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We apply machine learning methods to build a time-domain model for gravitational waveforms
from binary black hole mergers, called mlgw. The dimensionality of the problem is handled by
representing the waveform’s amplitude and phase using a principal component analysis. We train
mlgw on about O(103) TEOBResumS and SEOBNRv4 effective-one-body waveforms with mass ratios
q ∈ [1, 20] and aligned dimensionless spins s ∈ [−0.80, 0.95]. The resulting models are faithful to
the training sets at the ∼10−3 level (averaged on the parameter space). The speed up for a single
waveform generation is a factor 10 to 50 (depending on the binary mass and initial frequency)
for TEOBResumS and approximately an order of magnitude more for SEOBNRv4. Furthermore, mlgw
provides a closed form expression for the waveform and its gradient with respect to the orbital
parameters; such an information might be useful for future improvements in GW data analysis. As
demonstration of the capabilities of mlgw to perform a full parameter estimation, we re-analyze the
public data from the first GW transient catalog (GWTC-1). We find broadly consistent results
with previous analyses at a fraction of the cost, although the analysis with spin aligned waveforms
gives systematic larger values of the effective spins with respect to previous analyses with precessing
waveforms. Since the generation time does not depend on the length of the signal, our model is
particularly suitable for the analysis of the long signals that are expected to be detected by third-
generation detectors. Future applications include the analysis of waveform systematics and model
selection in parameter estimation.

I. INTRODUCTION

The detection of Gravitational Waves (GW) from com-
pact binary coalescence (CBC) has been possible thanks
to the joint effort of a number of different fields of ex-
pertise, all joining together to achieve the sophisticated
detection process. GW data analysis concerns the de-
tection of a GW signal hidden in the raw detector out-
put (matched filtering) and subsequently the inference
of its physical properties (parameter estimation). In or-
der to accomplish its goal, GW data analysis relies on the
availability of waveform (WF) templates to compare with
the detector output. To accurately explore the posterior
distribution for the parameters defining a CBC, state-
of-the-art parameter estimation (PE) algorithms [1] [2]
can require the generation of as many as 107 waveform
templates. It is therefore paramount for the waveform
generation to be as fast as possible. At the same time,
because of the extreme sensitivity to phase differences
in the likelihood function, the templates must retain a
high degree of accuracy to avoid biases in the posterior
exploration.

Many efforts have been devoted to numerically solve
Einstein equations for two coalescing objects and to pre-
dict the gravitational radiation emitted [3–5]. As solving
the full equations is still extremely computationally chal-
lenging, the LIGO-Virgo Collaboration relies on approx-
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imate analytical models. These can be broadly catego-
rized in three families; (i) effective-one-body (EOB) [6]
waveform models [7–10]; (ii) phenomenological mod-
els [11–13]; (iii) NR surrogates [14–18].

EOB models are the waveform approximants that in-
corporate the largest amount of analytical information.
They compute the GW signal by solving Hamilton’s
equations and accurately predict the GW signal from
early inspiral phase up to the final ringdown. The under-
lying relative dynamics is informed by (or calibrated to)
NR simulations via a few parameters that take into ac-
count in an effective way yet uncalculated high-order cor-
rections to the orbital or spin-orbit sector of the Hamil-
tonian. Similarly, the merger and ringdown parts of the
waveform are also informed by NR simulations1. Because
of the numerical integrations involved to solve Hamilton’s
equations, they tend to be accurate, but sometimes slow
to generate, see however [21] for a more efficient approach
to obtain the dynamics.

The phenomenological waveforms are based on the
post-Newtonian formalism and then calibrated to EOB
waveforms and numerical relativity. They usually tend
to be faster than EOB models and for this reason are
largely employed in data analysis.

Many efforts have been devoted to the task of speeding
up the generation of GW signals from EOB families. For

1 One should remember that this step is a priori not necessary in
the theoretical construction of the model [6, 19, 20].
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example, one lead to the development of surrogate mod-
els. Surrogate models are constructed starting from some
decomposition in the waveform space followed by efficient
interpolation to avoid any numerical integration [22–26].
Being fast to generate, they are routinely employed in
GW data analysis.

A Machine Learning model is a promising alternative
to accelerate the waveforms generation of state-of-the-art
models. Machine Learning (ML) is a branch of statistics
that is devoted to reproduce patterns read from data.
An ML algorithm needs very little human input and, by
automatically solving an optimization problem, it is able
to choose the best performing element among a large class
(i.e. the model) of parametric solutions. This is the so-
called training procedure. The ML flexibility in modeling
data and reproducing trends is appealing: with a proper
model choice and with an appropriate training procedure,
we can hope to have a reliable, fast to execute generator
of GW waveforms, while retaining the accuracy necessary
for robust parameter estimation. ML procedures have
already been successfully exploited for speeding up the
WF generation [18, 27] and for signal detection and/or
parameter estimation [28–34]. A comparative study of
different regression methods for the task of generating
WFs is performed in [35].

In this work, we explore the application of ML to WF
generation and we build an ML model, called mlgw, that
allows to reproduce waveforms from any EOB model for
BBH coalescence. We demonstrate that such ML-based
model can generate GW signals significantly faster than
the original model, matching the performances of a Re-
duced Order Modelling (ROM) [22–24, 36]. At the same
time it shows a good agreement with the train model, at
the 10−3 level2 when averaged on the whole parameter
space. For simplicity, we focus here only on the dominant
` = |m| = 2 quadrupole waveform and we only consider
the aligned spin case.

EOB models are the ideal candidate for training our
model: they are moderately fast to run and, although
they are checked (and NR-informed) only on the lim-
ited part of the parameter space covered by NR sim-
ulations, they are also typically able to robustly gen-
erate waveforms for a large set of parameters outside
the NR-information domain (e.g. large mass ratios and
spins). This is the case of the most recent avatar of the
spin-aligned TEOBResumS [37] model, that incorporates
subdominant waveform modes, TEOBResumS SM [8, 38] 3.
TEOBResumS SM is NR-faithful over the largest set of spin-
aligned NR waveforms available today (595 datasets) [8],
with maximum EOB/NR unfaithfulness always below

2 As specified later, the mismatch is always computed with a flat
power spectral density.

3 This model used several hundreds of the available SXS simula-
tions to inform a highly accurate description of the postmerger-
ringdown phase [39], but only around 40 datasets to improve the
behavior of the analytical EOB dynamics.

