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We assess the prospects for detecting the moving lens effect using cosmological surveys. The bulk
motion of cosmological structure induces a small-scale dipolar temperature anisotropy of the cosmic
microwave radiation (CMB), centered around halos and oriented along the transverse velocity field.
We introduce a set of optimal filters for this signal, and forecast that a high significance detection
can be made with upcoming experiments. We discuss the prospects for reconstructing the bulk
transverse velocity field on large scales using matched filters, finding good agreement with previous
work using quadratic estimators.

I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) with the upcoming Simons Observatory (SO) [1]
and CMB-S4 [2] experiments, along with galaxy sur-
veys such as LSST (Vera C. Rubin Observatory) [3], will
open new windows of opportunity for cosmological in-
ference. In particular, there is evidence that the mea-
surement of small-scale secondary anisotropies that are
imprinted on the CMB by cosmological structures be-
tween our telescopes and the surface of last scattering
will provide strong constrains on a multitude of cosmo-
logical signatures (see e.g. [4–10]). The statistics of these
secondaries and their cross-correlations with large-scale
structure (LSS) surveys carry information about cosmo-
logical fluctuations on large scales. Utilizing this infor-
mation will be instrumental in future tests of the stan-
dard ΛCDM paradigm. These secondary effects include
weak gravitational lensing by large-scale structure; the
integrated Sachs-Wolfe (ISW) and Rees-Sciama effects,
which describe the redshifting of CMB photons due to
evolving gravitational potentials along the line of sight;
and the Sunyaev-Zel’dovich (SZ) effect where CMB pho-
tons scatter with free electrons in galaxy clusters and the
intergalactic medium. In this work, we study the mov-
ing lens effect: temperature anisotropies in the CMB due
to the peculiar velocity of cosmological structure trans-
verse to the line of sight [11–15]. It has recently been
shown (see e.g. [16, 17]) that this effect can in principle
be detected at high-significance for the first time with
upcoming surveys.

A major goal of the scientific program of measuring
secondaries is constraining fundamental physics. Large-
scale cosmological perturbations leave unique imprints
on the small-scale intensity and polarization anisotropies
of the CMB. The study of these statistical anisotropies
provide new information about the largest scales in the
Universe. Large-scale observables are in turn valuable for
cosmological inference as they are often protected from
local and non-linear late time effects under the equiv-

alence principle.1 This makes large-scale observables a
powerful probe of the initial conditions that source the
large-scale fluctuations in the Universe. Understanding
how large-scale fluctuations in the Universe compare to
the predictions of ΛCDM provide insight on the details
of the primordial Universe.

Measuring velocities on large scales is particularly valu-
able. For example, in many cases the noise associated
with the reconstructed velocity fields is constant, mak-
ing it possible to infer the matter power spectrum with a
noise that scales like k2 (see e.g. [18]). Since the matter
power spectrum can be inferred from galaxies only up to a
constant shot noise, this advantage of velocity reconstruc-
tion is most important on the largest scales. Of course,
inferences on cosmological parameters are still limited by
the small number of modes on large scales (cosmic vari-
ance). However, one can compare a reconstruction with a
galaxy survey to measure bias parameters with arbitrary
accuracy; this was proposed in Ref. [6] as a means for
detecting primordial non-gaussianity through scale de-
pendent galaxy bias. The moving lens effect provides a
measurement of the transverse velocity fields of matter,
and has been recently suggested as a tool for cosmologi-
cal inference in Ref. [16], where the authors introduced a
quadratic estimator for the detection of the moving lens
effect and reconstruction of transverse velocity fields. An
unambiguous detection of the moving lens effect, how-
ever, will further benefit from utilising different methods,
including using pairwise-velocities [17].

Another method for detecting the moving lens effect
is using a matched filter in real space, oriented along
the large-scale cosmological bulk velocity. In this work
we introduce this method and forecast the detection and
reconstruction prospects for the moving lens effect, us-
ing a matched filter. This paper is organised as follows:

1 Equivalence principle dictates that local interactions produce
density fluctuations that scale with the Fourier wavenumber k
like the Laplacian (or the time derivative) of the gravitational
potential∇2Φ (or Φ̇) and have vanishing influence on large scales
as k → 0 compared to curvature fluctuations.
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In Section II we briefly introduce the moving lens ef-
fect and the shape of the temperature modulation due to
bulk velocities of halos. We calculate the optimal real-
space matched filter in Section III. We model the halo
and galaxy distribution in Section IV. We discuss the de-
tection prospects for the moving lens effect using these
matched filters and halo model in Section V. We conclude
with discussion in Section VI.

II. THE MOVING LENS EFFECT

Gravitational potentials that evolve in time induce a
temperature modulation on the CMB known as the inte-
grated Sachs-Wolfe (ISW) effect which has the form

Θ(n̂) = − 2

c2

∫
dχ

c
Φ̇(χn̂) , (1)

where Φ(χn̂) is the gravitational potential along the line
of sight n̂, χ is the comoving distance, Θ = ∆T (n̂)/T̄ is
the fractional CMB temperature fluctuation and we de-
fine the integral from the emission of the photon to the
observer, unless shown otherwise. One contribution to
the ISW effect in the non-linear regime is the tempera-
ture anisotropy due to the peculiar velocity of collapsed
structures. This is known as the moving lens effect, and
has the form

Θ(n̂)=− 2

c2

∫
dχ

c
∇Φ(χn̂) · ~vb,⊥(χn̂) , (2)

where ~vb,⊥(χn̂) is the peculiar (comoving) transverse
bulk velocity.

