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We investigate potential gains in cosmological constraints from the combination of galaxy clustering and
galaxy-galaxy lensing by optimizing the lens galaxy sample selection using information from Dark Energy
Survey (DES) Year 3 data and assuming the DES Year 1 METACALIBRATION sample for the sources. We
explore easily reproducible selections based on magnitude cuts in i-band as a function of (photometric) redshift,
zphot, and benchmark the potential gains against those using the well established REDMAGIC [1] sample. We
focus on the balance between density and photometric redshift accuracy, while marginalizing over a realistic
set of cosmological and systematic parameters. Our optimal selection, the MAGLIM sample, satisfies i <
4 zphot + 18 and has ∼ 30% wider redshift distributions but ∼ 3.5 times more galaxies than REDMAGIC.
Assuming a wCDM model and equivalent scale cuts to mitigate nonlinear effects, this leads to 40% increase
in the figure of merit for the pair combinations of Ωm, w, and σ8, and gains of 16% in σ8, 10% in Ωm,
and 12% in w. Similarly, in ΛCDM we find an improvement of 19% and 27% on σ8 and Ωm, respectively.
We also explore flux-limited samples with a flat magnitude cut finding that the optimal selection, i < 22.2,
has ∼ 7 times more galaxies and ∼ 20% wider redshift distributions compared to MAGLIM, but slightly worse
constraints. We show that our results are robust with respect to the assumed galaxy bias and photometric redshift
uncertainties with only moderate further gains from increased number of tomographic bins or the inclusion of
bin cross-correlations, except in the case of the flux-limited sample, for which these gains are more significant.

Keywords: dark energy; dark matter; cosmology: observations; cosmological parameters

I. INTRODUCTION

According to the current consensus cosmological model,
ΛCDM, dark matter and dark energy make up most of the en-
ergy density of the Universe (see e.g. [2]). However, their
nature is still unknown and understanding them presents a
grand challenge for present-day cosmology. The pillars for
the establishment of an accelerating Universe within a ΛCDM
model have been the characterization of cosmic microwave
background fluctuations (CMB) [3, 4] and distance measure-
ments to Type Ia supernovae (SNIa) [5, 6]. In addition, the
study of the large-scale structure (LSS) in our Universe, which
carries a wealth of cosmological information, allows us to fur-
ther constrain these fundamental physics questions (e.g. [7–
11] and references therein).

The first cosmology results from ongoing imaging surveys,

such as the Dark Energy Survey (DES1) [9, 12], the Kilo-
Degree Survey (KiDS2) [13, 14], and the Hyper Suprime Cam
(HSC3) [15, 16], have demonstrated the feasibility of com-
plex LSS analyses from photometric data and its value and
complementarity to the CMB and SNIa in the establishment
of a concordance cosmological model. Consequently, prepa-
rations are also under way for the next generation of sur-
veys that will provide high quality imaging data during this
decade. The Rubin Observatory Legacy Survey of Space and
Time (LSST4) [17], Euclid5 [18], and the Nancy Grace Ro-
man Space Telescope (Roman6) [19] complement each other

1 http://www.darkenergysurvey.org/
2 http://kids.strw.leidenuniv.nl/
3 https://www.naoj.org/Projects/HSC/
4 https://www.lsst.org/
5 https://sci.esa.int/web/euclid
6 https://roman.gsfc.nasa.gov/

http://www.darkenergysurvey.org/
http://kids.strw.leidenuniv.nl/
https://www.naoj.org/Projects/HSC/
https://www.lsst.org/
https://sci.esa.int/web/euclid
https://roman.gsfc.nasa.gov/
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in terms of area, depth, wavelength, and resolution, and will
increase the mapped volume of the Universe by more than one
order of magnitude (see e.g. [20, 21]). Two of the main cos-
mological probes from these surveys are galaxy clustering and
weak gravitational lensing which we further discuss below.

Weak gravitational lensing refers to the correlated gravi-
tational distortion induced in background galaxy shapes by
foreground LSS as their light travels towards us [22]. This
effect is sensitive to the geometry of the Universe and the
growth rate of density fluctuations. Hence, information about
the cosmological model can be extracted by correlating the
observed shapes of galaxies, which is commonly referred to
as cosmic shear, or by correlating the positions of galaxies in
the foreground (a biased tracer of the LSS) with the shapes of
the galaxies in the background, which is often referred to as
galaxy-galaxy lensing. The latter can be combined with the
auto-correlation of foreground (lens) galaxy positions, a.k.a.
galaxy clustering, to break degeneracies with the bias and im-
prove the robustness and constraining power of the cosmolog-
ical analysis. Such a multi-probe analysis has been carried out
by DES in the analysis of its first year of data (DES Y1) [12],
and by KiDS, combining their shape measurements with spec-
troscopic foreground (lens) galaxies from the Galaxies And
Mass Assembly (GAMA) survey [14] or from the 2-degree
Field Lensing Survey (2dFLenS) and the Baryon Oscillation
Spectroscopic Survey (BOSS) [13, 23], over the overlapping
areas.

When analyzing galaxy clustering (and its combination
with galaxy-galaxy lensing) there is a trade-off between se-
lecting the largest galaxy samples to minimize shot noise and
selecting samples with the best redshift accuracy, which gen-
erally include only a small subset of galaxies. In this paper
we investigate the potential gains in cosmological constraints
that can be obtained by optimizing the selection of the lens
galaxy sample in a combined galaxy clustering and galaxy-
galaxy lensing analysis (hereafter 2× 2pt). We choose to not
include cosmic shear in this work given that the only impact
would be an overall increase of the constraining power for all
cases, independently of the lens sample considered. Note that,
as a consequence, the relative improvements in cosmological
constraints in a 3 × 2pt analysis (i.e., when including shear)
will be likely smaller than the results presented here.

In order to define samples with accurate redshift estimates
from photometric data, a common choice is to use luminous
red galaxies (LRGs), which are characterized by a sharp break
at 4000Å [24, 25] and a remarkably uniform spectral energy
distribution. They also correlate well with clusters. These
features allow the selection of this sample of galaxies from
the general population, as well as the estimation of their red-
shifts with high accuracy. The approach taken in the DES
Y1 analysis [12] consisted of selecting the lens galaxies in
terms of optimal photometric redshift (photo-z) accuracy7 us-
ing the REDMAGIC algorithm [1] which relies on the cal-
ibration of the red-sequence in optical clusters. A similar

7 Note that, in practice, this also translates into a robust and simple charac-
terization of redshift distributions, which otherwise is a difficult task.

selection of red-sequence galaxies has been carried out re-
cently by KiDS, combining their broad-band optical catalog
with near-infrared photometry from the VISTA Kilo-degree
Infrared Galaxy (VIKING) survey [26]. Selections of LRG’s
in photometric data, based on color and magnitude cuts, have
been done also for measurements of Baryon Acoustic Oscil-
lations [25, 27, 28].

An alternative choice is to select all galaxies up to a limiting
magnitude. This can lead to galaxy samples that reach higher
redshifts with a much higher number density, at the expense of
lower photo-z accuracy. Flux-limited samples have been used,
for example, in the DES Science Verification analysis [29]
and, previously, in the galaxy clustering measurements from
Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)
data [30]. Both analyses were very similar in terms of depth,
photometry, and area, and the samples were defined with the
same cut in apparent magnitude: i < 22.5. More recently, a
flux-limited sample has been considered in the galaxy cluster-
ing measurements from HSC data [31], in which the authors
select galaxies with a limiting magnitude i < 24.5 and study
their properties such as large-scale bias. This kind of galaxy
selection is simple and easily reproducible in different data-
sets and, as a consequence, the properties of the sample can
be well understood. For instance, in [29] the authors show that
the redshift evolution of the linear galaxy bias of their sample
matches the one from CHFTLS [30], and this redshift evolu-
tion also agrees well with that from HSC data [31]. However,
to our knowledge this type of selection has not yet been used
to derive cosmological constraints.

In this work, we follow this approach and consider flux-
limited samples as an alternative to the LRG REDMAGIC
sample selected from the third year of DES data (DES Y3),
aiming to optimize the lens galaxy selection to extract the
maximum amount of cosmological information. We will then
consider this optimal sample as one of the lenses of the up-
coming DES Y3 analysis, not only because of potential im-
proved constraints but also as a test of the robustness of
the cosmological results given the characteristics of the lens
galaxy sample such as its redshift extent, bias, photo-z charac-
terization or density. In the follow-up paper [32, in prep.], we
will obtain cosmological constraints from the galaxy cluster-
ing and galaxy-galaxy lensing measurements of this sample.
We will also validate the redshift distributions, the treatment
of photometric uncertainties, the scale cuts, and the modeling
pipeline.

This paper is organized as follows. In Sec. II we describe
the DES data used and the sample selections we consider
throughout. In Sec. III we detail our methodology to infer cos-
mological parameter constraints including the theory model-
ing, the parameter space (cosmological and systematic), and
the scale cuts. In Sec. IV we discuss the optimization pro-
cess, which reflects the core of our results. In Sec. V we de-
scribe the optimal samples and compare their properties and
cosmological constraints obtained from Monte-Carlo Markov
chains (MCMC8) to provide realistic Y3 simulated analysis.

8 Technically, in this work we use a Monte-Carlo (MC) method instead of
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In Sec. VI we study the performance of the optimized sam-
ples for different analysis choices such as the binning strat-
egy, assumed galaxy bias or photo-z error priors. We finish in
Sec. VII presenting our conclusions.

II. DES Y3 DATA

DES [33] is an imaging survey of ∼ 5000 deg2 of the
southern sky, using a 570 megapixel camera [DECam; 33]
mounted on the 4 m Blanco telescope at the Cerro Tololo
Inter-American Observatory (CTIO) in Chile in five broad-
band filters, grizY . The main goal of DES is to determine
the dark energy equation of state parameter w and other key
cosmological parameters. In this work we use data from the
first three years of observations (Y3), which were taken from
August 2013 to February 2016.

The catalog that will be used for the cosmological analy-
sis of Y3 data, the Y3 GOLD catalog, is described more ex-
tensively in [34] and it is based on the coadded catalog from
the first three years of data, which was released publicly as
the DES Data Release 1 (DR1)9. The DES DR1 is the first
DES catalog that spans the whole footprint, and it is described
in [35], alongside with the details of the Data Management
pipeline in [36] and photometric calibrations in [37]. The
source catalog was built using SExtractor [38] detecting
objects on the grizY co-added images up to a 10-σ limiting
magnitude of g = 24.3, r = 24.0, i = 23.3, z = 22.6 and
Y = 21.4 mag. (see Table 2 in [34]). In this work, however,
we only use the DES Y3 GOLD catalog for the lens samples;
for the sources, we employ the METACALIBRATION source
sample [39] built from the DES Y1 GOLD catalog [40].

