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We present a search for axion-like polarization oscillations in the cosmic microwave back-
ground (CMB) with observations from the Keck Array. A local axion field induces an all-sky,
temporally sinusoidal rotation of CMB polarization. A CMB polarimeter can thus function as a
direct-detection experiment for axion-like dark matter. We develop techniques to extract an oscilla-
tion signal. Many elements of the method are generic to CMB polarimetry experiments and can be
adapted for other datasets. As a first demonstration, we process data from the 2012 observing season
to set upper limits on the axion-photon coupling constant in the mass range 10−21-10−18 eV, which
corresponds to oscillation periods on the order of hours to months. We find no statistically significant
deviations from the background model. For periods larger than 24 hr (mass m < 4.8×10−20 eV), the
median 95%-confidence upper limit is equivalent to a rotation amplitude of 0.68◦, which constrains
the axion-photon coupling constant to gφγ <

(
1.1× 10−11 GeV−1

)
m/

(
10−21 eV

)
, if axion-like par-

ticles constitute all of the dark matter. The constraints can be improved substantially with data
already collected by the BICEP series of experiments. Current and future CMB polarimetry ex-
periments are expected to achieve sufficient sensitivity to rule out unexplored regions of the axion
parameter space.
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I. INTRODUCTION

With many astrophysical and cosmological measure-
ments establishing the existence of dark matter, an un-
derstanding of its particle properties is one of the main
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aspirations of modern physics [1, 2]. A promising dark-
matter candidate is the QCD (quantum chromodynam-
ics) axion, which we define here to be the pseudo-Nambu-
Goldstone degree of freedom associated with the Peccei-
Quinn mechanism that has been proposed to solve the
strong CP problem [3–9]. In this work, we consider the
much larger class of axion-like particles (sometimes ab-
breviated as ALPs), which are light, bosonic particles
with couplings to the Standard Model (SM) that are
similar to that of the QCD axion but with important
differences. Whereas the QCD axion requires a specific
coupling to the QCD field strength that generically gives
rise to a relationship between the mass of the QCD axion
and its coupling to the SM, albeit with some model de-
pendence, the axion-like particles considered in this work
lack this coupling to QCD. They are, therefore, not re-
lated to solutions of the strong CP problem and generally
have no fixed relationship between their mass and cou-
pling to the SM. Because of this, they occupy a much
larger area in the mass-coupling parameter space. For
simplicity, we will hereafter refer to axion-like particles
as axions.

Very light axions can have astrophysically large de-
Broglie wavelengths, which have macroscopic conse-
quences for the formation of structure. Such dark-matter
candidates are sometimes referred to as fuzzy dark matter
(FDM) [10].

An important property of an axion field is that it cre-
ates an effective birefringence for opposite-helicity pho-
tons. Linear polarizations are, therefore, rotated, and
the amount of rotation is proportional to the change in
the axion field between the point of emission and the
point of absorption [11–14]. In particular, we emphasize
that the rotation of polarization responds to the har-
monic oscillations of the axion field that occur with a
frequency m/(2π), where m is the axion mass. In this
paper, we consider axion masses in the range of 10−21-
10−18 eV, which roughly corresponds to oscillation peri-
ods of hours to months.

Recently, Fedderke et al. proposed two axion observ-
ables accessible by current and future cosmic-microwave-
background (CMB) polarimetry experiments [15]. The
first is an overall suppression of CMB polarization, which
is referred to as the “washout” effect and can be con-
strained by measurements of the TT , TE and EE power
spectra. The second is a time-varying global rotation of
CMB polarization with angular frequency m. The latter
observable is called the “AC oscillation” and is the main

focus of this work.
The washout effect is due to the axion-field evolution

during the epoch of recombination. With this observ-
able, Fedderke et al. used publicly available Planck data
to rule out regions of the axion parameter space, which
we show below in Fig. 6. The washout is, ultimately,
cosmic-variance limited, because it relies on the statis-
tics of power spectra. The limits already set with the
washout effect are within an order of magnitude of the
cosmic-variance limit.

The AC oscillation is a sinusoidal global rotation
of CMB polarization with an angular frequency m.
Whereas the washout effect is sensitive to axion dark
matter present during the epoch of recombination, the
AC oscillation is sensitive to axion dark matter at the lo-
cation of the experiment. The temporal change in CMB
polarization is a direct probe of the oscillation of the local
axion field. The measurement of axion-like polarization
oscillations in the CMB is a form of direct dark-matter
detection. The expected coherence time is ∼ 2π/(mv2),
where v ∼ 10−3 is the Galactic virial velocity. The as-
sociated coherence length is ∼ 2π/(mv). For oscillation
periods shorter than ∼ 1 day, existing axion limits are
stronger than what can be achieved with the current gen-
eration of CMB instruments, so we set a minimum oscil-
lation period of 2 hr for our search. For 2π/m = 2 hr,
the coherence time is ∼ 200 yr, and the coherence length
is ∼ 0.07 pc. We can, therefore, take the oscillation to
be in phase for all CMB experiments. Furthermore, the
signal should be in phase across all photon frequencies.
The data from experiments operating at different times,
locations and wavelengths can be combined to search for
a coherent polarization oscillation. As the signal per-
sists in time, there is no cosmic-variance limit. In the
long term, therefore, the oscillation effect will likely be a
more sensitive observable than the washout effect.

Denote by Q(n̂, t) and U(n̂, t) the Stokes parameters
that are measured at sky coordinate n̂ at time t. Denote
by Q0(n̂) and U0(n̂) the Stokes parameters that would
be measured if the axion were completely decoupled from
photons, which is also the limit in which the CMB po-
larization field is static. The axion-photon coupling con-
stant is gφγ . The amplitude of the axion field averaged
over the CMB visibility function is denoted 〈φ∗〉, which
we take to be isotropic. The amplitude of the local ax-
ion field today is denoted φ0. We allow for an arbitrary
phase α in the oscillation. Then the observed Stokes pa-
rameters are related to the decoupled limit by [15]

Q(n̂, t)± iU(n̂, t) = J0(gφγ 〈φ∗〉) exp [±igφγφ0 cos(mt+ α)] (Q0(n̂)± iU0(n̂)) . (1)

All of the combinations of the form gφγφx for x ∈ {∗, 0}
are small and dimensionless. The Bessel function can be
expanded as J0(x) ≈ 1 − x2/4 and represents an overall
suppression of CMB polarization, i.e., the washout effect

described above. Expanding the complex exponential to
first order and defining the time-averaged polarization
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fields 〈Q(n̂)〉 and 〈U (n̂)〉, we have(
Q(n̂, t)
U(n̂, t)

)
=

(
1 −f(t)
f(t) 1

)(
〈Q(n̂)〉
〈U (n̂)〉

)
, (2)

where

f(t) ≡ gφγφ0 cos(mt+ α). (3)

To linear order, the polarization oscillation causes a mix-
ing of Stokes parameters. The parameter f(t) is small
compared with unity, so the mixing matrix in Eq. 2 can
be viewed as a rotation matrix expanded to leading order.
The time-averaged fields 〈Q(n̂)〉 and 〈U (n̂)〉 are rotated
into each other by an angle f(t). This is equivalent to
an on-sky rotation of the polarization pseudovectors by
an angle f(t)/2. In Eq. 2, the washout effect has been
absorbed into the definition of the time-averaged polar-
izations fields, i.e., 〈Q(n̂)〉 = J0(gφγ 〈φ∗〉)Q0(n̂) and sim-
ilarly for Stokes U . Since the time-averaged polarization
fields are direct observables of CMB polarimetry exper-
iments, we can use Eq. 2 to search for the Stokes mix-
ing f(t) without referring to the decoupled limit, i.e.,
to Q0(n̂) and U0(n̂).

Although relatively faint compared with many polar-
ized astrophysical sources, the CMB provides a num-
ber of serendipitous advantages in the search for axion-
like polarization oscillations. Current-generation CMB
experiments have deployed thousands of photon-noise-
limited detectors that scan CMB-dominated patches of
sky repetitively for years. The steady increase in detec-
tor count in CMB experiments translates directly to an
increase in the statistical weight of each instantaneous
measurement. Since the signal is a coherent all-sky rota-
tion of polarization angles, every optically active detec-
tor can contribute to the measurement. The detectors
are observing the CMB for a substantial fraction of each
year, which provides temporal sensitivity on timescales of
hours to years. By repetitively scanning the same patch
of sky, the time-averaged maps 〈Q(n̂)〉 and 〈U (n̂)〉 can
be well estimated and used as templates to search for
time-variability as in Eq. 2. The oscillation signal is co-
herent both over the sky and over wavelength, so all CMB
instruments can contribute independent of angular reso-
lution and observing frequency.