We approximate the gravitational potential near a
halo to be spherically symmetric around the halo cen-
ter and write, ∇Φ(r) = r̂ Φ′(r), and Φ′(r) = ∂Φ(r)/∂r,
where using Figure 1, we define the unit vector r̂ =
(~χh − ~χ)/|~χh − ~χ| and r = |~χh − ~χ|. The temperature
modulation can then be written as,

Θ(n̂) ' − 2

c2

∫
dχ

c
Φ′(r) [r̂ · ~vb,⊥(χn̂)] , (3)

where the comoving distance χ depends on r and the
distance to the halo.

We write dχ = dr r (r2−r2
⊥)−1/2, where r⊥ = |~r⊥| and

~r⊥ is the component of ~r orthogonal to the line of sight.
The temperature modulation due to moving lens effect
takes the form,

Θ(n̂) ' − 4

c3
(~vb,⊥ · ~r⊥)

∫ ∞
r⊥

dr
Φ′(r)√
r2 − r2

⊥
, (4)

where χh � r⊥ and we approximate the velocity field
to be constant within the range of the radial integral,
defining a long-wavelength (center of mass) bulk-velocity
fluctuation as ~vb which is the observable we are interested
in. There are nevertheless other non-linear ISW temper-
ature modulations such as the Rees-Sciama effect, for
example, due to the component of the velocity sourced

FIG. 1. A description of the coordinate system and defini-
tions. We define the comoving distance from the observer on
Earth to the DM halo (black circle in the figure) as χh = | ~χh|.
The comoving distance to the CMB photon is χ = |~χ|. Vector
~r connects the halo center to the CMB photon and r⊥ is the
transverse distance from the halo center to the trajectory of
the observed CMB photon.

by non-linear growth inside virialized structures (such as
clusters), that is uncorrelated with the large-scale bulk
flow. While these non-linear contributions add to the
noise of the velocity measurement on small-scales, we as-
sume they are subdominant on large-scales. Note also
that the contribution to the moving lens effect from the
radial component of the bulk 3-velocity sees v/c relativis-
tic correction when boosted into the CMB frame and is
hence sub-dominant, leaving moving lens effect sensitive
to the transverse velocities instead.

We approximate the functional form of the gravita-
tional potential by using the NFW profile for a spheri-
cally symmetric halo with a single parameter, the mass
of the halo M in Solar mass units, i.e. M� ' 1.989 ×
1030 kg. We fix the virial radius as

rvir(M, z)≡
(
GM�M

100H2

)1/3

, (5)

and assume halos have truncated mass at their virial ra-
dius satisfying,

M =

∫ rvir

0

dR 4πR2ρ(R|M, z) , (6)

where ρ(R|M, z) is the halo profile. The concentration
parameter,

c = A

(
M

2×1012h−1

)α
(1 + z)β , (7)

relates the scale radius, rs(M, z), to the virial radius of
a halo via c = rvir/rs, and we omit showing redshift and
mass dependence in what follows. Note that both scale
radius and virial radius are physical distances. For the
model parameters {A,α, β}, we use appropriate values
from literature, {7.85,−0.081,−0.71}. We assume NFW
profile for the density of the halo [19],

ρ(x|M, z) =
ρs

x(1 + x)2
, (8)
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and

Φ(r) = −4πGρsr
2
s

ln(1 + x)

x
. (9)

where x = ar/rs and note that r is the radial comoving
distance from the halo center. We can use the equations
above to get

ρs =
M�M

4πr3
s

[
− rvir

rs + rvir
− ln

(
rs + rvir

rs

)]
. (10)

The partial derivative of the gravitational potential with
respect to r can then be written as

Φ′(r) = 4πGρsr
2
s

[
ln(1 + x)

x2
− 1

x(1 + x)

]
. (11)

The moving lens signal from a single halo takes the form

Θml(~x⊥) = −a0~vb,⊥ · ~M(~x⊥) , (12)

with

a0≡
16πGρsr

2
s

c3
, (13)

where ~vb,⊥ is the bulk comoving transverse velocity vec-
tor. We calculate the average of the velocity vector com-
ponents using websky2 halo catalog [20]; as the aver-
aged velocity components of halos inside a volume. The
bulk transverse velocity depends on the volume, which
we parametrise with the redshift depth and the sky frac-
tion of the patches on the two-sphere. We describe our
choices of volume throughout this work. ~x⊥ = a~r⊥/rs
and the radial dependence is found by solving Eqn. (4)
with Eqn. (11) as

~M(~x⊥)≡ ~x⊥
2x2
⊥

[∣∣∣2sec−1(x⊥)√
x2
⊥ − 1

∣∣∣+ ln

(
x2
⊥
4

)]
, (14)

where x⊥≡ar⊥/rs. The template (shown in Fig. 2) de-
pends on the mass and redshift of the halo as well as the
cosmology through the scale factor.

