed lines mark the 90% credible inter-
vals. For the physiCal method, we also show 2048 individual
draws from the posteriors (semi transparent green curves).

B. Simulated events

The results we obtained for the O2 sources show that with
the “typical” CBC source of medium-low SNR for which most
or all of the astrophysical parameters are unknown, no infor-
mation can be gained about the physiCal parameters, and we
just recover the priors. This can likely be attributed to the
fact that calibration errors mostly affect the amplitude of
the response function, and hence the signal [20]. On
the other hand, analysis of CBC signals cannot usually
constrain amplitude parameters (mainly distance and
orbital inclination) as precisely as parameters that af-
fect the phase evolution of the system (e.g., masses
and spins) [32]. Furthermore, the physiCal parameters
have gaussian priors, which are stronger than the pri-
ors of the CBC amplitude parameters (isotropic of the
orbital inclination, uniform in comoving volume for the
distance) [48–50]. This implies that even if the response
function were off, it might be “easier” for a Bayesian al-
gorithm to compensate for it by biasing distance and in-
clination, which might come at a smaller prior expense.
We plan to thoroughly explore the topic of biases in a
future publication.
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FIG. 2: PDFs for the amplitude (top) and phase (bottom) of the response function’s errors at the time of GW170814 for the
LIGO Hanford (left) and LIGO Livingston (right) detectors. The grey dotted line indicate the ideal case with no systematic

error. All PDFs are represented by their median (solid line) and 90% credible interval (dashed lines) The prior distributions are
shown in yellow. The yellow dots indicate the frequencies where the splineCal variables are defined. The splineCal posteriors
are shown in blue and the physiCal posteriors are shown in orange. For the physiCal method, we also show 2048 individual

draws from the posteriors (green semi transparent curves).

On the other hand, if extra astrophysical information is ob-
tained that better constrains CBC parameters that are corre-
lated with calibration parameters (e.g., sky location, distance),
better constraints on the physiCal parameters could be pos-
sible. While the idea of “astrophysical calibration”, i.e., of
learning something about the detector using particularly loud
or otherwise exceptional events is not new [47, 51], we stress
that the best one can do using the spline approach is to verify
that something is wrong with the overall response function.
With the physiCal method instead, we can hope to say some-
thing about specific parts of the sensing and actuation systems,
as described in Sec. II A above and Refs. [16, 17, 21].

To test this we add 200 simulated BNSs into real LIGO-
Virgo interferometric data from O2 [37] (we only consider
BNSs and not BBHs because we will want to assume the
source extrinsic parameters can be constrained with EM data,
see below). The signals’ merger times are randomly cho-
sen to be in the 3600 seconds preceding or following the
8 CBC sources detected in LIGO-Virgo’s second observing
run4. Rather than producing the full distribution of ηR for

4 If the simulated signal precedes the O2 detection, we leave enough time
between them to avoid overlaps.

each simulated event, we re-use the distributions at the time
of the 8 O2 sources. For each of the simulated signals we thus
use the output of the calibration pipeline as calculated for the
nearest of the O2 sources. This implies that the largest possi-
ble time interval between the time a simulated signal is added
into the data and the assigned O2 event time for which its ηR
was produced is one hour. The simulated events are assigned
random sky positions and orbital orientation, and are placed
uniformly in comoving volume. This implies that the resulting
signal-to-noise ratios (SNRs) are representative of realistic de-
tections in the second and third observing runs (i.e., with net-
work SNRs in the approximate range [10, 40] and with most
sources having SNR near the minimum). For these analyses
we use the IMRPhenomPv2 waveforms both to simulate the
signals that are added into the data, and for parameter estima-
tion. The neutron stars are assigned randomly oriented spins
with (dimensionless) magnitude uniform in the range [0, 0.2]
and component masses uniform in the range [1.8− 2.4]M�

5.
We do not include tidal effects either in simulating signals nor
in the subsequent source characterization analysis.

5 This range of mass was not chosen to be representative of a realistic mass
distribution, but rather to optimize the runtime of LALInference with
the ROQ likelihood
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TABLE I: The true values of some selected parameters for the two BNS sources described in Sec. III B.