The CMB has a theoretical advantage in that the axion
field at the point of emission is effectively zero [15]. The
surface of last scattering represents an era much longer
(O(104) yr) than the axion oscillation periods under con-
sideration in this work (O(1) yr). Emissions from differ-
ent redshifts occur with different axion field values that,
taken together, average to approximately zero along all
lines of sight. An oscillation observed in the CMB today
is, therefore, a direct measure of the local axion field only,
i.e., the field at the point of absorption.

Polarization oscillations may also be observed in as-
trophysical sources such as pulsars [16, 17], the jets of
active galaxies [18], protoplanetary disks [19] and strong
gravitational lens systems [20]. A complication in set-
ting constraints with polarized astrophysical sources is

the uncertainty in both the amplitude and the phase of
the axion field at the point of emission, and these am-
plitudes and phases are, in general, different for different
sources, which may introduce a large number of free pa-
rameters. A CMB-based search is constrained to have
the same amplitude and phase across the entire sky, at
every wavelength and at every observing site.

One of the main challenges in many CMB polarime-
try experiments is contamination from Galactic fore-
grounds. These foregrounds are less problematic in an
axion-oscillation search for two reasons. The first is that
the oscillations affect all CMB polarization, i.e., both
E- and B-modes. While the Galactic foregrounds dom-
inate at, e.g., 150 GHz in B-modes even in the cleanest
patches of sky, they are subdominant in E-modes. In
the BICEP observation patch, the polarization power in
foregrounds is ∼ 10% as strong as the CMB power. By
considering the much brighter E-modes, we make the
foreground contamination relatively weaker. The second
reason is that the foregrounds do not present an all-sky
coherent polarization oscillation. Some polarized signals
from the Galaxy may be emitted from regions with a
substantially different axion field value, and these signals
would oscillate. The amplitude and phase of these oscil-
lations, however, would depend on the axion field value at
the point of emission, and these axion field values would
not be coherent across the entire observing region. By
constraining our search to polarization oscillations that
are both global and coherent, we suppress contamination
from Galactic foregrounds. For these reasons, we con-
sider foreground contamination to be a minor concern.

Polarization oscillations are sensitive to the prod-
uct gφγφ0 (Eq. 3) and, therefore, depend on both
the axion-photon coupling constant gφγ and the axion
mass m. The latter dependence comes from the axion
field strength

φ0 =
(
2.1× 109 GeV

) ( m

10−21 eV

)−1
×
(

κρ0
0.3 GeV/cm3

)1/2

,

(4)

where ρ0 is the local density of dark matter and κ is
the fraction of dark matter composed of axion-like
particles [15]. The m-dependence of φ0 implies that
oscillation-derived limits on the coupling constant will
roughly follow gφγ ∝ m. The coupling constant can be
probed approximately independently of mass in a num-
ber of ways, e.g., by conversion of solar axions to x-rays
in strong laboratory magnetic fields [21], by conversion
of supernova-produced axions to gamma rays in Galac-
tic magnetic fields [22], from the x-ray transparency of
the intracluster medium [23] (though we note that this
bound has been challenged [24]) and by conversion of ax-
ions produced in Wolf-Rayet stars to x-rays in Galactic
magnetic fields [25]. At the same time, the axion mass
can be constrained approximately independently of the
coupling constant through considerations of small-scale
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structure, e.g., in the Lyman-α forest [26], in the popu-
lation of Milky Way satellite galaxies [27] and with the
subhalo mass function [28]. These investigations have set
similar bounds in the range of m & 2× 10−21 eV, which
suggests a maximum oscillation period of ∼ 20 d. Ul-
timately, the axion parameter space will be constrained
by a variety of probes, each subject to a different set of
systematic uncertainties.

The paper is organized as follows. In Sec. II, we pro-
vide an overview of the BICEP program including details
of the instruments and the integrated dataset. The next
several sections outline our analysis method to search for
axion-like polarization oscillations. Some of the analysis
choices are specific to the Keck Array, and some expec-
tations are stated on the basis of experience with the
BICEP dataset. Many elements of the method, however,
can be adapted for other CMB polarimetry experiments.
An overview of the analysis structure is shown in Fig. 1.
There are three main components of the analysis. The
first step is to make maps, both real and simulated, which
we do in the same way as for a standard CMB analy-
sis [29]. These maps are our best estimates for the time-
averaged Stokes parameters 〈Q(n̂)〉 and 〈U (n̂)〉. The
main departure from standard CMB map making is the
reobservation of a simulation component that represents
a global polarization rotation. We call this component
the “rotated CMB map”, which we will often abbrevi-
ate as rCMB, and its computational utility is described
in Sec. III G. In Sec. III, we describe our method for
extracting estimates of the global polarization rotation
angle f(t)/2 as a function of time. For this purpose, we
introduce the correlation method of Sec. III E. From our
ensemble of simulations, we construct a model distribu-
tion and an associated likelihood function. The statistical
analysis is presented in Sec. IV. We impose conservative
prior distributions on the oscillation parameters and ex-
tract Bayesian upper limits on the oscillation amplitude.
Additionally, we search for systematics in our data with
several “jackknife tests” described in Sec. V. Having pre-
sented our analysis methods, we then use the 2012 ob-
serving season of the Keck Array for a first demonstration
of the techniques, and the results are given in Sec. VI.
We close in Sec. VII with some expectations for future
results from BICEP and from other current and planned
CMB experiments.

II. INSTRUMENT OVERVIEW

The Keck Array observed from the South Pole from
2012 to 2019 and consisted of a single mount with five
microwave receivers, each similar to the precursor BI-
CEP2 [30]. Each receiver is an independent refracting
telescope with cryogenic lenses and an aperture diameter
of 25 cm. The entire mount can be rotated to change the
boresight orientation or deck angle of all five receivers.
Each focal plane consists of 512 dual-polarized slot-dipole
antenna arrays coupled to transition-edge-sensor (TES)

bolometers [31]. A SQUID-based time-division multi-
plexing system is used to read out the TESs [32]. Each
pixel is coupled to two TESs, one for each linear polar-
ization, and the difference in signals is a measure of the
on-sky polarization.

The main observing region occupies ∼ 1% of the sky
centered on RA 0h, Dec. −57.5◦. For the 2012 and 2013
observing seasons, all five receivers observed at 150 GHz.
In subsequent seasons, some receivers were switched to
other observing frequencies. In the results below, how-
ever, we consider data from only the 2012 season.

The main science goal of the BICEP program is the
search for B-mode polarization from primordial gravita-
tional waves [33, 34]. In combination with Planck [35]
and WMAP [36], the BICEP2/Keck Array experiments
have detected B-modes from gravitational lensing [37]
at 8.8σ significance and constrained the tensor-to-scalar
ratio to r0.05 < 0.06 using data through the 2015 sea-
son [38]. The polarization map depth achieved by this
dataset at 150 GHz is 2.9 µKCMB arcmin. The results
presented in Sec. VI use only data from a single season,
but we intend to extend this axion-oscillation analysis to
the full BICEP dataset in the future and take advantage
of the full sensitivity of these polarization maps. The
complete dataset also includes maps at 95 and 220 GHz,
which have achieved polarization map depths of 5.2 and
26 µKCMB arcmin, respectively. All frequencies with
CMB sensitivity can be used for the axion-oscillation
search.

Although designed for other purposes, the BICEP in-
struments, scan strategy and data processing are compat-
ible with an axion-oscillation search. The methods and
results presented below rely on data taken from standard
observations targeted at CMB B-mode polarization. No
change to the scan strategy or low-level data processing
is necessary for an axion-oscillation analysis.

III. GLOBAL POLARIZATION ROTATION
ESTIMATION

The BICEP experiment does not measure Stokes pa-
rameters instantaneously but instead measures pair dif-
ferences, i.e., the difference in power between two orthog-
onally polarized detectors. The average Stokes parame-
ters are constructed only after repeated observations have
been made with multiple detector orientations. From a
single pair-difference measurement, it is not possible to
construct Stokes parameters, but we will argue that it is
not necessary for estimating f(t).
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FIG. 1. Flow diagram of the axion-oscillation analysis pipeline. The three main components are indicated on the left, and
more detail is presented in the rest of the figure. The map-making step is similar to that of a standard CMB analysis, though
the reobservation must now include a component that represents polarization oscillations (Secs. III B, III D and III G). The
coadds are estimates of the time-averaged Stokes parameters 〈Q(n̂)〉 and 〈U (n̂)〉. The global rotation angle f(t)/2 is obtained
through the correlation method of Sec. III E with some of the computational speed-ups of Sec. III G. The likelihood and
Bayesian analysis are described in Sec. IV. The ensemble of simulations is used to construct a model distribution, which we can
resample to form large numbers of Gaussian pseudo-simulations (Sec. IV A 1). The model distribution also implies a likelihood
function (Sec. IV B) that is used to set Bayesian upper limits (Sec. IV C). At the same time, we estimate test statistics to check
consistency with the background model (Sec. IV D) and to test for spurious systematic signals (Sec. V). Based on the results
of the systematics checks, which we call “jackknife tests”, we unblind the real non-jackknife data (Sec. VI B).