III. THE OPTIMAL MATCHED FILTER

Added reference to the new appendix below. We begin
by writing the observed real-space intensity map around
a dark matter (DM) halo in 2-dimensions as composed

of the moving lens signal ~M(~r) and all other effects

Θobs(~r) = −a0 ~vb,⊥ · ~M(~r) + Θ̃(~r) . (15)

We filter our data, Θobs(~r), to get the unbiased and min-
imum variance estimate for the components of our bulk
transverse velocity signal, projected onto {x̂, ŷ} Cartesian

2 Stein et.al. [20] Websky halo catalog covers the full sky up-to
redshift z ∼ 4.5, using a mass resolution of ∼ 1.3× 1012M�.

orthogonal directions, v̂b,⊥,x and v̂b,⊥,y, which we define
as

v̂b,⊥,i≡a−1
0

∫
d2~rΨi(~r)Θ

obs(~r) . (16)

where i ∈ {x, y}. (Please see an alternative method for
estimating the norm and the angle of the velocity vector
and the velocity in Appendix A.) The transverse velocity
amplitude is degenerate with the density and the scale
radius of the halo, which are determined by halo mass
and redshift. We comment on these degeneracies in the
following sections.

The observed fractional intensity maps satisfy

〈Θ̃(~̀)〉=0 and 〈Θ̃(~̀)Θ̃(~̀ ′)〉=(2π)2δ(~̀+~̀ ′)C̃TT` ,

(17)

where C̃TT` is the lensed CMB temperature power spec-
trum including idealized experimental noise and the kSZ
contribution, which we approximate as a constant 3 µK2

in `(`+1)/(2π)2CΘΘ
` . We assume perfect removal of fore-

grounds such as the cosmic infrared background and tSZ
from the CMB. Note also that we assume noise and fore-
grounds can be approximated by Gaussian random fields.
This neglects statistical anisotropies e.g. due to weak
lensing of the CMB, which induces a similar dipole pat-
tern around halos aligned with the large-scale CMB gra-
dient, biasing the moving lens measurement. As shown
in Ref. [16], however, the ordinary lensing bias remains
negligible on scales ` <∼ 50, or for patches larger than
∼ 2 degrees in radius. CMB lensing also boosts the vari-
ance of the CMB sampled near galaxies, which we discuss
in Section VI.

We define the matched filter such that the estima-
tor recovers the true velocity, and define parameters
bi≡〈v̂b,⊥,i − vb,⊥,i〉 and N rec

i ≡〈(v̂b,⊥,i − vb,⊥,i)
2〉 , where

bi≡
∫

d2~rΨi(~r)Mi(~r)− 1 , (18)

and

N rec
i = a−2

0

∫
d2~̀

(2π)2
|Ψ̃i(~̀)|2C̃TT` . (19)

We defined the Cartesian projections of our template as

Mx(~x⊥) = ~M(~x⊥) · x̂ and Mx(~y⊥) = ~M(~x⊥) · ŷ.
We now wish to minimize the variance of our filter un-

der the condition that the bias vanishes. We do this by
defining L≡N rec

i + λb where λ is now a Lagrange multi-
plier and

L=

∫
d2~̀

(2π)2
Ψ̃?
i (
~̀)
[
a−2

0 Ψ̃i(~̀)C̃
TT
` + λM̃i(~̀)

]
− λ . (20)

The optimal filters that minimize L can be written as

Ψ̃i(~̀) =

[∫
d2~̀′

(2π)2

|M̃i(~̀
′)|2

C̃TT`′

]−1
M̃i(~̀)

C̃TT`
, (21)

https://mocks.cita.utoronto.ca/data/websky
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or equivalently,

Ψ̃i(~̀) = N recM̃i(~̀)

C̃TT`
, (22)

where we defined N rec ≡ N rec
i and used N rec

x = N rec
y .

Note that the optimal estimators are most sensitive
to the signal on small scales, where the inverse of the
estimator variances are large and the primary CMB
signal (which is much larger and acts as a confu-
sion) is small. Lastly, we convolve the moving lens
signal with a beam that matches the experimental
specifications described below. When applying the
matched filter we assume a Gaussian beam satisfying

B(~̀) = exp[−(θfwhm/2
√

ln 2)2`(` + 1)] , where θfwhm is
the full beam-width at half-maximum. In what follows
we discuss results with this beam applied to the moving

lens templates, i.e. M̃i(~̀)→ B(~̀)M̃i(~̀).

IV. HALOS, GALAXIES AND THE v̂b,⊥,i SNR

The estimated signal-to-noise ratio (SNR) for the
velocity amplitude per object with mass M at red-
shift z is [

∑
i v

2
b,⊥,i/N

rec
i (M, z)]1/2; the number of

such objects needed for total SNR to equal to 1 is
[
∑
i v

2
b,⊥,i/N

rec
i (M, z)]−1. While upcoming surveys will

not be able to reconstruct the transverse velocity for each
halo, the average transverse velocity can be measured
over a sufficiently large patch of the sky.

