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The global gravitational-wave detector network achieves higher detection rates, better parame-
ter estimates, and more accurate sky localisation, as the number of detectors, I increases. This
paper quantifies network performance as a function of I for BayesWave, a source-agnostic, wavelet-
based, Bayesian algorithm which distinguishes between true astrophysical signals and instrumental
glitches. Detection confidence is quantified using the signal-to-glitch Bayes factor, BS,G . An analytic
scaling is derived for BS,G versus I, the number of wavelets, and the network signal-to-noise ratio,
SNRnet, which is confirmed empirically via injections into detector noise of the Hanford-Livingston
(HL), Hanford-Livingston-Virgo (HLV), and Hanford-Livingston-KAGRA-Virgo (HLKV) networks
at projected sensitivities for the fourth observing run (O4). The empirical and analytic scalings
are consistent; BS,G increases with I. The accuracy of waveform reconstruction is quantified using
the overlap between injected and recovered waveform, Onet. The HLV and HLKV network recovers
87% and 86% of the injected waveforms with Onet > 0.8 respectively, compared to 81% with the
HL network. The accuracy of BayesWave sky localisation is ≈ 10 times better for the HLV network
than the HL network, as measured by the search area, A, and the sky areas contained within 50%
and 90% confidence intervals. Marginal improvement in sky localisation is also observed with the
addition of KAGRA.

I. INTRODUCTION

The Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) [1–3] has completed three observing runs,
O1 [4, 5], O2 [5, 6] and O3 [7] between 2015 to 2020,
including joint searches with Italian partner, Virgo [8],
in the final month of O2 and the whole of O3. In April
2019, Advanced LIGO commenced its third observing run
in collaboration with Advanced Virgo as a three-detector
network: the Hanford-Livingston-Virgo (HLV) network.
The Kamioka Gravitational Wave Detector (KAGRA)
[9–11] also began observing in February 2020 [7].

With access to these upgraded instruments, there is
a burgeoning interest in detecting short-duration grav-
itational wave (GW) signals by combining data from
multi-detector networks. These signals typically have
durations of milliseconds up to a few seconds, with the
most common sources being compact binary coalescences
(CBCs) such as black hole or neutron star mergers, along
with other potential sources like core-collapse supernovae
(SNe) of massive stars [12], pulsar glitches of astrophys-
ical origin [13] and cusps in cosmic strings [14]. In addi-
tion to these known sources, it is also plausible to detect
transient signals of unknown astrophysical origin.

Searches for generic GW transients, or burst searches,
require the ability to distinguish such signals from any
noise artefacts present in the detector data. Hence, it
is crucial to understand the noise properties of the de-
tector data. Results from the initial LIGO-Virgo science
runs revealed non-stationary and non-Gaussian detector

∗ ylee9@student.unimelb.edu.au
† meg.millhouse@unimelb.edu.au
‡ amelatos@unimelb.edu.au

noise, which includes short-duration noise transients de-
noted by the term ‘glitches’ [15–17]. If not accounted for
properly, these features could resemble GWs and conse-
quently limit the ability to detect low-amplitude signals.

Since CBC signals come from known and well-studied
sources, such signals are accurately modelled in most re-
gions of parameter space and therefore can be detected
with high confidence using matched-filter searches [18–
20]. Other GW bursts signals, on the other hand, may
originate from either complex or unanticipated sources.
Given the stochastic nature and complexity of the poten-
tial sources (e.g. core collapse supernovae), there are no
robust models available to date to assist with the searches
of generic burst signals, making it challenging to distin-
guish them from other non-Gaussian features like glitches
in the detector data, as well as to accurately reconstruct
the underlying signal waveform.

There are a number of unmodelled burst searches
performed in LIGO and Virgo data [21, 22]. In this
work we look at an unmodelled search algorithm called
BayesWave [23–25], which was proposed to enable the
joint detection and characterisation of GW bursts and
instrumental glitches. BayesWave reconstructs both sig-
nals and glitches as a sum of sine-Gaussian wavelets,
where the number of wavelets and their parameters are
determined via a reversible-jump Markov chain Monte
Carlo (RJMCMC) algorithm. Bayesian model selection
is then used to determine the likelihood of an event being
a true signal, or a noise artefact.

Previous studies have quantified the performance of
BayesWave in recovering simulated waveforms from sim-
ulated noise with a two-detector network (HL network)
[26, 27]. However, with Virgo joining GW searches along-
side the HL-network in O2 and O3, KAGRA coming
online towards the end of O3, and future detectors like
LIGO-India in the planning stages [28], the network of
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GW detectors is expanding rapidly. Expanding detector
networks will increase the likelihood of detecting more
events with higher confidence. These improvements are
evident in previous studies and will be elaborated further
in Section II.

In this paper, we aim to evaluate BayesWave’s perfor-
mance in searching for GW bursts from detector data
beyond the HL-network. We achieve this by using
BayesWave to recover injected signals from simulated
noise with the HLV and the HLKV detector networks,
and comparing the outcomes with those of the HL net-
work. We quantify the performance of BayesWave based
on the following metric: (i) Bayes factor between sig-
nal and glitch models, (ii) overlap (match) between in-
jected and recovered waveforms, and (iii) accuracy of re-
covered sky location. In Section III, we provide a detailed
overview of the BayesWave algorithm. We derive the an-
alytic scaling relation of the signal-to-glitch Bayes factor
in Section IV. We then discuss the methods of injecting
simulated waveforms into simulated detector noise sam-
ples in Section V, followed by comparisons and analyses
of the metrics mentioned above: Bayes Factor in Section
VIA, overlap in Section VIB and sky localisation in Sec-
tion VIC. Finally, we present a summary of the results
along with their implications in Section VII.

II. BENEFITS OF EXPANDING DETECTOR
NETWORKS

Increasing the number of operational ground-based de-
tectors has several major benefits for GW astronomy, in-
cluding a higher rate of detection of GW transients, and
better characterisation of those signals. Here we discuss
some of the benefits of adding new detectors to the ex-
isting network.