ID m1 [M�] m2 [M�] DL [Mpc] t ι [rad] SNRH SNRL SNRV

1 1.98 1.78 58.8 1167560557.32 0.22 21.4 21.9 n/a
2 1.99 1.69 74.4 1187057243.40 0.71 13.5 25.9 3.3

To mimic a situation where a successful electromagnetic
counterpart has been found, which yields the source’s 3D po-
sition, we run the source characterization algorithm by as-
suming that the sky position and the luminosity distance of
the sources are perfectly known. This neglects potential un-
certainties introduced by the cosmology used to convert the
source redshift into a luminosity distance; however, here we
are interested in a somewhat optimistic scenario to show what
this method can theoretically do. If, as it is more realistic,
the distance to the source is only known within an uncertain
range, the overall amplitude parameter ηNIST would not be
constrained. While it is possible to also obtain some con-
straints about the source’s orbital inclination by folding in ex-
ternal information about the source [52, 53], that inference
would not be very precise and would depend on detailed mod-
eling of the EM emission. Therefore, instead of assuming the
inclination angle is perfectly known, we restrict its prior to a
±20◦ interval symmetric around the true value excluding un-
physical values (i.e. ι < 0 rads and ι > π). Having fixed
luminosity distance and sky position to their true values, the
inclination angle is thus the only CBC parameter that signif-
icantly affects the amplitude of the signals in our analysis6.
It is worth stressing that even for LIGO-only analyses, ηNIST

is not perfectly degenerate with the (cosine of the) inclination
angle, since the latter affects the two GW polarizations each in
a different way [33], while the former is an overall amplitude
offset. This would be different if the luminosity distance were
also a free parameter, since in that case ηNIST and distance
would be perfectly degenerate in a LIGO-only analysis, and
only the combination ηNIST/DL would be measurable.

We will not report extensively on these simulations be-
cause for the overwhelming majority of them, owing to the
low SNRs, nothing is learned about the physiCal parameters.
Instead, we will just focus on two high-SNR signals, one in
HVL data, and the other in HL data. The true values of some
of their parameters are reported in Tab. I, together with the ID
we will use to refer to each.

The BNS #1 is added into LIGO-only data, since Virgo was
not operating at the time. While for most of the physiCal pa-
rameters the prior is returned, a handful of posterior distribu-
tions are informative and are shown in Fig 3, together with
their priors. We see that the posterior of ηNIST, while still
broad and with support in the whole prior range, does have
some support for values larger than one. Meanwhile, the pos-
terior for ηHPcal, which controls the overall amplitude of the
response function in LIGO Hanford, is clearly different from

6 Intrinsic parameters also affect the GW amplitude. However they are usu-
ally measured from the GW phase well enough that they can be thought as
known when considering the signal’s amplitude.

its Gaussian prior, and prefers slightly smaller values. For
ηLPcal, the corresponding parameter for LIGO Livingston, the
effect is not as significant. The other parameter that shows a
slight departure from its priors is κHC , a time-dependent pa-
rameter related to the sensing function of LIGO Hanford [17].
We again use the JS-divergence [44] to quantify the statistical
similarity between the prior and posterior distributions. For
the physiCal parameters shown in Fig 3, the JS-divergences
are 0.11 bits (ηHPcal), 0.09 bits (ηNIST), 0.05 bits (κHC ) and
0.05 bits (ηLPcal) respectively. In all these cases, we see that
the offsets are much smaller than the statistical uncertainties.
The posteriors of all other physiCal parameters are either even
more similar to, or undistinguishable from, their priors.

When considering the BNS #2 we find instead that all of
the physiCal parameters return exactly the prior, except ηHPcal
(shown in Fig. 4), for which the JS-divergence is 0.06 bits.
Thus, despite a comparable network SNR and the presence of
Virgo, less information is gained about the physiCal parame-
ters for the BNS #2 than for the BNS #1. This suggests that the
SNR is not the only figure of merit to predict if and what can
be learned with astrophysical calibration. Instead, this might
be suggestive of the fact that the model for the response func-
tion was adequate for the BNS #2, whereas it was not for the
BNS #1. Theoretically, it is possible that even if the model for
the response function is correct, we could beat the statistical
uncertainties on the physiCal parameters, i.e., obtain posteri-
ors which are centered at the same positions as their priors, but
are narrower. We speculate that a similar measurement would
require even higher SNRs, and will explore that possibility in
a future publication.

Next, we check if the posteriors for the CBC param-
eters of BNS #1 and BNS #2 are consistent with what
would be obtained using the splineCal method (which
was summarized in Sec. I). As for the O2 sources,
we find a good consistency between the two methods:
the highest value of the JS entropy for BNS#1 is 0.008
bits (for the arrival time at the geocenter), whereas for
BNS#2 the highest value is 0.012 bits (asymmetric mass
ratio and arrival time at the geocenter). Fig. 5 shows a
comparison of the asymmetric mass ratio posterior for
the BNS#2: the value of the JS entropy is driven by the
different support that the two methods find for the sec-
ondary peak at q ∼ 0.39. The presence of secondary
peaks in some parameters is not unusual, even for loud
events, when analyzing real data (e.g. the tidal deforma-
bility of GW170817 [54].
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FIG. 3: Posterior distributions for the physiCal parameters for which information is gained relative to the priors, for the
BNS #1, (see Tab. I). The respective priors are shown as solid grey lines. The median of each PDF is shown as a dashed vertical