Surveys of large-scale structure observe galaxies that
occupy DM halos. The relation between galaxies and
the host DM halos depend on a multitude of effects and
mechanisms, including rates of star formation and galaxy
mergers, and needs to be modelled and tested against
data. The number and spatial distribution of the DM
halos can be described by the halo model (see for re-
view e.g. [14]). The distribution of galaxies inside DM
halos can be described with a halo occupation distribu-
tion (HOD) model (see e.g. [21]) where every DM halo
is assumed to have at most 1 central galaxy, as well as
additional satellite galaxies whose number can be large
for massive halos. The average observable central (satel-
lite) galaxy number count of a DM halo with mass M
and at redshift z is parametrised with N̄c(m∗, z) [with
N̄s(m∗, z)] where m∗ is the threshold stellar mass deter-
mined by the galaxy survey and details of the model can
be found in e.g. [21–23]. For calculating the mass and
redshift dependence of halo density we assume a Sheth-
Tormen collapse fraction [24].

We use the matched filter introduced above and the
halo mass function with a normalisation appropriate for
a given LSS survey and approximate the expected total
SNR2 =

∑
i SNR2

i for the velocity magnitude from inside

a redshift bin and a given patch of size fpatch
sky on the sky
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FIG. 2. The CMB temperature modulation due to the moving
lens effect shown as a function of comoving radial distance
from halo center (in arc-minutes) for an halo of mass M =
1014M� and velocity vb,⊥ = 10−3c, at redshift z = 1. The
left (right) plots show the templates filtered with a Gaussian
beam of radius 0.1 (1.4) arc-minutes.

with

SNR2
i = 4πfpatch

sky

×
∫

z−bin

dz

∫
catalog

dMN̄c(m∗, z)
vb,⊥,i(z)

2

N rec
i (M, z)

χ2 dχ

dz
n(M, z).

(23)

Note that we use only the count of central galaxies,
since the bulk transverse velocity is sourced by the
center of mass of the halo. We find SNR2 ' 103fsky

for a redshift bin centered at z = 1 and of size
∆z = 1, with perfect knowledge of halo mass, loca-
tion and redshift as well as the transverse velocity
direction, using Vera. C. Rubin Observatory and
CMB-S4 experimental specifications using the ana-
lytic approximation for the galaxy number density
satisfying dn/dz ∝ (z/z0)α exp[(−z/z0)β ]arcmin−2

with {z0, α, β, ntot[arcmin−2]} set equal to
{0.3, 2, 1, 40}, and the CMB temperature noise
NTT
` = (∆T /T )2 exp [`(`+ 1)θ2

fwhm/(8 log(2))] where we
set {∆T , θfwhm} to {1.0, 1.4}. Note that individual halo
masses are expected to be measured imperfectly, with
around 40 percent error in lnM , from combinations
of lensing and SZ measurements and redshift measure-
ments are subject to photo-z errors [9, 25, 26]. We
discuss these in Section V, before forecasting on the
transverse velocity amplitude reconstruction fidelity of
the upcoming surveys in cross correlations of CMB and
galaxy measurements.

V. RECONSTRUCTION,
CROSS-CORRELATIONS AND FORECASTS

We evaluate the detection SNR on the moving lens
effect for a given patch and a redshift range as the sum
of the SNR on the two transverse velocity components
we reconstruct, vb,⊥,x and vb,⊥,y; and the total SNR per

patch as sum SNR of the components, SNR2 ≡ SNR2
x +
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FIG. 3. The total transverse-velocity detection SNR from
the measurement of the moving lens effect, for 1.4- and 0.1-
arcminute beams for various CMB rms noise levels. Plotted
curves show SNR values for halo counts matching with the ex-
pected central galaxies from LSST survey (a.k.a Vera C. Ru-
bin Observatory) and a sky fraction of fsky = 0.4.

SNR2
y. When estimating the total detection SNR from

the full sky we assume no correlation between patches

and set SNR2
total ' fsky/f

patch
sky SNR2 where fsky is the full

sky coverage of the cosmological survey. We calculate the
SNR in volumes of redshift depth ∆z = 0.5 in the range
z ∈ [0.1, 3] and surface area corresponding to the patch
size.

We display the forecasts for total SNR for moving
lens effect detection in Figure 3 using patches of area 16
square degrees. Our calculation suggest the upcoming
surveys of LSS and measurements of CMB may detect
the moving lens signal to high significance, where combi-
nations of CMB-S4 and Vera C. Rubin Observatory will
achieve SNR of around 20 and combinations of SO and
Vera C. Rubin Observatory will achieve SNR of around
10. These results are consistent with the results obtained
using the quadratic estimator of Ref. [16].

In reality, imperfect modelling of the halo profile or the
background cosmology, along with potential systematic
errors in the halo mass and the halo redshift measure-
ments, may bias the estimator of the true velocity field
from the moving lens effect, yielding 〈v̂ml

b,⊥,i〉 = bml vb,⊥,i.
This is analogous to the optical depth degeneracy en-
countered when attempting to reconstruct the radial ve-
locity field using kinetic Sunyaev Zel’dovich (kSZ) to-
mography (see Ref. [18] for a discussion). Furthermore,
– even in the absence of potential biases – the imper-
fect knowledge of these parameters leads to additional
uncertainly and hence boosts the variance of the velocity
estimator.

