

CHORUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

MeV-scale performance of water-based and pure liquid scintillator detectors

B. J. Land, Z. Bagdasarian, J. Caravaca, M. Smiley, M. Yeh, and G. D. Orebi Gann Phys. Rev. D **103**, 052004 — Published 12 March 2021 DOI: [10.1103/PhysRevD.103.052004](https://dx.doi.org/10.1103/PhysRevD.103.052004)

MeV-scale performance of water-based and pure liquid scintillator detectors ¹

B. J. Land,^{1, 2, 3} Z. Bagdasarian,^{2, 3} J. Caravaca,^{2, 3} M. Smiley,^{2, 3} M. Yeh,⁴ and G. D. Orebi Gann^{2, 3}

 1 University of Pennsylvania, Philadelphia, PA, USA 3

²University of California, Berkeley, CA 94720-7300, USA ⁴

 3 Lawrence Berkeley National Laboratory, CA 94720-8153, USA 5

 $4\ Broothaven\ National\ Laboratory, Upton\, NY\ 11973-500,\ USA$

This paper presents studies of the performance of water-based liquid scintillator in both 1-kt and 7° 50-kt detectors. Performance is evaluated in comparison to both pure water Cherenkov detectors ⁸ and a nominal model for pure scintillator detectors. Performance metrics include energy, vertex, and ⁹ angular resolution, along with a metric for ability to separate the Cherenkov from the scintillation ¹⁰ signal, as being representative of various particle identification capabilities that depend on the 11 Cherenkov / scintillation ratio. We also modify the time profile of scintillation light to study the $\frac{12}{2}$ same performance metrics as a function of rise and decay time. We go on to interpret these results in 13 terms of their impact on certain physics goals, such as solar neutrinos and the search for Majorana ¹⁴ neutrinos. This work supports and validates previous results, and the assumptions made therein, ¹⁵ and serves as a significant stepping stone to complete detector design studies by using a more 16 detailed detector model and full reconstruction, with a primarily data-driven optical model, and 17 fewer model assumptions. With this model, a high-coverage, 50-kt detector achieves better than ¹⁸ 10 (1)% precision on the CNO neutrino flux with a WbLS (pure LS) target in 5 years of data ¹⁹ taking. A 1-kt LS detector, with a conservative 50% fiducial volume of 500 t, can achieve better 20 than 5% detection. A liquid scintillator detector has sensitivity into the normal hierarchy region for ²¹ Majorana neutrinos, with half life sensitivity of $T_{1/2}^{0\nu\beta\beta} > 1.4 \times 10^{28}$ years at 90% CL for 10 years of 22 data taking with a Te-loaded target. 23

I. INTRODUCTION

These are exciting times for neutrino physics, with a number of open questions that can be addressed by nextgeneration detectors. Advances in technology and innovative approaches to detector design can drive the scientific reach of these experiments. A hybrid optical neutrino detector, capable of leveraging both Cherenkov and ³⁰ scintillation signals, offers many potential benefits. The high photon yield of scintillators offers good resolution and low thresholds, while a clean Cherenkov signal offers $\frac{33}{35}$
ring imaging at high energy, and direction resolution at $\frac{45}{3}$. ring imaging at high energy, and direction resolution at low energy. The ratio of the two components provides an additional handle for particle identification that can be used to discriminate background events.

There is significant effort in the community to develop this technology, including target material development $[1-12]$ $[1-12]$, demonstrations of Cherenkov light detection from scintillating media $[13-16]$ $[13-16]$, demonstrations of spectral sorting $[17, 18]$ $[17, 18]$ $[17, 18]$, fast and high precision photon detector development $[19–26]$ $[19–26]$, complementary development of reconstruction methods and particle identification techniques $[27-33]$ $[27-33]$, and development of a practical purification system at UC Davis. ⁴⁶

One approach to achieving a hybrid detector is to deploy water-based liquid scintillator (WbLS) [\[1\]](#page-17-0), a novel ⁴⁸ target medium that combines water with pure organic scintillator, thus leveraging the benefits of both scintillation and Cherenkov signals in a single detection medium, with the advantage of high optical transparency and, thus, good light collection. Many experiments are pursuing this technology for a range of applications, including a ⁵⁴ potential ton-scale deployment at ANNIE at FNAL [\[34–](#page-18-3)

 236 , possible kt-scale deployments at the Advanced Instrumentation Testbed (AIT) facility in the UK $[37-39]$ $[37-39]$ 57 and in Korea $[40]$, and, ultimately, a large $(25-100 \text{ kt})$ 58 detector at the Long Baseline Neutrino Facility, called 59 exection at the Long Baseline Neutrino Facility, called sub-
 ${}^{26}_{27}$ THEIA. The THEIA program builds heavily on early de-velopments by the LENA collaboration [\[41\]](#page-18-8). Such a detector could achieve an incredibly broad program of neutrino and rare event physics, including highly competitive 63 sensitivity to long-baseline neutrino studies, astrophysi- ⁶⁴ cal searches, and even scope to reach into the normal 65 hierarchy regime for neutrinoless double beta decay [\[42–](#page-18-9) 66] $\frac{45}{1}$.

2

³⁵ In this paper, we study the low-energy performance 68 of such a detector for a range of different target mate- ⁶⁹ r_{arials} , and compare the results to that for a pure water r_{o} ³/₃Cherenkov detector, and a pure liquid scintillator (LS) π ¹ detector, using linear alkyl benzene (LAB) with $2 g/L$ of τ the fluor 2,5-Diphenyloxazole (PPO) as the baseline for π $_{4}$ comparison. The goal of this paper is to contrast WbLS $_{74}$ $_{4}$ performance to LS under similar assumptions, and to val- $_{75}$ ₄ jdate the simple model used in [\[42\]](#page-18-9) with a more complete τ ⁶ poptical model, more detailed detector simulation, and full π e^{α} event reconstruction.

⁴⁶ Properties for the pure LS detector are taken from $\frac{79}{2}$ 4 measurements by the SNO+ collaboration [\[46,](#page-18-11) [47\]](#page-18-12). We \approx \ast start by considering three WbLS target materials. Each \ast cocktail is a combination of water with liquid scintilla- ⁸² $_{5}$ tor, with differing fractions of the organic component: 1, $_{83}$ 55 and 10% concentration by mass. WbLS properties are 84 sbased on bench-top measurements $[14, 48]$ $[14, 48]$ $[14, 48]$ or evaluated \quad sbased on constituent components, as described in Sec. [II.](#page-2-0) $\,$ 86 sM easurements of these WbLS materials demonstrated a \quad $\mathsf{s}\mathsf{r}$ swery fast timing response: with a rise time consistent as 89 with 0.1 ns, and a prompt decay time on the order of 147 2.5 ns. Since this fast time profile increases the over-91 lap between the prompt Cherenkov and delayed scintilla-149 tion signals, we also consider materials in which we delay 93 the scintillation time profile by some defined amount, to₁₅₁ study the impact of a "slow scintillator", for both pure LS and WbLS. Such materials are under active develop-ment [\[4,](#page-17-8) [5\]](#page-17-9).

97 It should be noted that, throughout this article, the¹⁵⁵ 98 pure LS in question is LAB + $2g/L$ PPO, and the LS¹⁵⁶ ⁹⁹ component of the WbLS under consideration is formu-¹⁰⁰ lated from these constituent materials, with additional ¹⁰¹ surfactants and other components to achieve stability, $_{102}$ good light yield, and good attenuation properties. Any₁₆₀ 103 comparisons made are specific to these materials. Fur- $^{100}_{161}$ $_{104}$ ther optimization is likely possible, resulting in further $_{105}$ improvements to performance, such as use of a secondary 106 fluor to shift the emitted spectrum. While we consider 107 materials with a delayed time profile, in order to under- $_{108}$ stand the impact of improved separation of the Cheren- $_{166}$ 109 kov component, these models are hypothetical, and $\text{in-}^{\text{100}}_{167}$ ¹¹⁰ tended to motivate further material development.

 Metrics used for these performance studies include the₁₆₉ energy resolution (dominated by photon counting and quenching effects), vertex resolution, direction resolution, and a statistic chosen to represent the separability of the Cherenkov and scintillation signals. This is repre- sentative of low-energy performance capabilities such as $_{117}$ particle identification, which may rely on separating the $_{170}$ two populations. The final choice of a detector material for any particular detector would depend on the physics goals, which will place different requirements on each as- pect of detector performance. In all cases, we focus on¹⁷² the low-energy regime. Performance studies at the high¹⁷³ energies relevant for neutrino beam physics are underway, 174 $_{124}$ and will depend on a different combination of factors, so^{175} may yield different optimizations.

 126 We consider both a 1-kt and a 50-kt total mass de- 177 127 tector, as being representative of experiments currently¹⁷⁸ $_{\rm ^{128}}$ under consideration. It should be noted that the 1-kt de- 179 129 tector results in a small, 500-ton fiducial volume for the₁₈₀ 130 physics cases under study. The metrics presented in this₁₈₁ $_{131}$ paper are highly dependent on the transit time spread₁₈₂ $_{132}$ (TTS) of the photodetectors, and we present results for₁₈₃ ¹³³ four hypothetical photodetectors models in this study. ¹³⁴ To span the range of available options, our four models₁₈₅ 135 have TTS of 1.6 ns, 1.0 ns, 500 ps, and 70 ps (sigma). μ_{136} In each case we assume 90% coverage, with a constant 137 representative quantum efficiency (QE) used for all four₁₈₈ ¹³⁸ models.

 To understand the reach of the detector capabilities studied here, we discuss the impact for several low-energy physics goals, in particular considering scope for a pre- cision measurement of CNO solar neutrinos, and nor- mal hierarchy sensitivity for neutrinoless double beta de- cay (NLDBD) [\[42,](#page-18-9) [45\]](#page-18-10). Large-scale scintillator detec-195 145 tors such as Borexino $[49]$ and KamLAND-Zen $[50]$ are 196 leaders in the fields of solar neutrinos and searches for

NLDBD, respectively, and new scintillator detectors such as SNO+ $[46]$ and JUNO $[51, 52]$ $[51, 52]$ $[51, 52]$ are taking data or under construction. There is much interest in the community in using new solar neutrino data for precision understanding of neutrino properties and behavior, as well as for solar physics [\[53\]](#page-18-18). The proposed THEIA experiment has discussed and evaluated the potential of a multi-kiloton, ¹⁵⁴ high-coverage WbLS detector for the purposes of solar neutrino detection and NLDBD $[42, 44]$ $[42, 44]$ $[42, 44]$, where the latter would deploy inner containment for an isotope-loaded pure LS target, adapting techniques from SNO+ and KamLAND-Zen. Studies such as those presented here can help to inform future detector design.

Sec. [II](#page-2-0) presents details of the scintillator model used. Sec. [III](#page-3-0) describes the simulation and analysis methods, including the reconstruction algorithms applied. Sec. [IV](#page-7-0) presents results for performance of the measured WbLS ¹⁶⁴ cocktails, including photon counting and reconstruction capabilities. Sec. [V](#page-10-0) presents the results as a function of rise and decay time, considering both the pure LS and a ¹⁶⁷ 10% WbLS. Sec. [VI](#page-13-0) discusses these performance results ¹⁶⁸ in light of their impact on certain selected physics goals, and Sec. [VII](#page-15-0) concludes.

II. WATER-BASED LIQUID SCINTILLATOR **MODEL**

For Monte Carlo simulation of photon creation and propagation in WbLS, we use the Geant4-based $[54]$ RAT-PAC framework [\[55\]](#page-18-21). Cherenkov photon production is handled by the default Geant4 model, ¹⁷⁶ G4Cerenkov. Rayleigh scattering process is implemented by the module developed by the $SNO+$ collaboration [\[47\]](#page-18-12). The GLG4Scint model handles the generation of scintillation light, as well as photon absorption and reemission.

The optical model used for (Wb)LS is based primarily on data and bench-top measurements. We utilize the WbLS light yield as measured in Ref. $[14]$ for 1%, 5%, and 10% solutions, and the scintillation emission spectrum and time profile are taken from Ref. $[48]$. These time profile measurements were confirmed with both x-ray excitation [\[48\]](#page-18-13) and direct measurements with β and γ sources [\[14\]](#page-17-7). The one place that such measurements do not yet exist is for the attenuation lengths of WbLS. The ¹⁸⁹ target material in question is still under active development, and any scattering data in existence is still preliminary. Measurements in $[1]$ are of early prototypes, and do not represent recent developments of these materials. More recent measurements following the approach in $[56]$ demonstrate much improved scattering and attenuation, but are not yet published. In this case, a model must be assumed. The assumptions made are detailed in the paper, and the potential impact is discussed.

¹⁹⁸ A. Refractive index estimation

In order to estimate the refractive index for WbLS, n_{t} 199 we use Newton's formula for the refractive index of liquid mixtures $[57]$:

$$
n = \sqrt{\phi_{labppo} n_{labppo}^2 + \phi_{water} n_{water}^2},\tag{1}
$$

where ϕ denotes the volume fraction of a corresponding component, while n_{labppo} and n_{water} correspond to the measured refractive indexes for pure LS $[47]$ and water $[58]$ as a function of wavelength. At 400 nm, the refractive index of water is 1.344 , and 1.505 for the pure LS. The estimates for 1% , 5% , and 10% WbLS at 400 nm are 1.347, 1.359, and 1.372, respectively. The full wave- ²⁰⁸ length dependence is included in the simulation. Due ²⁰⁹ to the dominant fraction of water, the WbLS refractive $_{210}$ III. index is very similar to that of pure water.