0.5%. Here, to reduce the generation time of the train-
ing set, and to be more conservative, we slightly down-
grade the performance of TEOBResumS considering its
version without iteration 4 on the next-to-quasi-circular
parameters [8]. The other EOB-based model in use is
the SEOBNRv4 [23, 41], largely employed by the LIGO-
Virgo collaboration. This model was calibrated to NR
so as to get maximum EOB/NR unfaithfulness at most
of 1%. However, differently from TEOB [37] this model
in its native implementation is computationally too slow
for parameter estimation purposes and it is necessary to
use its ROM version, SEOBNRv4 ROM [23].

We use both TEOBResumS SM (in the following simply
TEOBResumS) and SEOBNRv4 to train different two differ-
ent versions of mlgw, respectively mlgw-TEOBResumS and
mlgw-SEOBNRv4. As a relevant physical application, we
use both mlgw-TEOBResumS and mlgw-SEOBNRv4. to pro-
vide two new, and independent, analyses of the 10 BBHs
coalescence events collected in the O1/O2 LIGO-Virgo
observing runs [42]. The outcome of the analyses using
the two models are largely consistent among themselves.
In addition, the so-obtained physical properties of the
10 BBHs systems are compatible with previous analyses
published in Ref. [42], though obtained using different,
notably spin-precessing, waveform models.

On top of the specific application discussed here, our
ML waveform model could also be used directly to speed
up GW data analysis. Furthermore, since the time re-
quired to generate a WF does not depend on the sig-
nal time length but only on the number of grid points
which the WF is evaluated at, the applicability of our ap-
proach goes far beyond the LIGO/Virgo physics scenario.
In particular, we think about the forthcoming Einstein
Telescope, that will be sensitive to very long stellar-mass
inspirals from 5Hz, or to extreme mass ratio inspirals as
LISA sources. In this context the problem of WF fast
generation will be more pressing and our approach, pro-
vided a suitable waveform model for training, might be
essential for detection and parameter estimation.

The paper is organized as follows. In Sec. II we briefly
set the notation and the core of the ML problem we solve;
in Sec. III we describe our model in details. Section IV is
devoted to validate the model and to assess its accuracy
and speed of execution; Sec. V holds our analysis of the
GWTC-1 transient catalog, while Sec. VI collects some
final remarks and future prospects of our work.

II. CONVENTIONS SETUP

A binary black hole system is parametrized by a vec-
tor ϑ = (m1,m2, s1, s2), where mi are the BHs masses
and si ≡ Si/m

2
i ≤ 1 are the dimensionless spin. We

4 This slightly worsens the EOB/NR performance that in any case
remains below 1% except for ∼ 40 outliers that still do not exceed
the 3% threshold and are mostly below the 2% level [40].
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call them the orbital parameters. We use the convention
m1 ≥ m2 and we denote the total mass as M ≡ m1 +m2

and the mass ratio as q ≡ m1/m2. In what follows, we
will focus on the case in which spins s1 and s2 are aligned
with the orbital angular momentum. Let dL be the lumi-
nosity distance and ι and ϕ0 the polar angle (inclination)
and the azimuthal angle of the orbital plane. A GW is
parametrized as [43, Eq. II.6]:

h(t; dL, ι, ϕ0,ϑ) = h+ + ih×

=
G

c2
M

dL

∞∑
`=2

∑̀
m=−`

Y−2 `m (ι, ϕ0)H`m(t/M ; ϑ̃) (1)

where Y−2 `m (ι, ϕ0) are the spin-2 spherical harmon-
ics. Once written as a function of the dimensionless
time t/M , the quantities H`m depends only on the

variables ϑ̃ = (q, s1, s2), and we are considering here
only ` = |m| = 2. Since the dependence on the two
angles, on the distance and total mass is known, for
convenience we fix their value to ι = ϕ0 = 0, dL = 1 Mpc
and M = 20M� so to only work with waveforms

hFIT(t;ϑ) = h(t; dL = 1 Mpc, ι = ϕ0 = 0,M = 20M�, ϑ̃):

hFIT(t;ϑ) ≡ 9.6× 10−19 Y−2 22 (0, 0)H22(t/20 M�; ϑ̃)

= 6× 10−19 H22(t/(20M�); ϑ̃) . (2)

Finally, we express hFIT in terms of its amplitude and
phase 5:

hFIT(t;ϑ) = A(t; ϑ̃)eiφ(t;ϑ̃) . (3)

We may also write fϑ̃(t) to denote a function f(t; ϑ̃) of
time with parametric dependence on ϑ. In what follows,
f stands as a placeholder for any of the functions Aϑ̃(t)
and φϑ̃(t). With this definition, the full waveform can be
expressed as:

h(t, dL, ι, ϕ0;ϑ) =
M

20 M�

1 Mpc

dL
×

×

{
1 + cos2 ι

2
Aϑ(tM ) cos[φϑ(tM ) + 2ϕ0]

+ i cos ιAϑ(tM ) sin[φϑ(tM ) + 2ϕ0]

}
(4)

where tM = t M
20 M�

. Note that in the equation above, we

split the real and the imaginary part of h and we used the

relation Y−2 2±2 (ι, ϕ0) =
√

5
64π (1± cos ι)2e±i2ϕ0 . As a

constant translation of φϑ can be absorbed in the defi-
nition of ϕ0 and does not affect the physics, we choose
the convention that φϑ = 0 when the amplitude Aϑ has
a maximum.