A. Pair difference

We parameterize the polarization orientation of detec-
tor pair i by the angle ψi(n̂, t).

1 The pair difference is
then related to the Stokes parameters by

Di(n̂, t) = Q(n̂, t)ci(n̂, t) + U(n̂, t)si(n̂, t), (5)

where we introduce the shorthand

ci(n̂, t) ≡ cos[2ψi(n̂, t)], si(n̂, t) ≡ sin[2ψi(n̂, t)]. (6)

In the limit that the polarization field is dominated by
the CMB, we can decompose the pair difference into two

components: a static component D
(static)
i (n̂, t) that de-

pends on the average Stokes parameters and an oscillat-

ing component D
(osc)
i (n̂, t) that is induced by the local

1 There is some redundancy in the expression for the polarization
orientation ψi(n̂, t), since a knowledge of the detector pointing
as a function of time immediately implies a value for n̂ given t
and i. We will, however, bin observations in time. In each time
bin, labeled by some mean time τ , a detector pair produces a
map that covers many sky coordinates n̂, so it is useful to keep
track of both the mean time τ and the sky coordinate n̂.

axion field. Combining Eqs. 2 and 5, we write

Di(n̂, t) = D
(static)
i (n̂, t) +D

(osc)
i (n̂, t), (7)

where

D
(static)
i (n̂, t) = 〈Q(n̂)〉 ci(n̂, t) + 〈U (n̂)〉 si(n̂, t) (8)

and

D
(osc)
i (n̂, t) = f(t) (〈Q(n̂)〉 si(n̂, t)− 〈U (n̂)〉 ci(n̂, t)) .

(9)
The “static” component depends on time only through
the time-dependence of the polarization orienta-
tion ψi(n̂, t). We call it “static”, because the underlying
Stokes parameters are static. The average Stokes param-
eters 〈Q(n̂)〉 and 〈U (n̂)〉 are standard data products of
the BICEP experiment and can be considered, at least
approximately, known quantities. The trigonometric fac-
tors ci(n̂, t) and si(n̂, t) depend on detector pointing and
orientation and are also known. The full pair differ-
ence Di(n̂, t) is measured, so the only unknown quantity
is f(t).

We define the rotated map

ri(n̂, t) ≡ 〈Q(n̂)〉 si(n̂, t)− 〈U (n̂)〉 ci(n̂, t) (10)
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and note

D
(osc)
i (n̂, t) = f(t)ri(n̂, t). (11)

The rotated map ri(n̂, t) is a template that can be used to
search for an oscillating component of the measured pair
difference. We correlate the rotated map ri(n̂, t) with the
pair difference Di(n̂, t) to estimate f(t).

Comparing Eqs 5 and 10, we see that the ro-
tated map ri(n̂, t) is the pair difference that would
be measured from Stokes parameters that are or-
thogonal (in Q/U -space) to the time-averaged val-
ues 〈Q(n̂)〉 and 〈U (n̂)〉. This orthogonal component con-

tributes D
(osc)
i (n̂, t) (Eq. 11) to the instantaneous pair

difference Di(n̂, t) when there is a global rotation of the
time-averaged polarization field by an angle f(t)/2.

B. Multiple components

The above discussion assumed the polarization field is
dominated by the CMB. We now take a more realistic
approach and include noise and foregrounds.2 Then the
time-dependent Stokes fields can be expressed as

Q(n̂, t) =
〈
Q(CMB)(n̂)

〉
+Q(fg)(n̂) +Q(N)(n̂, t)

+Q(osc)(n̂, t).
(12)

and similarly for U(n̂, t), where the terms on the right-
hand side represent, respectively, time-averaged CMB,
static foregrounds, time-varying noise and time-varying
polarization oscillations. The pair difference is linearly
related to these components and can also be written as
a sum of the four contributions:

Di(n̂, t) = D
(CMB)
i (n̂, t) +D

(fg)
i (n̂, t) +D

(N)
i (n̂, t)

+D
(osc)
i (n̂, t).

(13)

The instantaneous pair difference Di(n̂, t) is dominated

by the noise term D
(N)
i (n̂, t), so we approximate the vari-

ance in our measurement of Di(n̂, t) to be entirely due
to noise. The next-largest contribution is from the time-
averaged CMB and is mainly in the form of E-modes.
Next, we have foregrounds. For 100-300 GHz, the domi-
nant foreground is Galactic dust, which is suppressed rel-
ative to the CMB E-modes by approximately an order of
magnitude in the BICEP observation region. Finally, we

have the oscillation signal D
(osc)
i (n̂, t). It will be useful

to define the quantities

Q(rCMB)(n̂) ≡ −
〈
U (CMB)(n̂)

〉
, (14)

U (rCMB)(n̂) ≡
〈
Q(CMB)(n̂)

〉
(15)

2 In Sec. I, we argued that foreground contamination is expected
to be negligible. We, therefore, make the simplifying approxima-
tion that the polarized foregrounds are not themselves subject
to axion-induced polarization oscillations.

as well as the pair difference formed from these “rotated”
Stokes parameters, which is given by the usual formula

D
(rCMB)
i (n̂, t) ≡ Q(rCMB)(n̂)ci(n̂, t)+U (rCMB)(n̂)si(n̂, t).

(16)
Then the oscillating component of the pair difference is

D
(osc)
i (n̂, t) = f(t)D

(rCMB)
i (n̂, t). (17)

This is a useful recasting, since the quan-

tity D
(rCMB)
i (n̂, t) depends only on the time-averaged

CMB polarization field and the detector pointing. This
will become especially convenient in our discussion of

efficient simulation schemes. The quantity D
(rCMB)
i (n̂, t)

is on the order of the static CMB, and the smallness

of the oscillating component D
(osc)
i (n̂, t) is, therefore,

made manifest by the factor f(t). Since an oscillation
amplitude of 0.1◦ ≈ 2 × 10−3 has already been ruled
out with Planck data [15], the oscillating component of
the pair difference is suppressed relative to the CMB
E-modes by at least ∼ 102.

Our goal is to extract the component D
(osc)
i (n̂, t) from

the total pair difference Di(n̂, t). We argued above that
the oscillating component of the pair difference is pro-
portional to ri(n̂, t) in the limit that the time-averaged
maps are CMB-dominated, which is a good approxima-
tion at the map depths achieved by the BICEP/Keck Ar-
ray experiments. The rotated map is constructed from
known and measured quantities. To extract the oscillat-
ing component, then, we correlate the instantaneous pair
difference with the rotated map, i.e., we correlate Di(n̂, t)
with ri(n̂, t).

C. Time binning

The fundamental unit of observation in the BI-
CEP/Keck Array experiments is the scanset, which con-
sists of approximately 45 minutes of constant-elevation
scanning. It is, therefore, convenient to bin observa-
tions by scanset. This makes the analysis insensitive to
oscillation periods shorter than roughly 1 hr, but the
constraints on the axion-photon coupling from measure-
ments of SN1987A already rule out an observable po-
larization oscillation at these timescales given current-
generation sensitivities [22].3 Consequently, there is little
motivation to extend the analysis to these short periods.

In each time bin, we construct a pair-difference map
for each detector, which we call a pairmap. We take
the variable τ to label the mean time of a scanset, and
we take the sky coordinate n̂ to be discretized accord-
ing to the BICEP map pixelization [29]. Then denote

3 As discussed explicitly in Sec. VI E, the oscillation analysis sets
limits that scale as gφγ ∝ m, so sensitivity to the coupling con-
stant gφγ is worse at higher masses (shorter oscillation periods).
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by D̄i(n̂, τ) the pairmap constructed for detector i dur-
ing the scanset that occured at mean time τ . This map
will cover only a fraction of the full observation patch.
The map pixels that are covered may have been vis-
ited multiple times over the course of the observation,
and D̄i(n̂, τ) represents a weighted average of these re-
peated measurements. We also include in the definition
of D̄i(n̂, τ) any timestream filtering, so D̄i(n̂, τ) is the
quantity that is coadded over all detectors and observa-
tions in a standard CMB analysis to form the final map.4

If the scan strategy involves multiple visits to the same
map pixels, then the polarization angle ψi(n̂, t) may be
different each time due to sky or, in principle, instru-
ment rotation. If the pair differences from all of the vis-
its are then averaged, the trigonometric factors ci(n̂, t)
and si(n̂, t) will beat against each other and wash out
the polarization signal. An advantage of observing from
the South Pole is that a constant-elevation scan is also ap-
proximately a constant-declination scan, so repeated vis-
its to the same map pixel have nearly the same ψi(n̂, t),
as long as no boresight rotation has been performed. De-
note the weighted average of the trigonometric factors
by c̄i(n̂, τ) and s̄i(n̂, τ). The weights are the same as
those used to form the scanset map D̄i(n̂, τ), though
there is no filtering.

