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A vitally important requirement for detecting gravitational wave (GW) signals from compact
coalescing binaries (CBC) with high significance is the reduction of the false-alarm rate of the
matched-filter statistic. The data from GW detectors contain transient noise artifacts, or glitches,
which adversely affect the performance of search algorithms, especially, for finding short-lived astro-
physical signals, by producing false alarms, often with high signal-to-noise ratio (SNR). These noise
transients particularly affect the CBC searches, which are typically implemented by cross-correlating
detector strain data with theoretically modeled waveform templates, chosen from a template-bank
that is densely populated to cover the source parameter ranges of interest. Owing to their large
amplitudes, many of the glitches can produce detectably large peaks in the SNR time-series – termed
as triggers – in spite of their small overlap with the templates. Such glitches contribute to the false
alarms. Historically, the traditional χ2 test has proved quite useful in distinguishing triggers arising
from CBC signals and those caused by glitches.

In a recent paper, a unified origin for a large class of χ2 discriminators was formulated, along with
a procedure to construct an optimal χ2 discriminator, especially, when the glitches can be modeled.
A large variety of glitches that often occur in GW detector data can be modeled as sine-Gaussians,
with quality factor and central frequency, (Q, f0), as parameters. An important feature of a sine-
Gaussian glitch is that there is a lag between its time of occurrence in the GW data and the time of
the trigger it produces in a templated search. Therefore, this time-lag is the third parameter used
in characterizing the glitch. The total number of sampled points in the glitch parameter space is
associated with the degrees of freedom (d.o.f.) of the χ2. We use Singular Value Decomposition
to identify the most significant d.o.f.s, which helps in keeping the computational cost of our χ2

down. Finally, we utilize the above insights to construct a χ2 statistic that optimally discriminates
between sine-Gaussian glitches and CBC signals. We also use Receiver-Operating-Characteristics
to quantify the improvement in search sensitivity when it employs the optimal χ2 compared to the
traditional χ2. The improvement in detection probability is by a few to several percentage points,
near a false-alarm probability of a few times 10−3, and holds for binary black holes (BBHs) with
component masses from several to a hundred solar masses. Moreover, the glitches that are best
discriminated against are those that are like sine-Gaussians with Q ∈ [25, 50] and f0 ∈ [40, 80]Hz.

I. INTRODUCTION

Great strides have been taken by modern technology in the past several decades which has allowed building of highly
sensitive gravitational wave (GW) laser interferometric detectors. These are now capable of measuring GW strain
sensitivities of h ∼ 10−22 or 10−23, where h is the metric perturbation of the GW. The heroic experimental efforts
undertaken by physicists all over the world have finally culminated with the first direct observation of a GW signal
announced by the Laser Interferometer Gravitational Wave Observatory (LIGO) project [1, 2]. On September 14,
2015, the two LIGO interferometers at Hanford (Washington) and Livingston (Louisiana), simultaneously measured
and recorded strain data that indicated the presence of a GW signal emitted by a coalescing binary system containing
two black-holes of masses of about 36M� and 29M� at an average luminosity distance of 410 Mpc. Since the
announcement of the first GW observation, more detections have been made by both LIGO and the Virgo detectors,
and it is expected that soon the KAGRA interferometer in Japan [3] will join the network in making astronomical
observations. We are now just beginning to explore the observational capabilities offered by GWs, which promise to
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unveil secrets of the Universe inaccessible by any other means [4]. Future efforts are on to construct ever more sensitive
GW detectors which will probe even deeper into the cosmos and complement the observations from electromagnetic
astronomy thus giving us a more complete picture of the universe.

Detector data is neither Gaussian nor stationary. Non-Gaussianity and non-stationarity can arise from various
components of the detector itself or the environment. Detection of GW signals crucially depends on comprehensively
addressing the non-Gaussianity and non-stationarity of detector noise [5] and the implementation of effective measures
for discriminating noise artifacts from true signals (see, e.g., Ref. [6]). In this work we focus on signals in ground-based
detectors arising from compact binary coalescences (CBCs) involving black holes or neutron stars. These signals are
transient, lasting between a fraction of a second to several minutes and can be adequately modelled with the help of
post-Newtonian approximations and numerical relativity. While our primary focus here is on non-spinning BBHs, the
basic ideas in this work can be extended to CBCs with spins and a wider distribution of masses. For signals that can
be well modelled, matched-filtering is the commonly employed technique [7] – a method that has been successfully
applied to identify CBC signals buried in detector noise [8–10]. Since the signals depend on several parameters a bank
of templates densely covering the parameter space is employed [11, 12]. However, just matched filtering by itself is
not sufficient to identify a signal because the data contain non-Gaussianities and transient noise artifacts, also termed
as glitches. Even when the overlap of the glitches with the templates in the bank is small, the glitches themselves
can be loud enough to produce triggers, which then run the risk of being misinterpreted as signal-based. In order
to remedy this situation vetos or χ2 discriminators have been used. The traditional χ2 discriminator [13] tends to
distinguish between a signal and a glitch by producing a high (low) value of the χ2 statistic if the trigger arises from
a glitch (signal). The statistic is constructed based on the way the power in the frequency domain is distributed in
various frequency bins by dividing the data into several frequency bins and checking whether this power distribution
is consistent with that of the signal. Accordingly, a quantitative measure is defined - a χ2 statistic - based on the
above considerations.

However, this is not the only χ2 that is possible. It has been shown in [14] that a plethora - in fact an infinity
- of such χ2 statistics can be constructed. The question addressed in [14] is what is a χ2 (in this context)? We
briefly summarize its main results here. Consider the (function) space of all possible detector data trains D over an
observation time T , with the scalar product defined by the power-spectral density (PSD) of the detector noise. D
is a Hilbert space. A GW signal, a noise realisation, and a specific data train are all vectors in D. So also is every
template in a template-bank, with the additional property that it has a unit norm. A χ2 statistic amounts to assigning
a relatively low-dimensional (say a few to 100) subspace S to each template vector in D such that the subspace S
is orthogonal to that template vector. Then the χ2 associated with any data vector in D, and a given template, is
just the norm-squared of the projection of that vector onto the subspace S assigned to that template. Furthermore,
the number of degrees of freedom of the χ2 is just the dimension of S. For a fixed dimension of S, each χ2 statistic
amounts to constructing a vector bundle over the signal manifold or the parameter space P. The traditional χ2 is
just one choice of the subspaces S resulting in one such vector bundle. Since S can be chosen in a plethora of ways,
a large number of such χ2 are possible. We have then a large freedom in our choice of discriminatory tests and this
freedom can be utilised in a fruitful way to optimise the signal search statistic. This can be certainly done for glitches
that can be modelled.