Imperfect knowledge of the halo mass effects the fi-
delity of the velocity measurement due both to a reduced
filter response and the intrinsic degeneracy between the
halo mass and true velocity amplitude. The velocity es-
timator is proportional to (M/M�)−0.6, as defined in
Eq. (16). In order to evaluate the unambiguous detection
and reconstruction significance of the upcoming experi-
ments on the transverse velocity amplitude, we have to

incorporate the error in halo masses in the velocity SNR
calculation. The error on halo mass is expected to satisfy
(per halo) σM/M ' 0.4, using mass-richness measure-
ments from weak lensing and SZ surveys [25, 26]. Note
that this mass error is already significantly more opti-
mistic than the moving lens SNR per halo; which satisfy
(per halo) σvb,⊥,i

/|vb,⊥,i| > 1 for all of the observable
redshift and halo mass ranges. Hence we find that the
error induced on the velocity SNR due to halo mass de-
generacy to be over O(10) smaller than the error on the
moving lens amplitude A. In order to evaluate the re-
duction in SNR due to mass errors on the template, we
calculated moving-lens temperature maps Θml(n̂), as de-
fined above, using websky halo catalog [20] with the
true and erroneous halo masses, with the latter having
random halo masses sampled from a Gaussian distribu-
tion with σM/M ' 0.4. We find the cross-correlation
coefficient of the moving-lens temperature maps remains
near 1 for the multipole ranges relevant to this study
(` <∼ 100) – suggesting the errors induced by the inaccu-
rate template are small on large scales, and furthermore,
that the cross-correlations with an external tracer of the
density field may be used to potentially boost the SNR.

Another important parameter that can penalize the
SNR is the halo redshift, since the velocity reconstruc-
tion from galaxy-surveys suffer from known effects of
redshift space distortions (RSDs) as well as photomet-
ric redshift (photo-z) errors for photometric surveys such
as the Vera C. Rubin Observatory, the latter satisfying
σz = 0.03(1 + z). Similar to the uncertainty on halo
masses, we find the contribution to the error on the ve-
locity measurement due to the redshift degeneracy (in-
duced by dependence of the signal on the scale-radius)
to be small, especially since we use large (∆z ∼ 0.5) red-
shift bins. In order to evaluate the significance of photo-z
errors and RSDs on matched filter, we sample from the
same halo catalog, a smaller set of halos with halo num-
ber count matching the expected central galaxies from
the Vera C. Rubin Observatory. We compare the true
velocity fields with and without taking into account the
photo-z errors and RSDs. We capture the effect of photo-
z’s by redistributing the halo positions in redshift space
randomly with the photo-z error. For RSDs, we add
the velocity dependent RSD correction in redshift space,
as discussed above. We parametrise the combined effect
of RSDs and photo-z with the cross-correlation coeffi-
cient % = Cxy` /

√
Cxx` Cyy` as a function or redshift, where

{x, y} ≡ {true, obs}, which we find remains larger than
90 percent for ` <∼ 100 – showing (similarly to the mass
errors) that the redshift errors do note degrade the SNR
from the moving lens measurement and that the velocity
field measured from the templates is well correlated with
the underlying velocity field.

We leave a more detailed analysis of possible contribu-
tion to noise and biases from other effects including other
CMB secondaries to an upcoming work.

Note that the transverse velocity fields vary more
rapidly along their projected direction and a similar phe-
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nomena is also true for the radial velocities, i.e. they vary
more rapidly on the radial direction. This suggests that
the typical transverse velocity modes vary slower in the
radial direction, implying the relative SNR penalty from
larger redshift bins (necessitated by the large photo-z er-
rors from photometric surveys) is lower than compared
to radial velocity reconstruction for the kSZ effect, for ex-
ample, motivating the use of photometric surveys for the
purpose of moving lens effect detection and velocity re-
construction. Note however that the cross-correlation co-
efficient suffers due to low number of galaxies in the near
Universe (z < 0.3) suggesting potential benefits of us-
ing different types of observations (such as spectroscopic
surveys and other tracers) for the purpose of moving-
lens effect detection. We leave a more involved analysis
on these lines to future work.

VI. DISCUSSION

In this paper, we have shown that the dipolar pattern
in the CMB temperature fluctuations around moving DM
halos due to the moving lens effect can potentially be de-
tected in the near future using a matched filter in real
space. These real space filtering techniques can poten-
tially be used to reconstruct the bulk velocity fields in
the Universe. We calculated the form of the optimal
matched filter, which is imagined to be centered on DM
halos inferred from galaxy surveys, and aligned with the
cosmological bulk transverse velocities. We discuss the
distribution and the detection prospects of halos from
galaxy surveys, as well as the effect of photo-z errors and
redshift-space distortions on the bulk velocities inferred
from a halo catalog. We calculate estimates for the SNR
with the upcoming experiments using analytic expres-
sions we derive. We find that a statistically significant
detection will be possible with the Simons Observatory,
upon cross-correlation with Rubin galaxy survey, for ex-
ample.