B. Absorption and scintillation reemission

The absorption coefficient, α , of WbLS depends on the molar concentration, c , of each of the components as:

$$
\alpha(\omega) = c_{lab}\epsilon_{lab}(\omega) + c_{ppo}\epsilon_{ppo}(\omega) + c_{water}\epsilon_{water}(\omega), \tag{2}
$$

where ϵ_{lab} , ϵ_{ppo} and ϵ_{water} are the molar absorption coef- 21 ficients of LAB, PPO $[47]$, and water (taken from Ref. $[59]$ for wavelengths over 380 nm and from Ref. $[60]$ for wavelengths below 380 nm).

A photon absorbed by the scintillator volume has a non-zero probability of being reemitted. This reemission process becomes important at low wavelengths where the ²²¹ absorption by scintillator is dominant. As a result, pho- ²²² tons are shifted to longer wavelengths where the detection probability is higher due to a smaller photon ab- ²²⁴ sorption and a greater PMT quantum efficiency. The 225 probability p_i^{reem} of a component i absorbing a photon $22d$ of frequency ω is determined as the contribution of the given component to the total WbLS absorption coefficient: 229

$$
p_i^{reem}(\omega) = \phi_i \alpha_i(\omega) / \alpha(\omega), \tag{3}
$$

where ϕ_i is the volume fraction of component i in WbLS. 230 After a photon is absorbed, it can be reemitted with a 59% probability for LAB and an 80% probability for PPO $[47]$, following the primary emission spectrum.

C. Scattering length

The Rayleigh scattering length, λ^s , is estimated for 23 WbLS as:

$$
\lambda^{s}(\omega) = \left(\phi_{lab}\lambda_{lab}^{-1}(\omega) + \phi_{water}\lambda_{water}^{-1}(\omega)\right)^{-1}, \quad (4)
$$

where λ_{lab} and λ_{water} are the scattering lengths for LAB and water, respectively, both taken from $\left[47\right]$. It was

noted that the addition of PPO does not change λ^s and 239 thus it is omitted in Eq. [4.](#page-3-1) 240

The resulting values of both absorption and scatter- ²⁴¹ $_{20}$ ing lengths for WbLS are close to those of pure water. $_{242}$ $_{20}$ It is known that this method overestimates the attenuation lengths, in particular, the scattering, given the ²⁴⁴ complex chemical structure and composition of WbLS. ²⁴⁵ A long-arm measurement of WbLS absorption and scat- ²⁴⁶ $_{20}$ tering lengths is planned in the near future. However, $_{247}$ ₂₀ recent (unpublished) data from BNL demonstrate scat- $_{20}$ tering lengths on the scale of the largest size of detector $_{249}$ $_{20}$ being considered here. Thus the known simplification $_{250}$ $_{20}$ is considered an acceptable approximation until further $_{251}$ $_{20}$ data becomes available. $_{252}$

SIMULATION AND ANALYSIS METHODS 253

The WbLS models developed in [\[61\]](#page-18-27), and described ²⁵⁴ above, can be used to evaluate the performance of these ²⁵⁵ ²¹materials in various simulated configurations. Of interest 256 are large, next-generation detectors such as THEIA $[42]$, 257 which could contain tens of kilotons of target material in- ²⁵⁸ strumented with high quantum efficiency photodetectors ²⁵⁹ at high coverage, and proposed detectors in the range of ²⁶⁰ one to a few kt, such as AIT [\[37\]](#page-18-5). To evaluate these ma- ²⁶¹ terials, two detector configurations are simulated: a 1-kt 262 detector and a 50-kt detector, both with 90% coverage $_{263}$ $\frac{1}{217}$ of photon detectors as a baseline. The different concen-tration WbLS materials studied in [\[14\]](#page-17-7), 1% , 5% and 10% 265 WbLS, are simulated and compared to both water and 266 pure (100%) scintillator material [\[47\]](#page-18-12).

A. Monte Carlo simulation 268

Fully simulating next-generation detector sizes instru- ²⁶⁹ ₂₂ mented with 3D models of photon detectors at the de- $_{22}$ sired coverage of 90% requires significant computational $_{271}$ $_{22}$ resources. This is especially true when studying multiple $_{272}$ $_{22}$ geometries, as the simulation typically must be rerun for $_{273}$ each geometry. To avoid this redundancy, RAT-PAC [\[55\]](#page-18-21) 274 can easily simulate a sufficiently large volume of mate- ²⁷⁵ rial and export the photon tracks to an offline geometry ²⁷⁶ and photon detection simulation. Using this method, $2.6-277$ ²³MeV electrons are simulated at the center of a large vol- 278 $\frac{232}{2100}$ ume of target material, isotropic in direction, and the re- $\frac{233}{8}$ sulting tracks are stored for later processing by a detector $\frac{280}{80}$ geometry model and a photon detector model. This en- ²⁸¹ $\frac{1}{234}$ ergy is chosen as being representative of a number of lowenergy events of interest, including reactor antineutrinos, 283 low-energy solar neutrinos, and the end-point of double ²⁸⁴ ²³beta decay for both 136 Xe and 130 Te. It is recognized 285 236 that the response of the detector will change as events 286 move further from the center. A more comprehensive 287 study that also includes expected position dependence of 288 $_{23}$ the detector performance is underway. However, this is $_{289}$ expected to have a small effect for the final physics stud- ²⁹⁰

ies presented here, in which small fiducial volumes are₃₄₆ $_{29}$ tween 10,000 and 100,000 photodetectors (depending on ²⁹² selected to mitigate backgrounds from external regions,

²⁹³ thus constraining events to the central region.

²⁹⁴ 1. Detector geometry

 Each detector configuration is modeled as a right cylin- der with diameter and height of 10.4 m and 38 m for the $_{297}$ 1-kt and 50-kt sizes, respectively. Specifically, this calcu- $_{354}$ lation achieves a 1-kt and 50-kt total mass for the pure LS detector, with slightly modified target masses for the ³⁰⁰ other target materials, based on different densities (the³⁵⁵ 301 LS under consideration has a density of 0.867 g/cm^3 , while WbLS is within a few percent of 1.0 g/cm^3). The 303 photon tracks from stored events that are found to inter-³⁵⁸ sect with the cylinder representing the detector boundary 359 305 are stored as potential detected photons ("hits") for each³⁶⁰ event. In this way, the boundary of each active volume acts as a photon-detecting surface that provides all infor- 362 mation about each photon to a photon detector model. 309 This simulation approach ignores several effects³⁶⁴ 310 present in real detectors, including reflections off of the³⁶⁵ 311 photodetectors, position uncertainty due to photodetec-³⁶⁶ $_{\rm 312}$ tors size, and false-positive photon detection (noise) from $^{\rm 367}$ real photodetectors. Typically, reflected photons will have a much longer path length than non-reflected pho- tons, arrive much later, and add little information to event reconstruction, so a lack of photodetector reflec- tions will have minimal impact on the metrics presented. Particularly, for angular reconstruction, we exclude all ³¹⁹ but the most-prompt photons, further reducing poten-³⁷³ tial impact of reflections. The impact of position resolu- tion was explored here by randomly shifting the position 375 of detected photons by up to 100 cm, and studying the ³²³ impact on the reconstruction metrics shown later in the³⁷⁶ paper. Ultimately, no statistically significant change was³⁷⁷ 325 observed after smearing the photon detection positions, 378 which can be understood by noting that the photon de- tection positions are far from the center-generated events studied here. In the 1-kt (50-kt) detector, this smearing results in (at most) an 11 deg (3 deg) shift in the photon 382 position, which is well below the best angular resolution achieved in this study. This indicates that position un- certainty of real photodetectors will have minimal impact on results provided. As a consequence of this, no reliance 334 is made on the purported position resolution of LAPPDs, 387 and we assume they could be deployed as devices with single-anode readout, similar to a PMT, which report 337 only the time of the photon arrival. Finally, noise in the 390 detector is expected to be sub-dominant to actual scin- tillation light, however it may be significant compared to Cherenkov light, depending on the size of the time window used to select events. As will be shown, Cher- enkov photons are selected from tight time windows on the order of 1 ns, meaning a total noise rate of order 1 GHz would be necessary to expect one noise photon within the Cherenkov window. In the 50-kt detector, be-

the exact form factor used) would be necessary to achieve the desired coverage, which places an approximate up- per limit on the per-photodetector noise rate of 10 kHz. This is an acceptable upper bound compared to modern PMTs [\[62\]](#page-18-28), so ignoring noise is considered to be a rea- sonable approximation and should have little impact on the results presented.

2. Photon detection

³⁵⁵ Photon detectors vary in their probability of detecting a photon as a function of wavelength (the QE) and their time resolution (TTS). Recently developed prototype photomultiplier tubes (PMTs) like the R5912-MOD $[63]$ can achieve a TTS of 640 ps (sigma), while commercially available large-area PMTs like the R7081-100 or R5912- $300 \, | \text{62} \rangle$ are quoted at a TTS of 1.5 ns or 1.0 ns (sigma), which may be better (worse) at higher (lower) bias voltage. Next generation photodetectors such as large-area picosecond photon detectors (LAPPDs) [\[64\]](#page-18-30) achieving a ³⁶⁵ TTS of 70 ps (sigma). Four hypothetical photon detector models are considered for each material and geometry, to span this range:

- 1. " $PMT"$ a generic commercially available largearea high-QE PMT, similar to an R5912-100 or R7081-100 $[62]$, with 34% peak QE and 1.6-ns TTS $(sigma).$
- 2. "FastPMT" a hypothetical PMT with a similar QE but smaller TTS of 1.0 ns (sigma).
- 3. "FasterPMT" a hypothetical PMT again with a similar QE but even smaller TTS of 500 ps (sigma).
- 4. "LAPPD" a next-generation device such as a large-area picosecond photodetector (LAPPD) [\[64\]](#page-18-30) with similar QE but a 70-ps TTS (sigma).

The same QE is used for all four models, assuming that future LAPPDs can reach comparable QE to existing ³⁸¹ Hamamatsu large-area PMTs.

A coverage of 90% using these devices is simulated by accepting only 90% of potential hits for the event. This high coverage is chosen as being slightly less than the maximum packing of identical circles on a plane: 90.7%. For a square device like an LAPPD, or a mixture of dissimilar sized devices, higher coverage may be achievable. The QE is accounted for by randomly accepting hits ac- α cording to the value of the QE curve (shown in Fig. [1](#page-5-0)) with typical wavelength spectra) at the wavelength of the hit. For the selected hits, the intersection position with the geometry model is taken as the detected position. Finally, a normally distributed random number with a width corresponding to the TTS of the photon detector model is added to the truth time of the hit to get the detected time. These detected hit position and times can then be passed to reconstruction algorithms for further analysis.

FIG. 1. The quantum efficiency (QE) used for photon detector models considered here (digitized from [\[62\]](#page-18-28)). Also shown are Cherenkov and scintillation photon spectra for centergenerated events in the 1% WbLS material in the two detector sizes prior to application of QE, i.e. including all optical effects, but no photon detection effects. The relative normalization of the spectra have been preserved, with the maximum value normalized to 1.0.

³⁹⁹ B. Event reconstruction

To evaluate the performance of the different materials under different detector configurations, a fitter was developed to reconstruct the initial vertex parameters based ⁴⁰² on detected hit information. Position and time recon- ⁴⁰³ struction are both aided by the large number of isotropic 404 scintillation photons, while direction reconstruction relies on identification of non-isotropic Cherenkov photons. As Cherenkov photons are prompt with respect to scintillation photons, the reconstruction will first identify prompt photons, and then use them to reconstruct direction in a staged approach. Promptness is defined in terms of the 410 hit time residual t_{resid} distribution. 411

The reconstruction algorithm used here has the follow- ⁴¹² ing steps, which are described in detail in the following 413 sections: 414

- Step 1: Position and time of the interaction vertex are reconstructed using all detected hits by maximizing ⁴¹⁶ the likelihood of the t_{resid} distribution. 417
- Step 2: Direction is reconstructed using only prompt hits $_{418}$ by placing a cut on the t_{resid} distribution, obtained for the reconstructed value of position and time. It should be noted that this cut on prompt time is performed after the effects of the detection process, including the PMT TTS, to be equivalent to a hit time in a real detector. No MC truth information is used.
- Step 3: Finally, the total number of hits is recorded as an estimate of the energy of the event.

The approach is inspired by vertex reconstruction algorithms used in the SNO experiment $[65]$. The algorithm has been tested and demonstrated to achieve similar position and direction resolution to SNO for equivalent event 431 types in a SNO-like detector—for example, for 5 MeV ⁴³² electrons in a SNO-sized vessel, with TTS and photo- ⁴³³ coverage set to relevant values (approximately 1.8 ns and ⁴³⁴ 55% , respectively) this algorithm achieves $27.4°$ angular 435 resolution, compared to the SNO reported value of 27◦ . ⁴³⁶

We note that this choice of reconstruction methodology is one that can be applied for the full spectrum of ⁴³⁸ materials under consideration, from water to pure LS. ⁴³⁹ Significant work is ongoing in the community to develop $\frac{440}{400}$ reconstruction techniques specific to certain materials ⁴⁴¹ and certain detector configurations, or particular physics 442 goals [\[27](#page-18-1)[–33\]](#page-18-2). Such methods would likely out-perform ⁴⁴³ our approach when applied to the intended detector or ⁴⁴⁴ physics goal, and it is highly likely that the results pre- ⁴⁴⁵ sented here can be further optimized by the incorpora- ⁴⁴⁶ tion of such algorithms. As such, these results should 447 be considered conservative. Our intent is to apply a sin- ⁴⁴⁸ gle algorithm across all materials to facilitate comparison ⁴⁴⁹ between detector configurations.