As remarked earlier, the detector data is glitchy. However, if a subspace can be identified in D on which the glitches
have a significant projection, but not the signals, then the question arises as to how this information can be utilized to
improve the performance of a χ2 test. Here we develop a mathematically rigorous formalism to address this question.
The main construction is general and applicable to any family of glitches that can be modelled, but for illustrating
it we use one that is populated by sine-Gaussians. The reason for this choice is that empirically a large subset of
noise transients in gravitational-wave strain data of LIGO and Virgo detectors has been found to project strongly on
sine-Gaussians, including the types that trigger CBC templates [8, 14–19]. A couple of these glitches from the second
observation run (O2) of the LIGO-Hanford detector [20] are shown in Fig. 1. Most importantly, it is not required
that the transients project fully on that subspace. The χ2 statistic that we design here is optimal for such glitches.
However, our algorithm can be straightforwardly adapted to replace sine-Gaussians with any other relevant glitch
morphology.

How exactly can one make the χ2 optimal? It is clear that we will get a high value of χ2 if we align the subspace
S along the glitches, so that the glitches have maximum projection on S. (We must also satisfy the requirement that
S must be orthogonal as well to the template, but this is easily achieved because dim(S)� dim(D) - there is enough
“room” to orient S.) However, a reasonable sampling of the glitches – giving at least a projection of, say, 90% – results
in a large number of glitch vectors: We find this number to be a few thousand, typically. This will make dim(S) ∼ few
thousand, which is the number of degrees of freedom for the χ2, which would push up the computational cost. Our
strategy is then to approximate the subspace spanned by the glitch vectors by a lower dimensional subspace of say less
than 100. This is what we will choose as S. We must then find the best approximation to the subspace spanned by the
glitch vectors. This is achieved via the Eckart-Young-Mirsky theorem [21]. It uses the Singular Value Decomposition
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(SVD) [22–24] to find the best approximation to a subspace of dimension n with a subspace of dimension m, where
m < n. There are several non-trivial steps involved - ensuring that S is orthogonal to the trigger template, dealing
with a general scalar product because of the coloured PSD, etc. We describe these aspects in section III.

We accordingly construct an optimal χ2 to disciminate against sine-Gaussian glitches. We call it the optimal sine-
Gaussian χ2 and denote it by χ2

SG. We perform simulations of a large number of CBC signals and sine-Gaussian
glitches, as well as detector noise, and use them to construct Receiver-Operating-Characteristics for quantifying the
improvement in search sensitivity when it employs the optimal sine-Gaussian χ2 compared to the traditional χ2. As
we show below, the improvement in detection probability is by a few to several percentage points, near a false-alarm
probability of a few times 10−3, and holds for binary black holes with component masses from several to a hundred
solar masses. Moreover, the glitches that are best discriminated against are those that are like sine-Gaussians with
Q ∈ [25, 50] and f0 ∈ [40, 80]Hz. We also comment on the practical issue of the computational cost involved and how
to mitigate it.

The paper is organised as follows. In section II we describe earlier work pertinent to the problem we discuss here;
we give a brief review of matched filtering, the unified χ2 and sine-Gaussians. In section III we describe in detail the
steps required to construct an optimal χ2 that will discriminate against sine-Gaussian glitches. This involves sampling
the parameter space of sine-Gaussians with sufficient number of points, whittling down this number with the help of
the SVD algorithm in order to obtain the best low-dimensional approximation to the vector space spanned by the
sampled sine-Gaussians (Eckart-Young-Mirsky theorem), adaptation of the SVD to coloured noise, etc. In section IV
we apply the aforementioned construction to compute the optimal sine-Gaussian χ2 on simulated CBC signals and
sine-Gaussian glitches. We compare the performance of detection statistics employing the new χ2 and the traditional
χ2 on the same simulations. These comparisons are described with the help of χ2 versus SNR plots and Receiver
Operating Characterstics (ROC) curves. In the final section V we conclude with a discussion on future applications,
especially in real data. While we apply the formalism developed here on large sets of simulated glitches and signals, we
illustrate it on only a couple of real-data glitches and a couple of simulated BBH injections in real-data snippets. In
our next work we will expand it to much larger numbers in real data that are typical of a full LIGO-Virgo observation
run [25].

II. THE UNDERLYING GEOMETRICAL STRUCTURE

A. The matched filtering programme

Consider two data trains (or functions), x(t) and y(t), defined over a time interval [0, T ] of duration T . The data
trains form a vector space D. As vectors in D, they will be denoted in boldface – x and y. Let n(t) be the noise in the
detector, which is a stochastic process defined over the data segment, has ensemble mean of zero, and is stationary
in the wide sense. A specific noise realisation is a vector n ∈ D - n is in fact a random vector. Its PSD is denoted by
Sh(f). The scalar product of x and y, is written conveniently in the Fourier domain. If x̃(f) and ỹ(f) are the Fourier
representations of x and y, then the scalar product is given by:

(x,y) = 4<
∫ fupper

flower

df
x̃∗(f)ỹ(f)

Sh(f)
, (2.1)

where integration is carried out over the band-width [flower, fupper]. This construction makes the space of data
segments a Hilbert space - a L2 space with measure dµ ≡ df/Sh(f). We denote this space by D = L2([0, T ], µ).

The most commonly used post-Newtonian (PN) approximant is TaylorF2, which is computed in the Fourier domain
using the stationary phase approximation. We choose this approximant for the signal in this work, which can be
straightforwardly generalized to other waveform models. The general form of the signal, denoted by h, is

h̃(f) = A f−7/6 e−iψ(f) , (2.2)

where the overall amplitude A depends on the binary component masses, the source distance, sky position and the
orientation of the binary orbit relative to the detector. The phase ψ(f) is computed to 3.5PN order explicitly [26],
and depends on the coalescence time and phase, tc, φc, respectively, and the mass parameters. We will view these
waveforms as vectors in D and denote them by the boldfaced letter h.

The Newtonian waveform, which is simple, even if somewhat inaccurate, is nevertheless useful for illustrating the
key ideas in this work. The normalized Newtonian inspiral binary waveform in the Fourier domain is given by:

h̃(f ; tc, τ0, φc) = N f− 7
6 e−iψN (f ;tc,τ0,φc) , (2.3)
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where N is a normalization constant determined by setting (h,h) = 1. The phase ψN (f) is given by:

ψN (f ; tc, τ0, φc) = 2πftc +
6πfsτ0

5

(
f

fs

)−5/3
− φc −

π

4
. (2.4)

Furthermore, we have expressed the phase in terms of a parameter more suited to this work than the chirp mass [11],
namely, the chirp time τ0 [11, 12]. Physically, τ0 is approximately the time taken for the binary to coalesce starting
from some fiducial frequency fa. We take this fiducial frequency to be near about the lower end of the range of central
frequencies f0 of the sine-Gaussians that we will consider. Taking f0 = 30 Hz we obtain,

τ0 =
5

256πf0
(πMf0)−5/3 ' 5.085

(
f0

30 Hz

)−8/3( M
5M�

)−5/3
sec , (2.5)

where M = µ3/5M2/5 is the chirp mass, µ and M being the reduced and the total mass, respectively. Also, M�
denotes the mass of the Sun. We have set G = c = 1.