A. SNR and search volume

One major advantage of a larger detector network is
the ability to confidently detect quieter events. The
strain amplitude, s(i) in detector i of the network con-
sists of a signal, h(i) (if present) and detector noise, n(i)

which can be expressed as

s(i) = h(i) + n(i). (1)

The squared matched-filter signal-to-noise ratio (SNR) of
signal h(i)

s in detector i is then given by [29]

SNR2
i =

(
h(i)
s

∣∣∣h(i)
s

)
(2)

where (.|.) on the right-hand-side of the expression is
the noise-weighted inner product. We define the noise-
weighted inner product between two arbitrary waveforms
ha(t) and hb(t) as [30]

(ha |hb) =

∫ ∞
0

h̃a
∗
(f)h̃b(f) + h̃a(f)h̃b

∗
(f)

Sn(f)
df. (3)

where h̃(f) is the Fourier-transformed waveform, h̃∗(f) is
its complex conjugate and Sn(f) is the one-sided power
spectral density (PSD) of stationary, Gaussian detector
noise.

For a network with I detectors, the overall network
SNR is given by [26]

SNR2
net =

I∑
i=1

SNR2
i (4)

According to Equation 4, adding more detectors to the
network increases the SNR of all detected GW signals.
This enables detection pipelines to estimate waveform
parameters more accurately [31]. With improved param-
eter estimates, more accurate models can be constructed
to represent the detected waveform [32].

In addition, the SNR of GW signals scales with lumi-
nosity distance, DL as [33]

SNRi ∝
1

DL
. (5)

By combining Equations 4 and 5 and assuming coherent
searches, the overall SNR for a network of I detectors
with equal sensitivities is given by SNRnet ∝

√
I/DL.

Assuming that GW sources are uniformly distributed
across the sky, an I-detector network can detect

√
I

times further and up to
√
I3 more sources compared to

a single detector network since the search volume scales
as V ∝ D3

L.

B. Sky coverage

The sensitivity of a detector towards a particular sky
location is determined by the antenna pattern in that
given direction. Adding more detectors to the network
at different geographical locations and orientations in-
creases the sensitivity of the network to a wider region of
the sky (increased sky coverage), consequently increasing
the detection rate and volume along those directions [34].

Reference [35] presented a visual comparison between
the network antenna pattern across the whole sky be-
tween a three-detector (HLV) network and a four-
detector (HLKV) network, where ‘K’ denotes KAGRA.
As expected, results show that both networks are more
sensitive to some regions in the sky than others. However,
the HLKV network has higher overall network antenna
power pattern and an overall increase in sky coverage is
also reflected in the expansion of regions with relatively
higher sensitivity.

C. Observing time

Adding detectors to the existing network also increases
the duty cycle where two or more detectors are func-
tional and simultaneously observing. This consequently
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increases the chances of the detectors picking up a coher-
ent astrophysical signal and leading to higher detection
rates [34].

D. Sky localisation

Sky localisation of a GW source is of vital importance
for locating and identifying any existing electromagnetic
counterparts to the GW event [36]. Ground-based GW
detectors are nearly omnidirectional, so with a single de-
tector we are not able to impose a strict constrains to the
sky location of a GW event. Nevertheless, sky localisa-
tion of GW signals improves significantly with multiple
interferometers. The times of arrival at two detectors
constrain the position of the source to an error ellipse
in the sky map. Thus, having more detectors will re-
duce localisation volume by imposing stricter constraints
to the location of the sources, improving the accuracy of
locating the source in the sky [36, 37]. .

To sum up the points above, the advantages of hav-
ing more detectors in the network include: (i) improve-
ment in SNR and increased search volume, (ii) alignment-
dependent sky coverage, (iii) increased rates of detection,
and (iv) improved sky localisation.

III. BAYESWAVE OVERVIEW

BayesWave is a Bayesian data analysis algorithm that
detects transient features in a stretch of detector data and
identifies whether they are an astrophysical signal or in-
strumental noise. BayesWave reconstructs non-Gaussian
features in the data using a sum of sine-Gaussian (also
called Morlet-Gabor) wavelets. The number of wavelets
and their respective parameters are sampled using a
trans-dimensional Markov Chain Monte Carlo algorithm,
otherwise known as the Reversible-Jump Markov Chain
Monte Carlo (RJMCMC). The RJMCMC is implemented
to allow for adjustable number of wavelets and hence
variable model dimensions. BayesWave outputs poste-
rior distributions and Bayesian evidences for three sepa-
rate models: (i) Gaussian noise only, (ii) Gaussian noise
with glitches and (iii) Gaussian noise with GW signal.
The model evidences are then used for Bayesian model
selection between the three scenarios.

A. Wavelet Frames

BayesWave uses a sum of sine-Gaussian (also called
Morlet-Gabor) wavelets to reconstruct non-Gaussian
features (either signals or glitches) in the detector
data. Even though Sine-Gaussian wavelets form a non-

orthogonal frames1, their shape is variable in time-
frequency plane and can optimally reconstruct a tran-
sient GW signal with no a priori assumption on the sig-
nal source or morphology.

The number of wavelets used in the reconstruction
is marginalised via the RJMCMC, where signals with
complex structure in time-frequency plane will use more
wavelets in the reconstruction. Previous studies [26, 38]
have shown that the number of wavelets scales linearly
with SNR such that

N ≈ γ + β SNR (6)

where γ and β are constants which depend on waveform
morphology. The results from Ref. [26] show that β and
hence N increase with waveform complexity. For binary
black hole (BBH) waveforms, the typical numbers are
γ = 5.6 and β = 0.066 for sine-Gaussian wavelet recon-
structions [38].