1. Position and time 451

Reconstructing vertex position and time can be done ⁴⁵² 40 40 40 40 40 53 40 400 σ f $t_{resid, i}$ for each hit i in 453 #other event: 454

$$
t_{resid, i} = (t_i - t) - |\vec{x}_i - \vec{x}| \frac{n}{c}, \qquad (5)
$$

where (\vec{x}_i, t_i) are the position and time of a detected pho-40ton, (\vec{x}, t) represents the fitted vertex position and time, 456 and $\frac{c}{n}$ is the group velocity typical of a 400-nm photon. 457 This expression includes two important assumptions that ⁴⁵⁸ are made to approximate a realistic detection scheme. ⁴⁵⁹

- 1. The travel time is calculated assuming a photon ⁴⁶⁰ wavelength of 400 nm, since for a real detector the $_{461}$ wavelength is typically not known. Fig. [1](#page-5-0) shows 462 the expected spectra for both Cherenkov and scin- ⁴⁶³ tillation light.
- 2. Each photon is assumed to travel in a straight line, ⁴⁶⁵ as photon detectors are typically not aware of the ⁴⁶⁶ actual path the photon traveled. 467

A result of these assumptions is that dispersion in the ⁴⁶⁸ ⁴² material will broaden the t_{resid} distribution, as the travel 42 time will be overestimated (underestimated) for longer 470 42 (shorter) wavelength photons. Additionally, scattered or 471 42 reemitted photons will appear later than their true emis- 472 42 sion time due to ignoring their true path. An example of 473 ⁴²a t_{resid} distribution using the true detection times, but 474 with these approximations, is shown for the 10% WbLS $_{475}$ \int_{0}^{∞} and pure LS material in Fig. [2](#page-6-0) for the 1-kt and 50-kt detector geometries. In plots shown in this paper, the t_{resid} 477 ω is arbitrarily shifted such that the average t_{resid} of Cher- ω 42 enkov photons across many events is 0 ns. The integral of 479

FIG. 2. True hit time residual distributions for (left) 10% WbLS and (right) pure LS in a (top) 1-kt and (bottom) 50-kt detector. This uses the same QE as the photon detector models, but with zero TTS. Fluctuations observed in these distributions are purely statistical.

⁴⁸¹ event on average, which highlights both the difficulty of ⁵⁰⁴ of the widths in all three dimensions. ⁴⁸² identifying Cherenkov photons in pure scintillators, and

 $\frac{483}{100}$ their prompt placement in the t_{resid} distribution.

 484 For each material and detector configuration, a PDF⁵⁰⁵ $\frac{485}{485}$ for t_{resid} of all photons is produced using truth informa-⁴⁸⁶ tion from a subset of the simulated events. Reconstruc-487 tion is then done by minimizing the sum of the negative⁵⁰⁷ 488 logarithm of the likelihood for each hit with a two-staged⁵⁰⁸ 489 approach: a Nelder-Mead [\[66\]](#page-18-32) minimization algorithm⁵⁰⁹ ⁴⁹⁰ with a randomly generated seed is used to explore the 491 likelihood space and approximate the global minima, fol-⁵¹¹ $_{492}$ lowed by a BFGS $[66]$ minimization algorithm to find the⁵¹² ⁴⁹³ true (local) minima using the minima from the previous ⁴⁹⁴ step as the seed. This method produces the best estimate 495 of the true t_{resid} distribution for each event, to be used ⁴⁹⁶ in the direction fit.

 For each event, the difference between the recon- structed position (time) and the true position (time) is taken. The distributions of these differences for each ma- terial and detector configuration are fit to Gaussian dis- tributions, and the sigma of these fits is taken as the resolution for the position and time reconstruction. The

these distributions is the number of detected photons persos $*$ position resolutions reported here are the quadrature sum

2. Direction

As Cherenkov light is emitted at a fixed angle with respect to the particle's path, detected Cherenkov hits can be used to infer the event direction. A method for ⁵⁰⁹ doing this is by maximizing the likelihood of the cosine of ϵ ₅₁₀ the angle, θ_i , between the vector from the reconstructed $\sum_{i=1}^{\infty}$ event position, \vec{x} , to each detected photon position, \vec{x}_i , and a hypothesized direction \overline{d} :

$$
\cos \theta_i = \frac{(\vec{x}_i - \vec{x}) \cdot \hat{d}}{|\vec{x}_i - \vec{x}|}.
$$
\n(6)

⁵¹³ For Cherenkov light, the PDF for this distribution is peaked at the Cherenkov emission angle, θ_c , of the material. Because non-Cherenkov photons do not carry directional information, they will appear flat in this distribution, and will degrade the performance of the fit. It is beneficial, therefore, to restrict this likelihood maximization to only photons with $t_{resid} < t_{prompt}$ for some t_{prompt} , as this should maximize the number of Cherenkov photons relative to other photons. Examples of the $\frac{521}{20}$ $\cos \theta_i$ distributions with various t_{prompt} cuts is shown in $\frac{522}{5}$ Fig. 3 for 10% WbLS and pure LS. These figures show that in the 10% WbLS material, directional information is still visible even with large t_{prompt} cuts, whereas this is not the case with pure LS, where the scintillation light greatly exceeds the Cherenkov light. Here, the impact of dispersion is typically beneficial, as the broad spectrum of Cherenkov light compared to typical scintillation spectra results in long-wavelength Cherenkov photons appearing 530 earlier in the t_{resid} distribution compared to their true $\frac{1}{531}$ emission times. We note that a photon detection scheme 532 that can distinguish between long and short wavelength 533 photons $[18]$ could further enhance the ability to identify $\frac{534}{2}$ Cherenkov photons. 535

PDFs for the $\cos \theta_i$ distribution are created using subsets of the simulated events for many t_{prompt} values between -1 ns and 10 ns, and event reconstruction is done for each t_{prompt} value for every event. Reconstruction proceeds in the same way as the position-time minimizing the sum of the negative logarithms of the likelihood of $\frac{541}{100}$ each selected hit with a randomly seeded coarse Nelder-Mead $[66]$ search, followed by a BFGS $[66]$ method seeded with the result of Nelder-Mead to find the best minima. The value $\cos \theta$ is calculated for each reconstructed direction as $\hat{d} \cdot \hat{d}_{true}$, where \hat{d}_{true} is the initial direction of the $\frac{1}{2}$ electron. The $\cos \theta$ distribution from each simulated configuration and t_{prompt} pair is integrated from $\cos \theta = 1$ until the $\cos \theta$ value that contains 68% of events, and this value is defined as the angular resolution for that pair. Finally, the angular resolution resulting from the t_{prompt} with the best angular resolution for each configuration is taken as the angular resolution for that configuration.

$3.$ Energy

The distribution of the total number of hits is fit to a Gaussian to determine the mean μ_N and standard deviation σ_N of detected hits for each condition. The fractional energy resolution is reported as σ_N/μ_N .

IV. PERFORMANCE OF WATER-BASED LIQUID SCINTILLATOR IN A LARGE-SCALE NEUTRINO DETECTOR

The materials described in Sec. [III](#page-3-0) were simulated in $\frac{562}{2}$ the two detector geometries (1 kt and 50 kt) and four pho- ⁵⁶³ todetector models ("PMT," "FastPMT," "FasterPMT," ⁵⁶⁴ and "LAPPD") described in the same section. Between 565 10,000 and 100,000 events were simulated for each ma- ⁵⁶⁶ terial, with fewer events for the pure LS due to the high photon counts (and accordingly slower simulation times). ⁵⁶⁸ The following sections explore the true MC information provided by those simulations, as well as presenting the 622 reconstruction results for all cases.

A. Photon population statistics 572

Roughly speaking, energy resolution is limited by the $\frac{573}{2}$ total number of detected photons, position and time res-blution are limited by the number of direct photons (not absorbed and reemitted, scattered, or reflected), and di- rection resolution is limited by the number of Cherenkov photons and how visible they are within the brighter scin-tillation signal. The total population of photons can be roken down into the following categories:

- 1. *Cherenkov* photons, which were not absorbed and $\frac{581}{581}$ reemitted by the scintillator.
- 2. Scintillation photons, which were not absorbed and 583 reemitted by the scintillator.
- 3. Reemitted photons, regardless of their origin. $\frac{585}{200}$

 $\mbox{^{53}These populations are shown in Fig. 4 for the materials}$ $\mbox{^{53}These populations are shown in Fig. 4 for the materials}$ $\mbox{^{53}These populations are shown in Fig. 4 for the materials}$ $\frac{38}{3}$ and detector sizes considered here. Since each considered $\frac{587}{3}$ $\stackrel{\text{539}}{\text{photon}}$ detector model has the same QE and coverage, $\,$ $\,$ $\,$ 54° the populations are the same in each case.

Higher scintillator fractions are very advantageous 590 ⁵⁴³ from an energy resolution perspective, having many more 591 54 ⁵⁴³total photons. The same is true from the perspective of 592 $\frac{1}{2}^{544}$ position and time resolution in a 1-kt detector. For a $\frac{593}{2}$ \int_{0}^{54} arger 50-kt detector, the population of reemitted pho-⁵⁴⁶tons for pure LS is greater than the scintillation pop- 10^{547} ulation, hinting that this condition is dominated by ab-⁵⁴⁸ sorption and reemission, which can degrade vertex recon- 549 struction, as reemitted photons are less correlated with 598 55% he initial vertex. Despite the larger refractive index 599 55h pure LS, which implies a larger number of generated 600 55 ²Cherenkov photons, the number of detected Cherenkov 601 553 photons is highest in water in both detector sizes. In the 602 WbLS materials, the increase in refractive index is largely $\frac{603}{603}$ offset by the shorter attenuation lengths, resulting in a ⁶⁰⁴ 554 nearly flat trend for detected Cherenkov photons in the 605 50-kt detector. For the 1-kt detector, the water and pure \sim 606 554 S materials are slightly favored over WbLS in terms of 607 55detected Cherenkov photons. The difference between the 608 55 two detector sizes is primarily due to attenuation, where 609 5 sthe larger size results in more Cherenkov photons being 610 absorbed. As the total number of detected Cherenkov $\frac{611}{611}$ photons is similar for materials within the same detector $\frac{612}{612}$

 555 ize, the relative amount of scintillation photons, and the 613 extent to which they can be discriminated from Cher- ⁶¹⁴ ⁵⁶ enkov photons with t_{prompt} cuts, plays a large role in ϵ reconstruction performance.

\mathbf{B} . In-ring photon counting 617

Without applying reconstruction algorithms, one can 618 s_{sim} spect the truth information for the detected hits to s_{19} s ⁶³ saunderstand their origins and time distributions. Of in- $_{56}$ terest here is how discernible the Cherenkov photons are, $_{621}$ α ₅₇ and how well they may be identified against a scintilla-623 sztion background. Since Cherenkov photons are emitted

FIG. 3. True photon direction distributions for (left) 10% WbLS and (right) pure LS in a (top) 1-kt and (bottom) 50-kt detector. These are shown for several t_{prompt} cuts, highlighting how prompt cuts on the hit time residual distribution can reveal the directional Cherenkov photons, even in pure LS. Fluctuations observed in these distributions are purely statistical.

624 at a particular angle θ_c with respect to the track of the 648 ⁶²⁵ charged particle, it is instructive to see how many hits 626 are detected in the region $\theta_c \pm \delta$ ("in-ring") with respectes ⁶²⁷ to the event direction. Further, since Cherenkov photons ⁶²⁸ are prompt with respect to scintillation photons, it is in-⁶²⁹ structive to see these populations as a function of how ⁶³⁰ early they arrive. As in the reconstruction algorithm, t_{resid} , this is defined in terms of the hit time residual, t_{resid} ,⁶⁵⁵ ω_{632} where smaller t_{resid} values are more prompt.

 $Fig. 5$ $Fig. 5$ shows the number of Cherenkov and other (scin-⁶⁵⁷) 634 tillation and re-emitted) photons for photons with $\cos \theta^{658}$ 635 satisfying $\theta_c \pm 15^\circ$ using true detected times (TTS = 0) 636 and true origins, but including the effect of photodetector 637 coverage and QE, as a function of a t_{prompt} cut on $t_{resid \cdot_{661}}$ 638 Of particular note is that there are more "in-ring" Cher-662 $_{639}$ enkov photons than other photons for sufficiently prompt_{663} t_{prompt} cuts for all materials using truth information.

 $_{641}$ With the number of in-ring Cherenkov photons defined 642 as S and the number of in-ring other-photons defined as ⁶⁴³ B, a single metric, $S/\sqrt{(S+B)}$, for the significance of $_{644}$ the Cherenkov photons as a function of a t_{prompt} cut is the set of the contrary $_{644}$ $_{645}$ shown in Fig. [6.](#page-10-1) The larger this significance, the easier it. ⁶⁴⁶ should be to identify the Cherenkov topology on top of ⁶⁴⁷ the isotropic scintillation background. The higher signif-

icance at earliest times in the pure LS material is primarily due to the larger impact of dispersion in this material relative to WbLS or water. Dispersion separates the narrow scintillation spectrum from the longer-wavelength portion of the broad-spectrum Cherenkov photons in large detectors, pushing the long-wavelength Cherenkov earlier, and the short-wavelength scintillation (and shortwavelength Cherenkov) later. This results in better time ⁶⁵⁶ separation between the earliest Cherenkov photons and the earliest scintillation photons when comparing pure LS to WbLS.