The signal s in the data is just an amplitude A multiplying the normalized waveform h; thus, s = Ah. The data
vector, which we denote by x, is then x = s + n, when a signal is present; In the absence of a signal it is just noise,
i.e., x = n. The match c (correlation) is the scalar product between the data x and a (normalized) template h, that
is, c = (x,h), which is then a function of the template parameters. In the analysis of the data for searching signals the
match is maximized over template parameters and compared with a preset threshold. In practice, for the parameters
tc, φc, the templates need to be only defined at φc = 0 and φc = π/2, and for tc = 0. This is because the search
over these parameters can be done efficiently using quadratures for φc and the FFT algorithm for tc in a continuous
fashion. The search over the mass parameters is carried out with a densely sampled discrete bank of templates so
that the chance of missing out a signal is low.

B. The unified χ2

The χ2 discriminator is defined so that its value at the signal is zero and for Gaussian noise it has a χ2 distribution
with a certain number of degrees of freedom. The χ2 test for the trigger template h is defined by choosing a finite
dimensional subspace S of dimension p such that for any v ∈ S, we must have (v,h) = 0, that is, S as a subspace
is orthogonal to h. Then the χ2 pertaining to the template h is just the square of the L2 norm of the data vector x
projected onto S. Specifically, we decompose the data vector x ∈ D as,

x = xS + xS⊥ , (2.6)

where S⊥ is the orthogonal complement of S in D. xS and xS⊥ are projections of x into the subspaces S and S⊥,
respectively. We may write D as a direct sum of S and S⊥, that is, D = S ⊕ S⊥.

Then the statistic χ2 is,

χ2(x) = ‖xS‖2 . (2.7)

Given any orthonormal basis in S say eα, α = 1, 2, ..., p so that (eα, eβ) = δαβ , where δαβ is the Kronecker delta, we
easily verify its properties:

1. For a general data vector x ∈ D, we have:

χ2(x) = ‖xS‖2 =

p∑
α=1

|(x, eα)|2 , (2.8)

2. Clearly, χ2(h) = 0, because the projection of h into the subspace S is zero or hS = 0.

3. Now let us take the noise n to be stationary and Gaussian with PSD Sh(f) and mean zero. Then the following
is valid:

χ2(n) = ‖nS‖2 =

p∑
α=1

|(n, eα)|2 . (2.9)

Observe that the random variables (n, eα) are independent and Gaussian, with mean zero and variance unity.
This is because 〈(eα,n)(n, eβ)〉 = (eα, eβ) = δαβ , where the angular brackets denote ensemble average (see [27]
for proof). Thus, χ2(n) has a χ2 distribution with p degrees of freedom.
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For the ease of calculations, one is free to choose any orthonormal basis of S. In an orthonormal basis the statistic
is manifestly χ2 since it can be written as a sum of squares of independent Gaussian random variables, with mean
zero and variance unity.

However, in the context of CBC searches, we are in a more complex situation. We do not have just one waveform
but a family of waveforms that depend on several parameters, such as masses, spins and other kinematical parameters.
We denote these parameters by λa, a = 1, 2, ...,m. As before, we may assume the waveforms to be normalized, i.e.,
‖h(λa)‖ = 1. (We have excluded the amplitude A, but it can be easily reinstated. This is in fact the manifold
traced out by the templates and is a sub-manifold of the unit hypersphere in D.) Then the waveforms trace out an
m-dimensional manifold P - the signal manifold - which is a submanifold of D. We now associate a p-dimensional
subspace S orthogonal to the waveform h(λa) at each point of P - we have a p-dimensional vector-space “attached”
to each point of P. When done in a smooth manner, this construction produces a fibre bundle with a p-dimensional
vector space attached to each point of the m dimensional manifold P. The fibre bundle so obtained is a vector bundle
of dimension m+ p. We have, therefore, found a very general mathematical structure for the χ2 discriminator. Any
given χ2 discriminator for a signal waveform h(λa) is the L2 norm of a given data vector x projected onto the fibre
S at h(λa).

It can be easily shown that the traditional χ2 falls under the class of unified χ2. This is done by exhibiting the
subspaces S or by exhibiting the basis field for S over P; the conditions mentioned above must be satisfied by S. In
[14] such a basis field has been given explicitly.

C. Sine-Gaussian glitches

Many transient bursts are represented suitably in the form of sinusoids with a Gaussian envelope [28]. A couple of
such transients are shown in Fig. 1. They occur in the LIGO-Hanford detector’s O2 data [20] and have significant
projections on sine-Gaussians. The primary sine-Gaussian that captures most of the projections of the glitches has
the parameters f0 = 120 Hz and Q = 5. We have found that the χ2 statistic introduced later in this work cleanly
distinguishes between these glitches and simulated BBH injections with the same SNRs. We can model these glitches
by using a sine-Gaussian model with central frequency f0, central time t0 and a quality factor Q.

The time-domain expression for a sine-Gaussian with central frequency f0, quality factor Q and central time t0 is
given by:

s(t) = s0e
−(t−t0)2/τ2

sin 2πf0(t− t0) , (2.10)

where s0 is the amplitude and τ is the decay time-constant related to the quality factor as Q = 2πf0τ . The frequency-
domain expression can be obtained by Fourier transforming s(t), and can be shown to be a Gaussian centered at
f0:

s̃(f) = κ e
− (f−f0)2Q2

4f2
0 . (2.11)

where κ is a normalisation constant. If we demand that

4

∫ ∞
0

df |s̃(f)|2 = 1 , (2.12)

then κ = (Q/2f0)1/2(1/2π)1/4. Here we have set the central time t0 of the sine-Gaussian to be zero. However, for a
non-zero t0 the s̃(f) in (2.11) will be merely multiplied by the factor e−2πift0 .