In BayesWave, each wavelet in the time domain has
five intrinsic parameters t0, f0, Q,A, φ0 which represent
central time, central frequency, quality factor, ampli-
tude and phase offset respectively. These intrinsic pa-
rameters can be expressed as a single parameter vector
λ = {t0, f0, Q,A, φ0} and the mathematical representa-
tion of a sine-Gaussian wavelet is given by

Ψ(t; t0, f0, Q,A, φ0) = Ae−∆t2/τ2

cos(2πf0∆t+ φ0) (7)

with τ = Q/(2πf0) and ∆t = t− t0 [26].
The glitch model in BayesWave is independent be-

tween detectors owing to the fact that noise artefacts are
uncorrelated across different detectors. Hence, the set of
glitch model parameters must contain the respective pa-
rameters for each individual detector across the network.
The complete set of glitch model parameters for a net-
work of detectors comprising Hanford, Livingston, and
Virgo (HLV) can be written as [26]

θG = {λH ∪ λL ∪ λV } (8)

with λi = {λi0∪λ
i
1∪· · ·∪λ

i
NG

i
} where the numerical sub-

scripts indicate a single wavelet used in the glitch model
and NG is the total number of wavelets in the glitch
model. The superscripts indicates the i-th detector in
the network.

In contrast to the glitch model, the signal model is
common across all detectors in the network. As a result,
signal models should have a single set of intrinsic wavelet

1 Discrete wavelets can form orthogonal bases for signal or glitch
representations, but projecting the signal wavelets onto each de-
tector requires the time translation operator which is compu-
tationally expensive. Despite the lack of orthogonality, sine-
Gaussian wavelets are flexible in shape and have an analytic
Fourier representation. Hence the analysis can be done in the
frequency domain without the need of a time-translation opera-
tor. Further details can be found in Section 3 of [24].
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parameters λ⊕ = {λ0 ∪λ1 ∪ · · · ∪λNS}, along with a set
of extrinsic parameter Ω = {α, δ, ψ, ε} which sequentially
describes the right ascension (RA), declination (dec), po-
larisation angle and ellipticity of the GW signal. The sky
location (RA, dec) and polarisation angle of a source de-
termine antenna beam patterns of the detector network,
as well as provide information on the amplitude and the
arrival-time delay of the signal in each detector [39]. El-
lipticity defines the relative phase and amplitude of the
plus and cross polarisations, h+ and h× respectively with
h× = εh+e

iπ/2. The ellipticity parameter, ε takes values
between 0 to 1 with the lower and upper bounds de-
noting linear to circular polarisations respectively [24].
Altogether a complete set of signal model parameters is
given by [26]

θS = {λ⊕ ∪Ω}. (9)

BayesWave produces posterior distributions of the pa-
rameters described above. Each draw from the posterior
contains a unique set of wavelet parameters (and extrinsic
parameters for the signal model), which are then summed
to produce a posterior on the waveform, h(t). By using
this basis of sine-Gaussian wavelets, h(t) is reconstructed
with no a priori assumption on the source of the GW sig-
nal.

B. Model Selection

In addition to waveform reconstruction, BayesWave
performs model selection between the signal and glitch
hypotheses described above. The ratio of model evi-
dences, otherwise known as the Bayes factor, is the key
to model selection in Bayesian inference as it assesses
the plausibility of two different models, Mα and Mβ ,
parameterised by their respective parameter sets ~θα and
~θβ . In other words, it quantifies which model is better
supported by the data. The model evidence (also called
the margainalised evidence) is given by

p(~s|Mα) =

∫
p(~θα|Mα)p(~s|~θα,Mα)d~θα (10)

where ~s is the observed data,Mα is the model, and ~θα is
there parameter vector for model Mα. The prior prob-
ability of parameters ~θα before the data are observed is
given by p(~θα|Mα), and p(~s|~θα,Mα) is the likelihood
of obtaining the observed data ~s, given the model Mα.
Hence, the Bayes factor between models Mα and Mβ ,
parameterised by their respective parameter vectors ~θα
and ~θβ is

Bα,β(~s) =
p(~s|Mα)

p(~s|Mβ)
. (11)

Bα,β(~s) > 1 implies that modelMα is more strongly sup-
ported by the data than modelMβ . To reduce computa-
tional costs, the BayesWave algorithm calculates model
evidence using thermodynamic integration [40].

BayesWave calculates the Bayes factor between the
signal model (i.e. the data contains a real astrophysi-
cal signal), and the glitch model (i.e. the data contains
an instrumetnal glitch). In Section IV we discuss how the
signal-to-glitch Bayes factor scales with SNR, the num-
ber of wavelets used in the MCMC, and the number of
detectors in the network.

C. Overlap

In addition to distinguishing between signals and
glitches, BayesWave also produces a posterior distribu-
tion of the wavelet-expanded waveforms, h(t) to match
the true waveform, hs(t). One way to quantify the agree-
ment or similarity between h(t) and hs(t) is through the
overlap, O. Reconstructed waveforms in BayesWave are
analogous to waveform templates, hence the overlap be-
tween reconstructed models and the injected waveform
can be computed the same way as the overlap in matched-
filtering.

The normalised overlap between the two waveforms
can be written as [32]

O =
(h |hs)√

(h |h) (hs |hs)
(12)

where (.|.) is the noise-weighted inner product as defined
in Equation 3. Since Equation 12 is normalised, O takes
values between −1 to 1. When O = 1, there is a per-
fect match between the injected and recovered waveform;
O = 0 implies that there is no match at all and O = −1
implies a perfect anti-correlation.

Equation 12 only applies to a single detector. A
network overlap, Onet is required to fully evaluate
BayesWave’s performance in recovering waveforms from
all the detectors combined. In order to define the net-
work overlap, we sum each factor in Equation 12 over all
I detectors in the network such that

Onet =

∑I
i=1

(
h(i)

∣∣∣h(i)
s

)
√∑I

i=1

(
h(i)

∣∣h(i)
)∑I

i=1

(
h

(i)
s

∣∣∣h(i)
s

) , (13)

where h(i) and h
(i)
s denote the recovered waveform and

waveform present in detector i respectively.

IV. ANALYTIC BAYES FACTOR SCALING

In this work, we aim to understand the behavior of
the Bayes factor between signal and glitch models for
networks comprising different numbers of GW detectors.
Hence it is in our interest to analytically understand the
conditions of model selection. We want to know under
what circumstances a model is favoured over another.
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A. Occam Penalty

A key to understanding Bayes factor behavior when
using a trans-dimensional model as BayesWave does, is
the role of the Occam penalty.