The photometry in Y3 is derived through the Multi-Object
Fitting pipeline [40] and its variant Single-Object Fitting
(SOF), which eliminates the multi-object light subtraction
speeding up the process with negligible impact on perfor-
mance. In this paper we use SOF magnitudes for sample se-
lection and as input to the photometric redshift codes. In par-
ticular, we select the samples from the Y3 GOLD 2 2 catalog
using the SOF magnitudes corrected for Galactic extinction
and other minor adjustments (SOF CM MAG CORRECTED)
and we remove stellar contamination from our samples by
using the default star-galaxy separation method from [34]
(EXTENDED CLASS MASH SOF = 3), which reduces the
stellar contamination to less than 2%. The Y3 GOLD catalog
contains ∼ 388 million objects detected in co-added images
covering ∼ 5000 deg2 in the DES grizY filters.

As part of the Y3 GOLD dataset, three standard photomet-
ric redshift codes were run (one template fitting, BPZ [41]
and two machine learning, ANNz2 [42] and DNF [43]). In
this paper we rely exclusively (aside from REDMAGIC) on
the DNF run based on SOF photometry that is provided as part

other traditional MCMC techniques. However, since the end product of
these two kinds of methods is equivalent, we employ the ‘MCMC’ acronym
because it is a more established term in the literature.

9 Available at https://des.ncsa.illinois.edu/releases/dr1

of the Y3 GOLD catalog. The Directional Neighborhood Fit-
ting (DNF) algorithm creates an approximation of the redshift
of the object through a nearest-neighbors fit in a hyperplane
in color and magnitude space using a reference training set
from a spectroscopic database. The database of spectra is de-
scribed in [44] and includes ∼ 220 thousand spectra matched
to DES objects from 24 different spectroscopic catalogs, such
as SDSS DR14 [45], the OzDES program [46] and VIPERS
[47], among others. In the case of DNF about half of these
spectra are used for training and the rest for performance vali-
dation. The performance of the different photometric redshift
runs is discussed in [34], where it is found that DNF outper-
forms the other methods in standard metrics such as width
and biases of photometric redshift error distributions. In ad-
dition, DNF also provides the redshift of the actual nearest-
neighbor within the reference training sample, which together
with the approximated redshift estimate zphot serves as an in-
ternal metric for the photo-z redshift error per object.

A. Sample selections

As noted in the introduction, we use different kinds of lens
samples defined from DES Y3 data. Aside from a RED-
MAGIC sample, we define two types of flux-limited samples.
The first one consists of an overall apparent magnitude limit,
similar to what has been commonly used in previous analy-
ses, and the second one (MAGLIM) is a sample defined with a
magnitude cut varying linearly with redshift. This avoids se-
lecting red objects through explicit color cuts since that would
mimic REDMAGIC. Thus, given the DNF photo-z values for
MAGLIM, both of these definitions lead to selections that are
easy to implement and reproduce in practice. Our samples are
hence defined mainly in terms of their luminosity (as a func-
tion of redshift). In the following, we describe our sample
selection criteria, their photometric redshift estimates, and the
effective survey area and angular mask applied to them. Both
flux-limited samples are optimized in Sec. IV.

1. Flux-limited sample

Flux-limited samples are defined with a flat apparent mag-
nitude cut on the i-band, i < a with a being some constant,
because generally it is the magnitude with the best signal-to-
noise ratio per object over the redshift range considered. This
type of sample has been used in various analyses in the past,
e. g. the galaxy clustering analysis of DES Science Verifi-
cation data [29], and also in CFHTLS [30] and HSC [31]. In
particular, [48] considers this approach, using DES Y1 data, to
study the trade-off between number density and photo-z accu-
racy and its impact in terms of cosmological constraints from
galaxy clustering with fixed bias parameters. Therefore, it is
interesting to consider this type of sample here, and compare
it with the other two samples, MAGLIM and REDMAGIC, de-
scribed next.

https://des.ncsa.illinois.edu/releases/dr1


5

2. MAGLIM sample

One possible disadvantage of selecting all galaxies up to a
fixed limiting magnitude is that at low redshift the selection in-
cludes a higher number of less luminous (mostly blue) galax-
ies, degrading the photo-z accuracy as a result. For this rea-
son, here we explore a different galaxy selection that serves as
an intermediate scenario in terms of number density and pho-
tometric redshift accuracy. In particular, we consider samples
selected with a limiting magnitude that varies across redshift,
of the type i < azphot + b, with a and b arbitrary numbers
and zphot being the DNF photo-z estimate. Effectively this se-
lects brighter galaxies at low redshift while including fainter
galaxies as redshift increases. Additionally, we remove the
brightest objects (including stellar contamination from binary
stars) by setting i > 17.5.

3. REDMAGIC

This galaxy sample, which will be described more exten-
sively in [49, in prep.], is generated by the REDMAGIC al-
gorithm [1] run on DES Y3 GOLD data. The REDMAGIC
algorithm selects LRGs in such a way that photometric red-
shift uncertainties are minimized. This algorithm fits every
galaxy to a red-sequence template, and only includes in the
selection galaxies that are bright enough (above a certain lu-
minosity threshold Lmin), and that have a good enough fit to
the red-sequence template using the assigned photometric red-
shift (χ2 ≤ χ2

max). In addition, it is required that the resulting
sample has constant comoving density as a function of red-
shift. The red-sequence template is generated by the training
of the REDMAPPER cluster finder [50, 51]. Reference lumi-
nosities are defined as a function of L∗, computed using a
Bruzual and Charlot [52] model for a single star-formation
burst at z = 3, as described in [51]. Naturally, increasing the
luminosity threshold provides a higher redshift sample as well
as decreasing the comoving number density.

Two REDMAGIC samples are generated from the Y3 data,
equivalent to the ones from Y1 [53], and referred to as high-
density and high-luminosity. The corresponding luminosity
thresholds and comoving densities are, Lmin = 0.5L∗, and
1.0L∗, and n̄ = 10−3, and 4 × 10−4 galaxies/(h−1Mpc)3,
where h is the reduced Hubble constant. The combined RED-
MAGIC sample we use in this work consists of high-density
galaxies at redshifts z < 0.65, and high-luminosity galaxies in
the range 0.65 < z < 0.95. The REDMAGIC algorithm pro-
duces best-fit redshifts, which we use as the estimated photo-
metric redshifts. These photometric redshifts are particularly
accurate, with an uncertainty σz/(1 + z) < 0.02, see Figure 1
for the dependency of this uncertainty with redshift.

B. Sample comparison

In Figure 1 we show the galaxy counts (top panel) and the
mean photo-z error (bottom panel) as a function of the pho-
tometric redshift for the three types of samples we discussed

104
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redMaGiC

FIG. 1. Galaxy counts (top panel) and mean photo-z error σz/(1+z)
(bottom panel) as a function of photometric redshift for three cases
of the lens samples considered in this work (see text for details).

above. For the flux-limited sample we show i < 22.2 while
for MAGLIM i < 18 + 4zphot, where zphot is the DNF pho-
tometric redshift estimate. The mean photo-z error σz is ob-
tained in different ways depending on the galaxy sample. In
the case of the REDMAGIC sample, σz corresponds to the
redshift uncertainty provided by the REDMAGIC algorithm.
For MAGLIM and flux-limited samples, however, σz/(1 + z)
is the 68% confidence interval of values in the distribution of
(zphot − ztrue)/(1 + ztrue) around its median value, where
ztrue corresponds to the DNF nearest-neighbor redshift. Fig-
ure 1 shows that while the flux-limited sample has many more
galaxies (especially at low redshift), the photometric redshift
accuracy is far from optimal, with 0.04 < σz/(1 + z) <
0.07. With the MAGLIM sample we exclude from the se-
lection the faintest / bluest galaxies that have worst photo-
z, while still managing to get a sample with several times
the number density of REDMAGIC. The photo-z accuracy,
thus, improves with respect to the flux-limited sample, with
0.02 < σz/(1 + z) < 0.05. Note also that the maximum red-
shift range (before the sample starts being incomplete and the
photo-z error degrades) is zmax ∼ 1.05 for MAGLIM com-
pared to zmax ∼ 0.95 for REDMAGIC.

C. Tomographic binning and redshift distributions

In the rest of the paper we will derive cosmological con-
straints after dividing the samples in tomographic bins and
using estimates for the distribution of true redshifts per bin.
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The estimate for galaxy redshifts (photo-z) used for tomo-
graphic binning and galaxy selection for the MAGLIM and
flux-limited samples is derived using the predicted value in
the fitted hyper-plane from the DNF code. In turn, it has been
shown that the stacking of the nearest-neighbor redshift allows
the method to replicate science sample redshift distributions
accurately [54, 55], and results and performance in Y3 GOLD
are similar to those found previously by [56]. In follow-up pa-
pers we will investigate the performance of this approach for
MAGLIM against direct calibration with spectroscopic fields
[32] and clustering redshifts [57] in more detail. Hence for the
estimates of the redshift distribution of galaxies in each tomo-
graphic bin, n(z), we use the stacking of the nearest-neighbor
redshifts of the galaxies in the sample.

For the REDMAGIC sample we assume that the redshift
probability distribution function (PDF) for each galaxy is a
Gaussian distribution with mean given by the REDMAGIC
best-fit redshift and standard deviation σz . We then obtain an
overall estimate of the redshift distributions by stacking these
Gaussian PDFs [1, 53].

D. Survey area and angular mask

The footprint of the DES Y3 GOLD catalog amounts to
4946 deg2. For cosmology analyses, additional masking is
applied to remove bright stars and other foreground objects,
and also regions of the footprint that have some deficiency
in the source extraction of photometric measurement (a.k.a.
bad regions). As a result, the effective area is reduced by
659.68 deg2 [34].

Then, for a given galaxy sample, we mask the regions that
are too shallow in order to have a homogeneous depth across
the footprint. In Figure 2 we show the fractional survey area
as a function of the limiting magnitude reached in that area
in the i-band. Samples with an overall limiting magnitude of
i = 22 or lower will be complete over 100% of the footprint.
If we increase the limiting magnitude to incorporate more ob-
jects into the sample, then the regions of the sky that are too
shallow would need to be masked in order to achieve a ho-
mogeneous depth. Therefore, there is a trade-off between im-
posing limits at higher magnitudes and preserving the survey
area. In Sec. IV we vary a range of limiting magnitudes in or-
der to optimize the samples and decide not to consider those
selections with i > 22.75, at which point we would need to
mask ∼ 10% or more of the sky area.