Also of note here is the similar amounts of prompt scintillation light in the WbLS and pure LS materials, despite having very different amounts of total scintillation light. This is particularly clear in the 1-kt detector, where 5% , 10% and pure LS are very similar, while ⁶⁶⁴ in the 50-kt detector those WbLS materials show more scintillation than pure LS at early times. Two effects are at play here: differing amounts of dispersion due to differences in the refractive index, and also differences in the time profiles of the scintillation light in the different materials. The effects of dispersion serve to delay the predominantly blue scintillation relative to the longer- ⁶⁷⁰ wavelength Cherenkov light, and this occurs to a greater ϵ_{671}

FIG. 4. The number of detected photons for 2.6-MeV electrons simulated at the center of two detector geometries (50-kt and 1-kt) differing in size. These photon counts are shown as a function of material scintillator fraction. Water is artificially plotted at 10^{-1} (due to log scale).

and 1-kt) differing in size. These photon counts are shown as
a function of material scintillator fraction. Water is artificially
plotted at 10^{-1} (due to log scale).
degree in the pure LS than in WbLS, due to the highe refractive index. Further, the scintillation time profile of WbLS materials is faster than pure LS, as can be seen in the measurements from $[14]$. The combined effect is σ that there are similar amounts of prompt Cherenkov and 676 prompt scintillation photons in the WbLS and pure LS 677 materials, resulting in similar Cherenkov-significance in σ these materials. As the scintillation light tends to come σ ₅₇₉ slightly later and is dimmest in 1% WbLS, the greatest significance of Cherenkov detection in scintillating materials is achieved in that material, which also has the least stringent requirement on t_{prompt} cut for peak performance. Both the 5% and 10% WbLS materials require an earlier t_{prompt} cut than pure LS for peak performance, however more prompt cuts do result in slightly better Cherenkov significance than achieved in pure LS.

C. Reconstruction results

Inspecting the truth information provides a detailed understanding of the information available. However, to truly evaluate these materials, it is necessary to apply reconstruction algorithms and evaluate the impact on position, time, and direction reconstruction. This is done using the reconstruction algorithm described in Sec. [III](#page-3-0) and the results are shown in Fig. [7.](#page-10-2) An example view of the fit residuals for pure LS with a 1.0 ns t_{prompt} cut, showing the Gaussian fits to those residuals, can be found in Fig. 8 . These results are a function both of material properties and the reconstruction algorithm used, and therefore should not be taken as the best possible resolutions achievable when using these materials.

In general, the scintillator materials outperformed wa-

FIG. 5. The number of "in-ring" (see text) photons per event determined using truth information from 2.6 MeV electrons simulated at the center of two detector geometries (top) 1 kt and (bottom) 50 kt. The number of photons is shown 6848 a function of t_{prompt} cut, selecting for prompt photons. ₆₈Cherenkov photons are shown in solid lines, with all other ₆₈ photons shown with dashed lines. The colored legend applies ₆₈₇to both Cherenkov and other photons.

ter in the metric of position and time resolution due to_{zi} _{no}detector for 10% WbLS when using fast photodetectors the much larger number of photons detected from scin- $\frac{1}{22}$ whike LAPPDs. For pure LS, dispersion (especially in the tillation light. The 1-kt detector typically demonstrates ⁷⁰⁵ smaller residuals in position and time compared to the π $_{68}$ 50-kt detector, as the impact of dispersion and scattering, $_{707}$ ₆₉₀which broaden the t_{resid} distribution, are greater in the τ ₀₈ $\epsilon_{\rm sol}$ arger geometry. In particular, the better transparency $\epsilon_{\rm res}$ $_{69}$ of WbLS compared to pure LS is evident in the relatively $_{710}$ $_{69}$ poorer position resolution seen with pure LS when com- $_{711}$ $_{69}$ pared to 10% WbLS in the 50-kt detector. Position and $_{712}$ $_{69}$ time resolutions unsurprisingly improve with the reduc- $_{713}$ $_{\text{cgs}}$ tion in TTS from the PMT model to the LAPPD model. $_{714}$ For direction reconstruction, the water material acts ⁷¹⁵ α as an excellent baseline with best resolution, having only α ¹⁶ Cherenkov hits and excellent transparency. The addi- ⁷¹⁷ tional scintillation light from the WbLS materials de- ⁷¹⁸ n grades this resolution by approximately a factor of two n_1 γ ² γ ² γ ² γ ²⁰ γ ²⁰

FIG. 6. With S defined as Cherenkov photons and B defined **FIG.** 6. With S defined as Cherenkov photons and B defined
as other photons, these figures plot $S/\sqrt{S+B}$, or the significance of the population of "in-ring" Cherenkov photons, for the data shown in Fig. [5,](#page-9-1) with the two detector geometries (top) 1 kt and (bottom) 50 kt. As this metric is only based on photon statistics and not reconstruction performance, it is used to inform, but not choose, the ideal t_{prompt} cut (see Appendix [A\)](#page-19-0).

 50-kt detector) and the relatively slower time profile re- sults in enhanced t_{resid} separation between Cherenkov⁷⁴⁰ and scintillation photons, enabling comparable or better⁷⁴¹ angular resolution than the WbLS materials. Notably, 742 the LAPPD model has sufficient time resolution to easily identify a pure population of prompt Cherenkov photons in pure LS resulting from dispersion, allowing direction reconstruction comparable to water. This is not seen with the PMT model, which lacks the time resolution to resolve this population. This indicates that the dis- persion of a pure scintillator is a beneficial quality for direction reconstruction, and that the faster timing pro- files of the WbLS materials relative to pure LS may be a hindrance to accurate direction reconstruction. The former point may be difficult to address in WbLS, given that the refractive index is very close to that of water and it is hardly tunable without significantly altering the

FIG. 7. Reconstruction resolutions of 2.6 MeV electrons simulated at the center of two detector geometries (top) 1 kt and (bottom) 50-kt, differing in size, and four photon detector models ("PMT," "FastPMT," "FasterPMT," and "LAPPD"), differing in TTS. These resolutions are shown as a function of scintillator fraction. Water is artificially plotted at 10[−]¹ (due to log scale). Angular resolution is shown for the best t_{prompt} cut (see Appendix [A\)](#page-19-0). See legend for units.

material. However, the time profiles of liquid scintillators can be adjusted $[4, 5]$ $[4, 5]$ $[4, 5]$, and this is explored in the following section.

V. IMPACT OF SCINTILLATION TIME PROFILE IN A LARGE-SCALE NEUTRINO **DETECTOR**

As demonstrated in $[14]$, the WbLS time profiles are faster than that of pure LS. It is useful to understand to what extent this difference impacts the performance of WbLS and pure LS. This can be studied by artificially adjusting the profiles of pure LS in simulation to match those of WbLS, and the reverse. This also serves as firstorder approximation of slow scintillators, and generally $\frac{752}{752}$

FIG. 8. The upper left panel shows the position fit residuals in three dimensions, where Z is always aligned with the initial event direction. The top right panel shows the fitted time residuals. The $\cos \theta$ fitted event direction distribution is in the bottom left, with the bottom right being the total number of detected photons, from which the energy resolution is calculated. This is shown for the pure LS material in the 1 kt detector geometry using the "PMT" photon detector model and a 1.0 ns t_{prompt} cut for direction reconstruction.

how adjusting the scintillation time profile impacts reconstruction. What this approach does not take into account are the more complicated optics involved in the absorption and reemission of a secondary fluor, which would be ⁷⁵⁶ present in slow scintillators $[4, 5]$ $[4, 5]$ $[4, 5]$. Besides impacting the π ₅₇ time profile, real fluors may have many other effects, such $\frac{758}{758}$ as reemission of photons at different wavelengths than ⁷⁵⁹ the primary scintillation light, which could modify the ⁷⁶⁰ impact of attenuation, dispersion, the matching of the spectra to the photodetector QE, among other things. However, this approach does explore to what extent the faster time profiles of WbLS impact its performance compared to pure LS, and what may be gained by exploring slower WbLS materials, perhaps by reducing the concentration of PPO $[4]$.

Two properties are explored here: the rise time of the ⁷⁶⁸ profile, τ_r , and a single decay constant, τ_1 , using the $\sum_{\tau d}$

$$
p(t) = \frac{1}{N} (1 - e^{t/\tau_1 - t/\tau_r}) e^{-t/\tau_1}, \tag{7}
$$

where N is a normalization constant. Qualitatively, the decay time changes the amount of time over which the scintillation light is spread, with a larger decay time resulting in a broader emission profile. The rise time, on the other hand, tends to delay earliest scintillation light without strongly impacting the overall width of the emis-sion profile. Fig. [9](#page-11-1) visually shows the impact of changing these two parameters.

Both the pure LS and 10% WbLS materials have their $\sum_{i=1}^{\infty}$ repopulation of prompt Cherenkov photons independent of time profiles adjusted, and reconstruction metrics are ³⁸ to time profile used. Increasing the decay constant of

FIG. 9. Example time profiles of the form Eqn. [\(7\)](#page-11-2). The profiles are shown normalized to unit area, and cover the range of parameters used in the rise and decay time study.

shown using the methodology described in Sec. [III.](#page-3-0) We π_{81} consider both a scan of the decay constant for two cho- ⁷⁸² sen rise times, and a scan of the rise time for two cho- ⁷⁸³ sen decay times. In all cases, all other properties of the π 84 materials (light yield, refractive index, absorption and ⁷⁸⁵ scattering, emission) are kept constant at the values pre-sented in Sec. [II.](#page-2-0) This allows us to decouple the effect of π the time profile from other properties of the scintillator, $\frac{788}{100}$ which may be useful input for guiding future material $\frac{753}{789}$ which may be useful input for guiding future material $\frac{754}{796}$
 $\frac{754}{755}$

The decay constant is scanned from 2.5 ns (typical $\frac{792}{792}$ $_{76}$ of current WbLS) to 10 ns (typical of slow scintilla- $_{76}$ tors [\[4,](#page-17-8) [5\]](#page-17-9)), and the simulation and reconstruction meth- \log_{10} ods described in Sec. [III](#page-3-0) are used for each combination. \log $_{764}$ This scan is repeated for two choices of rise time: a fast $_{796}$ rise time of 100 ps is used, characteristic of the WbLS $\frac{797}{797}$ $_{766}$ cocktails explored in this paper, and a slow rise time of $_{798}$ $_{76}1$ ns, more representative of pure LS. $_{799}$

A. Decay time 791

As before, this is done for 2.6 -MeV electrons with both some the 1-kt and 50-kt detector geometries. Only the LAPPD 801 photon detector model is explored here, to simplify the $\frac{1}{802}$ presentation of results. Resolution metrics are presented some for position and direction with the 10% WbLS and pure 804 LS materials in Fig. [10.](#page-12-0) Energy resolution is unaffected $\frac{805}{200}$ π by changes to the time profile. 806

 772 Slower decay constants in 10% WbLS appear to im- π prove angular resolution quite significantly in the 1-kt \cos τ geometry, more so for the faster rise time, but degrade \sim τ the resolution in the 50-kt geometry. The primary differ- π ence between these two geometries (for the same material π π and time profile) is the impact of dispersion (see Fig. [2\)](#page-6-0). π 812 π In the 50-kt geometry, there is a dispersion-dominated π

FIG. 10. Reconstruction resolutions for a scan of the scintillation decay time with a rise time of (left) 100 ps and (right) 1 ns in the (top) 1-kt detector geometry and (bottom) 50-kt detector geometry. Results are shown for the LAPPD photon detector model for the 10% WbLS and pure LS materials. Angular resolution is shown for the best t_{prompt} cut (see Appendix [A\)](#page-19-0). See legend for units.

816 the scintillator in this limit primarily broadens the timesss ⁸¹⁷ profile, which degrades the reconstruction metrics. In ⁸¹⁸ the 1-kt geometry, which is not dominated by dispersion, 819 the broadening of the time profile due to increasing de-834 820 cay constant does reduce the prompt scintillation light, 835 821 resulting in improved angular reconstruction. This im-⁸³⁶ 822 provement is less significant with the larger rise time, as⁸³⁷ $\frac{823}{100}$ the larger rise time itself removes much of the prompt⁸³⁸ ⁸²⁴ scintillation light.

825 Notably for pure LS the effects are small: slowing the 843 826 scintillation light without modifying other parameters in 844 827 the pure LS has little time impact on detector perfor-845 828 mance. This indicates that the slower time profile of 846 829 pure LS relative to WbLS is not the driving factor behinds 47 ⁸³⁰ its good performance in these metrics, which is instead 831 dominated by the impact of dispersion due to the high₈₄₉ ⁸³² refractive index.

B. Rise time

Since increasing the decay time constant to spread out the scintillation light had adverse effects in the 10% WbLS at the 50-kt detector, a scan of the rise time is performed to understand the impact on the reconstruction metrics. The rise time is scanned for values from 100 ps to 1 ns, for both a 2.5 ns and 5 ns decay time, charac-⁸⁴⁰ teristic of WbLS and pure LS, respectively. As before, ⁸⁴¹ this is done for 2.6-MeV electrons with both the 1-kt and ⁸⁴² 50-kt detector geometries. Results are shown in Fig. [11.](#page-14-0)

In all cases, slowing the rise time improves the angular resolution, but slightly degrades the position and time resolution. Slower rise times in 10% WbLS degrade the position and time resolution more than in the pure LS material. 10% WbLS demonstrates significant gains ⁸⁴⁸ in angular resolution for slower rise time constants, and this is most pronounced in the 1-kt detector where the ⁸⁵⁰ prompt Cherenkov is not yet well separated by disper⁸⁵¹ sion. Pure LS results in the best overall resolution, and is again minimally impacted by adjusting its time pro- ⁸⁵² file. Simulated hit time residuals in Fig. 2 show that the $\frac{1}{2}$ unmodified pure LS material has a clear prompt Cheren- ⁸⁵⁴ kov population in the 50-kt detector (c.f. 10% WbLS), which is not impacted significantly by adjusting the scintillation time profile. This prompt Cherenkov population is the dominant factor in the good performance of pure LS compared to 10% WbLS, and is primarily due to the greater impact of dispersion in pure LS.