For oscillation periods of the same order as the time
binning, there will be a suppression of the axion signal.
For a time bin of length ∆t, the average Stokes mixing
angle is

f̄(τ) = f(τ) sinc

(
m∆t

2

)
, (18)

where the notation f̄(τ) indicates the average value
of f(t) in the scanset of mean time τ . The shortest os-
cillation period we will consider is 2 hr, for which a 45-
minute observation produces a suppression of 22%. This
is arguably small but should be accounted for in referring
our measurements to an oscillation amplitude, since we
would otherwise claim greater sensitivity at these short
periods than is justified.

D. Observables

In Sec. III B, we outlined a method of corre-
lating the time-averaged CMB maps

〈
Q(CMB)(n̂)

〉
and

〈
U (CMB)(n̂)

〉
with the instantaneous pair differ-

ence Di(n̂, t) as a means of extracting the polarization

4 The pair difference is not itself coadded. When a map pixel n̂ has
been visited more than once with different polarization orienta-
tions ψi(n̂, t), it is possible to extract Stokes Q and U from the
pair-difference measurements. The quantities that are actually
used for the coadd are ci(n̂, t)Di(n̂, t) and si(n̂, t)Di(n̂, t). With
multiple visits at different orientations, these quantities can be
inverted to recover Q(n̂) and U(n̂).

rotation angle. We do not have direct access to the true
time-averaged CMB maps. Instead, we construct coad-
ded maps, which are non-trivially impacted by filtering
operations. As these coadded maps are dominated by
CMB polarization, we will use them as templates. We
use the notation Q̄(n̂) to denote the measured coadd for
Stokes Q and similarly for U . These coadds include all
of the biases introduced by weighting and filtering ob-
servations but are the best available approximations to
the time-averaged sky. While the true time-averaged val-
ues of noise and oscillations are zero, our coadds will, in
general, contain non-zero contributions from these com-
ponents. Our coadd for Stokes Q is, then,

Q̄(n̂) = Q̄(CMB)(n̂)+Q̄(fg)(n̂)+Q̄(N)(n̂)+Q̄(osc)(n̂) (19)

and similarly for Stokes U . Our approximation for the
rotated map ri(n̂, t) is, then,

r̄i(n̂, τ) ≡ Q̄(n̂)s̄i(n̂, τ)− Ū (n̂)c̄i(n̂, τ), (20)

where τ is the nearest mean sub-observation time to t.

E. Correlation method

We define the correlation

ρ(τ) ≡ 1

W (τ)

∑
i,n̂

r̄i(n̂, τ)D̄i(n̂, τ)wi(n̂, τ)vi(n̂, τ), (21)

where

wi(n̂, τ) ≡ 1

Var
[
D̄i(n̂, τ)

] ,
vi(n̂, τ) ≡ 1

Var [r̄i(n̂, τ)]
,

W (τ) ≡
∑
i,n̂

wi(n̂, τ)vi(n̂, τ).

(22)

The quantity ρ(τ) is a weighted correlation of the mea-
sured pair difference D̄i(n̂, τ) with our approximation to
the rotated map r̄i(n̂, τ). The weights are the inverse
variances of the two maps. In general, the variance in
the per-scanset pair difference will be relatively large,
being dominated by atmospheric fluctuations at the time
of observation. This variance wi(n̂, τ) is a direct observ-
able, which we use to downweight noisy pair-difference
measurements in our standard map-making pipeline. At
the same time, we use vi(n̂, τ) to downweight regions of
the map, for which we have relatively poor estimates of
the CMB polarization field. The efficacy of the analysis
depends on having time-averaged maps that are domi-
nated by CMB polarization. In general, it will be the
edges of the coadded maps that show significant resid-
ual noise, since these map pixels are visited much less
frequently than those at the center. The particular lin-
ear combination of time-averaged Stokes parameters with
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which we are correlating is r̄i(n̂, τ), so we downweight by
its variance

Var [r̄i(n̂, τ)] = Var
[
Q̄(n̂)

]
s̄2i (n̂, τ) + Var

[
Ū (n̂)

]
c̄2i (n̂, τ)

− 2 Cov
[
Q̄(n̂), Ū (n̂)

]
c̄i(n̂, τ)s̄i(n̂, τ).

(23)

All of the variances and covariances on the right-hand
side are standard data products that are produced along-
side the coadded maps. The quantity W (τ) is nothing
more than a normalization. These weights can be di-
rectly estimated from the data and can be considered
known quantities.

An inverse-variance weighting may be suboptimal for
the rotated map r̄i(n̂, τ), because the E-modes in our
coadded maps Q̄(n̂) and Ū (n̂) tend to be stronger than
the noise. In the signal-dominated limit, it is better to
use all of the available modes. A possible improvement to
the analysis is to weight by 1/(1 +N/S), where S/N is a
figure of merit for the E-mode signal-to-noise ratio. For
noisy pixels, this is essentially an inverse-variance weight-
ing. For large signal-to-noise ratios, however, we achieve
nearly equal weighting. The prescription amounts to an
approximate Wiener filter.

The weighting in Eq. 21 does not include covariances
between detectors i nor between map pixels n̂. One con-
sequence is that the weight W (τ) does not exactly pre-
dict the true inverse variance of ρ(τ). It is computation-
ally simpler, however, to calibrate the variances through
Monte Carlo simulations as described below in Sec. IV A.
Omitting covariances in the definition of ρ(τ) (Eq. 21)
may degrade the sensitivity of the analysis, but it does
not bias the results. With some simplifying approxima-
tions, it may be computationally practical to estimate
such covariances, and this is a possible avenue for im-
provement in a future iteration of an axion-oscillation
search.

We can model D̄i(n̂, τ) as a linear combination of con-
stituent components, i.e.,

D̄i(n̂, τ) = D̄
(CMB)
i (n̂, τ) + D̄

(fg)
i (n̂, τ) + D̄

(N)
i (n̂, τ)

+ D̄
(osc)
i (n̂, τ),

(24)

where D̄
(s)
i (n̂, τ) is the weighted, filtered and binned

scanset map formed from D
(s)
i (n̂, t) for any component s.

We have direct access to these constituent components
only in simulation. In the limit that the coadded maps
are good representations of the true time-averaged po-
larization field and the pair-difference measurements are
good probes of the instantaneous polarization field, we
have, from Eq. 11,

D̄
(osc)
i (n̂, τ) ≈ f(τ)r̄i(n̂, τ), (25)

when the oscillation period is sufficiently long to
treat f(t) as constant over the scanset of mean time τ .
We will discuss the case of faster oscillations in Sec. III F.
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FIG. 2. An illustration of the correlation method introduced
in Sec. III E for a simulation of a single detector and a sin-
gle observation. (Top) The pair difference D̄i(n̂, τ) (blue)
from a constant-elevation scan is plotted against right ascen-
sion (RA). The pair difference is dominated by atmospheric
loading and fluctuates strongly. In this simulation, a global
rotation of 3◦ has been imposed. The oscillating compo-

nent D̄
(osc)
i (n̂, τ) (red) is hidden underneath the atmospheric

fluctuations. The rotated map r̄i(n̂, τ) (orange) is used as a
template to pick out global polarization rotations. (Bottom)
The correlation ρ(τ) (Eq. 21 summed over detector i only)
between the template and the full pair difference (blue) has
a large variance but mean zero. The correlation with the
oscillating component (red) is biased positive.

The correlation ρ(τ) defined in Eq. 21 picks out this com-
ponent by correlating D̄i(n̂, τ) with r̄i(n̂, τ). On aver-
age, the correlation with the non-oscillating components
of D̄i(n̂, τ) vanishes approximately. Exact orthogonal-
ity is not necessary, though it improves the efficacy of
the correlation method. An illustrative example of the
correlation method is given in Fig. 2, where we show
how the template r̄i(n̂, τ) picks out the oscillating com-

ponent D̄
(osc)
i (n̂, τ) from the full pair difference D̄i(n̂, τ).

The example shows only the results for a single detector i
from a single scanset τ , and we see that the noise vari-
ance dominates. These noise fluctuations, however, av-
erage down when we combine many detectors over many
scansets, while the correlation with the oscillating com-
ponent, because it is biased positive, does not. In this
way, we increase the signal-to-noise ratio as the dataset
grows.
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We define the normalizing constant

R(τ) ≡ 1

W (τ)

∑
i,n̂

r̄2i (n̂, τ)wi(n̂, τ)vi(n̂, τ), (26)

in terms of which we form the estimator

f̂(τ) ≡ ρ(τ)

R(τ)
. (27)

Due to residual noise in the coadded maps, filtering,
weighting, binning and imperfect orthogonality of the
pair-difference components of Eq. 24, the estimator must
be calibrated through simulation. When these effects are

negligible, however, f̂(τ) is an unbiased estimator of f(τ).