The samples that we find to be optimal in terms of 2×2pt
cosmological constraints are complete in regions of the sur-
vey deeper than i = 22.2 magnitudes. Therefore, we will
consider such regions as our baseline footprint. This implies
masking out about ∼ 1% of the area. A similar masking is
applied for the REDMAGIC sample. We use depth informa-
tion from the REDMAGIC catalogs to mask out the regions
in the footprint that are too shallow. Since we want to com-
pare the cosmological constraints obtained from the optimal
samples with the REDMAGIC sample, we then combine these
two masks resulting in a unique mask that is applied to both.
Using the same mask for both samples reduces the area by an
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FIG. 2. Percentage of survey area as a function of the limiting mag-
nitude in the i-band. The reference full area includes all the baseline
quality cuts corresponding to the DES Y3 GOLD dataset.

additional ∼ 100 deg2, yielding a final effective area of 4182
deg2. For simplicity, we use the same mask for all sample
selections. We note that this is optimistic for those samples in
Sec. IV with limiting magnitudes larger than 22.2.

III. FORECASTING METHODOLOGY

In what follows, we describe the methodology employed
for sample optimization. For each magnitude cut consid-
ered we access the catalog and apply the sample selection,
which leads to a given number density and redshift distribu-
tion per tomographic bin. From these, we produce theory
data-vectors and covariances that are subsequently used to de-
rive cosmological parameter constraints following the fore-
casting methodology that we present next.

A. Likelihood exploration

In order to investigate the potential gains in cosmological
constraints, we run simulated likelihood analyses with Fisher
matrix [58, 59] and MCMC methods. The Fisher matrix is
commonly used for forecasting constraints because it is fast
to compute and provides an approximation for the covariance
matrix of the parameters. However, since the Fisher matrix
is a local approximation of the likelihood, it can provide in-
accurate results for non-Gaussian posterior distributions, as is
the case when there are degeneracies between parameters (see
e.g. [60]). A more robust approach for forecasting is possible
by sampling the full posterior distributions using an MCMC
approach.

We sample the posterior in the n-dimensional parameter
space by computing the likelihood at every step, where n is
the number of parameters (~p) we vary in our analysis (see Ta-
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ble I). We assume the likelihood to be Gaussian,

lnL(~d|~m(~p)) =

−1

2

N∑
ij

(di −mi(~p))C
−1
ij (dj −mj(~p)) .

(1)

Here N is the number of data points, ~m(~p) are the theoret-
ical predictions as a function of the parameters we allow to
vary, ~d is the noiseless theory data vector (the set of theoreti-
cal predictions evaluated at the fiducial cosmology), and C is
the covariance matrix, also evaluated at the fiducial cosmol-
ogy (see Table I). The posterior distribution of the parameters
is given by:

P (~m(~p)|~d) ∝ L(~d|~m(~p))Pprior(~p), (2)

where Pprior(~p) is the prior on the parameters. The Fisher
matrix is defined as the expectation value of the curvature of
the log-likelihood evaluated at the maximum likelihood point,
i.e. the fiducial values of the parameters ~p0

Fij ≡ −
〈
∂2 logL
∂pi∂pj

∣∣∣∣
~p=~p0

〉
. (3)

We can include Gaussian priors by adding a prior matrix

FPij = δij
1

(σPi )2
, (4)

where σPi is the standard deviation on the parameter pi as-
sumed as a prior. According to the Cramr-Rao inequality, the
Fisher matrix gives a lower bound on the error σ on a param-
eter pi,

σ(pi) ≥
√

(F−1)ii. (5)

A commonly used metric to measure the constraining power
of a given data set is the figure of merit (FoM). The FoM for
a subset of cosmological parameters p is defined as

FoMp =
1√

det [(F−1)p]
, (6)

where (F−1)p is the selection on (F−1) of the rows and
columns corresponding to the subset of parameters p. An intu-
itive way to understand the FoM is to consider a subset of two
parameters. In that case, the FoM is inversely proportional to
the area of the confidence ellipse of these two parameters.

One of the most important factors for the reliability of a
Fisher matrix is the stability of the numerical derivatives (see
e.g. [60–62]). The computation of the derivatives involves
evaluating the likelihood at several points in the vicinity of
the fiducial values of the parameters, assuming a given step
size. The problem is that if the step size is too large, the nu-
merical derivative may not be accurate. On the other hand, if
the step size is too small, the derivative estimate will be un-
reliable due to numerical instabilities. For this purpose, when
computing a Fisher matrix, we iteratively vary the step size

for each parameter until we reach a certain tolerance. In the
following, we explain the details of this process. We first com-
pute the derivatives at an initial step size of 0.01 (1%) in units
of the range of each parameter. Assuming a maximum step
size smax = 0.05 (which is a reasonable boundary according
to [63]), in each iteration we vary the step sizes to the mini-
mum value between smax and the predicted σ error on that pa-
rameter: snew = min(smax, σ(pi)). The algorithm converges
when the differences in the sigma errors σ(pi) are below a tol-
erance of 0.01 and the differences in the predicted covariance
matrix of the parameters are below 10−4.

Another important factor is the treatment of priors in the
Fisher matrix estimation. In general, when analyzing data we
assume wide flat priors for the cosmological parameters in or-
der to avoid having cosmological results that depend on the
priors assumed. However, as mentioned before, the Fisher
matrix will fail to estimate the posterior distributions in the
presence of non-Gaussianities, which can lead to confidence
contours that extend beyond the physically meaningful param-
eter range. In order to address this, we apply wide Gaussian
priors for the parameters listed with flat priors in Table I, as-
suming in Eq. (4) a standard deviation equal to half the limits
[a, b] of the parameter range in Table I: σPi = (b − a)/2.
This was the approach taken in [61], which resulted in a good
agreement between Fisher and MCMC. In the case of nui-
sance parameters with Gaussian priors, we just assume as σPi
the σ values listed in Table I.

Even though we have taken measures to ensure our Fisher
matrices are reliable, the predicted constraints σ(pi) will still
have an uncertainty of order 10% with respect to other Fisher
codes and MCMC methods [61–63]. For this reason, in
Sec. V B we compare a representative set of our Fisher fore-
casts against the constraints coming from a full MCMC sam-
pling of the posterior. Nevertheless, we rely on the Fisher ma-
trix for most of our forecasts, with the exception of Sec. V B,
in which we show the MCMC constraints for REDMAGIC and
the optimal samples.

In this paper we use COSMOSIS10 [64] to compute the
Fisher matrices. For the MCMC simulated likelihood anal-
yses, we sample the posterior distribution using the MULTI-
NEST [65] wrapper in COSMOSIS.

B. Theory Modelling

In this section, we describe the model we use to charac-
terize galaxy clustering and galaxy-galaxy lensing and their
covariance matrix. As seen in Sec. III A, we use these to ex-
tract cosmological information from a given data vector that,
in our case, is a noiseless theoretical prediction at the fidu-
cial cosmology. The model depends upon both cosmological
parameters and astrophysical and systematic nuisance param-
eters (see Sec. III C). In Appendix A, we validate the numeri-
cal implementation of our covariances by comparing the con-
straints coming from two different covariance codes.

10 https://bitbucket.org/joezuntz/cosmosis/
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1. Observables

The observables we consider in the simulated likelihood
analyses are the galaxy clustering and galaxy-galaxy lensing
two-point angular correlation functions, i.e. the correlations in
the positions of the lens galaxies, and the correlation between
these positions and the source galaxy shears.

Under the Limber approximation [66], we can construct
their respective angular power spectra as a function of mul-
tipole ` in the following way,

Cijδgδg (`) =

∫
dχ
qiδg

(
`+ 1

2

χ , χ
)
qjδg

(
`+ 1

2

χ , χ
)

χ2

×PNL

(
`+ 1

2

χ
, z(χ)

)
,

(7)

Cijδgκ(`) =

∫
dχ
qiδg

(
`+ 1

2

χ , χ
)
qjκ(χ)

χ2

×PNL

(
`+ 1

2

χ
, z(χ)

)
,

(8)

where PNL(k, z) is the non-linear matter power spectrum, and
qiδg and qjκ are respectively the density kernel in the redshift
bin i from the lens sample, and the lensing efficiency in the
redshift bin j from the source sample. These kernels depend,
respectively, on the redshift distributions of lens (niδg (z)) and
source (niκ(z)) galaxy samples normalized by their respective
total number densities in that redshift bin (n̄iδg for the lenses
and n̄iκ for the sources), and can be expressed as a function of
the comoving distance χ in the following way,

qiδg(k, χ) = bi(k, z(χ))
niδg (z(χ))

n̄ig

dz

dχ
, (9)

qiκ(χ) =
3H2

0 Ωm

2c2
χ

a(χ)

×
∫ χh

χ

dχ′
niκ(z(χ′))dz/dχ′

n̄iκ

χ′ − χ
χ′

,

(10)

where H0 is the Hubble constant, c is the speed of light, a
is the scale factor, and bi(k, z) is the galaxy bias, a nuisance
parameter that we vary in our analysis (see Sec. III C). We
adopt a linear galaxy bias model (independent of the scale k),
with a single galaxy bias bi parameter for each redshift bin.

Under the flat-sky approximation, the galaxy clustering and
galaxy-galaxy lensing angular two-point correlation functions
can be computed from the angular power spectra from Eqs. (7)
and (8) in the following way,

wij(θ) =

∫
d` `

2π
J0(`θ)Cijδgδg (`), (11)

γijt (θ) = (1 +mj)

∫
d` `

2π
J2(`θ)Cijδgκ(`), (12)

where Jn is the n-th order Bessel function of the first kind,
and mj is the multiplicative shear bias, a nuisance parameter
introduced to take into consideration potential biases in the
inferred shear.

In most of this work we restrict w(θ) to auto-correlations
within each redshift bin, i.e. we just consider wii. However,
in Sec. VI A we test the impact of including galaxy clustering
cross-correlations between redshift bins in our analysis.

In addition to the galaxy shear induced by gravitational
lensing, galaxy shapes can also be intrinsically aligned as a
result of their formation and evolution in the same large-scale
structure environment. The impact of intrinsic alignments
(IA) can be modeled using a power spectrum shape and an
amplitude A(z). We assume the non-linear alignment model
(NLA) [67, 68] for the IA power spectrum, which impacts the
lensing efficiency in the following way,

qiκ(χ)→ qiκ(χ)−A(z(χ))
niκ(z(χ))

n̄iκ

dz

dχ
. (13)

We model the IA amplitude assuming a power-law scaling
with redshift,

A(z) = AIA,0

(
1 + z

1 + z0

)αIA C1ρcrit

D(z)
, (14)

where D(z) is the linear growth factor. The pivot redshift is
chosen to be approximately the mean redshift of the sources,
z0 = 0.62, and C1ρcrit = 0.0134 is a normalization derived
from SUPERCOSMOS observations [68]. Therefore, the IA
model assumed adds two extra nuisance parameters in our
analysis: AIA,0 and αIA.