VI. IMPACT FOR PHYSICS REACH

We now briefly examine how the energy and angular resolutions evaluated in the previous sections affect the capability for rejection of the ${}^{8}B$ solar neutrino background in NLDBD searches, and identification of signal events for CNO solar neutrino detection. In both cases, identification (as either signal or background) of the directional solar neutrino events is the capability under study.

Detailed studies have been performed in $[42]$ of the sensitivity of a 50-kton (Wb)LS detector to both CNO neutrinos and to NLDBD. However, in that paper a number of simplifying assumptions were made, including an assumed vertex and angular resolution, and simplified approach to energy reconstruction. In addition, that work ⁸⁷⁵ was based on previously understood, now outdated, properties for WbLS. This work represents the first study using a data-driven optical model for WbLS, a more realistic detector simulation at the single photon level, and full event reconstruction. This work therefore serves to validate the simpler assumptions made in $[42]$ and to support the results from that work.

In order to do so, we again make use of the RAT-PAC 883 framework $[55]$, including the neutrino-electron elastic $\frac{884}{2}$ scattering generator and the radioactive decay generator used by SNO $[65]$ and SNO+ $[67]$ as well as an implementation of Decay0 $[68]$. In simulation, the neutrinoelectron elastic scattering differential cross section $[69]$ is weighted by the neutrino energy spectrum $[70, 71]$ $[70, 71]$ $[70, 71]$ for the different fluxes from the Sun and then sampled in outgoing electron energy and scattering angle, for both ν_e and ν_{μ} . Solar neutrino fluxes are taken from [\[72\]](#page-18-38). The decay energy spectra are also found for various backgrounds associated with the CNO energy region of interest. The solar neutrino interactions and decays are then simulated accordingly to extract the expected energy deposition in the target materials under consideration. After the simulation, solar neutrino event samples are weighted following the survival probability calculated in $[73]$.

The extracted angular resolution parameters from Secs. [IV](#page-7-0) and [V](#page-10-0) are used to smear the scattering angle for solar neutrino events using a functional form taken from $[44]$, while radioactive and cosmogenic background events, as well as double beta decay events, are assumed to be isotropic.

A. NLDBD sensitivity 906

For the NLDBD study, we consider $LAB+PPO$ loaded \Box with 5% natural Te $(34.1\% \text{ }^{130}\text{Te})$, and assume the ex- 908 pected $3\%/\sqrt{E}$ energy resolution from [\[42\]](#page-18-9), since the \sim 909 ssisotope-loaded scintillator will behave differently from 910 $_{ss}$ those studied here. We intentionally make the same as- $_{911}$ $_{ss}$ sumptions as in that previous work in order to do a direct $_{912}$ α _{s6} comparison with the implementation of the more complete optical model and reconstruction presented here. ⁹¹⁴ The isotope is assumed to be contained within an 8-m 915

 $_{86}$ radius balloon in the center of the 50-kt detector. A further fiducial cut is made 1 m inside the balloon radius to $\frac{917}{210}$ mitigate the impact of backgrounds from the balloon it- ⁹¹⁸ ⁸⁶Self. We make the same assumptions about location and 919 ⁸⁶background rates as in the previous study $[42]$, which $\frac{920}{2}$ ⁸⁶\$hould be referred to for further detail. Notably, ${}^{8}B$ so-⁸⁶lar neutrino events are the dominant background. The 922 ⁸⁶⁶purpose of this study is to explore the impact of the an-⁸⁶⁷gular resolutions determined in Sec. [IV.](#page-7-0) No assumption 924 ⁸⁶⁸on angular resolution was directly made in $[42]$, so we use $\frac{925}{2}$ ⁸⁶the angular resolution found here for unloaded scintilla- 926 187° to extend the previous analysis, as being representa-⁸⁷tive of reasonably achievable time profiles. Energy cuts $\frac{928}{2}$ ⁸⁷are applied to restrict the study to the $0\nu\beta\beta$ region of ₉₂₉ ⁸⁷interest for ¹³⁰Te, as outlined in [\[42\]](#page-18-9). We further apply $\frac{930}{2}$ 87 ^{ext}cuts as a function of reconstructed direction relative to $\frac{931}{2}$ ⁸⁷the Sun, $\cos \theta_{\odot}$, in order to reduce the background from 932 ⁸⁷ directional ⁸B solar neutrinos. The fraction of ν_e and ν_μ 933 87 samples for $8B$ neutrinos surviving these analysis cuts are 934 ⁸⁷⁸scaled according to expected event rates on LAB+PPO 935 ⁸⁷ln order to maintain the correct ratio of ν_e and ν_μ inter-⁸⁸⁹ actions and properly calculate the overall efficiency for 937 ⁸⁸rejecting solar neutrino background events and accept- 938 ⁸⁸lng isotropic events such as radioactive decays or $0\nu\beta\beta$. 939

The efficiencies for the cut values are then propagated $\frac{940}{2}$ sthrough the box analysis procedure of $[42]$ to select an $\frac{941}{941}$ $_{\rm ss8}$ optimal cut that yields the best sensitivity. To quote an $_{\rm 942}$ $\text{example, we find an expected sensitivity of } T_{1/2}^{0\nu\beta\beta} > 1.4\times \quad \text{with} \quad \beta$ 10^{28} years at 90% CL in the 50-kt, LAPPD-instrumented 944 sspure LAB+PPO detector with decay time of 2.5 ns and $\frac{945}{25}$ sorise time of 1.0 ns, after 10 years of data taking. This $\frac{946}{946}$ eguates to a mass limit of $m_{\beta\beta} < 4.5 - 11.1$ meV, using 947 nuclear matrix elements from [\[74,](#page-18-40) [75\]](#page-18-41). KamLAND-Zen ⁹⁴⁸ has placed a limit on the effective Majorana neutrino ⁹⁴⁹ γ somass of 61 – 165 meV [\[50\]](#page-18-15), and the SNO+ experiment 950 soprojects a sensitivity of $55-133$ meV [\[46\]](#page-18-11). Fig. 19 of [\[42\]](#page-18-9) 951 soshows this result in the context of other proposed future 952 experiments. Such a detector achieves an angular resolu- ⁹⁵³ tion of roughly 37◦ . This result is achieved by cutting on ⁹⁵⁴ **and** solar angle corresponding to $\cos \theta_{\odot} = 0.7$, which rejects **955** soover 65% of the $8B$ background while keeping 85% of the s56 signal. This increases confidence in assumptions of rejec- ⁹⁵⁷ sotion capability used in $[42]$. Notably, improving the an- $\text{logular resolution to } 30^{\circ}$ and performing the same analysis sgn does not yield changes to sensitivity to the leading deci- ⁹⁶⁰ ⁹⁰ mal. Note that this result confirms that of more sophis-

FIG. 11. Reconstruction resolutions when the scintillation rise time is scanned for a decay time of (left) 2.5 ns and (right) 5.0 ns in the (top) 1-kt detector geometry and (bottom) 50-kt detector geometry. This is done using the LAPPD photon detector for the 10% WbLS and pure LS materials. Angular resolution is shown for the best t_{prompt} cut (see Appendix [A\)](#page-19-0). See legend for units.

ticated reconstruction techniques, such as that presented ⁹⁸² of the change from a rise time of 100 ps to 1 ns is less than 963 in [\[32\]](#page-18-42), in which similar rejection was demonstrated for a 3-m radius detector. In this case we demonstrate that such rejection can be preserved even in the much larger detector under consideration here, which is critical for next-generation NLDBD sensitivity.

968 Several other configurations for the 50-kt detector give⁹⁸⁸ 969 results with similar sensitivity. Fig. [12](#page-15-1) shows the impact⁹⁸⁹ 970 of the various photon detector models, with only small⁹⁹⁰ ⁹⁷¹ losses in sensitivity for the 500-ns (FasterPMT) and 1-ns ⁹⁷² (FastPMT) models, of less than 1% and approximately 973 3% in lifetime, respectively. Only standard PMTs show⁹⁹¹ ⁹⁷⁴ a significant degradation of sensitivity, and this detector ⁹⁷⁵ is also seen to perform best with no cut on solar an-976 gle, due to the degraded direction resolution achieved for 977 this configuration. For the LAPPD-instrumented detec-994 ⁹⁷⁸ tor, we see that the impact of scanning the decay time 979 for values from 2.5 to 10 ns for LAB+PPO changes the 996 980 sensitivity by less than 0.02×10^{28} years, and the sensi-⁹⁸¹ tivity improves for slower rise times, but the impact of

983 0.04×10^{28} years. As such, variation of the decay and rise time of the scintillation time profile at the scale examined, without other changes to LS optical properties, are not thought to have a large impact on sensitivity to ⁹⁸⁷ NLDBD. It should be noted that this conclusion is specific to our particular choice of direction reconstruction methodology, and conclusions may differ for other approaches.

B. Precision CNO measurement

We also evaluate scenarios for CNO solar neutrino detection in a manner akin to the large-scale WbLS detector studies presented in $[44]$ and $[42]$. We assume a α conservative 50% fiducial volume to mitigate contributions from backgrounds in external regions. We make the same assumptions about location and background rates as in those studies and, as in the NLDBD case, further

FIG. 12. Half-life sensitivity for $0\nu\beta\beta$ achieved for a 50-kt pure LS detector with an 8m radius balloon of Te-loaded pure LS at 5% loading, as a function of solar angle cut and photodetector model. Angular resolution is based on that found in Sec. [IV,](#page-7-0) assuming the as-measured properties of LAB+PPO without considering possible delays to the scintillation profile, without considering possible delays to the scintillation prof
and we use $3\%/\sqrt{E}$ energy resolution, as assumed in [\[42\]](#page-18-9).

⁹⁹⁹ details can be found therein. Instead of the hit-based lookup reconstruction scheme applied in those studies, we employ a Gaussian smearing based on the expected number of hits, as determined in Sec. [IV.](#page-7-0) Since quenching effects are fully simulated, we take only the part of the width that is due to photon counting, so as not to $_{1004}$ double count that effect. The resolution is scaled with energy according to photon statistics. The rest of the fitting procedure remains the same as that described in the mentioned analyses, though we consider the use of a constraint on the *pep* flux at 1.4% from the global analysis of $[76]$, which leverages the information afforded by the full pp-chain and solar luminosity on experimental data. Application of this constraint follows the methodology of the recent Borexino discovery [\[77,](#page-18-44) [78\]](#page-18-45).

Since the angular resolution evaluated at 2.6 MeV is expected to be much finer than at energies more relevant to the CNO search, for this study, we instead use resolu- ¹⁰¹⁶ tion values determined using simulated electrons at 1.0 MeV. For consistency, the energy resolution is also recalculated at 1.0 MeV. At this energy, we find that in the 1019 50 kt, LAPPD-instrumented detector, the angular resolution achieved by the fitter is 70° for 1% WbLS and 65° for LAB+PPO, as opposed to 40° and 36° respectively $\frac{6}{1022}$ at 2.6 MeV. The energy resolution is assumed to vary $\frac{102}{\sqrt{2}}$ $\propto 1/\sqrt{E}$ and the angular resolution is assumed to be flat. 1024 This does not fully incorporate expected improvements 1025 in resolution at higher energies, and degradation at lower $\frac{1026}{200}$ energies. A more sophisticated study implementing the 1027 full energy dependence is underway. This result is intended to guide the reader as to the capabilities of this style of detector. Energy cuts are applied to the CNO solar neutrino fit region, following the approach in $[42]$.

15

We consider a threshold of 0.6 MeV in all cases. 1032

It is of interest to see the direction reconstruction per- ¹⁰³³ formance at these energies, with the acknowledged caveat 1034 that improvements are likely possible with more sophis- ¹⁰³⁵ ticated analysis techniques. Appendix \overline{B} \overline{B} \overline{B} lists the direc- 1036 tion resolution achieved for both the 1- and 50-kt detec- ¹⁰³⁷ tors, for each target material, with each photon detector 1038 model, at both 1 MeV and 2.6 MeV .

Fig. 13 shows the results for the precision with which 1040 the CNO flux could be determined, in both the 1- and 50- ¹⁰⁴¹ kt detectors, for each combination of target material and 1042 photodetector model. The 1-kt results are seen to have ¹⁰⁴³ little dependence on TTS for a WbLS deployment. Due ¹⁰⁴⁴ to the small target mass (500-ton fiducial volume, after a 1045) 50% cut to reject external events) the sensitivity is signif- ¹⁰⁴⁶ icantly reduced in this smaller detector, and the depen- ¹⁰⁴⁷ dence on target material is notably stronger, due to the ¹⁰⁴⁸ reduced impact of dispersion for the shorter path lengths. ¹⁰⁴⁹ However, a pure LS detector can still achieve an excel- ¹⁰⁵⁰ lent measurement of CNO neutrinos, with dependence on $_{1051}$ photodetector model, due to the impact of direction res- ¹⁰⁵² olution on background rejection efficiency. Better than ¹⁰⁵³ 5% can be achieved in an LAPPD-instrumented detec- ¹⁰⁵⁴ tor. In the 50-kt detector a stronger dependence on TTS 1055 is observed across the spectrum of target materials, al- ¹⁰⁵⁶ though the achievable sensitivities are reasonably com- ¹⁰⁵⁷ ₁₀₀ parable across different photodetector models, with the 1058 looplargest variations observed for 5% and 10% WbLS, where 1059 $_{100}$ tradeoffs between angular resolution and light yield be- $_{1000}$ $_{100}$ Come important.