5 Note we adopt a nonstandard sign convention for the phase

III. mlgw

The goal of the present work is to provide an accu-
rate Machine Learning model which outputs the func-
tions A(t; ϑ̃) and φ(t; ϑ̃) (Eq. (2) and (3)), as generated
by the state-of-the-art time domain WF models. More
formally, we seek an ML model that reliably reproduces
the following map:

(q, s1, s2) 7−→ A(q,s1,s2)(t) (5)

(q, s1, s2) 7−→ φ(q,s1,s2)(t). (6)

In the context of ML, our task reduces to performing
two regressions from ϑ̃ to the amplitude and phase of
the WF. A regression is a statistical method to infer the
relationship between a set of “independent variables” and
a set of “dependent variables”. A model consists in a
functional form for such relation, usually with many free
parameters to be specified. By looking at the data, one
should be able to make a proper choice for their value.

In order to be able to perform each regression, several
steps are required.

(A) Setting a time grid. Each WF must be represented
on a discrete time grid, which allows for efficient
and reliable reconstruction on an arbitrary, user-
given, grid. After this operation, the functions A(t)
and φ(t) are represented as vectors6.

(B) Creating a dataset of WFs. A large number of WFs
must be generated on the the chosen time grid for
a different number of orbital parameter (q, s1, s2).
This will form the training set for the model.

(C) Reducing the dimensionality of a WF. In order to
make the regression feasible, we build a low dimen-
sional representation of the WF. This operation
must be invertible: once a low dimensional repre-
sentation is given, one should be able to reconstruct
the higher dimensional WF.

(D) Learning a regression. We train a model to per-
form the regression from (q, s1, s2) to the low di-
mensional representation of the WF.

We discuss these points in detail in what follows.

A. The time grid

Each function f(t) to fit (i.e. amplitude and phase)
must be represented by its values f ∈ RD on a discrete
grid of D points t ∈ RD. It is convenient to work in

6 In ML jargon, this procedure is called preprocessing and aims
to create a standard representation for all the data available (in
our case the WFs).
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a grid of (dimensionless) reduced time τ ≡ t/M . The
time grid is chosen with the convention that at τ = 0 the
function A(t;ϑ) (i.e. the amplitude of the 22 mode) has
a peak. Once a time grid is set, the vector f is defined as
follows:

f(ϑ̃)i = fϑ̃(τi) i = 1, . . . D (7)

The value of f at an arbitrary time must be found
by interpolation and to make the interpolation effective,
we introduce a grid adapted to the function’s variation.
Clearly an equally spaced grid over times is not the best
choice since the amplitude has a very narrow peak at
τ = 0. A good solution is to build the τ grid τ as:

τi = sign τ̃i × (|τ̃i|)
1
α i = 1, . . . D (8)

where τ̃i are D equally spaced points in the range of
interest and we call α distortion parameter. This choice
ensures that more points are accumulated around the
peak of amplitude. As the phase has a rather regular
behavior, it is not important to tune the time grid on it.
For this reason, a single grid for amplitude and phase,
tuned on the amplitude, is used.

The length of the time grid determines the maximum
length of the WFs that the model can generate. Let us
define τmin = −τ0 > 0 the starting point of the grid; thus
each WF starts at a time τminM before the merger. Note
that τmin is an important hyperparameter, set by the
user, which strongly impacts on the model applicability.
The minimum frequency in the signal as a function of
M, q and τmin is given approximately 7 by:

fmin = 151 Hz

(
(1 + q)2

q

) 3
8
(
M�
M

)(1 s
M�

τmin

) 3
8

. (9)

B. Dataset creation

As in any ML method, we must create a dataset before
training a model. In our case, the dataset consist in a
matrix X ∈Mat(N, 3 + 2D) of N waveforms, which has
the following form:

Xi: = [q, s1, s2,A
T
ϑ̃
,φT

ϑ̃
] (10)

where Xi: denotes the i-th row of the dataset matrix.
The dataset is filled with parameters ϑ̃ randomly

drawn from an uniform distribution in the domain of in-
terest P: ϑ̃i ∼ Unif(P). As stressed above, any time do-
main EOB waveform model is suitable for such purpose.

7 The expression is approximate because it is obtained within a
Newtonian framework and does not consider spin effects. Nev-
ertheless, it gives an useful estimation of the range of the appli-
cability of the model.

Indeed we employed successfully both8 TEOBResumS and
SEOBNRv4. The output of the training model must be
interpolated to the chosen time grid.

It is important to ensure that all waves have zero phase
at a constant time point t̄: this is crucial to obtain a
continuous dependence of the phase components on the
orbital parameters. As model performances are not seen
to depend on the choice of t̄, we arbitrarily set t̄ = 0.
The range P of masses and spins covered by the model,
as well as the starting point of the grid τmin, can be freely
chosen by the user, depending on their needs.

C. Dimensionality reduction

Once we are able to represent waveforms, a regressions
ϑ̃ 7−→ Aϑ̃,φϑ̃ ∈ RD is unfeasible, as the dimension of
the target space (i.e. the dimension D of the time grid)
is too large. Luckily, the elements of A,φ are strongly
correlated with each other: the independent amount of
information, required to fully reconstruct the wave, can
be stored in a low dimensional vector. A number of ML
techniques to perform such a task are available. Among
them, Principal Component Analysis (PCA) [45, ch. 12]
was found to be particularly effective.

The basic idea behind PCA is to seek a linear rela-
tion between high dimensional and low dimensional data:
high dimensional data (∈ RD) are projected onto a K
dimensional subspace, by means of an orthogonal projec-
tion. A theorem [45, Sec. 12.2.1] guarantees that, for
zero mean data, the generators of subspace are the (or-
thonormal) first K eigenvectors of the empirical covari-
ance matrix Σ ∈ Mat(D,D). The eigenvectors are also
called Principal Components (PCs) of the data. Thus,
the projection matrix H ∈Mat(K,D) holds in each row
the PCs and each high-dimensional point can be effec-
tively expressed as a linear combination of the K PCs 9.

A PCA model is trained with the dataset Eq. (10): it
represents an (approximate) bijective map between the
high dimensional WF f = Aϑ̃,φϑ̃ ∈ RD and the low-

dimensional representation g = gA,gφ ∈ RK . The rela-
tion takes the following form:

g = H(f − µ) (11)

f = HTg + µ (12)

where µ is the empirical mean vector

µ = 1
N

∑N
i=1 fi ∈ RD and the matrix H is

8 For completeness, we have also computed a mlgw mode using
SEOBNRv2 opt [44] a spin-aligned model that was optimized with
respect to the original SEOBNRv2 [41] so to improve its computa-
tional efficiency.