We note that magnification, which we do not include in our
modeling, will be significant when using flux-limited samples
on a real data analysis. Ref. [69, in prep.] will show the mea-
surement and validation of the magnification coefficients for
both REDMAGIC and the optimal sample resulting from this
work. These coefficients will be included in the DES Y3 anal-
ysis to avoid biases on the cosmological constraints. How-
ever, the constraining power is only slightly degraded when
marginalizing over the magnification coefficients [69]. There-
fore, our conclusions are not affected by the neglect of mag-
nification effects.

We calculate the power spectrum using the Boltzmann code
CAMB11 [70, 71] with the HALOFIT extension to nonlinear
scales [72, 73] and the neutrino extension from [74]. We use
COSMOSIS to compute the galaxy clustering and tangential
shear two-point functions.

11 See camb.info.



9

2. Covariance

Following the notation in Refs. [75, 76], in the flat sky limit,
the real space covariance of two angular two-point functions
Ξ, Θ ∈ {w, γt} at angles θ and θ′ is related to the covariance
of the angular power spectra by

Cov(Ξij(θ), Θkm(θ′)) =

1

4π2

∫
d` `Jn(Ξ)(`θ)

∫
d`′Jn(Θ)(`

′θ′)

×
[
CovG(CijΞ (`), CkmΘ (`′)) + CovNG(CijΞ (`), CkmΘ (`′))

]
,

(15)
with Cγt ≡ Cδgκ from Eq. (8), and Cw ≡ Cδgδg from

Eq. (7), and where the order of the Bessel function is n = 0
for w, and n = 2 for γt. The indices i, j, k,m denote the
redshift bins. All two-point functions are evaluated in 20 log-
spaced angular bins over the range 2.5′ < θ < 250′. This
yields a 500×500 covariance matrix if the lens sample is split
in 5 tomographic bins (which is the fiducial case for the flux-
limited and REDMAGIC samples), and the size increases by
100 for each additional tomographic bin. The non-Gaussian
covariance CovNG consists of a connected four-point corre-
lation contribution [77, 78] and a super-sample contribution
[79]. In the Gaussian covariance CovG [80] different har-
monic modes ` are uncorrelated, so its harmonic transform re-
duces to a single integral. The Gaussian covariance has terms
related to cosmic variance, shot noise (∝ 1/n̄i, with n̄i being
the mean number density in each tomographic bin), and for γt
there is also shape noise coming from the ellipticity dispersion
σε [81, 82].

In general, we do not include the non-Gaussian covariance
term in our analysis, as we are just interested in forecasting
and comparing the cosmological constraints given by differ-
ent sample definitions. In addition, we exclude small scales
(see Sec. III D), where some of the non-Gaussian terms of
the covariance become dominant (the super-sample contribu-
tion also impacts large scales). We note that when compar-
ing REDMAGIC with flux-limited samples, which have much
higher number density, the latter will be more impacted by
non-Gaussian terms due to the reduced shot noise in the Gaus-
sian part of the covariance. Nonetheless, we have checked that
including the non-Gaussian covariance term does not impact
our final MAGLIM gains with respect to REDMAGIC after the
optimization carried out in Sec. IV A.

We use two different codes to compute the Gaussian co-
variance: COSMOSIS [64] and COSMOLIKE [83], which was
validated against simulations in [75]. In Appendix A we check
that our results are the same independently of the code we use
to compute the covariances.

C. Parameter space and priors

The cosmological model we consider in this work is spa-
tially flat wCDM with fixed neutrino mass corresponding to
the minimum allowed neutrino mass of 0.06 eV from oscil-

lation experiments [84]. We split the neutrino mass equally
among the three eigenstates, to be consistent with [12].

TABLE I. The fiducial parameter values and priors for cosmological
and nuisance parameters used in this analysis. Square brackets
denote a flat prior over the indicated range, while parentheses denote
a Gaussian prior of the formN (µ, σ).

PARAMETER FIDUCIAL PRIOR

COSMOLOGY
Ωm 0.2837 [0.1, 0.9]

As/10−9 2.2606 [0.5, 5.0]
ns 0.9686 [0.87, 1.07]
w -1.0 [-2, -0.33]
Ωb 0.062 [0.03, 0.07]
h0 0.8433 [0.55, 0.9]

Ωνh
2 6.155× 10−4 FIXED

ΩK 0 FIXED
τ 0.08 FIXED

GALAXY BIAS (REDMAGIC)
bi 1.4, 1.6, 1.6, 1.93, 1.99 [0.8,3.0]

GALAXY BIAS (MAGLIM)
bi 1.49, 1.86, 1.81, 1.90, 2.26, 2.33 [0.8,3.0]

GALAXY BIAS (FLUX-LIMITED)
bi 1.07, 1.24, 1.34, 1.56, 1.96 [0.8,3.0]

INTRINSIC ALIGNMENT
AIA 0.0 [-5.0,5.0]
αIA 0.0 [-5.0,5.0]

LENS PHOTO-Z SHIFT (REDMAGIC)
∆z1l 0.0 (0.0,0.0035)
∆z2l 0.0 (0.0,0.0035)
∆z3l 0.0 (0.0,0.003)
∆z4l 0.0 (0.0,0.005)
∆z5l 0.0 (0.0,0.005)

LENS PHOTO-Z SHIFT (MAGLIM)
∆z1l 0.0 (0.0,0.007)
∆z2l 0.0 (0.0,0.007)
∆z3l 0.0 (0.0,0.006)
∆z4l 0.0 (0.0,0.01)
∆z5l 0.0 (0.0,0.01)
∆z6l 0.0 (0.0,0.01)

LENS PHOTO-Z SHIFT (FLUX-LIMITED)
∆z1l 0.0 (0.0,0.014)
∆z2l 0.0 (0.0,0.014)
∆z3l 0.0 (0.0,0.012)
∆z4l 0.0 (0.0,0.02)
∆z5l 0.0 (0.0,0.02)

SOURCE PHOTO-Z SHIFT
∆z1s 0.002 (0.0,0.016)
∆z2s -0.015 (0.0,0.013)
∆z3s 0.007 (0.0,0.011)
∆z4s -0.018 (0.0,0.022)

SHEAR CALIBRATION
mi (i = 1, 4) 0.012 (0.012, 0.023)

The fiducial cosmological parameter values correspond to
the best-fits of the posterior distributions from the DES Y1
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FIG. 3. Normalized redshift distributions for the sources, corre-
sponding to DES Y1 METACALIBRATION galaxies.

ΛCDM analysis in [12] which obtained cosmological con-
straints from the combination of galaxy clustering, galaxy-
galaxy lensing, and cosmic shear (a.k.a. 3×2pt).

We bin the samples described in Sec. II A in several tomo-
graphic bins. For the MAGLIM sample we split the selection
in 6 redshift bins from z = 0.2 to z = 1.05, with a width of
∆z = 0.15. We consider the same z range for the flux-limited
sample, but in that case we split the selection in 5 z bins with
balanced number density across the bins. For REDMAGIC we
split the sample in 5 z bins from z = 0.15 to z = 0.95, sim-
ilarly to DES Y1 [53]. See Table II for the z ranges in each
tomographic bin of the samples. We keep fixed this fiducial
redshift binning throughout this work, except for Sec. VI A in
which we consider alternative tomographic binnings.

For the sources we use the METACALIBRATION sample
from the DES Y1 cosmic shear analysis [39], which is divided
in 4 tomographic bins: 0.2 < z < 0.43, 0.43 < z < 0.63,
0.63 < z < 0.9, and 0.9 < z < 1.3. See Figure 3 for the
normalized redshift distributions.

In addition to the 6 cosmological parameters, our model
contains about 20 nuisance parameters (22 for MAGLIM due
to the extra redshift bin). These are the galaxy bias parameters
for the lens samples (one bi per redshift bin), the multiplica-
tive shear biases (one mi parameter for each source redshift
bin), two parameters related to the intrinsic alignment model,
AIA and ηIA, and the photo-z shift parameters for each red-
shift bin of the lenses and the sources, ∆zi.

These shift parameters are used in our analysis to quantify
uncertainties in the redshift distribution. We assume that the
true redshift distribution ni(z) in bin i is a shifted version of
the photometrically derived distribution:

ni(z) = niPZ(z −∆zi). (16)

The fiducial values and priors assumed for these parameters,
shown in Table I, are consistent with the DES Y1 3×2 analysis
[12], except that the lens photo-z shifts are treated as described
below. For the MAGLIM sample, we assume fiducial values

for the galaxy bias based on galaxy clustering measurements
on a 10% subsample of the data, in consistency with the Y3
blinding scheme [85].

For the flux-limited sample we assume fiducial galaxy bias
values based on the galaxy clustering measurements from
DES Science Verification (SV) data [29], where a similar flux-
limited sample was defined. In Sec. VI B we check that our
conclusions in this work are basically insensitive to changes
in the fiducial galaxy bias values.

For the photo-z shift parameters we assume the same pri-
ors as in DES Y1 for the sources, since we are using the same
redshift distributions. For the lenses, in the DES Y1 data anal-
ysis the shift values and their associated errors were obtained
by re-calibrating the mean of the baseline redshift distribu-
tions to match those from a clustering-redshift method, given
a reference spectroscopic sample. In DES Y1 this sample was
made of ∼ 20, 000 CMASS and LOWZ galaxies in ∼ 124
deg2 area overlap with SDSS DR12 [86]. For the Y3 analy-
sis the DES footprint overlaps over a much larger area with
SDSS DR12 in addition to eBOSS, which increases the ref-
erence sample by about a factor of ten in number of galaxies
[57, in prep.]. Hence the associated errors σ are found a fac-
tor of ∼ 2 smaller for REDMAGIC than in Y1 [57]. In turn,
MAGLIM has broader redshift distributions than REDMAGIC
and the errors on the shift parameters from the clustering-
redshift method in Y3 are roughly twice as big than for RED-
MAGIC. Similarly, since the flux-limited sample has even
broader redshift distributions (see Figures 1 and 8), we conser-
vatively assume priors twice as wide compared to MAGLIM,
which is a reasonable assumption according to Y3 clustering-
redshift estimates [57]. In Sec. VI C we test the sensitivity of
our results to the assumed priors for the MAGLIM and flux-
limited lens photo-z shift parameters.