One can conceptualize the family of glitches, say G, as a manifold. In fact, it is a three-dimensional manifold with
coordinates (t0, f0, Q). Indeed, it can even be equipped with a metric, which is a map from coordinate differences
of neighboring unit-norm sine-Gaussians to the fractional drop in their match [29, 30]. It can be described by the
line-element on that manifold,

ds2 = 4πf20

(
1 +

1

Q2

)
dt20 +

2 +Q2

4f20
df20 +

1

2Q2
dQ2 − 1

f0Q
df0dQ . (2.13)

(Note that ds does not describe an infinitesimal change in s of Eq. (2.10)!) There is a cross term in the metric in
these coordinates. A set of parameters that we find useful is f0 → ω0 = 2πf0 and ν = 1/τ . Then Q→ ω0/ν. In these
new coordinates we obtain the metric in a diagonal form as:

ds2 = (ν2 + ω2
0)dt20 +

1

4ν2
dω2

0 +
1

2ν2
dν2 . (2.14)
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FIG. 1: The above plots show noise transients from the LIGO-Hanford detector during its second observation run [20]. These
glitches not only trigger BBH templates, with SNRs of 35-40, but also project on sine-Gaussians substantially (see Sec. IV
below). The primary sine-Gaussian that captures most of the projections for the above ones has f0 = 120Hz and Q = 5, whereas
the loudest BBH templates triggered by them have a projection of ∼ 1%. The new χ2 statistic introduced later in this work
has an order-of-magnitude larger value on these glitches compared to simulated BBH injections with the same parameters and
SNRs as the loudest templates, thereby affording a way to discriminate between them. The projections of the above glitches
on the best fit sine-Gaussian (overlaid in red, for the first one) are 78% and 51%, respectively, while they are 8.0% and 9.4%
for the clipped sine-Gaussians (see Sec. III B). Since these glitches occur with high amplitudes they nevertheless produce high
χ2 values in spite of their seemingly small projections.

We will make use of these metric forms for uniformly sampling the space G of sine-Gaussians so that they have
adequate projection on the subspaces S.

Two comments are in order. First, this metric is a little different from the one in [28]. The metric here is derived
by taking the real part of an integral, as in Eq. (2.1); whereas the one in Ref. [28] is derived from the modulus of
that integral. Accordingly, we have an extra ω2

0 term multiplying dt20 – otherwise the metrics are identical. The two
metrics serve different purposes in their application. Second, G is not a submanifold of D in the strict sense because
the metrics (2.13) and (2.14) are not induced from the metric on D. The metric on D derived from the scalar product
Eq. (2.1) depends on the PSD Sh(f). However, if D had an Euclidean metric (or if the noise was white), then the
metric on G would be the induced metric and G would be a sub-manifold of D. However, since ultimately, we only
require the sampling to be approximately uniform, these metrics work for us.

III. OPTIMISING THE χ2 FOR SINE-GAUSSIAN GLITCHES

In this section we describe how to construct the subspace S that is optimal for discriminating against sine-Gaussian
glitches associated with a specific trigger template h. The method operationally uses the Singular Value Decomposition
(SVD) algorithm in order to arrive at S. There are essentially three steps involved:

1. Sample the parameter space G of sine-Gaussians so that any specific sine-Gaussian not in the sample has adequate
projection on the vector space spanned by the sampled vectors. We call this space VG which is a subspace of
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D. When a reasonably high projection is desired, G must be sampled densely. We will also endeavour to do it
uniformly for the sake of economy.

2. Piece together a matrix consisting of the sampled sine-Gaussian row vectors. These row vectors need to be
appropriately modified so that one gets the desired S. There are several steps here which will be described in
the text that follows.

3. Applying SVD to the space spanned by the appropriate row vectors will obtain for us the best possible approx-
imation of lower dimension. This will be our subspace S. Since the scalar product on D is not strictly in the
Euclidean form (in Fourier space it is scaled by the inverse of the PSD), appropriate modifications must be made
to the input matrix and also to the output matrix so that the SVD only “sees” an Euclidean scalar product.
Specifically, the output matrix containing right singular vectors needs to be unwhitened in order to obtain an
orthonormal basis of S. We are actually in the realm of the weighted SVD.

A. Sampling the space of sine-Gaussians

It is observed that, when a CBC template is triggered by a sine-Gaussian glitch, the trigger occurs with a time-lag
td after the glitch [19, 31, 32]. Depending on how low f0 is, this time-lag can be as large as the length of the chirp
waveform. For aLIGO, if f0 is low, say, a few tens of Hz, the time-lag will be of the order of several minutes. This is
because the sine-Gaussian glitch is essentially narrow band and matches with the template in the neighbourhood of
the frequency f0. If f0 is low, then the chirp template takes significant time to reach coalescence – which is in fact the
time-lag. In-depth analysis has been performed on this issue: As shown in Ref. [19], the time-lag td is approximately
given by

td ' τ0
(

1− 16

3Q2

(
ζ +

2

3

))
, (3.1)

where τ0 is the chirp time given by Eq. (2.5) and ζ is the logarithmic derivative of the noise PSD Sh(f) evaluated
at f0. Since we have taken Q > 5, the term involving 1/Q2 is very small and may be ignored compared to unity.
Therefore we may write,

td ' τ0 =
5

256πf0
(πMf0)−5/3 . (3.2)

Here the Newtonian approximation to the waveform has been used to compute td. This is justified below.
Now if the glitch occurs at t = 0, the trigger will occur at time td. Or, viewing the situation the other way, if the

trigger occurs at t = 0 for a given template in the bank, the glitch must have occurred at t = −td, which is a function
of f0 and Q (and, of course, the template masses, mainly in the combination M). But since we do not know a priori
the parameters of the glitch, our strategy is to sample those sine-Gaussians that would give rise to a trigger at t = 0.
Thus, we only need to sample the 2-dimensional surface t0 = −td(f0, Q) instead of the larger 3-dimensional manifold
G. This is easily done by computing the induced metric on this surface by substituting the expression for the surface
into the metric given in Eq. (2.14).

In our simulations which follow, we will employ the IMRPhenomP waveform approximant [33]. (Although we limit
the simulated BBHs to the non-spinning variety here, we plan to extend it to spinning BBHs in the future as well as to
study over waveform families (see, e.g., Ref. [34].) Due to post-Newtonian corrections and other effects, the time-lag
td computed with the IMRPhenomP waveform will differ from the Newtonian chirp time τ0 - Eq. (3.2) - by a small
amount, say, ∆t0. However, since we are sampling the full Newtonian surface, one may look for any sine-Gaussian in
the surface close to the sine-Gaussian at td + ∆t0. It turns out that the sine-Gaussian in the surface with time-lag
td + ∆t0, is very close to the one outside the surface, albeit with a slightly different f0, say, f0 + ∆f0. We see that
the distance between these two sine-Gaussians is ∆s ' ∆ω0/2ν, which is very small for the parameters studied. We
have numerically checked and found that ∆t0 . 10 milliseconds and the projection is better than 99 %. This shows
that our analysis is robust to small errors in td.