 \sum_{1021}^{∞} more comprehensive study of these effects will be forth-We find that in 5 years of data taking, the CNO flux 1062 $_{100}$ could be determined to a relative uncertainty of 18% (8%) 1063 $_{100}$ in the 50-kt, LAPPD-instrumented 10% WbLS detector $_{1064}$ ₁₀₀₇, when the *pep* flux is unconstrained (constrained to 1.4%), 1065 $_{100}$ and to 1% in the same detector filled with LAB+PPO, $_{1006}$ $_{100}$ with the *pep* flux either constrained or unconstrained. By $_{100}$ $_{101}$ Contrast, Borexino's discovery includes a 1σ uncertainty 1068 $_{101}$ of 42\% above and 24\% below their measured flux, includ- $_{1069}$ $\frac{1}{101}$ ing statistical and systematic uncertainties [\[78\]](#page-18-45). We note $\frac{1}{1070}$ that the result for the *pep*-constrained case is not very $_{1071}$ sensitive to the fraction of scintillator in WbLS $(1-10\%$ 1072 perform similarly) whereas in the *pep*-unconstrained case $\frac{1072}{1073}$ the performance degrades with reduced scintillator frac- ¹⁰⁷⁴ tion. This is understood because the angular resolution $\frac{1075}{1075}$ is found to be similar for different WbLS materials at ¹⁰⁷⁶ 1 MeV (approximately 70[°]), so the light yield becomes 1077 t_{1020} the critical component in determining performance. A t_{1078} coming in a future publication.

VII. CONCLUSIONS 1081

In this paper we have considered the low-energy per- ¹⁰⁸² formance of both 1- and 50-kt detectors, with a range ¹⁰⁸³ $_{102}$ of target materials. We focus on new measurements of $_{1084}$ WbLS, and their impacts on detector performance, and ¹⁰⁸⁵ consider both pure water and pure scintillator detectors ¹⁰⁸⁶

FIG. 13. (Top) Precision achieved for a measurement of the CNO flux in a 1-kt detector, as a function of the percentage of_{132} LS in the target material, where a value of 10^2 refers to pure LS, and of the photodetector model. Detector performance $_{134}$ is based on that found in Sec. [IV,](#page-7-0) assuming the as-measured properties of WbLS and LS, without considering possible delays to the scintillation profile. The angular resolution and energy resolution have been recalculated at 1 MeV, \arccos \arccos ing to the methodology outlined in earlier sections. The inset shows a zoom in on the pure LS sensitivity for the 1-kt de-1139 tector, to illustrate the importance of photon detector model for this configuration. (Bottom) CNO precision in the 50 -kt₁₄₁ detector, as a function of %LS and photodetector model.

for comparison. We also consider the impact of slowing 1451 $_{1088}$ the scintillation light in both the pure LS and the WbLS $_{1146}$ We consider four models for photon detectors, with time $_{1090}$ resolution of 1.6 ns, 1 ns, 500 ps, and 70 ps. We study $_{148}$ detector performance in terms of energy, vertex, and an- gular resolution, and go on to the interpret the results in terms of sensitivity to the CNO solar neutrino flux, and a search for NLDBD.

 While LS outperforms WbLS for these particular physics goals, many factors motivate the choice of target material for a particular detector. A large-scale WbLS detector would preserve a long-baseline program, offering similar sensitivity to neutrino mass hierarchy and CP vi-

 $_{1100}$ olation as an additional DUNE module [\[42\]](#page-18-9), along with a broad program of low energy physics. Other factors to consider include practical considerations such as cost, risk, deployment procedures, and purification and recir- culation requirements. In this paper we consider some of the potential physics and performance trade offs between such a large-scale WbLS deployment, a standard water Cherenkov detector, and a pure LS fill, and explore how these trade offs change across parameter space. It should be noted that, while an improvement on earlier work, some model assumptions persist in this analysis, such as the scattering model and exclusion of noise. These may have an effect on the results, and will be validated as part of the ongoing measurement program. Other as- sumptions, such as exclusion of reflections, and charac- terization using centrally generated events, are expected to have a small effect, due to the prompt time cuts and fiducial volumes used for the analysis, although both assumptions will be further validated with ongoing work.

 Different optical properties dominate many of the ef- fects under consideration. Due to the higher refractive index, more Cherenkov photons are generated in pure $\frac{1}{1122}$ scintillator than in water or WbLS, which competes with increased absorption and scattering in this material. Ef- fects of absorption and reemission can be seen in the large detector, where more reemitted photons are de-tected than direct scintillation photons.

¹²⁷ We evaluate energy resolution using the width of the ¹¹²⁸ detected hit distribution. As expected, this increases ¹¹²⁹ with fraction of scintillator in the target, with minimal ¹¹³⁰ impact from the photon detector model. We employ a likelihood-based evaluation of vertex and direction reconstruction. The scintillation component of WbLS improves the vertex resolution but degrades the angular resolution relative to pure water. The faster time profile of WbLS compared to pure LS makes the identification of the Cherenkov population more challenging, thus hindering direction reconstruction.

Dispersion effects play a significant role in the ability to separate Cherenkov photons, particularly in the larger detector. We see that the impact of faster timing photon detectors on low-energy reconstruction performance ¹¹⁴² is important in the larger detector size in order to fully ¹¹⁴³ leverage this effect for reconstruction. The higher refrac-¹¹⁴⁴ tive index of pure LS increases the effects of dispersion for this material. The optimal low-energy angular resolution in a scintillating detector is achieved for pure LS, under the assumption of 70-ps time resolution. For time resolutions of 1 ns or worse, water and WbLS perform better. The difference in performance between WbLS and pure LS is much less significant in the larger detector, where 5% and 10% WbLS perform similarly to pure LS. It is ¹¹⁵² worth noting that studies of direction reconstruction at high energies may yield different conclusions, given much higher photon statistics.

The fast time profile of WbLS motivated consideration of delaying the time profile, to understand the impact on detector performance. Slow scintillators are under active ¹¹⁵⁸ development, in part for their potential to offer improved angular resolution for low-energy events. This possibility was studied for both 10% WbLS and for pure LS. We 1160 observe minimal impact on either position or direction ¹¹⁶¹ reconstruction for pure LS, but the angular resolution $_{1162}$ of WbLS can be significantly improved by slowing the ¹¹⁶³ scintillation light, to that equivalent to pure LS or even 1164 slower, with relatively small impact on vertex resolution.

We consider the impact of the observed detector performance for both CNO solar neutrino detection, and potential for deployment of a containment vessel of Teloaded pure LS in a larger WbLS detector, for a search for Majorana neutrinos via NLDBD. We find that the 50kt detector has sensitivity to the CNO neutrino flux of better than 20% under conservative assumptions with no constraint on the pep flux, better than 10% in a lightly loaded WbLS detector when considering a constraint on the pep flux, as was done for the recent Borexino discovery $[78]$, and 1% for a pure LS detector. A 1-kt total mass detector has reduced sensitivity due to the reduced statistics, but a pure LS deployment can still achieve a sub 5-percent measurement. For NLDBD we find a half life sensitivity of $T_{1/2}^{0\nu\beta\beta} > 1.4 \times 10^{28}$ years at 90% CL for 1180 10 years of data taking, which equates to a mass limit of 11811 $m_{\beta\beta} < 4.5 - 11.1$ meV. These results both have a weak

dependence on photon detector model, with only small 1183 115degradation in sensitivity for TTS values up to 1 ns. 1184

ACKNOWLEDGMENTS 1185

The authors would especially like to thank Tanner ¹¹⁸⁶ Kaptanoglu, Michael Wurm, Josh Klein, Bob Svoboda, ¹¹⁸⁷

Matthew Malek and Adam Bernstein for useful discussions. The authors would like to thank the $SNO+$ col- 1189 1164 aboration for providing a number of simulation modules, 1190 116 as well as data on the optical properties of the pure LS, 1191 1164 ncluding the light yield, absorption and reemission spec- 1192 116 ¹¹⁶tra, and refractive index. 1193

1170 This material is based upon work supported by the 1194 ¹¹⁷U.S. Department of Energy, Office of Science, Office 1195 ¹¹⁷of High Energy Physics, under Award Number DE- 1196 SC0018974. Work conducted at Lawrence Berkeley Na- ¹¹⁹⁷ 117 tional Laboratory was performed under the auspices of 1198 117^the U.S. Department of Energy under Contract DE- 1199 1176AC02-05CH11231. The work conducted at Brookhaven 1200 117 National Laboratory was supported by the U.S. Depart- 1201 117⁸ment of Energy under contract DE-AC02-98CH10886. 1202 1179 The project was funded by the U.S. Department of En- 1203 ¹¹⁸ ergy, National Nuclear Security Administration, Office of $_{1204}$ Defense Nuclear Nonproliferation Research and Develop- ¹²⁰⁵ m ent (DNN R $&$ D).

- [1] M. Yeh, S. Hans, W. Beriguete, R. Rosero, L. Hu, R. L. Hahn, M. V. Diwan, D. E. Jaffe, S. H. Kettell, and ¹²⁰⁸ L. Littenberg, [Nucl. Instrum. Meth. A](http://dx.doi.org/10.1016/j.nima.2011.08.040) 660, 51 (2011). 1209[14]
- [2] L. Bignell, D. Beznosko, M. Diwan, S. Hans, D. Jaffe, ¹²¹⁰ S. Kettell, R. Rosero, H. Themann, B. Viren, E. Worces- ¹²¹¹ ter, M. Yeh, and C. Zhang, [J. Instrum.](http://dx.doi.org/10.1088/1748-0221/10/12/p12009) **10**, P12009 1212 $(2015).$
- [3] C. Buck and M. Yeh, J. Phys. G 43[, 093001 \(2016\).](http://dx.doi.org/10.1088/0954-3899/43/9/093001) 12[14](http://dx.doi.org/ 10.1088/1748-0221/14/02/p02005)
- [4] Z. Guo, M. Yeh, R. Zhang, D.-W. Cao, M. Qi, Z. Wang, ¹²¹⁵ and S. Chen, [Astroparticle Physics](http://dx.doi.org/10.1016/j.astropartphys.2019.02.001) **109**, 33 (2019). 1214[[16](http://dx.doi.org/ 10.1016/j.nima.2016.05.132)]
- [5] S. D. Biller, E. J. Leming, and J. L. Paton, [Nucl. In-](http://dx.doi.org/10.1016/j.nima.2020.164106) ¹²¹⁷ [strum. Meth. A](http://dx.doi.org/10.1016/j.nima.2020.164106) 972 , 164106 (2020). 1214[17]
- [6] E. Graham, D. Gooding, J. Gruszko, C. Grant, ¹²¹⁹ B. Naranjo, and L. Winslow, [J. Instrum.](http://dx.doi.org/ 10.1088/1748-0221/14/11/p11024) 14, P11024 1220 18 [\(2019\).](http://dx.doi.org/ 10.1088/1748-0221/14/11/p11024) ¹²²¹
- [7] C. Aberle, J. J. Li, S. Weiss, and L. Winslow, [J. Instrum.](http://dx.doi.org/ 10.1088/1748-0221/8/10/p10015) 1[22](http://dx.doi.org/10.1016/j.nima.2019.162834)4[19] 8[, P10015 \(2013\).](http://dx.doi.org/ 10.1088/1748-0221/8/10/p10015) ¹²²³
- [8] T. Marrodn Undagoitia, F. von Feilitzsch, L. Oberauer, W. Potzel, A. Ulrich, J. Winter, and M. Wurm, [Review](http://dx.doi.org/ 10.1063/1.3112609) 1225 [of Scientific Instruments](http://dx.doi.org/ 10.1063/1.3112609) 80, 043301 (2009). ¹²²⁶
- [9] J. Ashenfelter et al., J. Instrum. 14[, P03026 \(2019\).](http://dx.doi.org/ 10.1088/1748-0221/14/03/p03026)
- [\[](http://dx.doi.org/10.1016/j.nima.2019.01.014)10] J. Cumming, S. Hans, and M. Yeh, [Nucl. Instrum. Meth.](http://dx.doi.org/10.1016/j.nima.2019.01.014) 12[28](http://dx.doi.org/ 10.1016/j.nima.2010.02.233) A **925**[, 1 \(2019\).](http://dx.doi.org/10.1016/j.nima.2019.01.014)
- [11] A. Abusleme et al. (Daya Bay and JUNO), "Opti- ¹²³⁰ mization of the juno liquid scintillator composition using a daya bay antineutrino detector," (2020) , 1232 $arXiv:2007.00314$ [physics.ins-det].
- [12] X. Zhou, Q. Liu, M. Wurm, Q. Zhang, Y. Ding, Z. Zhang, 12[34](http://dx.doi.org/ 10.1109/NSSMIC.2011.6154420) Y. Zheng, L. Zhou, J. Cao, and Y. Wang, [Review of](http://dx.doi.org/ 10.1063/1.4927458) ¹²³⁵ [Scientific Instruments](http://dx.doi.org/ 10.1063/1.4927458) 86 , 073310 (2015).
- [13] J. Caravaca, F. B. Descamps, B. J. Land, M. Yeh, and ¹²³⁷ G. D. Orebi Gann, [Eur. Phys. J. C](http://dx.doi.org/10.1140/epjc/s10052-017-5380-x) 77, 811 (2017).
- J. Caravaca, B. Land, M. Yeh, and G. Orebi Gann, 1239 "Characterization of water-based liquid scintillator ¹²⁴⁰ for Cherenkov and scintillation separation," (2020), ¹²⁴¹ [arXiv:2006.00173 \[physics.ins-det\].](http://arxiv.org/abs/2006.00173) ¹²⁴²
- [15] J. Gruszko, B. Naranjo, B. Daniel, A. Elagin, D. Good- ¹²⁴³ ing, C. Grant, J. Ouellet, and L. Winslow, [J. Instrum.](http://dx.doi.org/ 10.1088/1748-0221/14/02/p02005) ¹²⁴⁴ **14**[, P02005 \(2019\).](http://dx.doi.org/ 10.1088/1748-0221/14/02/p02005)
- M. Li, Z. Guo, M. Yeh, Z. Wang, and S. Chen, [Nucl.](http://dx.doi.org/ 10.1016/j.nima.2016.05.132) 1246 [Instrum. Meth. A](http://dx.doi.org/ 10.1016/j.nima.2016.05.132) **830**, 303 (2016).
- [17] T. Kaptanoglu, M. Luo, and J. Klein, [J. Instrum.](http://dx.doi.org/10.1088/1748-0221/14/05/T05001) 14, ¹²⁴⁸ [T05001 \(2019\).](http://dx.doi.org/10.1088/1748-0221/14/05/T05001) ¹²⁴⁹
- [18] T. Kaptanoglu, M. Luo, B. Land, A. Bacon, and J. R. ¹²⁵⁰ Klein, Phys. Rev. D **101**[, 072002 \(2020\).](http://dx.doi.org/ 10.1103/PhysRevD.101.072002)
- A. Lyashenko et al., [Nucl. Instrum. Meth. A](http://dx.doi.org/10.1016/j.nima.2019.162834) 958, 162834 1252 (2020) .
- [20] B. W. Adams, A. Elagin, H. J. Frisch, R. Obaid, ¹²⁵⁴ E. Oberla, A. Vostrikov, R. G. Wagner, J. Wang, and ¹²⁵⁵ M. Wetstein, [Nucl. Instrum. Meth. A](http://dx.doi.org/10.1016/j.nima.2015.05.027) **795**, 1 (2015). 1256
- 122^[21] E. Ramberg (PSEC), in *[Technology and instrumentation](http://dx.doi.org/ 10.1016/j.nima.2010.02.233)* 1257 [in particle physics. Proceedings, 1st International Con-](http://dx.doi.org/ 10.1016/j.nima.2010.02.233) ¹²⁵⁸ [ference, TIPP09, Tsukuba, Japan, March 12-17, 2009](http://dx.doi.org/ 10.1016/j.nima.2010.02.233), 1259 Vol. 623 (2010) pp. 316–317.
- 123[22] E. Oberla and H. J. Frisch, [Nucl. Instrum. Meth. A](http://dx.doi.org/10.1016/j.nima.2016.01.030) 814, 1261 $19 \ (2016)$. 1262
- 1235[23] O. H. W. Siegmund et al., in [Proceedings, 2011 IEEE](http://dx.doi.org/ 10.1109/NSSMIC.2011.6154420) 1263 [Nuclear Science Symposium and Medical Imaging Con-](http://dx.doi.org/ 10.1109/NSSMIC.2011.6154420) ¹²⁶⁴ ference $(NS/MIC 2011)$ (2011) pp. 2063–2070.
- [24] N. Barros, T. Kaptanoglu, B. Kimelman, J. Klein, ¹²⁶⁶