D. Scale cuts

At sufficiently large scales, perturbation theory can be used
to calculate the matter power spectra. On smaller scales, N-
body simulations are needed in order to capture the non-linear
evolution of structure growth. For example, the HALOFIT
method [72, 73], which we use in this work, employs a func-
tional form of the matter power spectrum derived from halo
models that are, in turn, calibrated from N-body simulations.
However, only gravitational physics is included in these dark
matter only simulations, which neglects any modification of
the matter distribution due to baryonic physics processes such
as star formation, radiative cooling, and feedback [87–89].
At small scales, these processes can modify the matter power
spectrum significantly [90].

In order to mitigate the impact of the uncertainty in how the
baryonic physics and other non-linear effects modify the mat-
ter power spectrum, we apply a set of scale cuts, which were
tested in [75] for the DES Y1 analysis, such that non-linear
modeling limitations (especially in the galaxy bias modeling)
do not bias the cosmology results. In this work we use the
same scale cuts considered for the DES Y1 baseline analysis
[12], which are defined in terms of a specific comoving scale
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R,

Rδgδg = 8 Mpch−1,

Rδgκ = 12 Mpch−1,
(17)

where Rδgδg denotes the scale cuts for the galaxy clustering
data vector, andRδgκ for galaxy-galaxy lensing. See [75] for a
detailed description of how these scale cuts were determined.
We then convert the comoving scale cuts into angular ones
using the radial comoving distance χ to the mean of the red-
shift distribution in each corresponding tomographic bin

〈
zi
〉
.

Thus, for redshift bin i the minimum angular scale θimin in-
cluded is,

θimin =
R

χ (〈zi〉) . (18)

IV. SAMPLE OPTIMIZATION

In this section, we explore the trade-off between num-
ber density and photo-z scatter by considering different flux-
limited sample definitions. In particular, we define differ-
ent selections for the samples described in Sec. II A 1 and
Sec. II A 2 and see how that impacts the constraints on w, σ8

and Ωm. We fix the fiducial galaxy bias, tomographic binning,
and nuisance parameters as specified in Sec. III C. The impact
of fixing these is discussed in Sec. VI, in which we show that
our conclusions are robust to the galaxy bias and tomographic
binning assumed. We consider an area of 4580 deg2 for all
the forecasts in this paper, even though this value is different
to the final area of the data catalog, which was reduced after
masking (see Sec. II D). For each one of the galaxy selections,
we only vary the photometric redshift distribution of the lens
sample and its tomographic number densities. In all cases, we
use the DES Y1 METACALIBRATION sample for the sources.

A. MAGLIM sample

As presented in Sec. II A 2, we consider samples in which
all galaxies have a magnitude cut applied that evolves linearly
with the photometric redshift estimate: i < azphot + b. In
this section we consider different values of a and b, in a range
wide enough to cover a variety of number densities and σz
values.

In order to get a first estimate for these values, we start by
applying a different limiting magnitude in the i band to each
redshift bin, aiming for a number density two to three times
larger than REDMAGIC while keeping the photo-z scatter as
low as possible. The resulting limiting magnitudes are shown
in Figure 4 (blue points). We then fit the linear function to
these i and z values obtaining a = 4.0 and b = 17.64. In
Figure 4 we show the i values used for the preliminary version
of the sample, the linear fit to these values (green), hereafter
v0.0, and the cut corresponding to the optimal definition of
the sample (see Sec. V). In order to find the optimal sample
we follow these steps:
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FIG. 4. Different MAGLIM sample definitions considered. The first
version (blue dots) applied a constant magnitude cut for each redshift
bin, the second version (a.k.a. v0.0), in solid green, used a continu-
ous magnitude cut evolving linearly with z, with slope and intercep-
tion given by a fit to the blue points. In dashed black we show the
final definition of the sample.

1. Take one of the possible combinations of (a, b) within
the ranges a = [3.5, 4, 4.5, 5], b = [17, 17.5, 18, 18.5].

2. Apply the cut i < azphot + b with the selected a and b
values.

3. From this selection we extract the redshift distributions
n(z) and number densities, which will be used as input
for the forecasts.

4. Generate a covariance and a theory data vector using
as input for the lenses the n(z) for this sample selec-
tion (and the number densities, in the case of the co-
variance).

5. Using this theory data vector and covariance, we run
a 2×2pt Fisher forecast to obtain estimated constraints
and FoM on the parameters of interest (see Table I).

As mentioned before, these ranges of (a, b) values cover a
broad variety of possible sample definitions, as the minimum
values (i.e. i < 3.5zphot+17) result in a sample with very few
galaxies (about 75 galaxies per deg2), and the maximum ones
(i.e. i < 5zphot + 18.5) result in a sample with a very large
limiting magnitude (i < 23.75), in such a way that we are
practically selecting almost all the galaxies from the catalog
(roughly 15300 galaxies per deg2). As discussed in Sec. II D,
we decide not to consider those selections that reach a limiting
magnitude larger than 22.75, at which we already lose∼ 10%
of the area (see Figure 2).

In the bottom three panels of Figure 5, we show the stan-
dard deviations resulting from the forecasts, which are nor-
malized by the constraints obtained from the REDMAGIC
sample. Thus, the black dashed line represents constraints
equal to those obtained from REDMAGIC, while points above
or below that line correspond to samples giving worse or bet-
ter constraints than REDMAGIC, respectively. The grey band
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FIG. 5. Standard deviations on Ωm, w and σ8 (bottom panel) and the
figure of merit of their combinations in pairs (top panel) considering
different magnitude limited samples (of the form i < azphot + b)
normalized by estimates from the REDMAGIC sample. The gray
band delimits the region with 10% better (lower edge) or worse (up-
per edge) constraints compared to REDMAGIC. The samples are or-
dered by ascending number density (from left to right), with values
ranging from ∼ 75 to ∼ 5775 galaxies per deg2.

delimits the region with 10% better or worse constraints. In
the top panel we show the respective figure of merits for each
pair combination of these cosmological parameters, also nor-
malized by the FoM obtained with REDMAGIC. Note that
tighter constraints imply larger FoM values.

Here we see that most of the samples considered yield con-
straints similar or slightly better than REDMAGIC. This is
due to the fact that, even though the photo-z are less accu-
rate, these samples have more galaxies and reach higher z
than REDMAGIC (recall we consider zmax = 1.05, while for
REDMAGIC zmax = 0.95). One of the samples provides sig-
nificantly worse constraints (i < 3.5zphot + 17), but this is
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FIG. 6. Normalized redshift distributions for two magnitude-limited
sample selections with significantly small (top panel) and large (bot-
tom panel) number densities (see Figure 5). The mean photo-z scatter
ranges from σz/(1 + z) ≈ 0.028 in the top panel to σz/(1 + z) ≈
0.050 in the bottom panel. The shaded bands indicate the tomo-
graphic binning assumed.

understandable, as it corresponds to the extreme case in which
very few galaxies are selected from the data catalog.

It is interesting to note that the constraints on σ8 improve as
the number density increases. For Ωm and w this trend is not
so clear, in part due to the trade-off with photometric redshift
accuracy which widens the redshift distributions as the num-
ber density increases. This trade-off can be seen more clearly
in Figure 6, in which we compare the normalized redshift dis-
tributions of two magnitude-limited sample selections ordered
by ascending number density (and, consequently, mean photo-
z scatter) from top to bottom. These correspond to sample se-
lections from Figure 5 with significantly small and large num-
ber densities.

Another factor to take into account is that different combi-
nations of a and b in the selection i < azphot + b result in un-
even distributions of number densities across the tomographic
bins. Since we are comparing the constraints from the joint
combination of galaxy clustering and galaxy-galaxy lensing,
we expect to have an increased constraining power from those
samples that have more galaxies at the redshifts in which the
lensing efficiency kernels of the source sample peak. Thus,
a sample that has more galaxies at high redshift and fewer
galaxies at low redshift can provide tighter constraints than a
sample with the same total number density but with the oppo-
site distribution of galaxies.
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to REDMAGIC.

From Figure 5 we see that the optimal sample, i.e. the
one that produces the tightest constraints (higher FoM) while
keeping the photo-z uncertainties as low as possible, corre-
sponds to i < 4zphot +18. With a number density 2−3 times
larger than REDMAGIC (see Sec. V), this sample has an in-
crease in the FoM values of 40% (36% for the Ωm − σ8 pair),
providing ∼ 10 − 18% smaller errors on the cosmological
parameters.

We note that the sample with the largest number density
from Figure 5, i < 4zphot + 18.5, provides very similar con-
straints to i < 4zphot + 18. However, this sample has larger
mean photo-z scatter σz in all tomographic bins. Aside from
increasing the width of the redshift distributions (see Fig-
ure 6), this could present more obstacles in the validation of
the redshift distributions in a real data analysis. For this rea-
son, the selection i < 4zphot + 18 is preferable.

B. Flux-limited sample

In this section we explore flux-limited samples with dif-
ferent limiting magnitudes in the i band, as described in
Sec. II A 1. We restrict ourselves to a maximum limiting
magnitude of 22.2 to avoid having to mask out a larger frac-
tion from our total area (see Sec. II D), this also corresponds
to the limiting magnitude of the optimal MAGLIM sample
(i < 4zphot + 18).

Similarly to the optimization process described for
MAGLIM in the previous section, we run 2×2pt Fisher fore-
casts for three limiting magnitudes: [21.8, 22, 22.2]. In Fig-
ure 7 we compare the constraints obtained on Ωm, w, and
σ8 for each one of these flux-limited samples normalized by
the REDMAGIC ones. The shaded grey band delimits the re-
gion with 10% worse or better constraints compared to RED-
MAGIC. Even though there is a significant variation in num-
ber densities in the samples considered (e.g. i < 22.2 has
twice the number density of i < 21.8 at 0.8 < z < 1.05),
there is not much difference in the resulting constraints. How-
ever, we note that the scale cuts considered are conservative,
and the difference in constraining power would be larger if
we included smaller scales in our analysis. We find a slight
improvement when increasing the number densities (going to
higher limiting magnitudes). Thus, the optimal flux-limited
sample is the one with limiting magnitude i < 22.2, with
which we reach 8% tighter constraints on Ωm and w, and
13% tighter on σ8 with respect to REDMAGIC. These im-
provements would be likely smaller when including shear, i.e.
in the usual 3× 2pt analysis.