The parameter value at which the posterior distribu-
tion peaks is known as the maximum a posteriori (MAP)
value, denoted as ~θMAP. For high SNR events, the in-
tegrand of model evidence in Equation 10 peaks sharply
in the vicinity of the MAP. Following the Laplace-Fisher
approximation, the integral can be estimated as

p(~s|M) ' p(~s|~θMAP,M)p(~θMAP|M)(2π)D/2
√
detC.

(14)
where p(~s|~θMAP,M) is the MAP likelihood; p(~θMAP|M)
is the prior evaluated at the MAP parameter values; D is
the dimension of the model; and detC is the determinant
of the full covariance matrix for the N wavelets used in
waveform reconstruction. If the covariance matrix for a
single wavelet is Cn, then we have

detC =

N∏
n=1

detCn, (15)

assuming minimal overlap between the wavelet param-
eter spaces. Since the Laplace-Fisher approximation is
associated with the MAP likelihood, the covariance ma-
trix can be approximated as the inverse of the Fisher
Information Matrix (FIM), Γ [41]. A comprehensive dis-
cussion of the FIM and its relation to wavelet parameter
jump proposal is presented in Appendix A.

By definition, detC measures the variance of the likeli-
hood. Thus,

√
detC quantifies the characteristic spread

of the likelihood function. The product of
√

detC and
(2π)D/2, which account for the dimensionality of the
model, can then be used as a measure for the volume
of the uncertainty ellipsoid (posterior volume), ∆VM
for a given model M [26, 42, 43]. Assuming uniform
priors for all wavelet parameters, one can also write
p(~θMAP|M) = 1/VM where VM represents the total pa-
rameter space volume. Hence, the last three factors of
Equation 14 can collectively be interpreted as the frac-
tion of the prior occupied by the posterior distribution,
such that the model evidence is now given by

p(~s|M) ' p(~s|~θMAP,M)
∆VM
VM

. (16)

where ∆VM/VM is the “Occam penalty factor”.
Following equations 11 and 16, the Bayes factor be-

tween two models can be re-expressed as

Bα,β(~s) = Λα,β(~s)
∆Vα
Vα

Vβ
∆Vβ

(17)

where the ratio of MAP likelihoods is given by

Λα,β(~s) =
p(~s|~θMAP,α)

p(~s|~θMAP,β)
. (18)

Equation 17 suggests that the Bayes factor is dependent
on the likelihood ratio and the ratio of the Occam penalty
factors. The Occam factor penalises models that require
an unnecessarily large parameter space volume to fit the
data by suppressing the model evidence. Note that Oc-
cam penalty is not an intentionally added component to
the Bayes factor, rather it is inherently imposed as a re-
sult of using the Bayes Theorem.

As a heuristic explanation as to how the Occam
penalty aids in BayesWave’s ability to distinguish be-
tween signals and glitches, recall that signal models (S)
for each detector share the same intrinsic parameters and
four extrinsic parameters. Since there are five intrinsic
parameters (t0, f0, Q,A, φ0) per wavelet, the dimension
of signal models scales as

DS ∼ 5N + 4 (19)

where N is the number of wavelets. Glitch models (G),
on the other hand, have no extrinsic parameters but the
glitch model of each detector is described by a unique
set of intrinsic parameters. Assuming that signal and
glitch models use the same number of wavelets such that
NG = NS = N (see Appendix B), the dimension of glitch
models scales as [24]

DG ∼ 5NI. (20)

One therefore has DG > DS for I ≥ 2. This implies that
the total parameter space volume for the glitch model
is larger than that of the signal model (i.e. VG > VS).
If both models fit the data equally well (i.e. ΛS,G ≈
1 and ∆VS ≈ VG), then by Occam’s razor we should
expect to see a selection bias towards the signal model as
I increases. In other words, Equation 17 gives

BS,G(~s) = ΛBS,G (~s)
∆VS
∆VG

VG
VS

> 1 (21)

with increasing I.
In Section IVB, we use the Laplace approximation to

the Bayesian evidence to derive an analytic scaling of the
Bayes factor.

B. Dependence of Bayes factor on number of
detectors

In Ref. [26], Littenberg et al. put forth an analytic
scaling of the log signal-to-glitch Bayes factor, lnBS,G , in
an effort to fully understand BayesWave’s ability to ro-
bustly distinguish astrophysical signals from instrumen-
tal glitches. They showed that the primary scaling of the
Bayes factor goes as

lnBS,G ∝ N ln(SNRnet) (22)

where N is the number of wavelets used in the recon-
struction, which is related to the signal morphology and
SNR as described in Equation 6. The dependence of
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Bayes factor on N (and therefore the complexity of the
signal in time frequency plane) differentiates BayesWave
from other unmodelled searches whose detection statis-
tics scale primarily with SNR. The scaling found in
Ref. [26] assumes a network comprising two GW detec-

tors. Here we extend this work to an arbitrary number
of detectors I.

We begin with the Laplace approximation of model
evidences for the signal and glitch models. From equation
14, we find

ln p (d | S) ' SNR2
net

2
− 5NS

2
−NS ln(Vλ) +

NS∑
n=1

ln

(
Q̄n

SNR5
net,n

)
+
DΩ

2
+ ln

√
detCΩ

VΩ
(23)

ln p (d | G) ' SNR2
net

2
−
I∑
i=1

5NGi
2

+NGi ln(Vλ)−
NG

i∑
n=1

ln

(
Q̄n

SNR5
i,n

) (24)

with Q̄n ≡ (2π)
5/2
√

2Qn

π . Vλ is the prior volume of intrin-
sic parameters and Nx

i is the total number of wavelets
for model x. The subscript i refers to detector i in the
network and n labels an individual wavelet from the set
of wavelets for a given model. For instance: SNRi,n is
the SNR of wavelet n in the i-th detector2. In the last
two terms of Equation 23, DΩ=4, CΩ and VΩ denote
the dimension, covariance matrix and the prior volume
of extrinsic parameters respectively. The full derivation
from Equation 14 to Equations 23 and 24 can be found

in Section III(A) of Ref. [26].
To simplify the expressions for these evidences, we fol-

low the same assumptions used in Ref [26], and which
are detailed further in Appendix B. One simplifying as-
sumption we highlight here again is that the number of
wavelets used in the signal model will be approximately
the same as the glitch model, and so we set NS = NG ≡
N (i.e. the N in Equation 22). Upon implementing the
assumptions in Appendix B, the theoretical log Bayes fac-
tor between the signal and glitch model for a network of
I detector(s) is given by lnBS,G ' ln p (d | S)−ln p (d | G):

lnBS,G ' (I − 1)