1. Optimality

In the limit of Gaussian noise, negligible covariances
and CMB-dominated template maps Q̄(n̂) and Ū (n̂),

it can be shown that f̂(τ) (Eq. 27) is the maximum-
likelihood estimator. We expect the assumption of Gaus-
sian noise to be a good approximation. We expect
detector-detector and pixel-pixel covariances to be small
but potentially worth including in future iterations of
the analysis. For one season of data from the Keck Ar-
ray, however, the noise power in the coadded polariza-
tion maps is about half as strong as the CMB power.
When we extend the analysis to include more seasons of
BICEP data, the assumption of CMB domination will
become significantly better. For the preliminary results
presented in this work, we accept the sensitivity hit from
having an estimator that maximizes the likelihood only
approximately. There may be some gains from account-
ing for covariances between detectors and between map
pixels. As mentioned above, we also expect an improve-
ment in sensitivity by Wiener filtering instead of inverse-
variance weighting the rotated map r̄i(n̂, τ).

By comparing with results from the EB nulling proce-
dure of our standard CMB analysis pipeline [39], we can
roughly check the optimality of the correlation method
as defined above. To absolutely calibrate the polariza-
tion angle of our receivers, we perform a global rotation
to minimize the EB and TB cross spectra, which are
expected to vanish in the CMB in the absence of cos-
mic birefringence. Finding the rotation angle αEB that
minimizes EB only is similar to a search for axion-like
polarization oscillations with m = 0, i.e., a temporally

constant offset in f̂(τ).5 The uncertainty in αEB is a

5 A possible scheme for an axion-oscillation search is to estimate
EB rotation angles from small subsets of observations and look
for time variability in αEB . We considered but avoided this
approach, because the incomplete map coverage of each scanset
makes it awkward to form non-local quantities like the E- and B-
modes. Additionally, we considered the E/B-decomposition and
the associated cross-spectra to be unnecessary computational ex-
penses for the purposes of detecting a time-varying global polar-
ization rotation.

measure of the sensitivity of the EB nulling procedure
to an m = 0 oscillation. For the 2012 observing season of
the Keck Array, we find ∆αEB = 0.21◦. In Sec. IV D be-
low, we outline a procedure for finding the best-fit oscilla-
tion amplitude and phase for each angular frequency m.
We can estimate an uncertainty by calculating the stan-
dard deviation of the constant offset for an ensemble of
simulations. The result for m = 0 is 0.27◦. A comparison
with the EB result suggests the correlation method may
be ∼ 30% suboptimal, if none of the above improvements
are implemented. The constant offset can be considered
one oscillation mode, and each non-zero frequency m 6= 0
represents a single oscillation mode as well. We expect
roughly similar sensitivity to each mode. We compare to
the RMS rotation angle θm for modes that pass through
many oscillation periods in our dataset. If the rotation
amplitude is Âm/2, then the RMS rotation angle (aver-

aged over time) is θm = Âm/2
3/2. For oscillation peri-

ods between 1 and 30 days, the real data show an RMS
(averaged over m) of ∆θ = 0.28◦, which again suggests a
∼ 30% degradation relative to the EB result. These com-
parisons are meant to give some indication of the possible
margin for improvement. A full simulation-based study
will be necessary to evaluate the true gains in sensitivity
from, e.g., the changes suggested above, and we intend
to report on this exploration in future publications.

2. Correlation matrices

In simulation, it is useful to keep track of the indepen-
dent components contributing to both the per-scanset
pair difference D̄i(n̂, τ) and to the rotated map r̄i(n̂, τ).
We decomposed D̄i(n̂, τ) in Eq. 24 into four compo-
nents: time-averaged CMB, foregrounds, time-varying
noise and time-varying polarization oscillations. As the
map-making process is linear in the map components,
we can decompose the rotated map, which is built from
coadded maps, in the same way. We make the approxi-
mation that the contribution of polarization oscillations
to the coadd is negligible, since we expect it to be small
and to average down over all the observations included
in the coadd. Then the rotated map can be decomposed
as

r̄i(n̂, τ) = r̄
(CMB)
i (n̂, τ) + r̄

(fg)
i (n̂, τ) + r̄

(N)
i (n̂, τ), (28)

where

r̄
(s)
i (n̂, τ) = Q̄(s)(n̂)s̄i(n̂, τ)− Ū (s)(n̂)c̄i(n̂, τ). (29)

We approximate the weights to be dominated by the noise
component, i.e.,

wi(n̂, τ) ≈ 1

Var
[
D̄

(N)
i (n̂, τ)

] , (30)

vi(n̂, τ) ≈ 1

Var
[
r̄
(N)
i (n̂, τ)

] . (31)
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In particular, we note that these weights are independent
of the non-noise components.

With all of these constituent components, the correla-
tion ρ(τ) can be written as a sum of cross terms, i.e.,

ρ(τ) =
∑
sr,sD

ρ(sr,sD)(τ), (32)

where

ρ(sr,sD)(τ) ≡

∑
i,n̂

r̄
(sr)
i (n̂, τ)D̄

(sD)
i (n̂, τ)wi(n̂, τ)vi(n̂, τ)

W (τ)
.

(33)
On a per-observation basis, we expect ρ(τ) to be
dominated by ρ(CMB,N)(τ), since the rotated map is

dominated by r̄
(CMB)
i (n̂, τ) and the pair difference

by D̄
(N)
i (n̂, τ). On average, we expect ρ(CMB,N)(τ) to

vanish, but it has the largest variance of all the elements
in the ρ-matrix. The oscillation signal is in ρ(CMB,osc)(τ).
The other elements make relatively minor contributions.

We also decompose the normalization constant as

R(τ) =
∑

sr1 ,sr2

R(sr1 ,sr2 )(τ), (34)

where

R(sr1 ,sr2 )(τ) ≡

∑
i,n̂

r̄
(sr1 )
i (n̂, τ)r̄

(sr2 )
i (n̂, τ)wi(n̂, τ)vi(n̂, τ)

W (τ)
.

(35)
We can consider R(sr1 ,sr2 )(τ) to be a symmetric ma-
trix at each observation time τ . The matrix is domi-
nated by the diagonal terms, which are essentially au-
tocorrelations of the constituent components of the ro-
tated map r̄i(n̂, τ). As the CMB E-modes dominate the
coadded maps, we expect the largest contribution to be
from R(CMB,CMB)(τ). The next largest contributions will
be from the residual map noise R(N,N)(τ) and the fore-
grounds R(fg,fg)(τ).

The correlation matrices are dominated by a relatively
small minority of elements. Roughly, we expect

ρ(τ) ≈ ρ(CMB,osc)(τ) + ρ(CMB,N)(τ) + ρ(N,N)(τ) (36)

and

R(τ) ≈ R(CMB,CMB)(τ) +R(N,N)(τ). (37)

Since D
(osc)
i (n̂, t) = f(t)r

(CMB)
i (n̂, t), we expect

D̄
(osc)
i (n̂, τ) ≈ f̄(τ)r̄

(CMB)
i (n̂, τ) and, therefore,

ρ(CMB,osc)(τ) ≈ f̄(τ)R(CMB,CMB)(τ). Then our es-
timator returns

f̂(τ) ≈ f̄(τ)R(CMB,CMB)(τ) + ρ(CMB,N)(τ) + ρ(N,N)(τ)

R(CMB,CMB)(τ) +R(N,N)(τ)
.

(38)

The main non-idealities are due to noise. In the
numerator, the high-variance but mean-zero correla-
tions ρ(CMB,N)(τ) and ρ(N,N)(τ) cause a large scatter in

measurements of f̂(τ). In the denominator, the noise au-
tocorrelation R(N,N)(τ), which is due to residuals in the
coadded maps, causes an overall suppression. In the limit

of negligible noise, we find f̂(τ) ≈ f̄(τ).

F. Signal transfer function

For a single season of data from the Keck Array, the

most significant bias in f̂(τ) comes from residual noise in
the coadded maps. As shown in Eq. 38, the bias tends to
suppress the signal strength. For one season, the suppres-
sion is at the level of ∼ 30% with percent-level variation
across observations. By constructing coadded maps from
multiple seasons of Keck Array observations, this effect
can be reduced substantially in future analyses.