E. Moore, J. Nguyen, K. Stavreva, and R. Svoboda, M. Agostini *et al.* (Borexino), Nature 562[, 505 \(2018\).](http://dx.doi.org/10.1038/s41586-018-0624-y) [Nucl. Instrum. Meth. A](http://dx.doi.org/10.1016/j.nima.2017.01.067) 852, 15 (2017). 1332 126 $[50]$ A. Gando et al. (KamLAND-Zen), [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.117.082503) 117,

- [\[](http://dx.doi.org/10.1016/j.nima.2013.02.022)25] J. Brack et al., [Nucl. Instrum. Meth. A](http://dx.doi.org/10.1016/j.nima.2013.02.022) 712 (2012),333 [10.1016/j.nima.2013.02.022.](http://dx.doi.org/10.1016/j.nima.2013.02.022)
- [26] J. Dalmasson, G. Gratta, A. Jamil, S. Kravitz, M. Malek, 1272 K. Wells, J. Bentley, S. Steven, and J. Su, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.97.052006)336 97[, 052006 \(2018\).](http://dx.doi.org/10.1103/PhysRevD.97.052006)
- [27] B. S. Wonsak et al., J. Instrum. 13[, P07005 \(2018\).](http://dx.doi.org/10.1088/1748-0221/13/07/P07005)
- [\[](http://dx.doi.org/10.1142/9789811204296_0028)28] B. Wonsak et al., in [Solar Neutrinos: Proceedings of the](http://dx.doi.org/10.1142/9789811204296_0028) same [5th International Solar Neutrino Conference](http://dx.doi.org/10.1142/9789811204296_0028), edited by M. Meyer and K. Zuber (World Scientific, Singapore, 2019) pp. 445–463.
- [\[](http://dx.doi.org/10.1016/j.nima.2019.162420)29] J. Dunger and S. D. Biller, [Nucl. Instrum. Meth. A](http://dx.doi.org/10.1016/j.nima.2019.162420) 943₁₃₄₃ [162420 \(2019\).](http://dx.doi.org/10.1016/j.nima.2019.162420)
- [30] C. Aberle, A. Elagin, H. J. Frisch, M. Wetstein, and 1282 L. Winslow, J. Instrum. **9**[, P06012 \(2014\).](http://dx.doi.org/ 10.1088/1748-0221/9/06/P06012)
- [31] A. Elagin, H. Frisch, B. Naranjo, J. Ouellet, L. Winslow, 1284 and T. Wongjirad, [Nucl. Instrum. Meth. A](http://dx.doi.org/ 10.1016/j.nima.2016.12.033) 849, 102348 (2017) .
- [32] R. Jiang and A. Elagin, "Space-Time Discriminant to 1287 Separate Double-Beta Decay from ⁸B Solar Neutri+ nos in Liquid Scintillator," (2019), [arXiv:1902.06912](http://arxiv.org/abs/1902.06912) [\[physics.ins-det\].](http://arxiv.org/abs/1902.06912)
- [33] A. Li, A. Elagin, S. Fraker, C. Grant, and L. Winslow, [Nucl. Instrum. Meth. A](http://dx.doi.org/ 10.1016/j.nima.2019.162604) **947**, 162604 (2019).
- [34] A. R. Back et al. (ANNIE), "Accelerator Neutrino Neutron Interaction Experiment (ANNIE): Prelimi- nary results and physics phase proposal," (2017), [arXiv:1707.08222v2 \[physics.ins-det\].](http://arxiv.org/abs/1707.08222v2)
- [35] I. Anghel et al. (ANNIE), "Expression of Interest: The 360 Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)," (2014), [arXiv:1402.6411 \[physics.ins-det\].](http://arxiv.org/abs/1402.6411)
- [36] I. Anghel et al., "Letter of intent: The Accelerator Neutrino Neutron Interaction Experiment (ANNIE)," (2015), [arXiv:1504.01480 \[physics.ins-det\].](http://arxiv.org/abs/1504.01480)
- [\[](http://dx.doi.org/10.2172/1544490)37] A. Bernstein, AIT-WATCHMAN Conceptual Design Re1366 [view Report](http://dx.doi.org/10.2172/1544490), Tech. Rep. (Lawrence Livermore Nationals₆₇ Lab.(LLNL), Livermore, CA (United States), 2019).
- 1305 [38] M. Askins et al. (WATCHMAN), "The Physics and Nu+369 clear Nonproliferation Goals of WATCHMAN: A WA- ter CHerenkov Monitor for ANtineutrinos," (2015), **arXiv:**1502.01132 [physics.ins-det].
- $_{1309}$ [39] D. L. Danielson *et al.*, "Directionally accelerated de- $_{1373}$ tection of an unknown second reactor with antineutri- nos for mid-field nonproliferation monitoring," (2019), **arXiv:**1909.05374 [physics.ins-det].
- [40] S.-H. Seo, "Neutrino Telescope at Yemilab, Korea," (2019), [arXiv:1903.05368 \[physics.ins-det\].](http://arxiv.org/abs/1903.05368)
- 1315 [41] M. Wurm et al., [Astroparticle Physics](http://dx.doi.org/ 10.1016/j.astropartphys.2012.02.011) 35, 685 (2012). 1379
- [\[](http://dx.doi.org/10.1140/epjc/s10052-020-7977-8)42] M. Askins et al., [Eur. Phys. J. C](http://dx.doi.org/10.1140/epjc/s10052-020-7977-8) 80 (2020), [10.1140/epjc/s10052-020-7977-8.](http://dx.doi.org/10.1140/epjc/s10052-020-7977-8)
- 1318 [43] J. R. Alonso et al., "Advanced Scintillator Detector Con+382 cept (ASDC): A Concept Paper on the Physics Po- tential of Water-Based Liquid Scintillator," (2014), **arXiv:1409.5864** [physics.ins-det].
- [\[](http://dx.doi.org/10.1140/epjc/s10052-018-5925-7)44] R. Bonventre and G. D. Orebi Gann, [Eur. Phys. J. C](http://dx.doi.org/10.1140/epjc/s10052-018-5925-7) 78, [435 \(2018\).](http://dx.doi.org/10.1140/epjc/s10052-018-5925-7)
- [45] S. D. Biller, Phys. Rev. D 87[, 071301 \(2013\).](http://dx.doi.org/10.1103/PhysRevD.87.071301)
- [\[](http://dx.doi.org/10.1155/2016/6194250)46] S. Andringa et al. (SNO+), Adv. High Energy Phys1389 **2016**[, 6194250 \(2016\).](http://dx.doi.org/10.1155/2016/6194250)
- [47] The SNO+ collaboration, Private communication.
- [48] D. R. Onken, F. Moretti, J. Caravaca, M. Yeh, G. D. 1329 Orebi Gann, and E. D. Bourret, [Mater. Adv.](http://dx.doi.org/ 10.1039/D0MA00055H) 1, 7 kass (2020) .
- [082503 \(2016\).](http://dx.doi.org/10.1103/PhysRevLett.117.082503)
- [\[](http://dx.doi.org/10.1103/PhysRevD.92.093006)51] S.-F. Ge and W. Rodejohann, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.92.093006) 92, 093006 $(2015).$
	- [52] F. An et al. (JUNO), J. Phys. G 43[, 030401 \(2016\).](http://dx.doi.org/ 10.1088/0954-3899/43/3/030401)
- [\[](http://dx.doi.org/10.1103/PhysRevD.101.123031)53] P. Bakhti and A. Y. Smirnov, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.101.123031) 101, 123031 [\(2020\).](http://dx.doi.org/10.1103/PhysRevD.101.123031)
	- [\[](http://dx.doi.org/10.1016/S0168-9002(03)01368-8)54] S. Agostinelli et al. (GEANT4), [Nucl. Instrum. Meth. A](http://dx.doi.org/10.1016/S0168-9002(03)01368-8) 506[, 250 \(2003\).](http://dx.doi.org/10.1016/S0168-9002(03)01368-8)
- [\[](https://rat.readthedocs.io/en/latest/)55] "RAT-PAC User's Guide," [https://rat.readthedocs.](https://rat.readthedocs.io/en/latest/) [io/en/latest/](https://rat.readthedocs.io/en/latest/).
- [56] S. S. Gokhale, R. Rosero, R. D. Perez, C. C. Reyes, S. Hans, and M. Yeh, (2020), [arXiv:2008.08634](http://arxiv.org/abs/2008.08634) [\[physics.ins-det\].](http://arxiv.org/abs/2008.08634)
- [57] J. C. R. Reis et al., [ChemPhysChem](http://dx.doi.org/ 10.1002/cphc.201000566) 11, 3722 (2010).
- [58] "International association for the properties of water and steam," <http://www.iapws.org/>, release of September 1997.
	- [59] R. M. Pope and E. S. Fry, Appl. Opt. 36[, 8710 \(1997\).](http://dx.doi.org/10.1364/AO.36.008710)
	- [60] R. C. Smith and K. S. Baker, Appl. Opt. 20[, 177 \(1981\).](http://dx.doi.org/10.1364/AO.20.000177)
- [61] J. Caravaca, F. B. Descamps, B. J. Land, J. Wallig, M. Yeh, and G. D. Orebi Gann, [Phys. Rev. C](http://dx.doi.org/ 10.1103/PhysRevC.95.055801) 95, 055801 $(2017).$
- [62] Hamamatsu Photonics K.K., "Photomultiplier tubes and assemblies," [https://www.hamamatsu.com/resources/](https://www.hamamatsu.com/resources/pdf/etd/High_energy_PMT_TPMZ0003E.pdf) [pdf/etd/High_energy_PMT_TPMZ0003E.pdf](https://www.hamamatsu.com/resources/pdf/etd/High_energy_PMT_TPMZ0003E.pdf) (2017).
- [63] T. Kaptanoglu, [Nucl. Instrum. Meth. A](http://dx.doi.org/10.1016/j.nima.2018.01.086) 889, 69 (2018), [arXiv:1710.03334 \[physics.ins-det\].](http://arxiv.org/abs/1710.03334)
	- [64] B. W. Adams et al. (LAPPD), "A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration," (2016) , $arXiv:1603.01843$ [physics.ins[det\].](http://arxiv.org/abs/1603.01843)
- [\[](http://dx.doi.org/ 10.1103/PhysRevC.75.045502)65] B. Aharmim et al. (SNO), [Phys. Rev. C](http://dx.doi.org/ 10.1103/PhysRevC.75.045502) 75, 045502 (2007) .
	- [66] P. Virtanen *et al.*, [Nature Methods](http://dx.doi.org/10.1038/s41592-019-0686-2) 17, 261 (2020).
- [\[](http://dx.doi.org/10.1103/PhysRevD.99.032008)67] M. Anderson et al. $(SNO+)$, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.99.032008) 99, 032008 [\(2019\).](http://dx.doi.org/10.1103/PhysRevD.99.032008)
	- [\[](http://dx.doi.org/10.1134/1.855784)68] O. Ponkratenko, V. Tretyak, and Y. Zdesenko, [Phys.](http://dx.doi.org/10.1134/1.855784) Atom. Nucl. 63[, 1282 \(2000\).](http://dx.doi.org/10.1134/1.855784)
- [\[](http://dx.doi.org/10.1103/PhysRevD.51.6146)69] J. N. Bahcall, M. Kamionkowski, and A. Sirlin, [Phys.](http://dx.doi.org/10.1103/PhysRevD.51.6146) 1372 Rev. D **51**[, 6146 \(1995\).](http://dx.doi.org/10.1103/PhysRevD.51.6146)
	- [\[](http://dx.doi.org/ 10.1103/PhysRevC.73.025503)70] W. Winter, S. Freedman, K. Rehm, and J. Schiffer, [Phys.](http://dx.doi.org/ 10.1103/PhysRevC.73.025503) Rev. C **73**[, 025503 \(2006\).](http://dx.doi.org/ 10.1103/PhysRevC.73.025503)
- [\[](http://dx.doi.org/10.1103/RevModPhys.60.297)71] J. N. Bahcall and R. K. Ulrich, [Rev. Mod. Phys.](http://dx.doi.org/10.1103/RevModPhys.60.297) , 297 [\(1988\).](http://dx.doi.org/10.1103/RevModPhys.60.297)
- [\[](http://dx.doi.org/10.1086/428929)72] J. N. Bahcall, A. M. Serenelli, and S. Basu, [Astrophys.](http://dx.doi.org/10.1086/428929) 1378 J. Lett. **621**[, L85 \(2005\).](http://dx.doi.org/10.1086/428929)
- [73] R. Bonventre, A. LaTorre, J. Klein, G. Orebi Gann, S. Seibert, and O. Wasalski, [Phys. Rev. D](http://dx.doi.org/ 10.1103/PhysRevD.88.053010) 88, 053010 [\(2013\),](http://dx.doi.org/ 10.1103/PhysRevD.88.053010) [arXiv:1305.5835 \[hep-ph\].](http://arxiv.org/abs/1305.5835)
	- [\[](http://dx.doi.org/10.1103/PhysRevLett.105.252503)74] T. R. Rodriguez and G. Martinez-Pinedo, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevLett.105.252503) Lett. **105**[, 252503 \(2010\).](http://dx.doi.org/10.1103/PhysRevLett.105.252503)
- [\[](http://dx.doi.org/10.1103/PhysRevC.87.014315)75] J. Barea, J. Kotila, and F. Iachello, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.87.014315) 87, [014315 \(2013\).](http://dx.doi.org/10.1103/PhysRevC.87.014315)
- [76] J. Bergstrom, M. Gonzalez-Garcia, M. Maltoni, C. Pena- Garay, A. M. Serenelli, and N. Song, [J. High Energ.](http://dx.doi.org/ 10.1007/JHEP03(2016)132) 1388 Phys. **03**[, 132 \(2016\).](http://dx.doi.org/ 10.1007/JHEP03(2016)132)
- [77] M. Agostini et al. (Borexino), "Sensitivity to neutri- nos from the solar CNO cycle in Borexino," (2020), **arXiv:2005.12829** [hep-ex].
- [78] M. Agostini et al. (Borexino), "First Direct Experimental Evidence of CNO neutrinos," (2020) , $arXiv:2006.15115$ [\[hep-ex\].](http://arxiv.org/abs/2006.15115)