[
5N

2
+N ln(Vλ)−

N∑
n=1

ln
(
Q̄n
)

+ 5N ln

(
SNRnet√

N

)]
− 5

2
IN ln(I) +

(
2 + ln

√
detCΩ

VΩ

)
. (25)

The equation shows explicit dependence of the Bayes fac-
tor on network SNR, number of wavelets and number of
detectors. We pay close attention to the scaling

lnBS,G ∝ IN ln SNRnet (26)

which now has an extra scaling factor of I compared to
Equation 22.

The dependence on the number of wavelets used im-
plies that the signal model is favoured over the glitch
model with increasing waveform complexity (higher N).
In other words, a more complex waveform is more likely
to be classified as a signal [26]. This analytic result agrees
with the discussion in Section IVA where if two models
fit the data equally well, the less complex model will be

2 Each individual wavelet used in signal or glitch model reconstruc-
tion has an amplitude which can be converted into to SNR. For
details, see [24].

selected to represent the waveform. The proportional-
ity lnBS,G ∝ I suggests that for signals with equal SNR
and N , the Bayes factor should increase if we increase
the number of detectors in the network. Again, this re-
sult agrees with the discussion in Section IVA; including
more detectors in the network increases the dimensional-
ity of the glitch model and thus the signal model will be
even more strongly preferred.

V. INJECTION DATA SET

To empirically test the Bayes factor scaling given by
Equation 25, as well as investigate the effect on wave-
form reconstructions with detector networks of different
sizes, we inject a set of simulated BBH signals into simu-
lated detector noise and recover them using BayesWave.
While BayesWave is a flexible algorithm that can de-
tect a variety of signals from different sources, we use
BBH waveforms as our test bed because they are well-
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Figure 1. Projected LIGO, Virgo and KAGRA strain noise
(i.e. amplitude spectral density),

√
Sn as a function of fre-

quency for the fourth observing run, O4. The data used to
generate the noise curves above are retrieved from [44].

understood sources, and have previously been used to
study the performance of BayesWave [26, 32, 45].

In this work, we use tools from the LIGO Analysis Li-
brary [46] to inject a set of non-spinning binary black
holes (BBH) with equal component masses of 30M�.
We use the phenomenological waveform IMRPhenomD to
model spinning but non-precessing binaries using a com-
bination of analytic post-Newtonian (PN), effective-one-
body (EOB) and numerical relativity (NR) methods
[47, 48]. The GW sources are distributed isotropically
across the sky, and the inclinations ι are distributed uni-
formly in arccos ι. SNRnet is distributed uniformly in
SNRnet ∈ {10, 50} where this SNR is calculated from a
network comprising the HL detectors.

We inject 150 BBH signals into Gaussian noise
coloured by the projected PSD of LIGO, Virgo and KA-
GRA for the fourth observing run, O4, as given in the
LIGO, Virgo and KAGRA Observing Scenario [44]. The

noise curves are shown in Figure 1.
We then recover the injected signals with BayesWave

in three different scenarios: (i) Running only on Hanford
and Livingston (HL) data (a two detector network), (ii)
Running on the Hanford, Livingston, and Virgo (HLV)
data (a three detector network) and (iii) Running on the
Hanford, Livingston, KAGRA and Virgo (HLKV) data
(a four detector network). All three detector configura-
tions use the exact same injection data set.

In the two following sections, Sections VIA and VIB,
we analyse two figures of merit: (i) Bayes factor and (ii)
the overlap. By comparing these quantities between the
HL and HLV networks, we can evaluate the performance
of BayesWave in recovering the injected waveforms from
detector networks of different sizes. As an extension to
previous studies on sky localisation with expanded detec-
tor networks, we also compare the accuracy of BayesWave
in recovering the sky location from detector networks of
different sizes in Section VIC.

VI. RESULTS

A. Recovered Bayes factors

After analysing the injections described in Section V,
we use the model evidences calculated by BayesWave to
understand the impact of GW detector network size on
the log signal-to-glitch Bayes factor, lnBS,G . For all the
analyses in this paper, we only injections that have been
identified as inconsistent with Gaussian noise (this can
be either a signal or glitch) by BayesWave. Injections
indicated to be consistent with the Gaussian noise model
(N ) by BayesWave are removed from the data set, since
it would be meaningless to evaluate their respective signal
and glitch model evidences. In other words, injections
with lnBS,N error bars encompassing values below zero
are removed from the data set. The widths of lnBS,N
error bars are given by [24]

∆[lnBS,N ] =
√
{∆[ln p (d | S)]}2 + {∆[ln p (d | N )]}2 (27)

where ∆[ln p (d |M)] is the uncertainty for the logarith-
mic evidence of modelM. A total of 14 data points are
removed under this constraint. These events are all low
SNRnet injections.

The top left panel of Figure 2 shows lnBS,G as a func-
tion of SNRnet for the HL, HLV and HLKV networks.
All three networks show a clear trend of increasing Bayes
Factor with increasing network SNR as expected. Our re-
sults also show that the HLKV injections have the high-
est SNR overall, agreeing with Equation 4 which indi-
cates that increasing I increases SNRnet. Furthermore,
we can see that injections at comparable SNRs are re-
covered with higher lnBS,G in the HLV network than the
HL network. In other words, even after accounting for

the increased SNR, we observe further enhancement in
detection confidence for an expanded detector network,
suggesting that lnBS,G is related to I, and not just the
SNR of the signal as predicted by Equation 25.