9 For this reason, PCA can also be seen as a perturbative expansion
of a high dimensional observation. A more reliable reconstruction
can be achieved by adding more and more PCs, each of which is
less important than the previous.
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computed from the empirical covariance

Σ = 1
N

∑N
i=1(fi − µ)(fi − µ)T .

D. Regression

Once a dimensional reduction (and reconstruction)
scheme is available, we want to perform the regression

ϑ̃ 7−→ g(ϑ̃). (13)

A number of ML models are available for this purpose.
The model Mixture of Experts (MoE) [46] [45, ch. 11] is
found to be a good compromise between simplicity and
flexibility.

MoE performs the following 1D regression:

y(x) =

L∑
l=1

(WTx)l · S(V Tx)l , (14)

where S is the softmax function:

S(V Tx)l =
e(V Tx)l∑L
l′=1 e

(V Tx)l′
, (15)

and x ∈ RM̃ and V,W ∈ Mat(M̃, L). The meaning
of Eq. (14) is clear: the output is a weighted combi-
nation of L linear regressions (WTx)l (called experts);
each expert performs a reliable regression in a small re-
gion of the space. The softmax function (in this context
also called gating function) switches on the expert con-
tributions whenever this is required. MoE is usually fit-
ted with the Expectation Maximization (EM) algorithm,
which iteratively sets the W and V by refining a lower
bound to the log-likelihood of the model.

Linear regression is a very simple model, often inad-
equate to model a complex relation. A simple trick to
improve its performance is called basis functions expan-
sion. It consist in the replacement:

x −→ ξ(x) = [ξ1(x), . . . , ξM (x)]T . (16)

Thus, each expert becomes a non linear regression of the
input x. A careful choice of basis functions can really
make a difference in fit performances and it must be done
at validation time, by comparing performances of differ-
ent models.

The user must choose the number L of experts and the
basis functions features ξ(ϑ̃) ∈ RM to use. Including in
the ξi every monomial up to 3rd or 4th order in the three
variables (log q, s1, s2) seems a good working choice for
our model The choice of working with the variable log q
rather than q is based on validation results. Heuristically,
it prevents the values of the data features from varying
too much within the range of interest, thus yielding more
stable numerical performance.

As MoE model deals with single dimensional out-
puts, a single independent regression must be per-
formed for each component gk of g ∈ RK 10. In gen-
eral, a regression will be a collection of MoE weights
{W (k), V (k) ∈Mat(M,Lk)}Kk=0, where index k labels
different regressions for each PC.

E. Summary

The model has the following explicit form:

model : P ⊂ R3 → RK → RD

ϑ̃ 7−→ g(ϑ̃) =


∑L1

l=1(W (1) T ξ)l · S(V (1) T ξ)l
...∑LK

l=1(W (K) T ξ)l · S(V (K) T ξ)l


7−→ f(ϑ̃) = HTg(ϑ̃) + µ (17)

where ξ(ϑ̃) ∈ RM are the chosen basis function for the
regression and S(·)k is the softmax function Eq. (15).
Two relations of the same type must be fitted, one for
the amplitude, the other for the phase.

Once weights are set properly, the expression provides
an estimation for the waveform hFIT in (2). The com-
plete WF h(t;m1,m2, s1, s2, dL, ι, ϕ0) is computed with
Eq. (4). The model can extrapolate outside the range
of train orbital parameters, without guarantee of reliable
results.

Note that Eq. (17) can be used to compute a closed
form expression for the gradients of the waveform with
respect to the orbital parameters. Such calculations are
included in the released version of mlgw.

IV. MODEL PERFORMANCE

We now discuss some validation tests on our model.
We first study how its performance depends on the choice
of hyperparameters. Second, we assess the model accu-
racy and its limitations. Finally, we measure the speed
up provided by our model as compared with training
EOB model. For our tests, we train our model with
TEOBResumS. Very similar results are obtained for a model
trained on SEOBNRv4.

As it is common, we measure the similarity between
two waves by means of the optimal mismatch:

F̄ [h1, h2] = 1− 〈h1, h2〉√
〈h1, h1〉〈h2, h2〉

, (18)

10 This is not a great limitation, because, due to orthogonality of
PCs, each gj is independent from the other: we do not miss
correlation among different regressions.
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FIG. 1. Average mismatch between waves fNgrid,α, as saved
in the training dataset, and raw waves from EOB model, as
a function of time grid size Ngrid. Each series refers to a dif-
ferent values of α. Clearly, Ngrid ' 3× 103 and α ∈ (0.3, 0.5)
is a good choice for the dataset hyperparameters.

where, as usual, we defined the Wiener product as:

〈h1, h2〉 = 4

∫ ∞
0

df
h̃∗1(f)h̃2(f)

Sn(f)
. (19)

In the equation above, Sn(f) is the detector noise curve,

the h̃ denotes the Fourier transform of the strain h and
the ∗ denotes complex conjugation. In what follows, we
always use a flat noise curve (i.e. constant power spectral
density for the detector noise).

A. Validation

Wherever relevant, we will employ a dataset with
5800 waveforms generated in the domain P = [1, 20] ×
[−0.8, 0.95]× [−0.8, 0.95], with τmin = 1.0 s/M�. The re-
sults here refer to mlgw-TEOBResumS, similar results are
obtained for mlgw-SEOBNRv4.

a. Dataset generation parameters We first evaluate
the impact of number of grid points Ngrid and distortion
parameter α (see Eq. (8)). Let fNgrid,α the wave stored
in a dataset where τmin and P are fixed as above. We
compare it with the output of the EOB model fEOB. We
then vary Ngrid and α and report the resulting mismatch
F [fEOB, fNgrid,α] in Fig. 1.