of dispersion (pure LS), or materials with slow rise and ¹⁴⁰⁴ decay constants. The t_{prompt} values are shown for the 1405 scintillator fraction study in Table [I,](#page-20-0) for the decay time 1406 study in Table [II,](#page-21-0) and for the rise time study in Table [III.](#page-22-0) ¹⁴⁰⁷

 1396 The best t_{prompt} cuts for the results in this paper are reported here. The t_{prompt} cut was scanned from -1 ns 1397 to 5 ns in 0.25 ns steps, and from 5 ns to 10 ns in 1 ns 1398 steps. The value that resulted in the smallest angular ¹³⁹⁹ resolution was chosen as the best. Note that prompt cuts ¹⁴⁰⁰ were not benificial to many conditions (seen as a t_{prompt} of 10 ns here), but were especially useful in the case of very fast timing (LAPPD), materials with a great deal

Appendix B: Angular resolution 1408

Table [IV](#page-23-0) reports the achieved angular resolution for ¹⁴⁰⁹ both the 1- and 50-kton detectors, for each target ma- ¹⁴¹⁰ terial, as a function of photon detector model, at both ¹⁴¹¹ $_{1402}$ MeV and 2.6 MeV. $_{1412}$

Size $|\tau_r$ (ns) $|\tau_1$ (ns) 10% WbLS cut (ns) Pure LS cut (ns)

nise	$1r$ (iis)	$(1 \text{ (ns)}$	10% M pmp cut ms	$\frac{1}{2}$ using the $\frac{1}{2}$
$50 \text{ kt} 0.1$		10.0	3.00	0.00
$50 \text{ kt} 0.1$		9.0	10.00	0.00
50 kt 0.1		8.0	10.00	0.00
50 kt 0.1		7.0	9.00	0.00
50 kt 0.1		$6.0\,$	0.00	0.00
$50 \text{ kt} 0.1$		$5.0\,$	0.00	0.00
50 kt 0.1		4.5	0.25	0.00
$50 \text{ kt} 0.1$		4.0	0.00	0.00
$50 \text{ kt} 0.1$		3.5	0.00	0.00
$50 \text{ kt} 0.1$		3.0	0.00	0.00
$50 \text{ kt} 0.1$		2.5	0.00	0.00
$50 \text{ kt} 1.0$		10.0	1.50	0.50
50 kt 1.0		$9.0\,$	1.25	0.50
$50 \text{ kt} 1.0$		$8.0\,$	1.00	0.25
$50 \text{ kt} 1.0$		$7.0\,$	0.75	0.50
$50 \text{ kt} 1.0$		6.0	1.00	0.50
50 kt 1.0		$5.0\,$	0.75	0.00
50 kt 1.0		4.5	0.50	0.25
$50 \text{ kt} 1.0$		4.0	0.00	0.00
$50 \text{ kt} 1.0$		3.5	0.50	0.00
$50 \text{ kt} 1.0$		$3.0\,$	0.25	0.00
$50 \text{ kt} 1.0$		$2.5\,$	0.25	0.25
$1\ \rm kt$	0.1	$10.0\,$	0.75	0.25
$1\ \rm kt$	0.1	$\ \, 9.0$	0.75	0.00
1 _{kt}	0.1	8.0	$0.75\,$	0.25
1 _{kt}	0.1	$7.0\,$	0.75	0.00
1 _{kt}	0.1	$6.0\,$	0.75	0.00
1 _{kt}	0.1	$5.0\,$	0.75	0.00
1 _{kt}	0.1	4.5	0.75	0.25
$1\ \rm kt$	0.1	4.0	10.00	0.25
$1\ \rm kt$	0.1	3.5	8.00	0.00
1 _{kt}	0.1	$3.0\,$	7.00	0.00
1 _{kt}	0.1	2.5	10.00	0.00
1 _{kt}	1.0	10.0	0.50	0.25
$1\,$ kt	1.0	9.0	$0.75\,$	0.25
1 _{kt}	1.0	$8.0\,$	0.75	0.50
$1\ \rm kt$	1.0	$7.0\,$	$0.50\,$	$0.25\,$
1 _{kt}	1.0	$6.0\,$	$0.50\,$	$0.50\,$
1 _{kt}	1.0	$5.0\,$	0.50	0.25
1 _{kt}	1.0	$4.5\,$	$0.50\,$	0.50
1 _{kt}	1.0	4.0	$0.50\,$	0.50
1 _{kt}	1.0	$\!3.5\!$	0.75	0.25
1 _{kt}	1.0	$3.0\,$	$0.50\,$	0.50
1 _{kt}	1.0	$2.5\,$	$0.50\,$	0.25

TABLE II. The best t_{prompt} cut for each condition in the results of the decay time study, presented in Sec. [V.](#page-10-0) These cuts were found with the LAPPD photodetector model.

Size			τ_r (ns) $ \tau_1$ (ns) 10% WbLS cut (ns) Pure LS cut (ns)	
50 kt	$0.1\,$	2.5	0.00	0.00
50 kt 0.2		$2.5\,$	0.00	0.00
50 kt 0.3		2.5	0.00	0.00
50 kt 0.4		$2.5\,$	0.00	0.00
$50 \text{ kt} 0.5$		$2.5\,$	0.00	0.00
$50 \text{ kt} 0.6$		2.5	0.00	0.00
$50 \text{ kt} 0.7$		2.5	0.00	0.00
$50 \text{ kt} 0.8$		2.5	0.00	0.00
50 kt	0.9	2.5	0.25	0.25
50 kt 1.0		$2.5\,$	0.25	0.25
$50 \text{ kt} 0.1$		$5.0\,$	0.00	0.00
$50 \text{ kt} 0.2$		$5.0\,$	0.00	0.00
$50 \text{ kt} 0.3$		$5.0\,$	0.25	0.00
$50 \text{ kt} 0.4$		$5.0\,$	0.00	0.00
$50 \text{ kt} 0.5$		$5.0\,$	0.00	0.25
$50 \text{ kt} 0.6$		$5.0\,$	0.00	0.00
50 kt 0.7		$5.0\,$	0.50	0.00
$50 \text{ kt} 0.8$		$5.0\,$	0.50	0.50
$50 \text{ kt} 0.9$		5.0	0.75	0.00
$50\ \rm kt$	1.0	5.0	0.75	0.00
1 _{kt}	0.1	2.5	10.00	0.00
1 _{kt}	0.2	2.5	7.00	0.00
1 _{kt}	0.3	2.5	0.25	0.25
1 _{kt}	0.4	2.5	0.25	0.25
1 _{kt}	0.5	2.5	0.25	0.00
1 _{kt}	0.6	$2.5\,$	0.50	0.25
1 _{kt}	0.7	$2.5\,$	0.50	0.25
1 _{kt}	0.8	2.5	0.50	0.25
1 _{kt}	0.9	$2.5\,$	0.50	0.25
1 _{kt}	1.0	2.5	0.50	0.25
1 _{kt}	0.1	$5.0\,$	0.75	0.00
1 _{kt}	0.2	$5.0\,$	0.75	0.25
1 _{kt}	0.3	$5.0\,$	0.75	0.25
1 _{kt}	0.4	5.0	0.75	0.25
1 _{kt}	0.5	$5.0\,$	0.75	$\rm 0.25$
1 _{kt}	0.6	5.0	0.50	0.50
$1\ \rm kt$	0.7	5.0	$0.75\,$	0.50
1 _{kt}	0.8	5.0	$0.50\,$	0.50
1 _{kt}	0.9	5.0	$0.50\,$	0.50
$1\ \rm kt$	1.0	5.0	$0.50\,$	0.25

TABLE III. The best t_{prompt} cut for each condition in the results of the rise time study, presented in Sec. [V.](#page-10-0) These cuts were found with the LAPPD photodetector model.

			Photodetector			
Detector size (kt) Energy (MeV)		Material			PMT FastPMT FasterPMT LAPPD	
1	1.0	Water	$38.5\,$	38.2	37.3	37.7
$\mathbf{1}$	1.0	1% WbLS	68.4	67.8	67.3	64.6
$\mathbf{1}$	1.0	5% WbLS	85.5	85.6	85.9	86.0
$\mathbf{1}$	1.0	10% WbLS	93.1	93.1	92.7	74.8
$\mathbf{1}$	1.0	Pure LS	102.0	85.0	58.8	44.8
$\mathbf{1}$	2.6	Water	32.5	32.5	32.6	32.4
$\mathbf{1}$	$2.6\,$	1% WbLS	38.4	37.3	35.6	33.7
$\mathbf{1}$	$2.6\,$	5% WbLS	$55.1\,$	54.9	54.5	54.2
$\mathbf{1}$	2.6	10% WbLS	68.2	68.0	68.4	63.0
$\mathbf{1}$	2.6	Pure LS	$89.5\,$	62.7	32.6	29.4
50	1.0	Water	44.9	43.0	44.7	43.8
50	1.0	1% WbLS	70.2	69.9	70.1	69.9
50	1.0	5% WbLS	86.7	86.3	82.0	73.6
$50\,$	1.0	10% WbLS	93.2	92.8	78.8	71.8
50	1.0	Pure LS	85.4	73.6	67.7	64.8
50	2.6	Water	33.1	33.1	33.0	33.0
$50\,$	$2.6\,$	1% WbLS	40.4	40.4	40.5	40.4
$50\,$	$2.6\,$	5% WbLS	56.5	56.4	56.3	47.8
50	2.6	10% WbLS	68.1	68.1	53.0	44.7
50	2.6	Pure LS	58.5	41.9	37.8	36.2

TABLE IV. The angular resolution in degrees selected with the best t_{prompt} cut for each detector configuration explored.