The maximum residual signal resulting from stacking
a large number of halos inside volumes of size around the
correlation length of the cosmological velocity field can
potentially be used to estimate the direction and ampli-
tude of the bulk velocity at a given region. Using the
known functional form of the moving lens effect could
potentially increase the accuracy of reconstruction by fit-
ting the template calculated Eqn. (14). In this study,
we introduce a velocity reconstruction technique from
applying a real-space matched filter and oriented CMB
stacking. Measurements of large-scale velocity fields pro-
vide an effective probe of the early Universe signatures
such as non-Gaussianity (e.g. [6]) as well as the absolute
growth rate, which can be constraining for studies of dark
energy models, modified gravity and effects of neutrino
mass. Once detected, transverse velocity fields recon-
structed from measurement of the moving lens effect can
potentially be useful for studying variety of interesting
signatures and models.

Transverse velocity modes also provide a rare window
into measuring the profile of DM halos and can afford
constraining power on various halo model parameters
upon cross-correlating with other tracers of large-scale
structure such as weak gravitational lensing. We leave
a more detailed study on the prospects of testing halo
models with the moving lens effect to a future work.

Note that another velocity-dependent effect on the
CMB is the so-called ‘rotational’ kSZ effect due to the
rotational motion of the large galaxy clusters [27, 28],
sourced by the angular momentum of halos. Various
recent studies [e.g. 29, 30] show that ongoing experi-
ments will have the statistical power to detect this dipolar
kSZ signature centered around galaxy clusters. On small
scales, the dominant contribution to the rotational kSZ
is the component of the angular momentum field that is
sourced by the non-linear growth and dynamics of the
virialized environment, which is not correlated with bulk
transverse velocity. This component acts as noise on the
moving lens measurement. Nevertheless, the angular mo-
mentum field is not expected to be entirely uncorrelated
with the long wavelength potential: correlations are in-
duced due to deviations of the proto-halos from perfect
spherical symmetry and their alignments, for example.
The correlated rotational kSZ effect can bias the moving
lens measurement as well as potentially providing infor-
mation regarding the growth of structure and the initial
conditions. We leave a detailed analysis on the impli-
cations of large-scale angular momentum correlations on
the moving lens and kSZ effect measurements to future
work.

Finally, since photons traversing near galaxies trace
regions of the Universe with larger density fluctuations,
patches we use in our real-space analysis are more noisy
in average than a random location on the sky due to ordi-
nary lensing. The effect of ordinary lensing on the CMB
is not random, however, and the induced dipolar pattern
is correlated with the large-scale CMB gradient. Since
the CMB gradient is very well measured, this correlated
boost in variance (which can be understood as a bias in-
duced by ordinary lensing) can potentially be removed.
Since the temperature gradient is not correlated with the
bulk transverse velocity, we anticipate this procedure will
not degrade the detection prospects of the moving lens ef-
fect significantly. Note that we also checked for the addi-
tive noise effect from (nonphysical) randomly distributed
ordinary lensing contribution to the CMB spectra (which
is a shot-noise term, 1/Nsource, on the templates where
Nsource is the number of sources available from the galaxy
catalogue). For the upcoming LSS surveys, together with
Simons Observatory and CMB-S4, for example, we find
this shot noise remains smaller compared to the noise of
the CMB experiment.

In the next years, measurements of secondaries will be-
come observationally significant for the first time as CMB
and LSS surveys will achieve the necessary precision.
Precision measurement of small scale CMB fluctuations
will open new windows of opportunities for cosmologi-
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cal inference. In this work we discussed the prospects of
moving lens effect detection from upcoming surveys with
a real-space matched filter. Complementary to quadratic
estimator technique introduced in [16], the real-space
analysis provides a useful alternative which will allow
high SNR detection of the moving lens effect in the near
future.
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Appendix A: Polar estimator

In this section we introduce an alternative reconstruc-
tion to the Cartesian velocity-component estimator we
defined above. While the estimator introduced here is
(marginally) less optimal, it can be used for validation
purposes. We define the filter response introduced in
Eq. (16) for a halo ‘i’ of mass Mi and redshift zi, as

Â(Mi, zi)≡
∫

d2~rΨi(~r)Θ
obs(~Ri + ~r) , (A1)

where Θobs(~Ri + ~r) is the observed CMB around the

halo at ~Ri (in polar coordinates) from the patch cen-

ter ~R0 = (0, 0). The matched filter centered on the halo,
Ψi(~r), depends on the halo mass and redshift as well as
the orientation of the transverse velocity field, which we
assumed known in the previous section. In this section
we evaluate the prospects for reconstructing the compo-
nents of the transverse velocity vector from the CMB and
halo locations from a galaxy survey.

We are interested in finding the the angle ϕ̂0 that best
approximates the true average angle of the transverse
velocity vector field with respect to a reference vector in

a patch of size 4πfpatch
sky , where we set ϕ̂0,i = ϕ̂0,j = ϕ̂0

equal for all filters {i, j} inside the patch. This is the ϕ̂0

that satisfies3,∫
d2~r

∂

∂ϕ0

∑
i,halos

Ψi(~r)Θ
obs(~Ri + ~r) = 0 , (A2)

where for each filter in the sum, the coordinates are cho-
sen so that the halo is at the center of the template.The
CMB acts as noise on the stacked patch, and that the ϕ0

which maximizes the residual response approximates the
true direction of the transverse velocity vector direction
on 2-sphere, given sufficient SNR.

