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We explore the cosmological signals of theories in which the neutrinos decay into invisible dark radiation
after becoming non-relativistic. We show that in this scenario, near-future large scale structure measurements
from the Euclid satellite, when combined with cosmic microwave background data from Planck, may allow an
independent determination of both the lifetime of the neutrinos and the sum of their masses. These parameters
can be independently determined because the Euclid data will cover a range of redshifts, allowing the growth
of structure over time to be tracked. If neutrinos are stable on cosmological timescales, these observations can
improve the lower limit on the neutrino lifetime by seven orders of magnitude, fromO(10) years to 2×108 years
(95% C.L.), without significantly affecting the measurement of neutrino mass. On the other hand, if neutrinos
decay after becoming non-relativistic but on timescales less thanO(100) million years, these observations may
allow, not just the first measurement of the sum of neutrino masses, but also the determination of the neutrino
lifetime from cosmology.

Introduction— Neutrino decay is a characteristic feature
of models in which neutrinos have masses. Even in the min-
imal extension of the Standard Model (SM) that incorporates
Majorona neutrino masses through the non-renormalizable
Weinberg operator, the heavier neutrinos are unstable, and un-
dergo decay at one loop into a lighter neutrino and a photon.
The same is true of the minimal extension of the SM that
incorporates Dirac neutrino masses through the inclusion of
right-handed singlet neutrinos. In both cases, the lifetime of
the heavier neutrino is of order τν ∼ 1050s (0.05 eV/mν)

5, in
the limit that the daughter neutrino mass is neglected [1–5].
This is much longer than the age of the universe, and so these
minimal neutrino mass models do not give rise to observable
signals of neutrino decay. However, in general, the neutrino
lifetime can be much shorter. For example, in theories where
the generation of neutrino masses is associated with the break-
ing of global symmetries [6–10] (see also [11, 12]), a heavier
neutrino can decay into a lighter neutrino and a Goldstone bo-
son on timescales that can be much shorter than the age of the
universe.

Until the turn of the century, the decaying neutrino scenario
attracted considerable attention as a possible solution to the
solar and atmospheric neutrino problems [13–16]. However,
this explanation is now disfavored by the data [17–19]. More
recently, radiative neutrino decays have been put forward as a
possible explanation of the anomalous 21 cm signal observed
by the EDGES experiment [20].

There is a strong lower limit on the neutrino lifetime in the
case of radiative decays. In this scenario, the limits on spec-
tral distortions in the cosmic microwave background (CMB)
can be translated into bounds on radiative neutrino decays,
τν >∼ 1019s for the larger mass splitting and τν >∼ 4 × 1021s
for the smaller one [21], greater than the age of the uni-
verse. There are also very strong laboratory and astrophysical
bounds on the neutrino dipole moment operators that induce
radiative neutrino decays [22–26].

In contrast, the decay of neutrinos into invisible dark radia-
tion is only weakly constrained by current data. At present,

the most stringent bounds on invisible neutrino decays are
from cosmological observations. Although limits can also be
placed on neutrino decay based on data from supernovae [27,
28], solar neutrinos [19, 29–33], atmospheric neutrinos and
long baseline experiments [34–36], these constraints are in
general much weaker. Cosmological measurements are sensi-
tive to the neutrino lifetime through the gravitational effects of
the relic neutrinos left over from the Big Bang, and their de-
cay products. If the neutrino lifetime is less than the timescale
of recombination, then neutrino decay and inverse decay pro-
cesses are active during the CMB epoch. These processes pre-
vent the neutrinos from free streaming, leading to observable
effects on the heights and locations of the CMB peaks [37–
39]. Current limits require that the neutrinos be free streaming
from redshifts z & 8000 until recombination, z ≈ 1100 [40–
43] (see also [44]). This can be translated into a lower bound
on the neutrino lifetime, τν ≥ 4× 108 s (mν/0.05 eV)

3 [43],
which is much less than the age of the universe. This cor-
responds to an upper bound on the width of the neutrino,
Γν ≡ τ−1

ν ≤ 8× 1010 (0.05 eV/mν)
3 km/s/Mpc. Comparing

this to the Hubble expansion rate, H0 ≈ 70 km/s/Mpc, we see
that at present there is no evidence that neutrinos are stable
on cosmological timescales, and the lifetime of the neutrino
remains an open question.