The top right panel of Figure 2 shows the median num-
ber of wavelets used in the BayesWave reconstruction, N
versus the injected SNR in the respective detector net-
works, SNRnet. The median here refers to the median
of posterior distribution for N . We see that N increases
systematically with SNRnet in both the HL and HLV net-
works. This is expected since the detectors are able to
pick up more complex features of the waveform at high
SNR. At low SNR (SNR . 15) there is a slight deviation
from the linear trend described by Equation 6 between
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Figure 2. Top left panel shows the log signal-to-glitch Bayes Factor lnBS,G of BBH injection recoveries versus network signal-to-
noise ratio, SNRnet. Each data point represents one BBH injection. Top right panel shows the median number of wavelets used
in signal model reconstruction for each injection, N versus SNRnet. Bottom panel shows lnBS,G versus N , and the three colour
bars indicates the network SNR of each data point in the corresponding detector network. In the top panels, the horizontal axis
corresponds three different network SNRs: (i) for the blue dot data points it corresponds to SNRnet of the HL network, (ii) for
the orange star data points it corresponds to SNRnet of the HLV network, (iii) for the green cross data points it corresponds
to SNRnet of the HLKV network.

N and SNR in both detector networks. This is primarily
due to the prior on the number of wavelets. This prior
is determined empirically from runs in LIGO data after
O1, and peaks around N = 3 [25]. N also depends on
waveform morphology and complexity [26, 38]. Injecting
the same set of BBH waveforms into all three detector
configurations result in similar trends between N and
SNRnet.

Equation 25 shows that lnBS,G also scales with the
number of wavelets used in the reconstruction. Hence
we also show empirically how the dimensionality of sig-
nal model (i.e. the number of wavelets) also contributes
to the increase in lnBS,G for different I. We show this
in the bottom panel of Figure 2 by plotting lnBS,G ver-
sus N . Colour bars indicate the SNRnet of each data
point. For all three detector configurations, lnBS,G gen-
erally increases with N , as predicted by Equation 25. At
low SNRs (i.e. SNR< 15), detector networks recover the
waveform with N ≤ 3 and lnBS,G ≤ 50 because low SNR
injections have low amplitude features which are harder
to reconstruct resulting in lower detection confidence. It

is clear for injections recovered with N > 3 that lnBS,G
in the HLKV network are generally higher than that of
the HL and HLV networks at comparable N and SNRnet.
This again emphasizes the point that the Bayes factor
scales with I.

A more thorough investigation of the relation between
the empirical and analytic Bayes factor can be found in
Appendix C, where we use a simplified injection set of sin-
gle sine-Gaussian wavelets. By recovering sine-Gaussian
wavelets with sine-Gaussian wavelets, Equation 6 reduces
to N = 1. The results show that the empirical scaling of
the Bayes factor with I agrees with the analytical scaling
in Equation 25 to a good approximation.

In summary, we show by comparing Bayes Factors be-
tween the HL, HLV and HLKV networks that expanding
detector networks increases detection confidence. Our
empirical results are consistent with the analytic re-
sults discussed Section IV, viz. lnBS,G ∝ IN ln SNRnet.
Heuristically, this can be understood via Occam’s razor:
if coincident identical glitches are unlikely in two detec-
tors, they are even more unlikely in three or more detec-
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Figure 3. Median overlap between the injected and recov-
ered waveform, Onet of the HL (blue dot) and HLV (orange
star) network, as a function of SNRnet. The horizontal blue
line indicates Onet = 0.8 and the vertical blue line indicates
SNRnet > 15.

tors. Therefore when identical waveforms are detected
simultaneously across larger networks, they have a higher
likelihood of being a signal.

B. Recovered Waveform Overlap

In the previous section, we showed that for a set of
BBH waveforms, lnBS,G increases with a larger number
of detectors in the network, meaning with more detectors
our confidence in detection is strengthened. In this sec-
tion, we quantify the accuracy of BayesWave in waveform
recovery by comparing the overlap (also sometimes called
the match) between the injected and recovered waveforms
for the HL, HLV and HLKV detector networks. The net-
work overlap, Onet is given by Equation 13. For the rest
of this paper, any mention of overlap refers to the net-
work overlap.

Figure 3 shows the median overlap, Onet as a function
of network SNR, where Onet of all three detector net-
works show positive correlation with their respective net-
work SNR. This observation is consistent with previous
results, which show that network overlap scales with SNR
[38, 45]. To illustrate how waveform reconstruction im-
proves with SNR, Figure 4 shows the injected waveform
(black), the detector data (blue) and the 90% credible in-
terval of the recovered waveform (red) for two events in
the HLKV network. The top and bottom panels show the
waveforms for the injection recovered with the smallest
overlap (Omin = 0.52) and largest overlap (Omax = 0.98)
of the whole injection data set respectively. The event
with the smallest overlap has SNRnet = 11.6 and was
recovered with lnBS,G = 9.66, while the event with the
largest overlap has SNRnet = 52.72 and was recovered
with lnBS,G = 218.0 This is consistent with the observed
trend between overlap and network SNR in Figure 3. The
similar trend between overlap and network SNR between

all three detector configurations indicates that waveform
reconstruction fidelity is not directly related to the num-
ber of detectors in the network.

However as noted earlier, increasing the number of de-
tectors does increase the network SNR. By comparing the
percentage of waveforms recovered with overlap above a
given threshold for all three detector configurations, we
show that having an additional detector allows us to bet-
ter reconstruct the signal waveform. The threshold is
arbitrarily defined here to be Onet > 0.8 and is indicated
by the horizontal blue line in Figure 3. We found that
81% of the injections were recovered with Onet > 0.8 for
the HL network, 86% for the HLV network and 87% for
the HLKV network.

While the inclusion of additional detector(s) does not
have an extra benefit in the same way it does for the
Bayes factor as shown in the previous section, it nonethe-
less allows us to better reconstruct the signal waveform
due to increased SNR. However, the improvement is less
significant upon the addition of KAGRA, since it is less
sensitive compared to Virgo as shown in Figure 1 and
therefore the increase in SNR is less compared to when
Virgo is added to the network. The overall results also
show that BayesWave is able to reconstruct waveforms
reasonably well with all three detector configurations for
injections with SNRnet > 18 as indicated by the vertical
blue line in Figure 3.