As expected, we note that, by increasing the number
of grid points, the mismatch decreases. Furthermore, us-
ing more than ∼ 103 grid points, does not bring any
improvement to mismatch. In this case, the result is
dominated by numerical errors in the interpolations and
it provides a lower-bound for the performances of the
fit. A careful choice of α provides a remarkable improve-
ment when Ngrid is small. For a high number of grid
points, different values of α yield almost equivalent re-
sults. A good setting for dataset hyperparameters might
be: Ngrid ' 3× 103 and α ∈ (0.3, 0.5).

b. MoE parameters We only focus on setting the
number of experts Nexp for each component model and

the basis functions ξi(ϑ̃) to use in the regression. Other

1 2 3 4 5 1015
Nexperts

1st

2nd

3rd

4th

5th

6th

Po
ly

no
m

ia
l o

rd
er

Amplitude

10 7

10 6

10 5

10 4

10 3

1 2 3 4 5 1015
Nexperts

1st

2nd

3rd

4th

5th

6th

Po
ly

no
m

ia
l o

rd
er

Phase

10 2

10 1

100

FIG. 2. Validation results for fit of MoE model. Each point
corresponds to an MoE regression for the amplitude (left)
and phase (right), with a different value of expert number
Nexp and order of polynomial basis function. The amplitude
and phase are represented with 5 and 4 PCs respectively. In
the colorbar, we represent the mismatch on test waves: it is
obtained by reconstructing test waves with fitted amplitude
(phase) and test phase (amplitude). A model with 4 experts
and with a 4th order polynomial provides good balance be-
tween simplicity and accuracy.

parameters, related to the details of the training proce-
dure, will not be considered here.

Figure 2 presents our results. We fitted a model for am-
plitude (or phase) for different configurations of expert
number Nexp and polynomial basis function. By label
“n-th order”, we mean that in the basis function expan-
sion, every monomial up to n-th order is used. We report
with a colorbar the value of the mismatch F between test
and reconstructed WFs. The MoE models for each com-
ponent share the same number of experts Nexp. The test
mismatch for the fitted amplitude (phase) is computed
by using the test phase (amplitude) in the reconstructed
wave.

As a general trend, fit performance improves whenever
the model complexity (i.e. number of fittable parame-
ters) increases. In general, we note that adding more
features is more effective than employing the number of
experts. However, the model performance does not im-
prove indefinitely: as we see in Fig. 2, many “complex”
models show similar performance, regardless their com-
plexity. A model with 4 experts and 4th order polyno-
mial regression is the “simplest” of such models and thus
it should be deemed as the best choice.

c. Choosing the number of PCs Of course, the ac-
curacy of the reconstruction of the low dimensional rep-
resentation depends on the number K of principal com-
ponents considered: the more PCs are used, the best
accuracy can be achieved. However in practice, due to
errors in the MoE regression, one cannot reduce the re-
construction mismatch arbitrarily. Indeed, at high PC
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FIG. 3. Test mismatch as a function of the number of PCs
used in the low dimensional representation. Label “PCA”
refers to waves reconstructed with PCA only; points with
label “MoE” are reconstructed after a MoE regression. Data
refers to amplitude (left panel) and phase (right panel). MoE
model is chosen to be the optimal one, with 4 experts and a
fourth order polynomial.

order the relations to fit become noisy and the regres-
sion becomes less accurate, eventually washing out any
improvement brought by a higher number of PCs. For
this reason one should choose the number of PCs while
checking MoE performance.

In Fig. 3 we report a numerical study of this. We plot
the reconstruction mismatch as a function of the number
of PCs considered. We consider separately the amplitude
and the phase. In one series, we reconstruct the wave
using true values of PCs: the mismatch is a measure of
PCA accuracy. In the other, we reconstruct a wave using
values for PCs as guessed by MoE regression: this is a
measure of accuracy of both PCA and regression. For
the first two PCs, the regression is accurate enough for
reproducing the PCA accuracy. On the other hand, any
regression beyond the 3rd or 4th PCA component does
not give any improvement to the MoE mismatch: the
noise in the relation of high order PCs is too high for a
regression to be performed.

In the PCA, we include every PC which yields im-
provement in MoE mismatch. For our model, K = 5(4)
is a good choice for amplitude (phase). Of course, this
strongly depends on the regression model: the more pre-
cise the model is, the more PCs can be included. How-
ever, no model can increase its accuracy indefinitely, be-
cause every training set has an intrinsic noise level, due
to numerical error and to the approximations in the un-
derlying physical model.

d. Choosing the number of training points The
choice of the number of training points Ntrain must trade
between accuracy and speed of execution. Too many
training points will make the training slow, while too
few training points will yield a poor model, which does
not generalize the data (underfitting). In the choice of
number of training points, the comparison between train
and test error will provide important information on how
the model is able to generalize the trend. In Fig. 4 we re-
port train and test value of mismatch and mean squared
error (MSE) of the first 3 PCs as a function of the num-
ber of training points. Data refers to a MoE model fitted
for 4 PCs of the phase dataset, with 4 experts and a 4th

10 2
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10 7
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C 

1

10 6
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M
SE

 P
C 
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102 103
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10 4

10 1
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FIG. 4. Train and test error for MoE fit of 4 PCs of phase, as
a function of the number of training points. We report train
and test reconstruction mismatch (top) and mean squared
error (MSE) for the first 3 PCs (below). MoE model employs
4 experts and a fourth order polynomial for a basis function
expansion. Test mismatch are obtained using test amplitude
to reconstruct the waveform; this is not a great limitation
as any error in phase reconstruction dominates the overall
mismatch.
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FIG. 5. Logarithm of mismatch between TEOBResumS and
mlgw-TEOBREsumS, computed on N = 4000 test waveforms.
Each WF is generated with random masses and spins and
with a starting frequency of 10 Hz. The median value q50%

and the positions q5% and q95% of the 5th and 95th percentile
are reported.

order polynomial. As Ntrain increases, we see a steady de-
crease of the errors, until a plateau is reached. Since for a
reasonably high number of training points (Ntrain ' 50)
train and test error are close to each other, we note that
overfitting is not a problem. For Ntrain ' 800, the trend
stabilizes and increasing training points does not affect
much model performance. In the present model, setting
Ntrain ' 3000 is a good choice 11.