Based on the detector data, the frequency band in which the detector is most sensitive and the signal power
(∝ f−7/3) and also for convenience, we choose the following ranges for the parameters: 40 Hz ≤ f0 ≤ 120 Hz and
5 ≤ Q ≤ 50. For these chosen ranges of parameters further simplifications of the metric are possible and they
facilitate the sampling. First of all in Eq. (2.14) we can drop ν2 compared to ω2

0 in coefficient of dt20. Also writing
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Mmin(M�) Mmax(M�) p ε
10 70 0.80 0.632
70 90 0.85 0.548
90 100 0.90 0.447
100 120 0.95 0.316
120 130 0.975 0.224
130 160 0.99 0.141

TABLE I: The above table contains the choice of value of p and the corresponding value of ε for templates with total mass
lying in the corresponding range.

z = (ω0M)−5/3 and y = ln(ν), we get

ds2 = ω2
0dt

2
0 +

1

4ν2
dω2

0 +
1

2
dy2 ,

' 2−14/3dz2 +
1

2
dy2 . (3.3)

For templates with M ∼ 10M� and for the values of f0 and Q considered, z ∼ 103 or 104, the dω2
0 term is equal to

9Q2dz2/100z2 and contributes by the amount ∼ 10−4 to the coefficient of dz2 while the first term is 2−14/3 ∼ 0.04.
We have therefore dropped this term in arriving at Eq. (3.3). We have finally arrived at a metric that is flat (i.e., the
metric coefficients are independent of the coordinates).

Instead of setting up a rectangular lattice of points, it is more convenient to select points along curves Q =const.
The other axis is given by z = const. This grid is chosen in this way, because the boundaries of the region of the
parameter space are inconvenient curves in y − z coordinates. The grid points satisfy the following criteria:

1. The distance between the points is so adjusted that any sine-Gaussian in the parameter space has at least
projection p on some grid vector. We generally choose p ≥ 0.8 or 80%. The projection p translates to the
mismatch ε =

√
2(1− p). The choice of p and the corresponding ε is summarized in Table I.

2. The grid points satisfy the condition that the distance between two adjacent points is the same, namely,
√

2ε.
This distance has been so chosen that the criterion 1 is satisfied. The metric given in Eq. (3.3) is used to
accomplish this. The grid however is inclined.

3. The distance between grid points is chosen large enough so that there are minimum number of points in the
grid while at the same time ensuring that criterion 1 is satisfied.

In y − z coordinates the grid points are given by

yij = −3

5
ln zj − lnQi − lnM . (3.4)

The distance between adjacent grid points is
√

2ε. In Fig. 2 we have shown the grid points in the f0 − Q plane,
40 ≤ f0 ≤ 120 Hz, 5 ≤ Q ≤ 50. The minimum projection is 80%. The figure on the left is for individual masses of
7M� with the number of grid points being 1288. The figure on the right is for individual masses of 25M� with the
number of grid points being 156. These numbers are related to the area of the parameter space.

The area A of the parameter space is found easily from the metric Eq. (3.3) and the boundaries from Eq. (3.4).
The result is:

A = 2−17/6(zmax − zmin) ln

(
Qmax

Qmin

)
. (3.5)

Since z scales as M−5/3 so does the area A. Clearly, the number of grid points is proportional to the area of the
parameter space. The area of the parameter space is 937.79 for 7M� and 112.38 for 25M�.
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FIG. 2: The figures shows uniformly sampled points in the parameter space (f0, Q) in the range 40 ≤ f0 ≤ 120 Hz, 5 ≤ Q ≤ 50.
The minimum projection is 80%. The figure on the left is for component masses of 7M� each and the total number of sampled
points is 1288 (see the inset figures to note how closely spaced the neighboring points are). The figure on the right is for
component masses of 25M� each and the number of points sampled is 156.

We remark that this is not the optimal way to sample the parameter space for a given projection p - we could
have obtained a smaller number of grid points by strictly choosing a square lattice or even a hexagonal lattice – here
there are about 10% more points than what we would have had for the square lattice of side

√
2ε (there is also a

slight excess from boundary effects). However, our basic goal here was to sample the parameter space adequately and
we have done this in a convenient manner. In the text that follows, we use the SVD algorithm [22, 23] to arrive at
the best low-dimensional approximation to the subspace spanned by the sampled vectors. The SVD algorithm has
been employed in CBC searches in the past, e.g., to reduce the number of filters required in those searches [24]. The
SVD is expected to whittle down the subspace to appropriate number of dimensions and, thus, nullify the effects of
oversampling.

Another important remark we would like to make is that although we have chosen f0 to lie between 40 Hz to 120 Hz,
the analysis is valid for a broader range of f0, especially for small values of Q, because the power in the sine-Gaussians
is widely distributed around the central frequency f0 for low values of Q.

B. Preparing the input matrix for the SVD

The sampled sine-Gaussians of section III A cannot be directly used in the present form in the SVD algorithm.
This is because:

• The sine-Gaussians have central time t0 = 0 and they need to be appropriately time shifted with respect to the
time of occurrence of the trigger. We will always take the trigger to occur at t = 0, and so the glitch must have
occurred at time −td.

• We need to find the components of the sine-Gaussians orthogonal to the trigger template. This is achieved
by subtracting out from each sine-Gaussian its component parallel to the template, thereby yielding a clipped
sine-Gaussian. The resulting orthogonal components of the sine-Gaussians need to be further time-shifted
appropriately by an amount −td - these vectors span a subspace V⊥ of D (we drop G to avoid clutter). The
desired subspace S is a subspace of V⊥.

We will start by preparing the input matrix G for the SVD. We denote the sine-Gaussians by the vectors sk,
k = 1, 2, ...M ; for example, for the parameters considered here and for individual component masses of 7M�, we have
M = 1288. Let a data segment of length T be sampled uniformly with N number of points. We find it convenient to
work in the Fourier domain. Taking the discrete Fourier transform, the samples s̃k(fn) in the frequency domain are
at the frequencies fn = n/T , where n takes values between −N/2 ≤ n ≤ N/2 − 1. The frequency domain samples
s̃k(fn) are also N in number and placed ∆f = 1/T apart in the Fourier space. Note each sk ∈ D. Thus D is N
dimensional where N is a large number; we have taken N = 64 × 2048 = 131072 time points – i.e., points in a data
segment of 64 sec. sampled at 2048 Hz. Thus, D is practically infinite dimensional (see [14] for discussion on this
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point). We can therefore form a matrix G ≡ Gkn = s̃k(fn) with rows labelled by k and the columns labelled by n; G
is then a M ×N matrix. The row vectors of G are the sine-Gaussians.

We need to time-shift each row-vector, namely, the sine-Gaussian sk, by −td and also subtract out the components
of the sine-Gaussians parallel to the relevant template h. In order to take care of arbitrary initial phase, we subtract
components parallel to both h0 and hπ/2. Assuming that the trigger occurs at time zero, we take the match with
the templates denoted by h0(0) and hπ/2(0). The glitch then must have occurred at time −td. Then the orthogonal
component which we denote by s⊥ at shifted time −td of the glitch s is given by:

s⊥(−td) = s(−td)− (s(−td),h0(0))h0(0)− (s(−td),hπ/2(0))hπ/2(0) . (3.6)

The sine-Gaussian at time −td is obtained by multiplying the expression for the sine-Gaussian in the Fourier domain
by e2πiftd . We have also left out the index k from the row vector in order to avoid clutter. The scalar product
on D (Eq. (2.1)) has been used. Since each row vector in the matrix G indexed by k corresponds to a different
point in the (f0, Q) space, each row vector is time-shifted by a different amount. Also the operations of time shifting
and taking the orthogonal component can be independently carried out without one affecting the other. This can
be easily verified by an explicit computation; or from a deeper perspective, the time translation operation can be
looked upon as a coordinate transformation. Then the operation of subtracting the parallel component of the glitch
is coordinate independent, since it essentially involves a scalar product (the projection) which is invariant under
coordinate transformations. We can thus form a matrix with row vectors s⊥k which are both time-shifted and
orthogonal to the trigger template. In order that the SVD gives equal weightage to the sine-Gaussians we perform
one more operation of normalising the s⊥k so that ‖s⊥k‖ = 1. We construct the matrix G⊥ whose row vectors are
s⊥k, k = 1, 2, ...,M . The vector space spanned by the row vectors of G⊥ is precisely V⊥ which we have defined above.