line.
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FIG. 4: Posterior distribution of ηHPcal for the BNS #2 (see
Tab. I). The prior is shown as a solid grey line. The median

of each PDF is shown as a dashed vertical line.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have proposed a different and more phys-
ical approach to marginalizing over possible systematic error
associated with the calibration of ground-based gravitational-
wave detectors, called physiCal. We account for departures
from the nominal value of the instruments’ response functions
using directly the output of the calibration pipeline of LIGO’s
instruments (the method can be extended to other detectors,
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FIG. 5: Posterior distribution of q for the BNS #2 (see Tab. I)
obtained with the physiCal (solid orange curve) and

splineCal (dot dashed blue curve) methods. Vertical dotted
lines denote the 90% credible interval, whereas the solid

vertical line indicates the true value.

even though we have not done it for this study). This method
improves the existing approach, which relies on a spline-based
phenomenological model of calibration errors, hence discard-
ing some of the available information about the detectors and
their response functions.

We have augmented the LALInference source charac-
terization algorithm with the physiCal method, and used it to
analyze the 8 CBC signals in the public data from the second
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observing run of the LVC. We find that the posteriors for the
CBC parameters obtained with physiCal are extremely similar
to those produced by the LVC with the existing spline method.
This is not surprising since, at the expected SNRs of detec-
tions given the current detectors’ sensitivities, the data are not
informative enough to constrain the parameters of either cal-
ibration model better than the well-informed priors that are
the result of the extensive efforts to calibrate the advanced
LIGO and Virgo detectors. We then looked at the possibil-
ity of astrophysical calibration, i.e., the idea that a high SNR
CBC observation, with perfectly known extrinsic parameters
derived from an accompanying electromagnetic characteriza-
tion, can be used to learn something about systematic error in
each detector’s calibration. We created a set of simulated BNS
signals and added them to real public data from the LVC’s
second observing run. For all analyses, we assumed that the
sources’ sky positions and luminosity distances are perfectly
known, whereas the orbital inclination angles are known to
within 20◦, mimicking a very successful EM campaign which
provides information about position and orientation of the bi-
naries. We find that for most of the simulations nothing can
be learned about the physiCal parameters, and the posteriors
are very similar to their priors. Only for the loudest BNSs
we considered, with network SNRs around 30, were the pos-
teriors for some of the physiCal parameters clearly, though
not dramatically, different from their priors. Furthermore, we
found that the SNR is not the only relevant parameter to fore-
cast how informative any given source will be, and we showed
that two BNSs with virtually the same SNRs can yield quite
different posteriors for the physiCal parameters. Ultimately,
both a high SNR and an imperfect model for the response
function at the time of the simulated event are necessary for
the data to be informative, as shown in Fig. 1 of [46]. In
the representative system we chose, the parameters that were
most different from their priors were the overall amplitude and
two of the parameters associated with the sensing function
in the LIGO Hanford detector. We argue that this is one of
the main advantages of the physiCal method over the spline-
based method: astrophysical calibration can potentially yield
information about specific components involved with the cal-
ibration process, rather than about the response function as
a whole. While we observed some departure from the mod-
eled response function for some of the loudest BNSs we con-
sidered, the uncertainty in the physiCal parameters was not
narrower than the prior uncertainty established by the calibra-
tion pipeline. That is, some of the posteriors shifted relative
to their priors, but maintained the same shape. It is possible
that with even louder signals one could decrease the prior sta-
tistical uncertainty in the physiCal parameters. A large scale

study will be necessary to explore the parameter space more
systematically to fully understand which sources would yield
the best astrophysical calibration, and which of the physiCal
parameters are more likely to be constrained. Another possi-
ble avenue to improve our understanding of the response func-
tion, is combining multiple detections. In fact, even though for
most of the weaker sources very little is learned about the in-
strument, one can potentially combine all detected signals and
build joint posteriors for the subset of the physiCal parameters
that do not depend on time, and are thus expected to have the
same value throughout a science run. Both of these prospects
will be explored in a future publication.

Note: After this work had begun, an independent group
started exploring the possibility of using importance sampling
to marginalize over physical calibration parameters [46]. As
we have indicated in this paper, the two methods yield consis-
tent results.
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(2016), arXiv:1508.07250 [gr-qc].

[40] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer,
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