Comparing these results to those obtained for i < 4zphot +
18 (MAGLIM) we find that these constraints are somewhat
worse, especially for σ8. The reason for this is the trade-off
between number density and photo-z scatter. The flux-limited
samples have much higher number density than MAGLIM (see
Figure 1), which in general improves the constraints because
it reduces the shot noise contribution in the covariance. But at
the same time, the larger σz increases the errors on the cosmo-
logical parameters, partly due to the wider priors in the lens
photo-z shift parameters ∆zi, and partly because the redshift
distributions have larger tails and we are not including galaxy
clustering cross-correlations between redshift bins. Moreover,
due to the larger uncertainties in the shapes of the redshift
distributions, it is not clear that a photo-z shift parameter is
enough to account for these uncertainties. The addition of ex-
tra nuisance parameters (e.g. a photo-z width parameter for
each bin) may be needed in a real data analysis, and this could
degrade the constraining power of this sample. Nevertheless,
we note that exploring smaller scales will be more beneficial
for MAGLIM and, specially, for the flux-limited sample, as
they are on the sample variance regime (while REDMAGIC is
shot noise limited).

V. OPTIMAL SAMPLES

In Sec. IV we find that the optimal sample is the MAGLIM
sample, defined with a magnitude cut i < 4zphot + 18. In
Table II we describe the fiducial tomographic binnings of the
three samples, along with the number of galaxies, nδg , the
mean photo-z scatter, σz/(1 + z), and the 68% confidence
width of the redshift distributions W68 in each redshift bin.
The W68 value is the equivalent of the standard deviation of
a Gaussian distribution, and in practice is much more relevant
to consider than σz itself because it is a measure of the width
of the redshift distribution, which is what enters the density
kernel in the two-point functions computation (see Sec. III B).
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TABLE II. Number of galaxies, mean photo-z scatter, and 68%
confidence width of the redshift distributions (W68) for the optimal
MAGLIM and flux-limited samples compared to REDMAGIC, con-
sidering an effective area of 4182 deg2.

z RANGE nδg σz/(1 + z) W68

REDMAGIC
0.15 – 0.35 341,602 0.011 0.059
0.35 – 0.50 589,562 0.015 0.052
0.50 – 0.65 877,267 0.016 0.052
0.65 – 0.85 679,291 0.020 0.073
0.85 – 0.95 418,986 0.022 0.050

MAGLIM

0.20 – 0.35 1,680,160 0.034 0.064
0.35 – 0.50 1,678,655 0.043 0.082
0.50 – 0.65 1,460,354 0.022 0.061
0.65 – 0.80 1,975,242 0.027 0.069
0.80 – 0.95 2,374,205 0.034 0.077
0.95 – 1.05 1,470,893 0.044 0.097

Flux-limited
0.20 – 0.40 12,623,785 0.061 0.113
0.40 – 0.50 16,291,232 0.066 0.101
0.50 – 0.65 16,795,581 0.050 0.098
0.65 – 0.80 12,994,143 0.036 0.077
0.80 – 1.05 11,244,729 0.040 0.110

In Figure 8 we show the redshift distributions for the three
samples. The flux-limited sample is the one with larger photo-
z scatter, and as a consequence, the redshift distributions are
broader than with the other two samples.

In order to compare the properties of the samples under the
same terms, in the following Sec. V A we compare the number
of galaxies and W68 values assuming the same tomographic
binning. In Sec. V B we compare their cosmological con-
straints obtained from full MCMC simulated likelihood anal-
yses.

A. Comparison on same tomographic binning

In this section we compare the characteristics (number den-
sity and photometric accuracy) of MAGLIM with the flux-
limited and REDMAGIC samples under the same tomographic
binning. In particular, we assume the REDMAGIC tomo-
graphic binning for the three samples. Since the MAGLIM and
flux-limited samples reach a higher maximum redshift than
REDMAGIC, for those two samples we consider an additional
redshift bin in the range 0.95 < z < 1.05.

In Table III we show the number of galaxies andW68 values
for each redshift bin and each one of the lens samples. The
MAGLIM sample has on average between 2 and 3 times more
galaxies than REDMAGIC. The difference in number density
ranges from 60% more galaxies in the third bin to more than
5 times further galaxies at higher redshift (0.85 < z < 0.95),
while the redshift distributions are ∼ 30% wider on average
for the MAGLIM sample.

On the other hand, the number of galaxies in the flux-
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FIG. 8. Normalized redshift distributions for the optimal MAGLIM
and flux-limited samples compared to REDMAGIC. The shaded
bands indicate the tomographic binning of each sample.

limited sample is one order of magnitude larger compared to
MAGLIM, except at high redshift (0.85 < z < 1.05) where
the MAGLIM selection gets closer to the flux-limited selection
of i < 22.2, as they both have the same limiting magnitude at
zmax = 1.05. The flux-limited sample has a high number den-
sity at the expense of larger photo-z errors (see Figure 1). As
a consequence, its redshift distributions are on average 20%
wider compared to MAGLIM, with the difference being larger
in the range 0.50 < z < 0.65.

The greater number density of MAGLIM and flux-limited
samples compared to REDMAGIC is the dominant factor driv-
ing the gain of constraining power from a 2x2pt analysis. The
extension to higher redshift (zmax = 1.05) is a sub-dominant
effect in this case due to the weak lensing kernels peaking at
z ∼ 0.6 (see Figure 3). Therefore, the increase in number
density in the other tomographic bins (z < 0.95) dominates
the overall gain of these samples compared to REDMAGIC.
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TABLE III. Comparison of number of galaxies and 68% confidence
width of the redshift distribution, W68, for the optimal MAGLIM
and flux-limited samples compared to REDMAGIC, considering an
effective area of 4182 deg2 and the same tomographic binning.

z RANGE REDMAGIC MAGLIM FLUX-LIM

Number of galaxies
0.15 – 0.35 341,602 1,599,462 9,129,473
0.35 – 0.50 589,562 1,593,745 21,473,232
0.50 – 0.65 877,267 1,379,717 16,795,581
0.65 – 0.85 679,291 1,862,978 16,640,513
0.85 – 0.95 418,986 2,257,704 5,093,174
0.95 – 1.05 1,470,893 2,503,679

TOTAL 2,906,708 10,164,499 71,635,652

Width of the redshift distribution (W68)

0.15 – 0.35 0.059 0.073 0.088
0.35 – 0.50 0.052 0.082 0.105
0.50 – 0.65 0.052 0.061 0.098
0.65 – 0.85 0.073 0.085 0.091
0.85 – 0.95 0.050 0.076 0.086
0.95 – 1.05 0.097 0.096

B. Cosmological constraints from MCMC likelihood analysis

In this section, we compare the cosmological constraints
obtained from the optimal MAGLIM and flux-limited samples
with respect to the REDMAGIC sample after performing a
full MCMC analysis of the combination of galaxy clustering
and galaxy-galaxy lensing, as opposed to the Fisher matrix
approach taken in the other sections. We assume the fidu-
cial values and priors listed in Table I and the tomographic
binnings from Table II. However, in addition to exploring the
constraints on σ8, in this section we also consider the related
parameter

S8 ≡ σ8

(
Ωm
0.3

)0.5

, (19)

since S8 is better constrained than σ8 in weak lensing surveys
such as DES, and it is largely uncorrelated with Ωm in the
DES parameter posterior.

In Figure 9 and Table IV we show the constraints on Ωm,
S8, and w (σ8 constraints also included in Table IV). We find
that, using the MAGLIM sample instead of REDMAGIC, we
obtain 10% tighter constraints on Ωm, about 12-13% for S8

andw, and 16% on σ8 . Regarding the flux-limited sample, we
generally find worse constraints compared to MAGLIM, with
the difference being 2% on Ωm, and 6-7% on w and σ8. How-
ever, when sampling the S8 parameter, the flux-limited sample
provides an 11% improvement with respect to MAGLIM. This
is due to the flux-limited sample having a projected 2D poste-
rior in the S8 − Ωm plane with a slightly different inclination
compared to MAGLIM, favoring tighter S8 constraints.

We then fix w and compare the constraints on Ωm, σ8 and
S8 assuming a ΛCDM cosmological model. In Figure 10 and
Table IV we show the constraints on these parameters from the
combination of galaxy clustering and galaxy-galaxy lensing.
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TABLE IV. 68% confidence level marginalized cosmological con-
straints in ΛCDM and wCDM for REDMAGIC and the optimal
MAGLIM and flux-limited samples.

LENS SAMPLE σ(Ωm) σ(σ8) σ(S8) σ(w)

ΛCDM
REDMAGIC 0.019 0.043 0.022 –
MAGLIM 0.014 0.035 0.019 –
FLUX-LIMITED 0.017 0.037 0.018 –

wCDM

REDMAGIC 0.031 0.048 0.031 0.20
MAGLIM 0.028 0.040 0.027 0.18
FLUX-LIMITED 0.029 0.043 0.024 0.19

In this case, we find a greater difference in the constraining
power of the two samples. In particular, while the increase
on σ8 and S8 with MAGLIM with respect to REDMAGIC is
similar (around 19% and 11%, respectively), the constraints
on Ωm show a 27% improvement compared to REDMAGIC.
Thus, it seems that most of the gain in constraining power on
w in Figure 9 has now been absorbed by Ωm. Similarly to the
wCDM case, the flux-limited sample yields worse constraints
on Ωm and σ8 with respect to MAGLIM, with a difference of
18% and 6%, respectively, while it improves the constraints
on S8 compared to MAGLIM by 6% .

As discussed before, the fact we find tighter cosmological
constraints with MAGLIM is evidently due to the greater num-
ber of galaxies (2-3 times higher) and increased depth com-
pared to REDMAGIC, reaching z = 1.05 instead of z = 0.95.
If we included the shear 2-point correlation functions in our
data vector, i.e. if we considered a 3×2pt analysis, the differ-
ence between the two lens samples would be lower because
the constraints would be dominated by the cosmic shear sig-
nal. However, this increase in depth of the MAGLIM sam-
ple would be particularly advantageous when combining the
3x2pt analysis with CMB lensing (5×2pt, see [91]), as the
MAGLIM sample will have a greater overlap with the CMB
lensing kernel, providing a higher signal-to-noise ratio of
galaxy clustering and CMB lensing cross-correlations.