A knowledge of the neutrino lifetime is of particular impor-
tance for the determination of neutrino masses from cosmol-
ogy. At present, the strongest upper limit on the sum of neu-
trino masses,

∑
mν . 0.12 eV [45], is from cosmological

observations. However, this bound assumes that the neutrino
number density and energy distribution have evolved in accor-
dance with the standard Big Bang cosmology until the present
time. If the neutrinos have decayed [46, 47] or annihilated
away [48, 49], this bound is not valid, and must be reconsid-
ered. In particular, in the case of neutrinos that decay on cos-
mological timescales, values of the neutrino masses as large
as

∑
mν ∼ 0.90 eV are currently allowed by the data [50].

In the coming decade, major improvements are expected
in the precision of cosmological observations, which would
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lead to great advances in neutrino physics. The Euclid satel-
lite, scheduled to be launched in 2022, is expected to measure
both the galaxy and the cosmic shear power spectra with un-
precedented precision, achieving up to sub-percent accuracy
over the redshift range from z ∼ 0.5 − 2 [51]. In the more
distant future, the CMB-S4 experiment [52] will lead to ma-
jor advances over current CMB observations. This includes
improvements in the measurement of CMB lensing, which
is very sensitive to the neutrino masses. Under the assump-
tion that neutrinos are stable, these new measurements will
allow us to probe values of the neutrino masses smaller than
the observed neutrino mass splittings and thereby determine∑
mν [53, 54]. However, if the neutrinos are unstable on

cosmological timescales, the question of whether
∑
mν can

in fact be determined remains unanswered.
In this paper, we address this question. We consider the-

ories in which the neutrinos decay into invisible dark radia-
tion after becoming non-relativistic. This corresponds to the
width Γν . 1× 105(mν/0.1 eV)3/2 km/s/Mpc for each neu-
trino. We show that in this class of models, near-future large
scale structure (LSS) measurements from Euclid, in combina-
tion with Planck data, may allow an independent determina-
tion of both the lifetime of the neutrinos and the sum of their
masses. The reason these parameters can be independently
determined is because Euclid takes measurements at multi-
ple redshifts, which allows us to track the growth of structure
over time. In the case of stable neutrinos, we find that these
observations will be able to extend the lower bound on the
lifetime by at least seven orders of magnitude, from O(10)
years to O(0.1 − 10) Gyrs depending on the neutrino mass,
without significantly affecting the measurement of the sum of
neutrino masses. Furthermore, we show that if the neutrinos
decay after becoming non-relativistic but with a lifetime less
than O(108) years, these observations may allow the first de-
termination of not just the neutrino masses, but also the neu-
trino lifetime.

Breaking the Degeneracy Between Neutrino Mass and
Lifetime— The sensitivity of cosmological observables to the
neutrino masses arises from the fact that, after the neutrinos
become non-relativistic, their contribution to the energy den-
sity redshifts like matter, and is therefore greater than that of
a relativistic species of the same abundance. This leads to a
faster Hubble expansion, reducing the time available for struc-
ture formation. The net result is an overall suppression of
large scale structure [55, 56], (for reviews see [57–60]). A
larger neutrino mass gives rise to greater suppression, since
heavier neutrinos become non-relativistic at earlier times, and
also contribute more to the total energy density after becom-
ing non-relativistic. In the case of neutrinos that decay, the
extent of the suppression now also depends on the neutrino
lifetime. The key idea, first discussed in [46, 47], is that if
the neutrinos decay into massless species after becoming non-
relativistic, the suppression in power is reduced. Depending
on how late the decay kicks in after the neutrinos have become
non-relativistic, the magnitude of the suppression will vary.

These features are illustrated in Fig. 1, where we show the
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FIG. 1: Evolution of the ratio of the CDM+baryon density perturba-
tions with respect to the case of massless neutrinos. The blue (black)
curve corresponds to the case of stable (unstable) massive neutri-
nos with

∑
mν = 0.25 eV. Here zdecay, defined as the redshift at

which the neutrino width Γν becomes equal to the Hubble constant,
corresponds to the redshift at the time of neutrino decay. Similarly
znr denotes the redshift at which 80% of the neutrinos have become
non-relativistic. Unstable heavier neutrinos with

∑
mν = 0.3 eV

(red) can give the same density perturbation at low redshift as stable
neutrinos of mass

∑
mν = 0.25 eV. However, at z = 2, the pertur-

bation in the heavier neutrino scenario deviates at theO(0.1)% level
from the stable neutrino scenario (purple arrow).

evolution of the overdensity of cold dark matter and baryons,
δcb ≡ δρcb/ρ̄cb, for three cases, based on the analysis in [50]
and briefly described in the next section. The results are ex-
pressed in terms of the ratio of (δcb)