C. Sky localisation

Expanding detector networks improves sky localisation
of GW events, as has been shown by various studies on
coherent network detections e.g [34] [36] and [49]; see
Section II. In this section, we compare the accuracy of
BayesWave in locating the source with the HL and HLV
networks. We use two separate measures: (i) sky area
enclosed within the 50% and 90% credible intervals (CI)
and (ii) search area, A.

For every injection, BayesWave produces posterior dis-
tributions for the sky location (in the form of right as-
cension and declination) of the GW signal. We first look
at the sky area enclosed within 50% and 90% credible
intervals (CIs) of the posterior distribution of source lo-
cation. In the left panel of Figure 5, we show the plot
for sky area enclosed within the 50% CI versus network
SNR for each injection, and similarly for the the 90%
CI on the right panel. For all three detector configura-
tions, we note that the area within the 50% and 90% CIs
measured in square degrees (deg2) fundamentally reduces
with increasing network SNR due to improved accuracy
in arrival time differences [36]. However, both sky areas
are generally an order of magnitude smaller for the HLV
network compared to the HL network. Upon addition
of the KAGRA detector, we observe further reduction in
the sky area, but not as drastic as that between the HL
and HLV networks since KAGRA is less sensitive than
Virgo. The areas enclosed within both 50% and 90% CIs
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Figure 4. The top panel shows, for an injection with SNRnet = 11.61 and O = 0.52, the injected waveform (black), the detector
data (blue) and the 90% credible interval of the recovered waveform (red) for each detector in the HLKV network. Similarly
in the bottom panel but for an injection with SNRnet = 52.72 and O = 0.98.

reduces with increasing I due to the additional arrival
time differences which further constrain the location of
each source. These results reiterate that accuracy of sky
localisation improves at fixed CI as I increases.

We also compare the inferred sky location with the true
injected location of the source. We introduce another
metric - the search area, A, the hypothetical sky area
observed by a detector before it correctly points towards
the true location. To define this quantity mathematically,
we first denote the posterior probability density function
(PDF) of sky location as psky(φ, θ). If the true location
of the source is (φt, θt) and p0 = psky(φt, θt), then all

points within A should have psky ≥ p0. Mathematically,
we write [32, 50]

A =

∫
H[psky(φ, θ)− p0] dΩ (28)

where H is the Heaviside step function and dΩ is the
surface area element on the celestial sphere i.e. dΩ =
cos δdθdφ. In Figure 6 we plot the search area, A against
network SNR for both the HL and HLV networks. The
HLVK search area is slightly smaller than the HLV search
area, which in turn is significantly smaller than the HL
search area, consistent with Figure 5.
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Figure 5. The left panel shows the sky area enclosed within the 50% credible interval (CI) in square degrees versus the network
SNR of the corresponding detector network. Similarly on the right panel, except for the 90% CI.

Figure 6. Search area, A (Equation 28) versus network SNR
for the HL (blue dots) and HLV (orange stars) networks.

Overall, we see that sky localisation improves remark-
ably when a detector of high-sensitivity is added to the
network. If a less sensitive detector is added, the im-
provements are small but not negligible.

VII. CONCLUSION

The aim of this study is to compare the performance of
BayesWave in recovering GW waveforms from detector
networks of different sizes. We derive an analytic scal-
ing for the Bayes factor between the signal and glitch
models, BS,G . We then inject a set of simulated BBH
signals of fixed masses at different SNRs into simulated
O4 detector data of the HL, HLV and HLKV network.
We quantify BayesWave’s performance in signal identi-
fication with BS,G and the performance in waveform re-
construction with overlap, Onet. We also compare the
accuracy of sky localisation between the two networks.

We find that events of similar injected SNR analysed
using the HLV and HLKV network have higher lnBS,G

than those using the HL network. This agrees with the-
oretical prediction of the Bayes factor scaling:

lnBS,G ∝ IN ln SNRnet. (29)

Previous work [26] demonstrated that BayesWave is
unique amongst GW umodelled burst searches in that
the so-called “complexity” of the signal in time-frequency
plane plays a crucial role in the detection statistic, rather
than just the signal’s strength. This is understood
through the factor of N in Equation 29: a signal with
more complex structure needs more wavelets to accu-
rately reconstruct the waveform. In this work, we expose
another novel feature of the BayesWave algorithm: the
detection statistic is also influenced by the number of de-
tectors i.e. the factor of I in Equation 29. Events of
similar injected SNR (SNRnet) analysed using larger de-
tector networks have higher lnBS,G , indicating detection
confidence increases more than we would expect purely
from the increase in SNRnet.

The network overlap, Onet, between the injected and
recovered waveforms increases with SNRnet. We also
show that 87% of the HLKV network, 86% of the HLV
network and 81% of the HL network injections have
O > 0.8. Since larger detector networks can detect sig-
nals at higher SNR, they pick up more details of the true
waveform. Thus, BayesWave can reconstruct the wave-
forms more accurately.

Finally in Section VIC, we quantify accuracy of sky
localisation with the sky area enclosed within the 50%
and 90% credible intervals (CI). We find that both areas
decrease with increasing SNRnet and are generally an or-
der of magnitude smaller for the HLV networks than the
HL network. The reduction of sky area is less significant
upon the addition of the KAGRA detector due to its low
sensitivity compared to Virgo. The search area, A also
decreases with increasing SNRnet and increasing number
of detectors. The overall results suggest that increasing
the number of detectors at different geographical loca-
tions improves sky localisation, consistent with previous
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analyses [34, 36, 49].
With the global detector network growing in size, the

outlook for improving detection confidence with unmod-
elled burst searches is promising. Prospective work along
the lines of the research presented in this paper may in-
clude injecting different waveform morphologies to com-
pare detection confidence between detector networks of
different sizes. We also recommend looking into quanti-
fying and comparing the outcomes of BayesWave in re-
covering simulated signals from more realistic detector
noise (i.e. in the presence of glitches) between different
detector configurations.