Now that we have MCMC constraints for the different sam-
ples, in Figure 11 we turn back to compare the gains with
respect to REDMAGIC with the results obtained with Fisher
matrices in Sec. IV. For each parameter i and sample j, we
divide the error ratios obtained from MCMC with the error
ratios using Fisher, [σij/σ

i
RED]MCMC/[σ

i
j/σ

i
RED]Fisher, where

σRED denotes the constraints for REDMAGIC. In this way
we can assess the level of uncertainty in our conclusions
when using Fisher matrices, despite the offset with respect to
MCMC constraints due to the non-gaussianity of the posteri-
ors. The dashed line in Figure 11 denotes perfect agreement
between MCMC and Fisher in the σ errors when normaliz-
ing by REDMAGIC, while values larger (lower) than 1 indi-
cate that Fisher overestimates (underestimates) the gains. Fig-
ure 11 shows that the difference between MCMC and Fisher
error ratios is less than 5%. However, the variance of this dif-
ference across samples is small, having a scatter of 1 − 2%,
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FIG. 11. For each parameter i and sample j, error ratio with respect
to REDMAGIC from MCMC divided by the equivalent error ratio
from Fisher forecasts, i.e. [σij/σ
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j/σ
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samples considered are the flux-limited sample and a few definitions
of the MAGLIM sample, including the optimal one (a = 4, b = 18).
Values larger (lower) than 1 indicate that the Fisher forecasts over-
estimate (underestimate) the gains of that sample with respect to
REDMAGIC compared to MCMC.

in general. This is actually the level of impact in our conclu-
sions when using Fisher, since in this paper we generally com-
pare the gains of two different samples normalized by RED-
MAGIC.

VI. SENSITIVITY TO ANALYSIS CHOICES

A. Tomographic binning and cross-correlations

In this section we test the impact of the choice of tomo-
graphic binning of the MAGLIM sample and the inclusion of
galaxy clustering cross-correlations between redshift bins. We
run 2 × 2pt Fisher forecasts for each of the tomographic-bin
cases considered and compare the constraints on Ωm, σ8, and
w.

Throughout this section we maintain the same global z
range as the fiducial sample, i.e. 0.2 < z < 1.05. We first
vary the edges of the tomographic binning, putting together
two new configurations in which we balance the number of
galaxies weighted by the galaxy bias in each redshift bin,
‘same Ngal × bi’, and ‘same Ngal’. The galaxy bias values
we consider are listed in Table I, and the definition of these
z binnings is shown in Table V. The motivation for balanc-
ing the number of galaxies (weighted by the galaxy bias) is to
have a more uniform signal-to-noise ratio across redshift, as
the shot noise ∝ 1/Ngal and the signal is proportional to the
bias (see Eq. (9)). However, as we can see in Figure 12, where
we compare the constraints coming from these different tomo-
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TABLE V. Different tomographic binning configurations for the
MAGLIM sample, considering variations in the edges of the z bins.

FIDUCIAL SAME Ngal SAME Ngal × bi

0.20 – 0.35 0.20 – 0.36 0.20 – 0.40
0.35 – 0.50 0.36 – 0.52 0.40 – 0.55
0.50 – 0.65 0.52 – 0.69 0.55 – 0.72
0.65 – 0.80 0.69 – 0.82 0.72 – 0.85
0.80 – 0.95 0.82 – 0.93 0.85 – 0.95
0.95 – 1.05 0.93 – 1.05 0.95 – 1.05

TABLE VI. Different tomographic binning configurations for the
MAGLIM sample, considering variations in the number of z bins.
The case with 6 z bins corresponds to the fiducial tomographic bin-
ning (see e.g. Table V).

4 z-BINS 5 z-BINS 7 z-BINS 8 z-BINS

0.20 – 0.44 0.20 – 0.40 0.20 – 0.35 0.20 – 0.31
0.44 – 0.69 0.40 – 0.60 0.35 – 0.50 0.31 – 0.44
0.69 – 0.87 0.60 – 0.77 0.50 – 0.64 0.44 – 0.57
0.87 – 1.05 0.77 – 0.90 0.64 – 0.77 0.57 – 0.69

0.90 – 1.05 0.77 – 0.86 0.69 – 0.79
0.86 – 0.95 0.79 – 0.87
0.95 – 1.05 0.87 – 0.96

0.96 – 1.05

graphic binnings, our choice of binning does not appreciably
impact the 2×2pt cosmological constraints.

We then vary the number of tomographic bins in which we
divide the sample in the range 0.2 < z < 1.05. Our fiducial
tomographic binning consists of 6 z bins, and we consider ad-
ditionally sample selections split in 4, 5, 7, and 8 z bins. See
Table VI for the details of the z binning for each one of these
cases. In Figure 13 we compare the estimated Fisher 2 × 2pt
constraints from each one of these sample selections with our
fiducial choice of 6 z bins, and we examine the importance
of including galaxy clustering cross-correlations between red-
shift bins. The motivation for the latter is that, as seen in
Figure 8, the MAGLIM sample has more overlap between z
bins than the REDMAGIC sample, so galaxy clustering cross-
correlations could become important for our analysis. In ad-
dition, [48] shows that the improvement on the Ωm and σ8

constraints can be greatly increased with the number of z bins
and the inclusion of cross-correlations between z bins, espe-
cially for samples with large overlap between bins.

We can draw several conclusions from Figure 13 (see Ta-
ble VII for a quantitative summary of the most relevant cases).
First, we find that reducing the number of z bins degrades the
cosmological constraints. This makes sense, as reducing the
number of bins while keeping fixed the total z range to be
covered effectively increases the width of the redshift distri-
butions and, as shown in [92], there is a loss of information
when projecting the 3D power spectrum into angular tomo-
graphic bins, with that loss being larger the wider the redshift
bins. This is due to the fact that broad bins average down
radial power on scales smaller than the bin width. More con-
cretely, when splitting the sample in 4 tomographic bins in-
stead of 6, the constraints degrade up to 13% on Ωm, 16% on
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FIG. 12. Comparison of 2×2pt Fisher constraints considering dif-
ferent tomographic binnings for the DES Y3 MAGLIM sample, as
described in Table V. For the sources we use the DES Y1 META-
CALIBRATION sample.

w and 11% on σ8.
Second, increasing the number of redshift bins improves

the constraints, but the impact is smaller. Only when we split
the sample in 8 z bins do we start to find some significant
improvement in all three parameters, and especially on σ8.
In particular, in this case the constraints improve by 4% on
Ωm and w, and 8% on σ8, with respect to the fiducial. In
spite of this, we keep the 6 z bins tomographic binning as
our fiducial, considering that splitting into a larger number of
tomographic bins would require a better understanding of the
tails of the redshift distributions, which is likely not captured
by our treatment of photo-z uncertainties (just a shift to the
mean of the distribution). Another motivation for not splitting
into a larger number of bins is to avoid numerical instabilities
in the computation of the analytical non-Gaussian covariance.
We note that the results from Figure 13 may change slightly
with the inclusion of non-gaussian terms in the covariance.
That is due to the non-gaussian terms being unaffected by the
change in number densities in each tomographic bin, while
the Gaussian part of the covariance does vary with the number
densities.

Last, we study the impact of including galaxy clustering
cross-correlations in our analysis. Ref. [48] shows that, for
a flux-limited sample, the improvement on the cosmological
constraints can be greatly increased with the number of z bins
and the inclusion of cross-correlations between z bins. In [48]
the authors consider only galaxy clustering, and fix all param-
eters except for Ωm, σ8, and the photo-z nuisance parameters.
We have attempted to reproduce their results, and while we
do not find the same level of gains on the constraints, we ob-
serve the same tendency. In Figure 13 we repeat this study for
the MAGLIM sample, but now varying all parameters listed
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FIG. 13. Comparison of 2×2pt Fisher constraints considering differ-
ent number of tomographic bins for the DES Y3 MAGLIM sample,
as described in Table VI. For the sources we use the DES Y1 META-
CALIBRATION sample. All constraints are normalized by the fidu-
cial (’auto’ with 6 redshift bins). We compare the gains obtained
when only galaxy clustering auto-correlations (solid blue) are in-
cluded, with the cases in which we also include cross-correlations
with adjacent tomographic bins (dashed green), and when all cross-
correlations among tomographic bins are included (dash-dotted or-
ange).

in Table I, and including galaxy-galaxy lensing. We find that
there is not much improvement to be gained with the inclu-
sion of galaxy clustering cross-correlations between z bins (a
3 − 4% gain in the three cosmological parameters), and that
this relative gain does not depend on the number of tomo-
graphic bins considered. We also explore the possibility of
including only galaxy clustering cross-correlations with adja-
cent z bins, which is where the overlap between bins is the
largest, finding in general very similar constraints compared
to when we include all cross-correlations between z bins.

We also explore the potential gains on the 2×2pt con-
straints from the flux-limited sample when including all cross-

correlations between z bins and splitting the sample in a larger
number of bins than the fiducial (5 bins). In particular, we di-
vide the sample in 7 tomographic bins in these redshift ranges,
aiming for a balanced number density across bins: [0.2, 0.35,
0.45, 0.55, 0.65, 0.75, 0.85, 1.05]. In Figure 14 we observe
that the gain on the constraints from the inclusion of cross-
correlations is larger than for MAGLIM, as expected, since
the flux-limited sample has broader redshift distributions (see
Figure 8). In particular, with this sample, including cross-
correlations improves the constraints by∼ 8% on Ωm,∼ 11%
on w, and ∼ 4% on σ8. Similarly, increasing the number of
tomographic bins improves the constraints by a larger amount
compared to MAGLIM. When splitting the sample in 7 tomo-
graphic bins, the gains on the cosmological parameters with
respect to the fiducial (5 bins) are of 7 − 8% on Ωm and w,
and 12% on σ8. Thus, by splitting the flux-limited sample in a
larger number of bins we can already obtain tighter cosmolog-
ical constraints than MAGLIM in all three parameters. More
concretely, dividing the sample in 7 tomographic bins yields
constraints tighter than the fiducial MAGLIM (with 6 bins) by
7− 8%.

In practice there are several complications in considering a
large number of bins and in the inclusion of cross-correlations,
the main ones being a much more stringent requirement for
the control of the tails of the redshift distributions and a larger
covariance. Moreover, as mentioned before, it is not clear that
a photo-z shift parameter is enough to account for these un-
certainties. For these reasons, we will focus on the MAGLIM
sample in follow-up work with DES Y3 data. Nonetheless,
flux-limited samples are promising and worth exploring in fu-
ture studies.

B. Galaxy bias

Throughout this work we assume certain fiducial values for
the galaxy bias for each one of the samples (see Table I) to
generate the theory data vectors, which we do not vary when
considering different sample definitions for the MAGLIM and
flux-limited samples in Sec. IV. In order to test the depen-
dency of the constraints on the fiducial galaxy bias assumed,
we run Fisher forecasts with completely different galaxy bias
values and compare the 2×2pt constraints on Ωm, w, and σ8,
finding almost no difference in our results. In particular, for
the MAGLIM sample we run a forecast assuming a constant
value of 2.0 for the galaxy bias in all redshift bins, finding a
difference in the constraints on the cosmological parameters
of ∼ 1% or less.