We further need to take cognisance of the scalar product in Eq. (2.1) in order that the SVD yields the desired
result, because the usual SVD algorithm [22, 23] assumes an Euclidean scalar product. We will take the necessary
steps in the next subsection where we obtain the best lower dimensional approximation to V⊥ by invoking the Eckart-
Young-Mirsky theorem.

C. Finding the best-fit low-dimensional approximation to V⊥

We could in principle use V⊥ on which to project the data vector and compute the χ2 statistic. But in practice
it would involve too much computational effort and slow down the search pipeline – the χ2 would involve too many
degrees of freedom, namely, the dimension of V⊥. We need to compute the best p-dimensional approximation to
V⊥, where p is reasonably small. The SVD algorithm allows us to achieve just this – this is the essence of the
Eckart-Young-Mirsky theorem [21].

Consider a set of M vectors in an N -dimensional space. In order to seek out an optimal subspace of dimension
p < M , we have to find a subspace that minimizes the sum of the squares of the perpendicular distances of these
M vectors to itself. This is also known as best least-square-fit problem. This problem is equivalent to maximizing
the sum of the squares of the lengths of projections onto the subspace. Let s⊥

′
k be the projection of s⊥k onto this

p-dimensional subspace. Then, we desire a p-dimensional subspace of V⊥ such that
∑M
k=1 ‖s⊥′k‖2 is maximum. The

norm used here pertains to the scalar product defined in Eq. (2.1). Then this is the subspace S we are seeking.
The input matrix for the SVD will be taken to be essentially the matrix G⊥ but modified in a suitable way in order

to account for the weighted scalar product. The SVD decomposition of A is written in the form:

A = U Σ V† , (3.7)

where A is an M ×N matrix, U is the M × r matrix of left singular vectors, Σ is an r× r square diagonal matrix of
singular values σ1, σ2, ..., σr arranged in descending order of magnitude and V† is the r ×N matrix of right singular
vectors. The superscript dagger on V denotes the Hermitian conjugate of V. The left and right singular vectors are
normalised and are arranged as column vectors in the matrices U and V, respectively. We now apply the Eckart-
Young-Mirsky theorem to obtain the best k dimensional approximation to V⊥. The Eckart-Young-Mirsky theorem
[21] states:

Theorem: Let A be a M ×N matrix where v1, v2, ...., vr are the singular vectors as defined above. For 1 ≤ k ≤ r,
let Vk be the subspace spanned by v1, v2, ....vk. Then for each k, Vk is the best-fit k−dimensional subspace to the vector
space spanned by the row vectors of A.

Therefore, the first k singular vectors span the best-fit k-dimensional subspace of A. We need to truncate V to
obtain the best-fit subspace S to the desired level, based on the singular values σk. We now need to decide on k.
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Accordingly, we invoke the Frobenius norm [23] of the matrix A. It is defined by:

‖A‖2F =

M∑
i=1

N∑
j=1

|aij |2 ≡
r∑

k=1

σ2
k . (3.8)

Suppose we decide on 90% level of accuracy, we then choose p such that
∑p
k=1 σ

2
k & 0.9 ‖A‖2F . We define S as the

span of the first p right singular vectors v1,v2, ...,vp; in fact they constitute an orthonormal basis of S. This also
means that the sum of squares of projections of the row vectors of A on S add up to more than 90% of the full value.
If a glitch vector is close to any of these row vectors, its square of the norm of its projection onto S will tend to be
large, which will result in a large χ2. This is in fact the goal we started with.

We now turn to the final aspect of how the weighted scalar product can be incorporated into the SVD machinery
so that it gives the desired results. We only give the prescription here. We start with the matrix G⊥. We go to the
frequency domain and divide each entry of G⊥ corresponding to a frequency fn by

√
Sh(|fn|). We have taken the

modulus because the frequency ranges from negative to positive values. Recall that we are dealing with a one-sided
PSD, which therefore obeys Sh(−fn) = Sh(fn). Accordingly, we construct the “whitened” sine-Gaussian matrix GW :

(GW )kn =
s̃⊥k(fn)√
Sh(|fn|)

, 1 ≤ k ≤M, −N/2 ≤ n < N/2− 1 . (3.9)

Next we perform the SVD of GW by writing GW = UW ΣW V†W , where the subscript W denotes the corresponding

whitened matrices. We now consider V†W and unwhiten its rows. Denoting the entries of V†W by v′nj , where the

index n runs over the frequency index from −N/2 to N/2 − 1 and j = 1, 2, ..., r, we get the unwhitened matrix V†

by setting vnj = v′nj
√
Sh(|fn|). The right singular vectors are the columns of V. We just choose the first p of these

singular vectors so that they give the desired level of accuracy. Then these p vectors form an orthonormal basis of S
and generate S. That we obtain the desired S following the above procedure can be verified directly or found in the
standard literature [23, 35].

IV. RESULTS

We next apply the paradigm developed above to test if the optimal sine-Gaussian χ2 statistic actually provides any
additional power in distinguishing CBC signals from transient noise artifacts. To be able to interpret the results, we
continue to model the artifacts as sine-Gaussians, with various values for their quality factor and central frequency.
We use the PyCBC Software [8, 36–38] for searching for simulated BBH signals.

All of our CBC signal and noise artifact injections are made in simulated Gaussian data with aLIGO ZDHP [39]
as the noise PSD and a lower frequency-cutoff of 20 Hz. In the realm of signals, we limit ourselves to injections of
simulated non-spinning CBC signals – all modeled with the IMRPhenomP waveform approximant [33, 40] – with
component masses m1,2 ∈ [7, 100]M� and total mass M ≡ (m1 + m2) ∈ [14, 160]M�. To search for signals in these
simulations we employ two kinds of template banks: (a) The Full bank: This bank has templates that cover the
parameter space of the CBC injections we chose for our study fully. (b) The Targeted banks: Parallelly, we search
for the same signals with multiple small banks, each of which covers a subset of the full m1,2 space. These are called
targeted banks. They are designed so that they overlap with each other in the m1,2 space so as not to lose signals
with parameter values at the boundaries of each of those banks. For both kinds of banks we require a minimal match
of 97% among neighboring templates with a lower frequency-cutoff of 20 Hz. The parameter ranges of these template
banks are listed in Table II.