In summary, BayesWave shows significant improve-
ments in terms of waveform recovery and parameter es-
timation when working with a larger detector network.
This promising result suggests that with more detectors
joining the global network in the future, we will be able
to reconstruct generic GW burst signals more accurately
using BayesWave making detections with higher Bayes
factor and hence with higher confidence.
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Appendix A: Fisher Information Matrix

Each wavelet has its Fisher Information Matrices
(FIMs), Γ written in terms of its five intrinsic param-
eters {t0, f0, Q, lnA, φ0}

Γ = SNR2


4π2f2

0 (1+Q2)
Q2 0 0 0 −2πf0
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
.

(A1)

FIMs contain information on local curvature of the like-
lihood of wavelet parameters which accelerates conver-
gence by proposing jumps in the MCMC algorithm to-
wards regions of higher likelihood [24]. BayesWave uses
FIMs to update wavelet parameters by drawing proposals
from a multivariate Gaussian distribution

q(y|x) =
det Γ

(2π)2
exp

(
−1

2
Γij∆x

i∆xj
)

(A2)

where ∆xi = xi−yi denotes the displacement in intrinsic
parameter i before and after the update.
Appendix B: Assumptions for Bayes Factor Scaling

Laplace approximations for the logarithmic signal (S)
and glitch (G) model evidences are given by Equations 23
and 24 respectively. In order to see how BS,G scales with
the waveform parameters, we make some assumptions to
simplify the two logarithmic evidences. In this work we
use the same assumptions as in Ref. [26].

Loud signals typically have optimal extrinsic param-
eters across the detector network, so the SNR in each
detector will be approximately equal such that

SNRi,n ≈
SNRnet,n√

I
(B1)

where SNRi,n is the SNR of the n-th wavelet in detector
i. We use a further simplifying assumption that the SNR
of each wavelet is the same

SNRnet,n ≈
SNRnet√

N
, (B2)

which has been empirically validated. We assume that
the glitch model in each detector uses similar reconstruc-
tion parameters as the signal model, and as such the
quality factors of all wavelets are approximately equal:

QGi,n ≈ Q
S
n ≡ Q (B3)

and similarly,

NG ≈ NS ≡ N. (B4)

Recall that NG indicates the number of wavelets used
in the glitch model for a single detector, so for an I-
detector network, the total number of wavelets used in
glitch models across the entire network is IN .

Equations 23 and 24 can be simplified to

ln p (d | S) ' SNR2
net

2
− 5N

2
−N ln(Vλ) +

N∑
n=1

ln
(
Q̄n
)
− 5N ln

(
SNRnet√

N

)
+

(
2 + ln

√
detCΩ

VΩ

)
(B5)

ln p (d | G) ' SNR2
net

2
− I

[
5N

2
+N ln(Vλ)−

N∑
n=1

ln
(
Q̄n
)

+ 5N ln

(
SNRnet√
NI

)]
. (B6)
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Appendix C: Scaling of Bayes factor with I

Figure 7. Log signal-to-glitch Bayes factor, lnBS,G of sine-
Gaussian wavelet recoveries versus network signal-to-noise ra-
tio, SNRnet. The solid lines with colours corresponding to
the data symbols are analytic predictions of lnBS,G given by
Equation C2.

Our results in Section VIA show that lnBS,G scales
with SNR, N , and I. As per Equation 6, N itself de-
pends on both the SNR of the signal, and the waveform
morphology. In order to specifically test the scaling of
lnBS,G with I alone, we inject a set of sine-Gaussian
wavelets as coherent signals into detector noise for the
HL, HLV and HLKV network and then recover them
using BayesWave. Because sine-Gaussian wavelets are
the basis of reconstruction for BayesWave, the number
of wavelets used is N = 1, with no dependence on SNR.

The dataset used this analysis is a set of 150 single
sine-Gaussian wavelets. The parameters of each wavelet
are randomly drawn from the following distributions:
t0 ∈ [1.5, 2.5] s (where t = 1 s is the center of the
analysis window), f0 ∈ [32, 1000] Hz, Q ∈ [0.1, 40] and
φ0 ∈ [0, 2π]. The SNR of the signals are drawn randomly
from a uniform distribution and SNR ∈ [10, 50], and the
amplitude is then found viz.

A = SNR

√
2
√

2πf0Sn(f0)

Q
(C1)

(see [38] for details). As we are injecting a coherent sig-
nal, we also require four extrinsic parameters as described
in Section IIIA. These parameters are also drawn ran-
domly from uniform distributions such that α ∈ [0, 2π],
δ ∈ [−π/2, π/2], ψ ∈ [0, 2π] and ε ∈ [−0.99, 0.99].

In Figure 7, we plot lnBS,G of each injection against
SNRnet for the HL, HLV and HLKV network injections.
We note that lnBS,G increases with SNRnet and is gener-
ally higher for networks with greater I, as predicted from
Equation 26. Since N in this case does not depend on
SNR, we can be certain that the differences in lnBS,G be-
tween the different detector configurations at comparable
SNRnet are entirely due to I.

In order to compare the analytic and empirical scaling
of lnBS,G with I, we fit analytic approximation of lnBS,G
for each detector network with a generalised expression

lnBS,G ≈ (I − 1)[5 lnSNRnet + a] +
5

2
I ln I + b. (C2)

This expression is derived from Equation 25 with N = 1.
We define the constants a = 5

2 − ln(Vλ) + ln(Q) and
b = 2 + ln

√
detCΩ

VΩ
. The prior volumes, Vλ and VΩ are

respectively the same for all detector configurations. We
do not have an analytic expression for detCΩ as the FIM
approximations is inadequate; the extrinsic parameter
space contains degeneracy between parameters, result-
ing in multimodal, non-Gaussian likelihood distribution
which spans the full extent of the prior range (see [26] for
details). We present the fits as three solid lines in Figure
7, where we have determined by-eye a = −10 and b = 4.
The same values of a and b are used for all three fits and
they are broadly consistent with the empirical results.

We see general agreement between the empirical results
and predicted scaling for lnBS,G , which further confirms
our results in Section VIA that the Bayes factor does
not only depend on SNRnet but also on I. We again
note that these scalings are estimations, and due to the
different sensitivities of the detectors we do not expect
exact agreement between analytic prediction and empir-
ical results.
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