For the flux-limited sample, following [48] we run a fore-
cast assuming a galaxy bias that evolves as b(z) = 1+z, hence
the galaxy bias in each redshift bin is bi = 1 + z̄i, with z̄i be-
ing the mean redshift in that tomographic bin. For this sample,
that corresponds to b = [1.33, 1.46, 1.56, 1.72, 1.88]. Com-
pared to assuming the fiducial values in Table I, the resulting
constraints on Ωm, w and σ8 differ by less than∼ 0.5%. Thus
the conclusions from this work do not depend on the galaxy
bias assumed.
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FIG. 14. Comparison of 2×2pt standard deviations on Ωm, w, and
σ8 for different numbers of tomographic bins for the flux-limited
sample compared to the fiducial MAGLIM sample. All constraints
are normalized by the REDMAGIC estimates. We explore the po-
tential gains when including all galaxy clustering cross-correlations
among tomographic bins (dashed orange) with the baseline approach,
i. e. including only galaxy clustering auto-correlations (solid blue).
All three lens samples are built from DES Y3 data, while the sources
are from the DES Y1 METACALIBRATION sample.

C. Photometric redshift uncertainties

As described in Sec. III C, we quantify the uncertainties in
the redshift distributions by introducing a photo-z shift pa-
rameter in each redshift bin, ∆zi, that we marginalize over in
our analysis assuming a Gaussian prior with a certain σi. In
this section we test the dependency of the MAGLIM and flux-
limited sample gains on the width σ of the prior assumed.
For this purpose, we investigate a pessimistic scenario for
MAGLIM in which the Gaussian priors on ∆zi are two times
wider than the fiducial in Table I. We find that in this case the
constraints degrade by 6 − 7% for Ωm and w, and about 3%
for σ8.

Similarly, for the flux-limited sample we also test the im-
pact on the constraints when increasing the width of the priors.
In particular, we run a Fisher forecast with Gaussian priors
three times as wide as the MAGLIM ones (the fiducial priors
are two times wider, see Table I). The resulting constraints are
degraded by 5−8% compared to the fiducial photo-z prior for
the flux-limited sample.

TABLE VII. Percentage gains in the Ωm, σ8 and w standard devia-
tions with respect to the fiducial for MAGLIM, considering the most
relevant alternative analysis choices discussed in Sec. VI. Negative
values indicate a decrease in the constraining power compared to the
fiducial.

σ(Ωm) σ(σ8) σ(w)

auto + cross 3.5% 2.3% 3.8%
4 tomographic bins -13.3% -11.1% -16.5%
8 tomographic bins 4.5% 7.9% 4.0%
x2 photo-z shift priors -6.3% -3.0% -6.6%
fixed WL systematics 9.8% 15.1% 9.4%
infinite number density 5.7% 11.8% 2.8%

D. Weak lensing systematics

In all our analyses we assume the DES Y1 source sample
from [12], and its corresponding priors for the weak lensing
related nuisance parameters: the shear calibration bias in each
source redshift bin, mi, the intrinsic alignment parameters
(AIA, and αIA), and the source photo-z shift parameters in
each bin, ∆zis. We expect some improvement in our control
of these systematics for the upcoming DES Y3 and Y6 anal-
yses that will tighten the priors on these nuisance parameters.
In this section we investigate to what extent our forecasts are
limited by our (prior) knowledge of the weak lensing system-
atics. For this purpose we consider the ideal scenario in which
we perfectly know the values of these systematic parameters,
i.e. we fix them in our analysis. We find that, for the MAGLIM
sample, we can improve the constraints up to ∼ 10% for Ωm
and w, and 15% for σ8. The constraints on REDMAGIC also
improve in a similar manner, nonetheless the larger number
density of MAGLIM could be more important in this scenario
in which the weak lensing systematics are not a bottleneck.
Comparing the 2×2pt constraints with fixed weak lensing sys-
tematics from MAGLIM and REDMAGIC, we find that the rel-
ative constraining power of the former remains similar for Ωm
and w and improves by 3% for σ8 with respect to what we ob-
tain for the two samples when marginalizing the weak lensing
nuisance parameters.

The gain in constraining power that the MAGLIM sample
offers compared to REDMAGIC is mainly due to the larger
number density, as that reduces the shot noise contribution in
the covariance. We also explore in this section how much are
we limited by the shot noise of the lens sample. We compute
a covariance matrix setting the galaxy clustering shot noise
contribution to zero (equivalent to assuming a practically infi-
nite number density), and we find for the MAGLIM sample an
improvement of 6% for Ωm, 3% for w, and 12% for σ8 with
respect to the fiducial case. Therefore, the MAGLIM sample
is relatively close to the limit without shot noise.

VII. CONCLUSIONS

In this work we define an optimized lens sample for DES
Y3 that serves as an alternative to REDMAGIC for cosmo-
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logical analyses involving galaxy clustering measurements.
Assuming the DES Y1 METACALIBRATION sample for the
sources, we compare the cosmological constraints on Ωm, σ8

and w from the joint analysis of galaxy clustering and galaxy-
galaxy lensing for different lens sample definitions. The main
conclusions that we obtain are:

(i) We explore which flux-limited samples are optimal in
terms of their cosmological constraints. We consider,
first, samples with a magnitude cut in the i band de-
pending linearly with redshift and, second, samples de-
fined with an overall limiting magnitude. We see that
many of the samples considered yield constraints sim-
ilar to or better than REDMAGIC due to the superior
number density. We find that the optimal sample over-
all, dubbed MAGLIM, is defined with i < 4zphot + 18,
and that it improves the figure of merit of the pair com-
binations of Ωm, w, and σ8 by 40% with respect to
REDMAGIC (see Figure 5).

(ii) MAGLIM has between 2 and 3 times more galaxies than
REDMAGIC while having ∼ 30% wider redshift dis-
tributions. We compare the cosmological constraints
from 2×2pt MCMC simulated likelihood analyses, af-
ter marginalizing over the same set of ∼ 20 cosmologi-
cal and nuisance parameters as in the DES Y1 analysis
[12], finding that the MAGLIM sample provides 10%
tighter constraints on Ωm, 12-13% on w and S8, and
16% on σ8 with respect to REDMAGIC in wCDM. We
then consider a ΛCDM scenario, fixing w = −1, find-
ing improvements on Ωm of 27 % compared to RED-
MAGIC, while the gains on σ8 and S8 are respectively
19% and 11%.

(iii) We study how the performance of the optimized sam-
ple varies for different analysis choices, which we sum-
marize in Table VII. We find that changing the galaxy
bias and the tomographic binning (given a fixed number
of redshift bins) does not impact the 2×2pt constraints.
In turn, reducing the number of bins degrades the con-
straints, and increasing it improves them slightly (by
4 − 8%). Independently of the number of bins consid-
ered, we find that there is little to be gained with the in-
clusion of galaxy clustering cross-correlations. We also
test the impact of changing the width of the priors on
the photo-z shift parameters. In a pessimistic scenario,
with priors twice as big for MAGLIM, the constraints
degrade by ∼ 6− 7% for Ωm and w, and about 3% for
σ8. Last, we find that MAGLIM is relatively close to the
sample variance limited regime. If we assume an infi-
nite number density in the covariance, the constraints
improve by 6% for Ωm, 3% for w, and 12% for σ8 with
respect to the fiducial.

(iv) For flux-limited samples with a flat magnitude cut, the
optimization leads to a limiting magnitude of i < 22.2.
This has one order of magnitude more galaxies per red-
shift bin compared to MAGLIM, with ∼ 20% wider
redshift distributions. Although this sample provides
tighter constraints than REDMAGIC, it is slightly less

constraining than MAGLIM. If we divide the sample
in a large number of tomographic bins, we obtain con-
straints tighter than MAGLIM by 7 − 8%. Including
galaxy clustering cross-correlations can further improve
the constraints by 5 − 10%. In this limit however one
probably needs to include further nuisance parameters
and a realistic analysis becomes more complex.

(v) Although not discussed in detail, MAGLIM does lead
to a higher signal-to-noise ratio of galaxy clustering
and CMB lensing cross-correlations due to its increased
redshift reach compared to REDMAGIC. This trans-
lates into a larger forecasted constraining power for this
probe in DES Y3 (see [91] for the Y1 equivalent).

The results presented in this paper have been derived us-
ing a likelihood setup as realistic as possible, matching the
one in DES Y1. We have already confirmed that our results
are robust with respect to the addition of the main charac-
teristics of a Y3 analysis, like the source samples and other
effects such as the inclusion of non-Limber modeling [93],
point-mass marginalization [94], or non-Gaussian covariances
[95]. Moreover, we have validated in [32, in prep.] the scale
cuts for linear/non-linear bias in a Y3 analysis, finding that
we can use the same scale cuts for both MAGLIM and RED-
MAGIC, as assumed in this work. However there are a num-
ber of assumptions that will need to be re-evaluated in an ac-
tual data analysis, most notably the exact treatment of lens
redshift distributions and their associated errors. Despite this,
using a MAGLIM type of sample for the cosmological anal-
ysis in DES Y3 (or similar datasets) is promising, both (i)
to yield competitive or tighter 3×2pt constraints than current
standard lens samples and (ii) to provide a robustness test
for the dependence of these constraints with the foreground
(lens) sample. Such an analysis will also open the window
to defining optimal and well calibrated samples for different
probes. Last, flux-limited samples with a simple selection,
such as MAGLIM, are likely to be easily reproducible in sim-
ulations and to have a more straightforward HOD modeling
on small scales, where the reduced shot noise of this kind of
sample would be particularly beneficial. Addressing the re-
quired steps for a cosmological data analysis with MAGLIM
will be the focus of follow-up work.
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M. Takada, F. Köhlinger, H. Miyatake, A. J. Nishizawa, H. Ai-
hara, et al., Cosmology from cosmic shear power spectra
with Subaru Hyper Suprime-Cam first-year data, PASJ 71, 43
(2019), arXiv:1809.09148 [astro-ph.CO].

[16] T. Hamana, M. Shirasaki, S. Miyazaki, C. Hikage, M. Oguri,
S. More, R. Armstrong, A. Leauthaud, R. Mandelbaum,
H. Miyatake, et al., Cosmological constraints from cosmic
shear two-point correlation functions with HSC survey first-
year data, PASJ 72, 16 (2020), arXiv:1906.06041 [astro-
ph.CO].
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compare the constraints obtained using covariances estimated
from the two codes. In Figure 15 we show the relative gain
on Ωm, w and σ8 errors compared to REDMAGIC for dif-
ferent tomographic binnings of the MAGLIM sample (see

Sec. VI A). We compare the estimates using a covariance from
COSMOLIKE (solid blue) with those obtained using a covari-
ance from COSMOSIS (dashed green), finding no difference
in the constraints.
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