Due to the simple angular dependence of the signal
profile, we find the equality in Eqn. (A2) satisfies,

tan(ϕ̂0, z)=

∫
d2~r sinϕ

∑
i Ψi,u(r)Θobs(~Ri + ~r)∫

d2~r cosϕ
∑
i Ψi,u(r)Θobs(~Ri + ~r)

, (A3)

where we define Ψi(r) = cos(ϕ− ϕ̂0)Ψi,u(r), µ̂≡α̂/β̂ =
tan ϕ̂0 (omitting showing the redshift dependence for
now); where α and β are the numerator and denomina-
tor on the right-hand-side of Eq. (A2), respectively. The
error on the measurement can be written in the form

σµ/|µ| =
√
σ2
α/α

2 + σ2
β/β

2 . (A4)

We assume the contribution to the signal from all else
except moving lens effect vanish for a large enough patch

3 We assume the maxima can be distinguished from the minima
from the filter response and accounted for with a sign change,
with no additional error to the estimator.

with sufficiently many halos. With this assumption, we
write4

α =

∫
template

d2~r sinϕ
∑
i,halos

Ψu,i(r)Θ
ml(~r) , (A5)

where we defined Θml(~r)≡A(M, z) Mu(r) cos(ϕ− ϕ0),
Mu(r) is the radial shape of the moving lens effect on
the CMB around a halo where r is the radial distance to
the halo center, and we defined the (polar) integral over
the patch as equal to the surface area of the patch on

2-sphere, as
∫

patch
d2~Ω '

∫
patch

d2 ~R≡4πfpatch
sky for small

patches. A more detailed derivation can be found in Ap-
pendix B. Errors are calculated using a relation similar to
Eq. (A5), with the CMB component without the moving
lens effect instead, and performing the average over the
realisations of the CMB as e.g.3,

σ2
α =

∫
template

d2~r sinϕd2~r ′ sinϕ′

×
∑

i,j,halos

Ψi,u(r)Ψ∗j,u(r′)〈Θ̃(~Ri+~r)Θ̃
∗(~Rj+~r

′)〉 .

(A6)

For compactness of our expressions we define a signal
parameter Ipatch≡α/(π sinϕ0) = β/(π cosϕ0) which sat-
isfy,

Ipatch = 4πfpatch
sky

×
∫

z−bin

dz

∫
catalog

dMN̄c(m∗, z)χ
2 dχ

dz
n(M, z)A(M, z) ,

(A7)

where we set the integral over the patch in Eq. (A5) as∫
patch

d2 ~R≡4πfpatch
sky and like before, we promote the sum

over halos to an integral over halo masses and the halo
locations over the patch. The error on Ipatch takes the
form,

σ2
Ipatch,z̄

=

rmax∫∫
rmin

rdr r′dr′Λ(r, r′)Fz̄(r)F∗z̄ (r′) , (A8)

where we defined

Fz̄(r)≡
∫

z−bin

dz

∫
catalog

dMN̄c(m∗, z)χ
2(z)

dχ

dz
n(M, z)Ψu(r) ,

(A9)

and

Λ(r, r′)≡16π4

∫
L−1dL

(2π)2
CΘ̃Θ̃
L J1(Lr)J1(Lr′)

× [RmaxJ1(Rmax)−RminJ1(Rmin)]
2
,

(A10)

4 Similarly equality holds for β, with azimuthal angular integral
over cosϕ in-place of sinϕ.
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where rmax satisfies the inequality rmax�Rmax. We set
{rmax, rmin, Rmin} equal to {5 arcmin, 1.4 arcmin, rmax}
and find Λ(r,′ r′) ' Arr′, where A ' 2.3× 10−11 for
Rmax = 2×10−2radians and A depends on Rmax non-
trivially due to the scale dependence of the CMB. This
term can be understood as the r.m.s. contribution of the
CMB on the noise estimate for a given patch, and is in-
dependent from the CMB noise to a good approximation
for current and upcoming CMB experiments with the suf-
ficiently large rmin choice we make above. Generally the
integral limits {rmin, rmax} can be chosen as halo mass
dependent to maximize the SNR. Using these relations
we get

σ2
Ipatch

' A
∣∣∣∫ d`

2π

∫
catalog

dMζ`(M, z)F̃ ′(z̄)(`)
∣∣∣2 , (A11)

where

ζ`(M, z)≡
rmax∫
rmin

r2dr exp(−i`r) , (A12)

and F̃ ′(`)≡dF̃(`)/dM where F̃(`) is the (1D) Fourier
transform of F(r). Note it is straight-forward to show
from equations above that Ipatch satisfies the equality,

σµ/|µ| =
√

2σIpatch
/|Ipatch| , (A13)

in the perfect knowledge of the moving-lens amplitude
A.5

We evaluate the detection significance of the direction
component µ (ignoring the uncertainty on the amplitude)
using our parameter choices, for a Rubin-like halo cata-
log and a CMB-S4-like survey, and 6 (uncorrelated) boxes
equally spaced in redshift in the range z ∈ [0.1, 3] with
same surface area on the sky. We find SNR >∼ 1 for a
patch with surface area of <∼ 10 square degrees. The de-
tection SNR on the moving lens effect for a given patch
and a redshift range can be evaluated as the sum of the
SNR on the two transverse velocity components we re-
construct from the velocity amplitude and the angle as

~vb,⊥≡{v1, v2} = {vb,⊥ cosϕ0, vb,⊥ sinϕ0} (A15)

and the total SNR per patch as sum SNR of the compo-
nents, SNR2≡SNR2

1 + SNR2
2, where

SNR−2
1 = SNR−2

2 = σ2
µ/µ

2 + σ2
vb,⊥

/v2
b,⊥ , (A16)

and σ2
µ/µ

2 = 2(σ2
Ipatch

/I2
patch+σ2

A/A
2) due to the angular

dependence of the signal template.