11 As compared with standard neural networks, which routinely
employ O(105) points datasets, this is an incredibly low amount
of data. This is due to the fact that MoE is a simple model with



8

Mismatch

5 10 15
q

20
30
40

M
(M

su
n)

10 4

10 3

Mean Squared Error

5 10 15
q

20
30
40

M
(M

su
n)

10 8

0.5 0.0 0.5
s1

0.5

0.0

0.5

s 2

10 4

10 3

0.5 0.0 0.5
s1

0.5

0.0

0.5

s 2 10 8

10 6

5 10 15
q

0.5

0.0

0.5

s 1 10 4

5 10 15
q

0.5

0.0

0.5

s 1 10 8

10 6

FIG. 6. To compare TEOBResumS and mlgw-TEOBREsumS, we
report test mismatch (left column) and mean squared errors
(MSE) (right column) for the first PC of the phase, as a func-
tion of masses and spins. The histograms hold 145061 wave-
forms, with randomly drawn parameters. Each WF starts 8 s
before merger. Apart from poor performances for q ' 1 and
for high (positive) values of s1 + s2, the model performance
does not depend much on the input parameters.

B. Accuracy

We compute the mismatch between mlgw and the un-
derlying training model (TEOBResumS) for a large num-
ber of WFs and we report our results in the histogram
in Fig. 5. The mismatch distribution has a median mis-
match Fm = 5.5× 10−4.

When comparing our results with the discrepancies
between state-of-the-art EOB waveforms and NR wave-
forms (see for comparison [8, 23]), we see that we obtain
a distribution with similar median value but longer tails
(i.e. more WFs with either a very small or very large
mismatch). However, our results are reported with a flat
noise curve, whereas the other discrepancies are quoted
with the Advanced LIGO power spectral density: this
might be a plausible explaination for the observed differ-
ences.

To understand better model performances, it is inter-
esting to display the accuracy as a function of the or-
bital parameters ϑ = (q,M, s1, s2). We generate waves
for randomly chosen values of ϑ = (q,M, s1, s2) and, for

a few number of parameters: few data are enough for learning a
reliable relation.

each wave, we measure test mismatch F and MSE on the
reconstruction of the first PC for the phase. The latter
is useful to test the accuracy of the fit alone, before wave
reconstruction. The results are reported in Fig. 6.

The model shows poor performances (F ∼ 10−3) for
q ' 1 and for high (positive) values of s1 + s2. By look-
ing at the top line of Fig. 6, we note that the MSE does
not depend on M , as expected since the dependence on
M is inserted analytically in the model. In the center
line of Fig. 6, as long as the s1 dependence is considered,
the most striking feature is the inverse correlation of mis-
match and MSE for the first phase PC. This means that,
being non-leading, spin contributions are not important
for the first PC, but become dominant at higher order of
PCs. Indeed, the values of the first PC are well correlated
with mismatch in the case of q. See [47] for a closely re-
lated discussion on PCA components and its dependence
on physical parameter. In the third row of Fig. 6, the
inverse correlation between the mismatch and MSE can
be noted again.

C. Runtime analysis

We now asses the time performances of our model. We
are interested to make comparisons between mlgw and
both training models as well as with SEOBNRv4 ROM.

a. Comparison with TEOBResumS and SEOBNRv4
When dealing with a real detection scenario, we are of-
ten interested in generating a WF which starts from a
given frequency fmin, which is usually set by the detec-
tor sensitivity window. Thus, it is crucial to measure
the speed up that our model can provide in performing
such task. We define the speed up S as the ratio between
the runtime of the benchmark model and the runtime of
mlgw to produce the a waveform starting from a given
fmin. Each waveform is produced with constant total
mass M = 100M� and random parameters; the WF is
sampled at fsam = 2048 Hz. We consider the two cases
with fmin = 5 Hz and fmin = 20 Hz. The first choice
refers to the hypothetical lower bound for the sensitivity
of the Einstein telescope (ET), while the second is close
to that of Advanced-LIGO/Virgo. In Fig. 7 we report
the histogram of the measured speed up values for both
TEOBResumS and SEOBNRv4.

We see that in both cases a substantial speed up is
achieved. The speed up is higher for longer WFs, mak-
ing our model particularly convenient for advanced de-
tectors, with a larger sensitivity window. This is clearly
understood: a longer WF requires more computation for
a EOB model, while roughly the same amount of work
is done by mlgw. Furthermore, we note that the speed-
up with mlgw-SEOBNRv4 is around ten times higher than
that of mlgw-TEOBResumS.

b. Comparison with SEOBNRv4 ROM Let us turn now
to discuss a performance comparison with SEOBNRv4 ROM,
that is currently considered state of the art for the WF
generation time. We note that mlgw-SEOBNRv4 and
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their respective native implementation. Due to the compu-
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FIG. 8. Speed up of mlgw with respect to SEOBNRv4 ROM,
computed on N = 2000 test waveforms. Each WF is gener-
ated with random physical parameters and has a minimum
frequency of 5 Hz (top panel) and 20 Hz (bottom panel). We
set a constant total mass M = 100 M� and the sampling rate
fsam = 2048 Hz. The median value q50% and the positions
q5% and q95% of the 5th and 95th percentile are reported.

mlgw-TEOBResumS are completely equivalent from the
point of view of the generation time for a WF, so that we
simply refer to the model as mlgw here and below. The
measured speed up of mlgw with respect to SEOBNRv4 ROM
is illustrated in Fig. 8. The comparison is made as above
with a sampling rate fsam = 2048 Hz for two different
starting frequency fmin = 5 Hz and fmin = 20 Hz. As the
ROM model yields WFs in frequency domain, in the run-
time evaluation we also included a fast Fourier transform
(FFT) of the time domain WF of mlgw. This ensures
that we are evaluating the two model at the same condi-

TABLE I. Time taken (averaged on multiple runs) by differ-
ent stages of the generation of 100 waveforms; data refers to
two different values of Ngrid. “Generation of raw WF” refers
to the computation of the strain hFIT as produced by mlgw.
“Interpolation to the user grid” evaluates the WF on the grid
chosen by the user. The “Post-processing” labels the com-
putation performed to include the dependence on dL, ι and
ϕ0.