2 for each case to its value
in the scenario with massless neutrinos. The black line cor-
responds to stable neutrinos with

∑
mν = 0.25 eV, while

the blue line corresponds to unstable neutrinos of the same
mass. To simplify the discussion, in this plot we have taken
the lifetimes Γν of all the three neutrinos to be the same. We
see that, as compared to the stable neutrino scenario, unstable
neutrinos of the same mass lead to a smaller suppression of
δcb at z = 0. The red line corresponds to unstable neutrinos
with

∑
mν = 0.30 eV, and their lifetime has been chosen to

obtain the same result for the overdensity at z = 0 as for sta-
ble neutrinos with

∑
mν = 0.25 eV. We see from the black

and red curves in Fig. 1 that the effects of a stable neutrino on
the matter density perturbations cannot be easily distinguished
from those of a heavier neutrino that is shorter-lived based
only on measurements performed at z <∼ 0.3. This is because
the growth of δcb is almost frozen in the region where the cos-
mological constant dominates (z <∼ 0.3). Therefore, there is
a degeneracy between

∑
mν and τν that cannot be resolved

based only on measurements of the matter power spectrum at
low redshifts. However, it is clear from Fig. 1 that the evolu-
tion of the power suppression at earlier times is different in the
two cases. Consequently, the shapes of the power spectra as
a function of z are distinct. This would allow these two cases
to be distinguished if measurements are made at more than
one redshift with sub-percent precision (e.g., black vs. red at
z = 0.5 and z = 2 in Fig. 1). As mentioned above, the Eu-
clid experiment is expected to take measurements at multiple
redshifts between z ≈ 0.5 and z ≈ 2 at this level of precision.
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FIG. 2: Forecast of the 2D posterior of the sum of neutrino masses (at 68% C.L.) and decay width of the heaviest neutrino (at 95% C.L.)
reconstructed from a combination of Planck+Euclid P (k)+Euclid Lensing. The fiducial model assumes that neutrinos are stable and that they
follow the normal ordering (left panel) or inverted ordering (right panel).

Normal ordering
Fiducial

∑
mν/eV 0.06 0.12 0.18 0.24 0.30∑

mν/eV < 0.085 0.125+0.020
−0.020 0.183+0.017

−0.017 0.243+0.016
−0.016 0.303+0.015

−0.015

Log10

[
Γν

km/s/Mpc

]
< 3.7 < 3.2 < 2.1 < 1.7 < 1.5

Inverted ordering
Fiducial

∑
mν/eV 0.10 0.15 0.20 0.25 0.30∑

mν/eV < 0.13 0.154+0.017
−0.017 0.205+0.015

−0.017 0.253+0.016
−0.016 0.304+0.015

−0.015

Log10

[
Γν

km/s/Mpc

]
< 2.7 < 2.2 < 1.8 < 1.5 < 1.3

TABLE I: Forecast constraints on the sum of neutrino masses (at 68% C.L.) and decay width of the heaviest neutrino (at 95% C.L.) from
Fig. 2

Hence the combined Euclid and Planck data has the potential
to break the degeneracy between neutrino mass and lifetime.

Analysis— In order to calculate the effects of neutrino de-
cay on cosmological observables, we implement the Boltz-
mann equations corresponding to the decay of neutrinos
into dark radiation that were derived in [50] into the code
CLASS [61]. We work under the assumption that, after be-
coming non-relativistic, each SM neutrino decays with width
Γνi into two massless particles. Here the indices i label the
neutrino mass eigenstates. For concreteness, we assume that
the decay widths of the three neutrinos satisfy the relation
Γνi ∝ m3

νi . This assumption is motivated by models in
which the generation of neutrino masses is associated with
the breaking of global symmetries. Since Goldstone bosons
are derivatively coupled, in these theories the matrix element
for neutrino decay typically scale as mν/f , where f corre-
sponds to the scale at which the global symmetry is broken.
Then, after accounting for phase space, we typically have
Γνi ∼ m3

νi . Given the observed mass splittings, this leaves
only two remaining independent parameters. We choose to
present the results of our analysis in terms of the parameters

(
∑
mν ,Γν), where Γν is the decay width of the heaviest neu-

trino. With this definition, Γν ≡ Γν3 for the normal ordering
and Γν ≡ Γν2 for the inverted ordering. For the same values
of

∑
mν and Γν , the results for the normal and inverted or-

dering are different. This is because the individual neutrino
masses are different in the two cases. Therefore the neutrinos
become non-relativistic at different times and have different
lifetimes. These differences become increasingly small for
values of

∑
mν above 0.2 eV, since in this regime the neutri-

nos are quasi-degenerate.