For assessing the effect of noise artifacts, and even plain Gaussian noise (with aLIGO ZDHP noise PSD), in our
searches, we match-filter simulated data with these features against the same template banks and compute both the
SNRs and the χ2 – both the traditional χ2 and our sine-Gaussian χ2. These are shown for various cases in Fig. 3.
As expected, these plots show that CBC triggers and noise triggers separate cleanly for large SNRs but not for small
SNRs, which is expected. This is true regardless of the type of χ2 employed. In fact, even the two O2 glitches shown
in Fig. 1 have SNRs (35-40) and sine-Gaussian χ2 values (75 - 170) that are consistent with those of the simulated
glitch triggers shown in Fig. 3. On the other hand, simulated BBH injections made in O2 data with parameters of
the respective BBH templates that were triggered by those glitches, and SNRs of 35-40, have sine-Gaussian χ2 values
consistent with the signal triggers shown in Fig. 3. We examine a much larger set of real glitches in a subsequent
work [25].

Beyond the aforementioned separation of the glitch and CBC triggers for both types of χ2 in Fig. 3, it also presents
evidence that the noise artifacts register higher sine-Gaussian-χ2 values than traditional χ2 values, even if slightly.
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This in itself is not proof that the former χ2 is a better discriminator here. To establish that possibility one needs
to assess what the χ2 values are (for both kinds of statistics) for the CBC signals as well as the noise artifacts.
This comparison is best done, quantitatively, with Receiver-Operating Characteristic (ROC) curves, which we discuss
below.

FIG. 3: The traditional and optimal “SG” χ2 statistics (see legend), per degree of freedom, are plotted vs SNR for various types
of triggers. These arise from injections of simulated (a) noise (Gaussian), (b) glitches (sine-Gaussians, of the high-Q-low-f0
type defined in Table III) and (c) BBH signals, of the category 6 type defined in Table IV, when employing Targeted template
bank 3, as described in Table II. The ROC curves for these triggers are shown in the left plot in Fig. 4.

In order to construct an ROC curve, we first define a new detection statistic that is derived from the SNR (ρ) and
χ2 as follows:

ρOSG = ρ , χ2
r ≤ 1, (4.1)

= ρ

[
1

2

(
1 +

(
χ2
r

)3)]−1/9
, χ2

r > 1, (4.2)

where χ2
r is just the χ2 per degree of freedom, for both the traditional and optimal sine-Gaussian kind. The new

statistic above resembles the re-weighted SNR [15, 41], except that in the latter, the exponent of −1/9 in Eq. (4.2) is
replaced by −1/6. The detection probability (DP) at any given value of ρOSG is the fraction of all triggers associated
with simulated BBH signals that are found with a new detection statistic value that is larger. On the other hand,
the False-Alarm Probability (FAP) corresponding to that ρOSG value is the fraction of triggers from noise or glitches
that have a new detection statistic value greater that that reference. The contours of the so computed constant FAP
of ρOSG are overlaid with dashed black lines in the χ2

r vs SNR plot in Fig. 3. The plot of DP vs FAP for any detection
statistic is its ROC curve. Such curves for ρOSG (with the optimal sine-Gaussian χ2

r) and the re-weighted SNR (with
the traditional χ2

r) are compared for various categories of simulations in Figs. 4 and 5.
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FIG. 4: In the left plot, we show the ROC curves comparing performances of the same two χ2 statistics and triggers as in
Fig. 3. The right plot is a similar comparison, for the same Gaussian noise and sine-Gaussian glitch triggers but for BBH
injections of category 5 of Table IV, using Targeted bank 3 of Table II.

FIG. 5: ROC curves comparing performances of the two χ2 statistics and triggers as in Fig. 3, except for the BBH injections,
which are of categories 3 (left) and 4 (right) of Table IV, both using Targeted bank 2 of Table II. The sudden drop in the ROC
for χ2

trad around a FAP of 10−3 most likely arises owing to the difficulty of producing enough loud triggers purely from noise,
and should be interpreted with care when comparing with the other ROC curve.

The main results brought forth by the ROC curves are as follows. In essentially all cases, the performance of
optimal χ2 in recovering CBC signals at any SNR (or FAP) studied is comparable to or better than that of the
traditional χ2, even if by a small degree. The improvement is often by a few to several percent, especially, near a FAP
of 10−3. Alternatively, at the same detection probability the false-alarm probability of a BBH signal is perceptively
lower for the new χ2 statistic. Recall that for the traditional χ2, the detection statistic used in these comparisons
was the re-weighted SNR, as is customary. If we use it with ρOSG, then the optimal χ2 performs much better than
the traditional one, sometimes by 10 - 15 % (not shown), near a FAP of 10−3. With better tuning, the performance
of the new χ2 may show further improvement. We plan to pursue this in real data.
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Bank mmin(M�) mmax(M�) Mmin(M�) Mmax(M�)
No. of

templates
Full bank 5 100 10 165 2222

Targeted bank 1 5 40 10 45 1603
Targeted bank 2 5 78 35 85 845
Targeted bank 3 5 100 75 125 297
Targeted bank 4 5 100 115 165 16

TABLE II: Template-bank parameters: The ranges of various source parameters that characterize the template banks used in
our studies. Above, mmin, mmax are the lower and upper bounds on the component masses of the binary, respectively. On the
other hand, Mmin and Mmax are the lower and upper bounds on the the total mass of the binary, respectively.

Qmin Qmax f0 min(Hz) f0 max(Hz)
high Q, low f0 25 50 40 80
high Q, high f0 25 50 80 120
low Q, low f0 5 15 40 80
low Q, high f0 5 15 80 120

TABLE III: The glitch injections used in our study are all sine-Gaussians, and were grouped into the four categories described
in the rows above. They are all parameterized by Q and f0, with varying ranges as tabulated here.

Sr. no. mmin(M�) mmax(M�) Mmin(M�) Mmax(M�) Average p
1 7 21 14 28 28
2 7 35 28 42 18
3 7 53 42 60 15
4 7 73 60 80 14
5 7 93 80 100 13
6 7 100 100 120 12
7 7 100 120 140 13
8 7 100 140 160 13

TABLE IV: Parameters of the simulated signals used in our injection studies are divided into above ranges. Above, mmin, mmax

are the lower and upper bounds on the component masses of the binary, respectively. On the other hand, Mmin and Mmax are
the lower and upper bounds on the the total mass of the binary, respectively. p is the dimension of the orthogonal subspace on
which the χ2 is defined.