Task (for 100 WFs)
CPU time (ms)

Ngrid = 103 Ngrid = 105

Generation of raw WF 6.9 (46.9%) 7 (1.6%)

Interpolation to the user grid 4.5 (30.6%) 194 (45.3%)

Post processing 1.7 (11.6%) 206 (48.1%)

Total 14.7 (100%) 428 (100.0%)

tions. Interestingly, the time taken by the FFT (in the
numpy implementation) is similar to that required to gen-
erate a WF. Thus for a WF in FD, our model cannot be
substantially faster, due to the limitation imposed by the
FFT 12.

We note the the performances are quite similar to each
other. If a lower starting frequency is chosen, mlgw is
slightly outperformed. Perhaps, this can be cured by
fitting a model in frequency domain: in this case, the
FFT would not be required anymore, resulting in a large
speed-up in the execution time. It is important to stress
that mlgw is written in pure Python, while SEOBNRv4 ROM
is coded in C. In fact, a python code could be easily ac-
celerated (i.e. parallelized, run on GPUs, etc...) with
dedicated libraries, thus allowing to push the code per-
formance further.

c. Profiling It is interesting to have a knowledge of
the time spent by mlgw in each stage of the WF gen-
eration procedure. We generate 100 waves with random
physical parameters and we measure the CPU time spent
to execute each basic task. In Table I, we compare the
results for two values of Ngrid. We see that the cost of
generating the raw WF does not depend on the num-
ber of grid points. On the other hand, the interpolation
and the post processing depends on Ngrid and their cost
grows dramatically as the user requires more and more
points. It is important to stress that the latter two tasks
are slow only because they deal with a large amount of
points. Indeed they perform trivial and “quick” opera-
tions and their execution relies on well optimized numpy
routines. If such an amount of datapoints is required,
very little space is left for speed up.

12 Actually, the operations required by the FFT take the most of
the time. In fact, before the FFT the waveform is evaluated
on a dense equally spaced grid: as can be seen in Table I, such
operation can be very expensive.
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FIG. 9. Posterior probability densities of the component masses and final masses and spins of all the BBH system in GWTC-1
obtained using MLGW trained with the TEOBResumS [8] spin-aligned waveform model. The contours enclose the 90% credible
regions. Left panel: Source-frame component masses m1 and m2. We use the convention m1 ≥ m2 which produces the sharp
cut in the two-dimensional (m1,m2) distribution (shaded region). Lines of constant mass ratio q ≡ m1/m2 are shown for
q = {2, 4, 8}. Right panel: the mass Mf and dimensionless spin magnitude af of the final black holes. The figure is consistent
with, though different from, Fig. 4 of Ref. [42].

V. APPLICATION TO GWTC-1

We use the implementation of our mlgw-TEOBResumS
and mlgw-SEOBNRv4 models to provide a new, and inde-
pendent, measure of the properties of the GW sources
collected in GWTC-1, the first catalog of detected GW
sources [42], corresponding to the first two observing runs
of the LIGO and Virgo detectors. The GWTC-1 cat-
alog consists of 10 BBH systems and a BNS system,
GW170817. Since the waveform models we considered
for the training only concern spin-aligned BBH wave-
forms, we do not analyze GW170817 but we only fo-
cus on the 10 BBH systems. We trained mlgw in the
range P = [1, 20] × [−0.8, 0.95] × [−0.8, 0.95] and we set
τmin = 4 s/M�. Our parameter estimation algorithm is
gwmodel [49] a publicly available infrastructure written
in a mixture of Python and cython that serves as in-
terface for the parallel nested sampling implementation
cpnest [50]. The analysis of each BBH system is set up
as follows; we choose a total of 2000 Live Points, four par-
allel MCMC chains with a maximum length of 5000 steps
to ensure that each successive sample is independent of
the previous. These settings yield an average of ∼ 15000
posterior samples and evidence calculations that are ac-
curate to the first decimal digit. For each BBH system we
choose prior distributions as described in the GWTC-1
release paper [42]. Finally, and critically, to ensure that
our results can be compared fairly to published ones, we
employ the power spectral densities released as part of
GWTC-1. No calibration uncertainty model is assumed
for these runs.

Table II summarize the results with mlgw-TEOBResumS

and with mlgw-SEOBNRv4. The table exclusively reports
summary statistics for the intrinsic parameters. All mass
parameters quoted are in the source frame. The redshift
of each BBH is estimated from its luminosity distance
posterior and converted into a redshift by assuming the
cosmological parameters given in Ref. [51]. The second
part of Table II also lists, for convenience, the results
published in the GWTC-1 catalog paper [42]. In addi-
tion, posteriors for the individual masses, final masses
and spins and dimensionless spin magnitudes are shown
in Figs. 9, 10 and 11 for both the models.

A few observations are in order. First of all, our re-
sults, obtained with both models, are extremely simi-
lar to what published by the LVK Collaboration. This
is reassuring as it validates both the WF model hereby
presented as well as the data analysis scheme and sam-
pler implemented13. There are however differences that
are worth mentioning. The most striking one is that both
mlgw models tend to recover slightly larger masses and ef-
fective spin variable, χeff , than what published Ref. [42].
The reason for this discrepancy is probably related to
the fact that Ref. [42] does not use spin-aligned wave-
form models, but rather relies the analysis on the pre-
cessing models SEOBNRv3 and IMRPhenomPv2. Although
the differences are, in general, negligible, still they high-
light the differences in the physical input of the wave-
form approximants. By contrast, it is remarkable the
excellent agreement between the two waveform models,
although the physical input and the analytical structure

13 However, a full validation of the algorithm is presented in [49].
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of the two models are rather different, especially in the
spin sector [52]. In this respect, we also note in passing
that the spin posteriors of GW151012 have most of the
support in the region when s1 and s2 are nonzero. This
also reflects in the rather large value of χeff ∼ 0.53, about
one order of magnitude larger than the result of Ref. [42].