For oscillation periods comparable to the length of a
scanset, we expect a signal suppression similar to an aver-
aging of the oscillation as in Eq. 18. Instantaneously, we

have D
(osc)
i (n̂, t) = f(t)D

(rCMB)
i (n̂, t). If f(t) is changing

over the course of the scanset, then the binning, weight-

ing and filtering required to produce D̄
(osc)
i (n̂, τ) will act

on both f(t) and D
(rCMB)
i (n̂, t), i.e., we cannot treat f(t)

merely as an overall constant scaling. The analysis, how-
ever, depends only on the correlation ρ(sr,osc)(τ), which
involves averaging over thousands of detectors and map
pixels. When the oscillation period is much longer than
the scanset, we can treat f(t) as approximately constant
and write

ρ(sr,osc)(τ) ≈ f(τ)ρ(sr,rCMB)(τ), (39)

where ρ(sr,rCMB)(τ), as defined in Eq. 33, is the corre-

lation between r̄
(sr)
i (n̂, τ) and the unphysical but well-

defined D̄
(rCMB)
i (n̂, τ). For shorter oscillation periods,

we can subdivide the scanset into shorter time bins until
the approximation is valid. Then the scanset-level corre-
lation ρ(sr,osc)(τ) is a weighted average of the correlations
from the subdivisions. As the time-weighting is approx-
imately uniform in BICEP observations that pass stan-
dard selection criteria, we approximate the weighted av-
erage with the uniform-weight average f̄(τ) from Eq. 18
and write

ρ(sr,osc)(τ) ≈ f̄(τ)ρ(sr,rCMB)(τ). (40)

This averaging suppresses the signal for oscillation peri-
ods on the order of a scanset. The suppression could be
reduced by binning more finely in time. We argued in
Sec. III C that finer time binning is unmotivated given
the constraints set by SN1987A.
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G. Simulations

The analysis has been cast in terms of the correlation
quantities ρ(τ) and R(τ). We showed in Sec. III E 2 how
each correlation can be decomposed as a matrix, each
element of which gives the correlation between two con-
tributing components of the polarization field. The com-
ponents we consider are static CMB, static foregrounds,
noise and polarization oscillations. The first three are
standard simulation products and are independent. The
oscillations are derived from the static CMB according
to Eq. 2 and depend on three parameters: amplitude A,
phase α and angular frequency m, i.e., the input oscilla-
tion is parameterized as

f(t) = A cos(mt+ α), (41)

where, by assumption, A� 1.
Simulations are constructed from reobservations of in-

put maps using the real detector pointings, data cuts and
weighting. For the static CMB maps, we use simulations
of lensed ΛCDM cosmology, since that is the closest rep-
resentation to the foreground-cleaned sky signal. Con-
sistent with the standard BICEP simulation pipeline, we
use Gaussian dust to simulate Galactic foregrounds.

For noise, we use the real data with random sign flips
assigned at each scanset and with the average value
subtracted out. This ensures that the coadded noise-
simulation map has the same noise properties as the
real data, including detector covariances, with negligi-
ble residuals from CMB and foregrounds. By flipping
signs randomly, any true oscillation signal is scrambled.
Furthermore, the template in simulation is constructed
from a different CMB realization than the real data, so
the correlation method would not pick up an oscillation
in the sign-flip noise, even if one were present. A sign-flip
noise scheme is computationally efficient, since the noise
realizations are simply drawn from the real data rather
than from an additional set of reobservations.

For computational efficiency, a major goal of the anal-
ysis is to minimize the number of independent reobser-
vations. In the Keck Array, each scanset corresponds to
roughly 50 minutes of observation time. In a full year of
data, there are ∼ 4× 103 scansets. Many of the scansets
are approximately identical in terms of detector point-
ings, so signal-only simulations need only be run on a
minimal set of independent observations, which typically
consists of only ∼ 200 scansets.

Sampling the oscillation parameters A, α and m would
be computationally infeasible through reobservations.
Instead, we note from Eq. 40 that ρ(sr,osc)(τ) is always
proportional to ρ(sr,rCMB)(τ), which depends only on the
input static CMB field and the detector pointing. We
can then reobserve the unphysical rotated CMB map to

create D̄
(rCMB)
i (n̂, τ) for each scanset and then correlate

with r̄
(sr)
i (n̂, τ) to construct ρ(sr,rCMB)(τ). This need

only be done once per realization. For the physical oscil-
lation signal, we need only scale the result by f̄(τ), which

is related to the oscillation parameters through Eqs. 18
and 41.

For the results presented below, we reobserved 110 re-
alizations of lensed ΛCDM CMB, Gaussian dust and
the rotated version of lensed ΛCDM CMB. For the
noise simulations, we use 110 independent sign-flip se-
quences on the real data. For each realization, we com-
pute the elements of the correlation matrices ρ(sr,sD)(τ)
and R(sr1 ,sr2 )(τ), where sr ∈ {CMB, fg,N} and sD ∈
{CMB, fg,N, rCMB}. The efficiency is increased further
by noting that R(sr1 ,sr2 )(τ) is symmetric.

The correlations are saved to disk for each detector pair
independently, so we can apply detector selections with-
out redundant computation. We define the per-detector
correlation matrix elements

ρ
(sr,sD)
i (τ) ≡

∑̂
n

r̄
(sr)
i (n̂, τ)D̄

(sD)
i (n̂, τ)wi(n̂, τ)vi(n̂, τ)

Wi(τ)
(42)

and

R
(sr1 ,sr2 )
i (τ) ≡

∑̂
n

r̄
(sr1 )
i (n̂, τ)r̄

(sr2 )
i (n̂, τ)wi(n̂, τ)vi(n̂, τ)

Wi(τ)
,

(43)
where

Wi(τ) ≡
∑
n̂

wi(n̂, τ)vi(n̂, τ). (44)

With these definitions, we can construct the all-detector
matrix elements with

ρ(sr,sD)(τ) =
1

W (τ)

∑
i

ρ
(sr,sD)
i (τ)Wi(τ), (45)

R(sr1 ,sr2 )(τ) =
1

W (τ)

∑
i

R
(sr1 ,sr2 )
i (τ)Wi(τ) (46)

and

W (τ) =
∑
i

Wi(τ). (47)

To accommodate the scan-direction jackknife test de-
scribed below in Sec. V, we separate the results for left-
and right-going scans. We save the per-detector corre-
lation to disk in this separated form and combine scan
directions in a weighted average only once a jackknife test
has been chosen that does not depend on scan direction.

An example of a simulated time series is shown in
Fig. 3, where we also isolate the contributions from back-
ground and from axion-like polarization oscillations. The
data are dominated by background fluctuations, and
the oscillation is a small perturbation. As discussed

in Sec. III F, the estimator f̂(τ) returns a slightly sup-
pressed version of the true signal f(t).

The template maps Q̄(n̂) and Ū (n̂) are constructed
from all detectors observing at the same photon fre-
quency. For this reason, the detector-related systematics
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FIG. 3. A simulated time series f̂(τ) (blue) with an input rotation amplitude A/2 = 3◦, chosen to be relatively large in order

to illustrate the effect more clearly. The background f̂ (bkg)(τ) (cyan, defined explicitly in Eq. 52) dominates over the oscillating

component f̂ (osc)(τ) (red, Eq. 51). The template maps Q̄(n̂) and Ū (n̂) are constructed from standard BICEP simulations
of only the 2012 observing season of the Keck Array, so the underlying true oscillation f(t) (orange) is not recovered at full
strength but is instead suppressed by ∼ 30% as described in Sec. III F.

tests described in Sec. V are partial jackknives, since the
template is constructed from all detectors but the cor-
relation sums in Eqs. 21 and 26 cover only half of the
detectors.

IV. LIKELIHOOD AND BAYESIAN UPPER
LIMITS

We compare the data f̂(τ) to a model consisting of
static CMB, static foregrounds, noise and a single oscil-
lating component, i.e., we assume there is only one axion
mass m. From simulation, we construct the model distri-
bution and estimate a likelihood for each candidate value
of m independently. By imposing prior distributions on
the amplitude A and phase α, we can set Bayesian up-
per limits on the axion-photon coupling constant, which
is directly related to the oscillation amplitude A. At the
same time, we fit for amplitude and phase and form a test
statistic to check for consistency with the background-
only model, where we take the background to consist of
static CMB, static foregrounds and noise.