An important practical consideration in designing a χ2 discriminator is the computational cost involved in im-
plementing the veto. We address this issue in a future work. However, here we make a few remarks: For the veto
proposed in this work the subspace S in principle needs to be prescribed for each template that a glitch triggers.
While this may entail computation of SVD for each template in the bank, fortunately it can be performed beforehand
given a template bank and the space of sine-Gaussians; thus the subspaces S can be precomputed. As mentioned
in Sec. III, S is completely determined by its orthonormal basis. Thus, one needs to prescribe a basis field over
the parameter space. Assuming that the basis field varies smoothly and slowly over the parameter space, it can be
computed in advance at templates sparsely sampled over that space assuming, say, 90% projection. The basis at
the trigger template in question can then be obtained easily via interpolation. In the current work, we have found
p ≤ 14 adequate, and if the number of sparsely sampled templates is say a few thousand, this information can be
easily computed beforehand and stored.

V. CONCLUSIONS

In this work we have constructed a χ2 statistic that is optimally effective in discriminating BBH signals from sine-
Gaussian glitches and, more broadly, glitches that have strong overlap with sine-Gaussians. Past authors have devised
signal-based χ2 discriminators that have been quite successful in identifying triggers arising from noise artifacts in
the data (see, e.g., Refs. [13–15, 41–46] and the references therein). Lately however, their weaknesses, especially in
high-mass BBH searches, has become more evident. This realization has led to new proposals for reducing their
impact on BBH search sensitivities.

Reference [14] for the first time developed the proper mathematical formalism for geometrically understanding
existing signal-based χ2 discriminators and constructing new ones. It also showed how one can naturally and unam-
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biguously combine multiple signal-based χ2s. In the context of the current paper, Ref. [14] provided a formalism for
exploiting the characteristics of noise artifacts to construct χ2 discriminators targeting them. Here we have followed
up on this idea and gone further with the construction of the optimal χ2 for sine-Gaussian glitches. However, we find
that there are several involved steps that need to be taken before one arrives at that final goal. We briefly outline those
steps below. We first consider a family of sine-Gaussian strain snippets in a given physical range of parameters, which
we have called G. We then sampled G uniformly by using a metric so that it is adequately represented. Care has to
be taken to time-delay the sine-Gaussians in the sampling process. However, it turns out that the number of sampled
glitch vectors for G is too large and consequently the subspace VG spanned by them also has high dimensionality. A
low-dimensional approximation to VG is sought in order that the computational costs for the χ2 remain in control. The
best possible low-dimensional approximation to VG is obtained by invoking the Eckart-Young-Mirsky theorem and is
achieved with the help of the SVD algorithm. Further we ensure that the associated subspace obtained for the χ2 is
orthogonal to the trigger template by appropriately projecting out the components of the glitch vectors parallel to the
trigger template. Carrying out the above steps results in the required optimal χ2 discriminator for sine-Gaussians -
the χ2

SG. We remark that this procedure may seem computationally expensive since SSG is required at each template
in the bank. However, it may be noted that, SSG at any given template is needed only approximately. We may
therefore envisage an interpolation scheme by which SSG is precomputed only on a coarse grid of the parameter space
and it is obtained for any intermediate template by interpolation techniques.

A recent paper [15] proposes a somewhat different way of constructing a χ2 discriminator that targets a specific
type of glitch – namely “blips” [16]. Blip glitches are found to have significant projections on a certain subset of
sine-Gaussians. A set of 20 sine-Gaussian basis vectors – all with Q = 20 – was used to construct that subspace. In
this alternative method one constructs a χ2-like statistic without subtracting the BBH template or orthogonalizing
the sine-Gaussian basis vectors. For that reason, strictly speaking, such a statistic does not have a χ2 distribution.
Moreover, it cannot be unambiguously combined with other χ2 statistics to improve search sensitivity. The χ2 statistic
proposed here does not suffer from those problems and can be readily implemented in real data.

As mentioned above, in an upcoming work [25] that implements our optimal χ2 statistic in real data, we will
compare its performance on blip glitches as well. It is conceivable that our statistic may need to be tuned to optimize
its performance on this particular kind of glitch, e.g., by specifying how to select the subset of sine-Gaussian basis
vectors. Note, however, that our statistic is more general in its applicability than just blips. It should also work on
other glitches that have good projections on sine-Gaussians. We plan to test this prospect as well in real data. Here
we have taken the first steps toward realizing that goal by illustrating the implementation of our χ2

SG on simulated
glitches, BBH signals and Gaussian detector noise (with aLIGO-ZDHP PSD). Through the construction of χ2 vs SNR
plots and ROC curve comparison we find that incorporating the χ2

SG statistic in BBH searches improves detection
probability for several mass ranges compared to the traditional χ2. The improvement is manifest for BBH signals,
for various masses – listed in Table IV – and is by a few to several percentage points. That table also shows how the
dimensionality of the sine-Gaussian subspace utilized for the optimal sine-Gaussian χ2 construction varies with the
template masses. Note that this dimensionality is not very large, which makes its implementation computationally
viable. This study prepares us to make the case for utilizing prioritized computing resources for deploying this search
statistic in real data.

It may be observed that there is no dramatic increase in the value of the χ2 from the traditional to the optimal
sine-Gaussian. This is because we have focussed on a particular type of glitch, namely, the sine-Gaussian glitch, which
is ubiquitous. Our selection of the sine-Gaussian glitch was motivated from this physical reason. Our results, in fact,
show that the traditional χ2 does pretty well on these types of glitches; of course, our sine-Gaussian χ2 does better,
as it should, since it is by construction optimal for this type of glitch. From the mathematical point of view, the
glitches have good projection on subspace Strad associated with the traditional χ2 and best projection on an average
on the sine-Gaussian subspace SSG. However, one could conceive of another type of glitch, say glitch X, which is
orthogonal (or nearly so) to Strad. Then the traditional χ2 would be small and thus ineffective in ruling out the
X-glitch. But in the unified χ2 formalism, one can always construct an optimal χ2

X with the associated subspace SX ,
by carrying out an analogous procedure as was employed here for the sine-Gaussians. Such a χ2 would optimally rule
out the X glitches. Our aim was to point out the generality of our constructive procedure which can be applied to
a different family of glitches for which the traditional χ2 was ineffective. Such glitches may well exist in the data or
reveal themselves as detectors are commissioned in the future.

We also remark that employing χ2
SG does not preclude the application of other χ2s. In fact in Ref. [14] it has been

argued that one can sensibly combine several χ2s just by adding their associated subspaces S – in the vector-space
sense – and construct a combined χ2. The resulting statistic would discriminate against all the glitches for which
each χ2 was designed. For example, we may add the associated subspaces Strad and SSG to form the new subspace
(Strad + SSG), which results in a more powerful χ2 that can discriminate against glitches for which the traditional χ2

is optimal as well as those for which the sine-Gaussian χ2 is optimal. Such a combined statistic will be very useful in
reducing false alarms and, thereby, improve the overall significance of GW events.
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