VI. FINAL REMARKS AND FUTURE
PROSPECTS

We built a ready-to-use Machine Learning model which
generates the (dominant quadrupole) time-domain grav-
itational wave signal from a binary Black Hole coa-
lescence in the non precessing case. The code is re-
leased as the package mlgw, which is publicly available
at pypi.org/project/mlgw/ and can be installed with
the command pip install mlgw. The model consists

https://pypi.org/project/mlgw/
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6 of a PCA model to reduce the dimensionality of the
` = |m| = 2 mode (decomposed in amplitude and phase).
A regression (a MoE model) is performed to infer a rela-
tion from the orbital parameters to the low dimensional
representation of the WF.

It is important to stress that our model is very simple
(i.e. it has a very little number of trainable parameters
and it is not expensive to train) and flexible (i.e. it works
for a large range of parameters and for long waveforms).
In [27], an ML model for GW generation is built, with
similar performances. However, the reduced dimension
space is considerably larger (O(200)) than ours (O(10)).
In [18], the low dimensional space has a similar dimension
O(30) and the ML model achieves a similar performance
in the time execution (when computed on a CPU). They
manage to achieve a better accuracy O(2 × 10−5) but
they generate significantly shorter WFs (fmin = 15 Hz
for M = 60 M� against fmin ' 2.5 Hz for mlgw) and need
a larger training time (O(6 hours) against O(6 minutes)).

Remarkably, we discovered that a PCA is able to re-
produce a high dimensional wave using a small number
of variables. On the other hand, the MoE model is cur-
rently the “bottleneck” of the model accuracy. For this
reason, we explored several alternative regression meth-
ods, including neural networks, but none of them showed
dramatically better performances: perhaps much more
computational power and a larger training set are re-
quired to improve any better.

Despite this, our model shows excellent agreement with
the underlying training set. At test time, the median
mismatch is Fm ∼ 5× 10−4. Furthermore, a single WF
generations takes 0.1 − 5 ms (depending mostly on the
number of grid points required by the user), which is a
factor of ∼ 40 faster than TEOBResumS and ∼ 250 faster
than SEOBNRv4. Interestingly, mlgw matches the perfor-
mances of a ROM, which is currently close to the state-
of-the-art for quick generation of waveforms.

The model outputs WFs in time domain. Of course,
a similar approach can be applied to WFs in frequency
domain: this might further speed up the parameter es-
timation, as the FFT would not be required. A future
update to include WFs in frequency domain is in pro-
gram.

Our ML framework allows for several generalization,
which might build a more accurate WF generator. First
of all, it is quite straightforward to include higher order
modes (HMs) in the WF computation. Different regres-
sions, each for each mode, might be done as we already
did for the ` = m = 2 mode. A future update of mlgw
along this direction is currently under way. Second, also
the precession effects might be included in the model.
The precession dynamics could be inserted as a single
spin parameter sP [53] and the WF dependence on sP
can be fitted together with the other orbital parameters.

Furthermore, our model could be trained on the pub-
licly available NR waveforms catalogs (see e.g. [3, 4, 54])
and it would provide the best generalization of the nu-
merical waveform, dispensing with the EOB models al-
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together. Unfortunately, at the moment there are too
few NR waveforms (O(102)) available to perform a reli-
able training: as discussed above in Sec. IV A, at least
O(5×103) waveforms are needed: the improvement shall
wait until enough NR waveforms are available. More-
over, NR waveforms are too short to be used as they are
and an extension (e.g. by hybridization with EOB wave-
forms) towards the early inspiral is needed to compute
any kind of NR-based ML model.

Lastly, we expect our ML approach to work for ev-
ery kind of source for which a training set of waveforms
is available. Machine learning models to generate WFs
might be crucial in the future, where signals from a num-
ber of different sources are expected to be detected. In
that scenario, a parameter estimation must be able to
detect among different source and this will require a lot
of computational work. Speed up will be more pressing.

Our work opens up interesting opportunities in GW
data analysis (searches and parameter estimation), both
because of its speed and of the closed form expression for
the WF.

Due to its speed, mlgw could be employed for a sys-
tematic comparison between different waveform models,
directly on data. By training (and the training proce-
dure is also quick) mlgw with different waveform models,
it will be possible to compare their predictions on sev-
eral observed events. This could allow to detect system-
atic biases or to prefer a model over another by means
of Bayesian model selection (i.e. by comparing different
model evidences). We started this program by analyzing
GWTC-1 with mlgw-TEOBResumS and mlgw-SEOBNRv4
and highlighted some differences in the predictions as
compared to the published results (see Sec. V). Future
work might repeat such an analysis on other EOB mod-
els or with more observations.

Furthermore, as shown in Fig. 7, the model is most
useful whenever a long waveform is required: in such case,
the speed-up gets even more substantial. This is crucial
for the detection of low frequency signals, as is the case
for ET. The analysis of such signals can be performed in
the same time required to deal with shorter signals: it will
become feasible, even with a small amount of resources
and without any loss of WF quality.

A closed form expression for the gradients of the wave-
form with respect to the orbital parameters (already in-
cluded in the mlgw package) could give an advantage on

the parameter estimation procedure by using the Hamil-
tonian Monte Carlo (HM). HM [55] [56] is a variant of
Markov chain Montecarlo, which employs the gradient of
the likelihood (dependent on the gradient of the wave-
form) to perform an effective sampling of the posterior
distribution. The sampling chain converges faster to the
steady state by “finding quickly” the high density re-
gions, thus offering a speed up of the PE.

Another option, so far never explored, is to use the
gradients of the WF for a fast exploration of the like-
lihood landscape. With any gradient based optimizer,
it should be easy to jump to a local maximum of the
likelihood. Such information might be helpful to reliably
locate a global maximum of the likelihood. Such abil-
ity could speed up the searches as well as the parameter
estimation.

In conclusion, we presented mlgw, an off-the-shelf Ma-
chine Learning model for gravitational waves signals from
BBHs. We demonstrated that mlgw is fast, accurate and
easy to train and to use. We anticipate that mlgw will
enable studies hitherto unfeasible due to the lack of fast
and easy to use models.
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