A. Model distribution from simulation

In simulation, we can decompose the estimator f̂(τ)
(Eq. 27) as a matrix by

f̂ (sr,sD)(τ) ≡ ρ(sr,sD)(τ)

R(τ)
, (48)

where ρ(sr,sD)(τ) is defined in Eq. 33 and R(τ) in Eq. 26.
The denominator, then, contains contributions from all
of the non-oscillating map components. From Eq. 40,
we can pull out the dependence on f̄(τ) and rewrite the
oscillating elements in terms of the rotated map, i.e.,

f̂ (sr,osc)(τ) = f̄(τ)f̂ (sr,rCMB)(τ). (49)

This is a convenient factorization, since we
save ρ(sr,rCMB)(τ) to disk but not ρ(sr,osc)(τ) as
described in Sec. III G. We define the dynamic mixing
angle

f̂ (dyn)(τ) ≡
∑
sr

f̂ (sr,rCMB)(τ), (50)

where sr ∈ {CMB, fg,N}. The oscillating component of
the mixing angle is, then,

f̂ (osc)(τ) ≡ f̄(τ)f̂ (dyn)(τ). (51)
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Independent of any particular choice for oscillation pa-
rameters A, α and m, we can use the dynamic mixing

angle f̂ (dyn)(τ) to investigate and precompute statistics
of the signal transfer function. We define the background
mixing angle by

f̂ (bkg)(τ) ≡
∑
sr,sD

f̂ (sr,sD)(τ), (52)

where sr, sD ∈ {CMB, fg,N}. Then the full mixing angle
is

f̂(τ) = f̂ (bkg)(τ) + f̂ (osc)(τ)

= f̂ (bkg)(τ) + f̄(τ)f̂ (dyn)(τ).
(53)

We simulate many realizations of f̂(τ). The mean over
realizations is〈

f̂(τ)
〉

=
〈
f̂ (bkg)(τ)

〉
+ f̄(τ)

〈
f̂ (dyn)(τ)

〉
, (54)

so we need save to disk only
〈
f̂ (bkg)(τ)

〉
and

〈
f̂ (dyn)(τ)

〉
,

neither of which depends on oscillation parameters. To
explore the oscillation parameter space, we scale the dy-
namic component by f̄(τ) and take the linear combina-
tion with the background component. In the limit of
noiseless coadded maps, the dynamic component is close
to unity. From Eq. 38, however, we see that residual
noise in the coadded maps will suppress the signal. The

quantity
〈
f̂ (dyn)(τ)

〉
is a measure of this suppression.

We find
〈
f̂ (dyn)(τ)

〉
≈ 70% with one season of 150-GHz

data from the Keck Array, and the variance over τ is at

the percent level. The variance in f̂ (dyn)(τ) over realiza-
tions for a given scanset τ is also at the percent level. In
general, the consequence of residual noise is a consistent
suppression of the signal by roughly 30%. The suppres-
sion can be lessened by using more seasons of data to
form the coadded maps.

By assumption, the true background mean vanishes.
Even though the sample mean over realizations may be
non-zero, we set the background model mean to zero.
Then the full model mean, i.e., including oscillations, is

µ(τ) ≡ f̄(τ)
〈
f̂ (dyn)(τ)

〉
. (55)

The variance over realizations is dominated by the back-
ground, so we take the model variance to be

σ2(τ) ≡
〈(

f̂ (bkg)(τ)
)2〉

. (56)

With the ensemble of simulations, one can check that the
standardized variable

sτ ≡
f̂(τ)− µ(τ)

σ(τ)
(57)

is Gaussian distributed with mean zero and unit variance
when f̂(τ) is created with the same oscillation parameters

that define µ(τ). Additionally, no evidence is found for
covariances between scansets. We take it as a model as-
sumption, then, that sτ is drawn independently for each
scanset time τ from a standard Gaussian distribution.

1. Pseudo-simulations

We can quickly form pseudo-simulations of the time

series f̂(τ) by resampling from a Gaussian distribution
with mean µ(τ) (Eq. 55) and standard deviation σ(τ)
(Eq. 56). In this way, we can avoid the computational
expense of a large number of reobservations. In the re-
sults presented below, we use 110 reobservations to es-
timate µ(τ) and σ(τ) for each scanset time τ . To esti-
mate p-values, however, we fill out the distribution with
a larger number of pseudo-simulations: 2 × 104 realiza-
tions to test for consistency with the background model
and 5 × 103 realizations to test for spurious systematic
excesses.

B. Likelihood function

We form a Gaussian likelihood for a three-parameter
oscillation model. Let µ(τ ;m,A,α) be the model mean
(Eq. 55) formed when f(t) = A cos(mt + α). Then we
form the test statistic

qm(A,α) ≡
∑
τ

[
f̂(τ)− µ(τ ;m,A,α)

σ(τ)

]2
, (58)

where the estimator f̂(τ) is formed from the input data.
We remove from the analysis any scansets whose model
variance σ2(τ) is more than two standard deviations
from the mean model variance. The associated obser-
vation times τ simply do not contribute to the sum in
Eq. 58. As the model is assumed to be Gaussian, the
quantity qm(A,α) is a χ2 test statistic with n degrees of
freedom, where n is the number of scansets contributing
to the sum.

In general, we will consider each value of m separately.
For each m, we will allow amplitude A and phase α to
vary, so we form an ensemble of likelihoods, one for each
value of m:

Lm(A,α) = N exp

[
−qm(A,α)

2

]
, (59)

where

N ≡ 1√
(2π)n

∏
τ σ

2(τ)
(60)

is a normalization coefficient. Crucially, there is no de-
pendence on oscillation parameters in N , so it will be
convenient to consider likelihood ratios, for which the N -
dependence drops out.
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For computational efficiency, it is convenient to express
the test statistic qm(A,α) from Eq. 58 as a linear combi-
nation of τ -sums, each of which depends only on m and
not on A nor α. This can be accomplished by rewriting
Eq. 41 as

f(t) = A [cos(mt) cosα− sin(mt) sinα] . (61)

The decomposition carries through Eq. 18 and Eq. 55,
which enters in the test statistic qm(A,α). By expanding
the square in the summand of Eq. 58, the A- and α-
dependent factors can be pulled out of the τ -sums. These
τ -sums can be evaluated for a chosen set of m-values and
saved to disk. The two-dimensional parameter space of
amplitude A and phase α can then be explored quickly by
forming linear combinations of the m-dependent terms.

C. Bayesian upper limits

Having computed the likelihood Lm(A,α), we
marginalize over the phase α, which carries no informa-
tion about axion properties and is expected to be ran-
dom. We set a uniform prior on the phase and define the
marginal likelihood

Lm(A) ≡ 1

2π

∫ 2π

0

dα Lm(A,α). (62)

For the amplitude A, we impose a prior distribu-
tion P (A). The prior could, in principle, vary with m.
For example, the prior could incorporate axion con-
straints from other datasets. For this analysis, however,
we set a uniform, m-independent prior.

The posterior distribution for each m-value is

Pm

(
A
∣∣∣{f̂(τ)

})
=

P (A)Lm(A)∫
dA P (A)Lm(A)

, (63)

i.e., the probability density for amplitude A given the

angular frequency m and the data
{
f̂(τ)

}
. We set a

linearly uniform prior

P (A) =
1

Amax
[0 ≤ A ≤ Amax] , (64)

where Amax is set conservatively above the current con-
straints in the axion mass range under consideration. In
the results below, we have used Amax/2 = 4◦.6 We inte-
grate the posterior to estimate a cumulative distribution
function (CDF), which we again compute for each m-
value independently:

Fm(A) =

∫ A

0

dA′ Pm
(
A′
∣∣∣{f̂(τ)

})
. (65)

6 We will often be interested in the quantity A/2, since it is the
amplitude of the on-sky oscillation of polarization angles. The
quantity A is the amplitude of the mixing of Stokes Q and U .

We set a Bayesian 95% credible interval by finding the
amplitude A that satisfies the condition Fm(A) = 95%.
This is our upper limit on the oscillation amplitude at
each m-value.

D. Background consistency

To check for consistency with the background, we form
a ∆χ2 test statistic. First we evaluate the test statistic
(Eq. 58) for the background model, i.e., with A = 0:

q0 ≡ qm(0, α). (66)

Then we find the amplitude Âm and phase α̂m that min-
imize qm(A,α). The test statistic for background consis-
tency is

∆qm ≡ q0 − qm
(
Âm, α̂m

)
, (67)

which is expected to be χ2-distributed with 2 degrees of
freedom. This expectation is confirmed in simulations,
but we do not rely on it in the results presented below.
Instead, all p-values are calibrated with an ensemble of
simulations.

We evaluate the test statistic ∆qm from Eq. 67 for
each m-value. In the results presented below, we consider
∼ 104 values, so it is necessary to account for a trials
factor. We use

∆q̂ ≡ max
m>0

(∆qm) (68)

as a global test statistic. We exclude m = 0 from
the maximization, since this term represents a constant
offset and not an oscillation. Let p̂ be the associ-
ated probability-to-exceed (PTE) or p-value for ∆q̂. In
the results presented below, we have calibrated p̂ with
2× 104 realizations and can, therefore, estimate statisti-
cal tension up to the level of ∼ 3σ.

V. SYSTEMATICS

We perform a set of data splits to test for systematic
effects that could create spurious oscillation signals. The
set of splits is identical to those performed in previous
BICEP/Keck Array analyses (cf. [40]), but the imple-
mentation and interpretation are different.