5 Note that the error on the amplitude A can be added to give

σ2
µ/µ

2 = 2(σ2
Ipatch

/I2patch + σ2
A/A

2) . (A14)

Appendix B: Angular Reconstruction

The numerator of the signal tanϕ can be written as

α =

∫
template

d2~r sinϕ
∑
i,halos

Ψu,i(r)Θ
ml(~r)

=

∫
template

d2~r sinϕ cos(ϕ−ϕ0)

∫
patch

d2 ~R

∫
z−bin

dz

∫
catalog

dM

×
[
N̄c(m∗, z)χ

2 dz

dχ
n(M, z)A(M, z) Ψu(r)Mu(r)

]
.

(B1)

The denominator differs by a cosine

β =

∫
template

d2~r cosϕ
∑
i,halos

Ψu,i(r)Θ
ml(~r)

=

∫
template

d2~r cosϕ cos(ϕ−ϕ0)

∫
patch

d2 ~R

∫
z−bin

dz

∫
catalog

dM

×
[
N̄c(m∗, z)χ

2 dz

dχ
n(M, z)A(M, z) Ψu(r)Mu(r)

]
.

(B2)

Errors can be calculated using a relation similar to
Eq. (A5), with the CMB component without the moving
lens effect instead, and performing the average over the
realisations of the CMB as,

σ2
α =

∫
template

d2~r sinϕd2~r ′ sinϕ′

×
∑

i,j,halos

Ψi,u(r)Ψ∗j,u(r′)〈Θ̃(~Ri+~r)Θ̃
∗(~Rj+~r

′)〉

=

∫
template

d2~r sinϕd2~r ′ sinϕ′
∑

i,j,halos

Ψi,u(r)Ψ∗j,u(r′)

×
[∫∫

d2~L

(2π)2

d2 ~L′

(2π)2
CΘ̃Θ̃
L δ2(~L+ ~L′)e−i

~L·(~Ri+~r)−i~L′·(~Rj+~r′)

]

=

∫
template

d2~r sinϕd2~r ′ sinϕ′
∑

i,j,halos

Ψi,u(r)Ψ∗j,u(r′)

×
[∫

d2~L

(2π)2
CΘ̃Θ̃
L e−i

~L·(~Ri+~r−~Rj−~r′)

]

=

∫
template

rdr rdr ′
∑

i,j,halos

Ψi,u(r)Ψ∗j,u(r′)

∫
d2~L

(2π)2
CΘ̃Θ̃
L e−i

~L·(~Ri−~Rj)

×
[∫∫

dϕdϕ′e−irL cos(ϕ−ϕ0)+ir′L′ cos(ϕ′−ϕ0)

]
=

∫
template

rdr rdr ′
∑

i,j,halos

Ψi,u(r)Ψ∗j,u(r′)

∫
d2~L

(2π)2
CΘ̃Θ̃
L e−i

~L·(~Ri−~Rj)

×
[
(2π sinϕ0)2 J1(Lr)J1(Lr′)

]
,

(B3)



10

and the error on β differs by a cosine and take the form,

σ2
α =

∫
template

d2~r cosϕd2~r ′ cosϕ′

×
∑

i,j,halos

Ψi,u(r)Ψ∗j,u(r′)〈Θ̃(~Ri+~r)Θ̃
∗(~Rj+~r

′)〉

=

∫
template

rdr rdr ′
∑

i,j,halos

Ψi,u(r)Ψ∗j,u(r′)

∫
d2~L

(2π)2
CΘ̃Θ̃
L e−i

~L·(~Ri−~Rj)

×
[
(2π cosϕ0)2 J1(Lr)J1(Lr′)

]
,

(B4)

where we defined L = |~L| where ~L is conjugate to the
radial displacement on the patch. We write the sum over
the halos as,∑
i,j,halos

Ψi,u(r)Ψ∗j,u(r′)

=

∫∫
z−bin

χ2χ′2dχdχ′
∫∫

catalog

dMdM ′n(M,χ)n(M,χ′)

×

Ψu(r,M, χ)Ψ∗u(r′,M ′, χ′)

∫∫
patch

d2 ~Rid
2 ~Rj

 ,
(B5)

and use the equality,∫∫
patch

d2 ~Rid
2 ~Rje

−i~L·(~Ri−~Rj)

= 4π2

∫∫
patch

RiRjdRidRjJ0(LRi)J0(LRj)

=
4π2

L2
[RmaxJ1(RmaxL)−RminJ1(RminL)] ,

(B6)

in Eqs.(B3) and (B4) to get Eqs. (32-34).
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