We wish to determine the extent to which a combination of
Planck data and future Euclid data can help break the degen-
eracy between the neutrino mass and lifetime. To that end,
we make use of the mock likelihoods available publicly in
MONTEPYTHON-V3.1 and described in Refs. [62, 63]. We
include Euclid galaxy and cosmic shear power spectra in the
“realistic” configuration, i.e., we include nonlinear scales and
employ a loose (redshift-independent) non-linear cut at co-
moving kNL = 2 h/Mpc in the galaxy power spectrum and
kNL = 10 h/Mpc in the cosmic shear power spectrum, to-
gether with a nonlinear correction based on HaloFit [64, 65]
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FIG. 3: Same as Fig. 2, but the fiducial model now assumes decaying neutrinos with (Log10[Γν/(km/s/Mpc)],
∑

mν/eV) = (3.7, 0.16)
(left panel) and (3, 0.25) (right panel) in the normal ordering. The stars and dashed lines indicate the fiducial values of the corresponding
parameters.

Fiducial
(
Log10

[
Γν

km/s/Mpc

]
,
∑

mν/eV
)

(3.7, 0.16) (3, 0.25)∑
mν/eV 0.167+0.035

−0.076 0.261+0.042
−0.069

Log10

[
Γν

km/s/Mpc

]
3.59+0.65

−0.45 2.96+0.64
−0.46∑

mν/eV (stable) 0.10+0.02
−0.02 0.19+0.02

−0.02

TABLE II: Forecast constraints at 68% C.L. on the sum of neutrino masses and decay width of the heaviest neutrino from Fig 3.

and a theoretical error on the nonlinear modeling (as described
in Refs. [62, 63]). For a few cases, we employed an alter-
native “conservative” prescription where we cut the data at
comoving kNL = 0.2 h/Mpc in the galaxy power spectrum
and kNL = 0.5 h/Mpc in the cosmic shear power spectrum,
and verified that this leads to very similar results. This gives
us confidence in the robustness of our conclusions. In order
to include Planck data in our forecast, we generate a mock
dataset with the fake likelihood FAKE PLANCK REALISTIC
available in MONTEPYTHON-V3.1. We analyze chains using
the python package GETDIST [66].

We first forecast the lower bound on the neutrino lifetime
that can be reached in the near future. We begin by generating
mock data sets for the case of stable neutrinos, i.e., Γν = 0.
Specifically, we generate a mock data set for the following val-
ues of

∑
mν /eV: [0.06, 0.12, 0.18, 0.24, 0.30] for the case of

normal ordering and [0.10, 0.15, 0.20, 0.25, 0.30] for inverted
ordering. This range covers the minimum

∑
mν allowed

by the normal and inverted mass spectra, and also the maxi-
mum

∑
mν consistent with the current bound derived in [50].

We then run one MCMC scan per mock data set varying the
ΛCDM parameters {ωb, ωcdm, 100θs, As, ns, τreio} together
with {

∑
mν/eV,Log10[Γν/(km/s/Mpc)]}. As mentioned

earlier, here Γν refers to the width of the heaviest neutrino.
As our modifications to CLASS have the effect of making
the code much slower, we are forced to run a large number
of chains (∼ 100) to acquire enough points to obtain robust

results. This penalizes the use of the Gelman-Rubin crite-
rion [67] as a convergence test. Nevertheless, all runs satisfy
the Gelman-Rubin criterion except for the cases with fiducial∑
mν/eV = 0.06,

∑
mν/eV = 0.10 and

∑
mν/eV = 0.12.

For these runs, we have at most (R−1) ≈ 0.3, (R−1) ≈ 0.22
and (R − 1) ≈ 0.25 respectively. Therefore we primarily
rely on visual inspections, and on comparison between vari-
ous chunks of chains, to assess convergence. As a check, we
have verified that for all scenarios, our constraints vary by less
than 10% when adapting the fraction of points removed with
GETDIST from 0.1 to 0.5.

Our results are displayed in Fig. 2 for the normal- (left)
and inverted- (right) mass ordering cases, where we show
the bounds on the decay rate Γν of the heaviest neutrino
as a function of

∑
mν . We summarize the bounds on

the neutrino masses and lifetime for both hierarchies in Ta-
ble I. Of utmost importance, we find that the combination
of Planck and Euclid can break the degeneracy between
(
∑
mν ,Γν) and set an upper bound on the neutrino lifetime,

Log10[Γν/(km/s/Mpc)] ≤ 3.7 (2σ), even for the lowest pos-
sible neutrino mass. Moreover, we find that the sensitivity to∑
mν is not significantly degraded by the additional free pa-

rameter log10 Γν . As can be seen from Table I, the bounds
on Γν in the normal and inverted ordering cases become in-
creasingly close above

∑
mν

>∼ 0.2 eV. This is because in
this limit the neutrinos are becoming quasi-degenerate. Nev-
ertheless, even for

∑
mν = 0.3 eV, the values of the two
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largest neutrino masses differ at the level of a few percent be-
tween the normal and inverted hierarchies. Since Γν ∝ m3

ν ,
this accounts for the∼ 10% difference between the bounds on
Γν in the two cases. Finally, we mention that we do not find
any strong correlation between the decay rate and the other
cosmological parameters. Therefore, for brevity we do not
explicitly report the reconstructed ΛCDM parameters.

Given these constraints on Log10[Γν/(km/s/Mpc)], we
anticipate that future cosmological data will be able to de-
termine that neutrinos are decaying if the width exceeds this
limit. To demonstrate this, we turn our attention to a scenario
with unstable neutrinos and generate two sets of mock data
corresponding to (Log10[Γν/(km/s/Mpc)],

∑
mν/eV) =

(3.7, 0.16) and (3, 0.25) with a normal ordering. For each
mock data set and fiducial model we run two cases, one in
which we leave Γν free to vary and another in which we en-
force the constraint Γν = 0. The purpose of the latter case
is to allow us to estimate the typical bias that would be in-
troduced if this scenario was actually realized in nature and
neutrino decays were not accounted for. The results of both
these runs satisfy the Gelman-Rubin criterion.

Our results are shown in Fig. 3 and summarized in Table II.
We find, as expected, that for both cases the combination of
Planck and Euclid sets an upper limit on the neutrino lifetime,
so that the decaying neutrino scenario can be distinguished
from the stable case at better than 3σ. Remarkably, in both
cases we also obtain a lower limit on the neutrino lifetime
at 3σ, opening the door to the possibility of determining the
neutrino lifetime from cosmology.

Based on our limits, one might expect that the neu-
trino lifetime can be determined at better than 2σ provided
Log10[Γν/(km/s/Mpc)] > 3.7 for

∑
mν/eV > 0.06. How-

ever, recall that the regime Log10[Γν/(km/s/Mpc)] & 5 is
not treated in our formalism, since neutrinos would be decay-
ing while still relativistic. We defer a detailed study of the
parameter space for which next-generation experiments can
determine the neutrino lifetime to future work.

Interestingly, we find that in both the cases considered, the
precision at which

∑
mν can be detected is strongly degraded

compared to the contours in Fig. 2. Indeed, in these cases the
uncertainty on

∑
mν is multiplied by∼ 5 when Γ is let free to

vary, and ∼ 1.5 when Γν = 0 is enforced. This is of great im-
portance for next-generation experiments which claim that a

combination of datasets will be able to detect the sum of neu-
trino masses “at 5σ”, even in the minimal mass case. Perhaps
even more important, we find that when Γν = 0 is enforced, a
strong bias in the reconstructed neutrino mass away from the
true value can appear. For the specific cases studied here, we
find a bias of roughly −0.06 eV, i.e, a ∼ 3σ shift away from
the “true” value.

Conclusions— In summary, we have considered the cos-
mological signatures of theories in which the neutrinos decay
into invisible radiation on cosmological timescales. We have
shown that in this scenario, observations of large scale struc-
ture made at multiple redshifts may allow two fundamental
parameters, the sum of neutrino masses and the neutrino life-
time, to be determined independently. We find that near-future
measurements by the Euclid satellite can improve the lower
limit on the neutrino lifetime in this scenario from O(10)
years to 200 million years. In the case of neutrinos that de-
cay on shorter timescales these measurements may allow the
neutrino lifetime to be determined from cosmology.

In our analysis we have focused on the decay of neutrinos to
dark radiation, which is easier to distinguish from the case of
stable neutrinos than the decay of heavier neutrinos to lighter
ones. However, we expect that our results also give a good
approximation to the latter scenario in the limit that the light-
est neutrino is massless. This applies to both the normal and
inverted hierarchies, and shows that future observations will
have some level of sensitivity to this interesting class of theo-
ries.
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