The template maps Q̄(n̂) and Ū (n̂) are constructed
from the full dataset regardless of which jackknife test is
under consideration. The rotated map r̄i(n̂, τ) (defined
in Eq. 20) depends on the orientation of detector i at
scanset time τ but is otherwise simply a linear combina-
tion of the template maps. For each scanset τ , we form

the per-detector correlation matrix elements ρ
(sr,sD)
i (τ)

and R
(sr1 ,sr2 )
i (τ) defined in Eqs. 42 and 43, respec-

tively. The correlations are constructed separately for
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left- and right-going scans, of which there are approx-
imately 50 each per scanset. Having saved to disk
the per-detector correlations split by scan direction for
each scanset, we can perform jackknife tests by select-

ing subsets of these quantities to form a time series f̂(τ)
and a likelihood Lm(A). For the nontemporal jackknife

tests, we form the mixing-angle estimator f̂(τ) for each
scanset τ from half of the data, either from only one of the
scan directions or from only half of the detectors. For the
temporal jackknife tests, we form the mixing-angle esti-

mator f̂(τ) from all of the data available at each scanset,
but we form the likelihood Lm(A) from only half of the
scansets.

A. Nontemporal jackknife tests

The nontemporal jackknives test whether the estima-

tor f̂(τ) is a good statistical representation of the data
collected during scanset τ . We split the data either by
the direction the telescope is slewing or by the contribut-
ing detectors, and we search for a systematic difference
in the results. We perform the following nine nontempo-
ral data splits defined in Sec. 8 of [40]: Scan direction,
Tile, Tile/deck, Focal plane inner/outer, Tile top/bottom,
Tile inner/outer, Mux column, Mux row and Differen-
tial pointing best/worst. The scan-direction jackknife is
considered nontemporal for the axion-oscillation analy-
sis, since the left- and right-going scans are interleaved
on timescales much smaller than the oscillation periods
of interest. The other jackknives split the data to ex-
pose potential non-idealities in optical, detector or read-
out properties.

For these jackknife tests, it is possible to cancel the
time-domain signal at the scanset level. We form a time
series for the jackknife difference

f̂ (jk)(τ) ≡ f̂ (1)(τ)− f̂ (2)(τ)

2
, (69)

where f̂ (i)(τ) is the mixing-angle estimator formed from

the ith half of the data split. We can treat f̂ (jk)(τ) as an
ordinary time series. In simulation, one can check the effi-

cacy of the signal cancellation by looking at
〈
f̂ (dyn)(τ)

〉
(introduced in Sec. IV A) constructed from many real-

izations of f̂ (jk)(τ). Recall that
〈
f̂ (dyn)(τ)

〉
∼ 70% for

undifferenced data. With differencing, there is a sub-

stantial reduction in
〈
f̂ (dyn)(τ)

〉
, though there is vari-

ation among the jackknife tests. As the noise level
is expected to be comparable to current limits on the
axion-photon coupling constant, we need only require a
relatively modest signal cancellation. All of the tests

reduce
〈
f̂ (dyn)(τ)

〉
by more than a factor of 20 with

percent-level scatter over τ . The scan-direction jackknife
cancels the signal significantly better than all other tests,

while the Focal plane inner/outer test cancels worst with
a few-percent bias away from zero.

Treating f̂ (jk)(τ) as a measured rotation-angle time se-
ries, we can evaluate the test statistic (Eq. 67) for back-
ground consistency:

∆q(jk)m ≡ ∆qm

({
f̂ (jk)(τ)

})
. (70)

Even though we expect any time-variable signal to be
cancelled, we must perform this consistency test as a
function of m. If we only used, e.g., the test statistic q0
(Eq. 66) to check for background consistency, we would
not pick up small residual oscillations. Sinusoidal fitting
has much greater sensitivity to oscillatory signals, so we
use the test statistic ∆qm (Eq. 67) for these jackknife
tests as well. The ∆qm test statistic is formed by compar-
ing to the undifferenced model distribution. We do not
compare to a model distribution based on the jackknife
difference, because the signal transfer function for oscil-

lations is close to zero. If f̂ (1)(τ) and f̂ (2)(τ) have equal

variances, then f̂ (jk)(τ) has the same variance as the

background. In that case, ∆q
(jk)
m follows a χ2-distribution

with 2 degrees of freedom just like ∆qm from Eq. 67. In
general, the variances are not equal, but the test statis-

tic ∆q
(jk)
m can be scaled by an O(1) factor, which can be

fit for, to map it onto a χ2-distribution with 2 degrees of
freedom. We do not, however, rely on the χ2 expectation

for any results and instead calibrate p-values for ∆q
(jk)
m

through simulation.
Just as discussed for the background-consistency test

in Sec. IV D, we must account for the large number of
m-values being tested. We define

∆q̂(jk) ≡ max
m>0

(
∆q(jk)m

)
, (71)

the most extreme signal-like excess, as a global test statis-
tic for consistency with simulations. We exclude m = 0
from the maximization, since this value represents a con-
stant rotational offset, which may indicate an inefficiency
in the experiment but does not produce spurious signals.
We estimate a p-value for this test statistic by comparing
to a distribution of background-only pseudo-simulations
differenced in the same manner. Since the signal mostly
cancels, the background-only simulations give approxi-
mately the same results as simulations with signal in-
cluded.

B. Temporal jackknife tests

Whereas the nontemporal jackknives test for statistical
consistency within a scanset, the temporal jackknives test
for consistency among scansets. We split the scansets
into two groups and search for a systematic difference in
oscillation signals. We perform the following five tempo-
ral data splits defined in Sec. 8 of [40]: Deck angle, Alter-
native deck, Temporal split, Azimuth and Moon up/down.
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These tests are designed to expose pick-up from far side-
lobes and non-idealities of the optical performance. Be-
cause we are searching for a time-varying signal, it is not
possible for temporal jackknives to cancel the signal in
the time domain. Instead, we cancel the signal in the
frequency domain by considering the best-fit oscillation
amplitude constructed from each half of the temporal
split. We form the test statistic

Â(jk)
m ≡

∣∣∣∣∣ Â(1)
m − Â(2)

m

2

∣∣∣∣∣ , (72)

where Â
(i)
m is the best-fit amplitude formed from the

ith half of the data split. We take the absolute value of
the difference, so signal-like systematics appear on only
one side of the test-statistic distribution. Since the tem-
poral data splits impose different window functions on

the time series f̂(τ), the best-fit amplitudes may vary
even when the true frequency content is the same. This
is similar to apodization effects in Fourier transforms,
though we are not computing a Fourier transform here.
This test statistic cancels the signal by more than an or-
der of magnitude, but the residual has a larger variance
than the background. We accept this increased variance
from potential signals but still require the real jackknife
results to match a background-only model. The test

statistic Â
(jk)
m is distributed approximately as a one-sided

Gaussian, but we estimate all p-values by comparing with
simulations.

Due to the signal transfer function from time binning,

the variance in Â
(jk)
m increases with m. To keep the same

normalization across the entire m-range, we divide by
the standard deviation as measured from background-
only simulations. The test statistic we use for estimating
statistical deviations from the model distribution is, then,

a(jk)m ≡ Â
(jk)
m

std
[
Â

(jk)
m

] . (73)

As in Secs. IV D and V A, we must account for the
large number of m-values under consideration. We take
the largest value over the m-range, which is the most
extreme signal-like excess:

â(jk) ≡ max
m>0

(
a(jk)m

)
. (74)

We exclude m = 0 from the maximization, since this
term indicates a constant rotational offset, which pro-
duces spurious signals in a way that is dealt with in
Sec. V B 1. We estimate a p-value for this test statistic by
comparing to a distribution of background-only pseudo-
simulations that have been subjected to the same tempo-
ral jackknife. Although more signal can leak through the
temporal jackknives than the nontemporal jackknives, we
require the real data to be statistically consistent with the
background-only simulations. This is a stricter require-
ment than is necessary to test for spurious systematic
signals.

1. Constant offset

The temporal jackknives test for two different types of
systematics. First, we want to check that any oscilla-
tions are appearing at the same level in both halves of
the temporal split. Second, we want to know if there is
a systematic bias in the rotation angle that depends on
a time-variable scan parameter and can, therefore, pro-
duce spurious oscillation signals at frequencies related
to the observing schedule. The test statistic â(jk) ad-
dresses the first type of concern. The second concern
is addressed by privileging the m = 0 jackknife differ-
ence, i.e., the difference in constant offset between the
two halves of the data split. If there is a systematic bias
that depends on, e.g., deck angle, then a naive analysis
may detect an oscillation signal at frequencies related to
the deck-rotation schedule. A jackknife split, however,
will discover the bias as a statistically anomalous value

for Â
(jk)
0 . We, therefore, include Â

(jk)
0 as a test statistic

for the Deck angle, Alternative deck, Azimuth and Moon
up/down jackknife tests. The reason we omit the Tem-

poral split is that a non-zero value for Â
(jk)
0 could also

be produced by a long-period oscillation. In fact, this
jackknife test represents a minor unblinding, since a true
oscillation, if it happens to be roughly synchronized with
one of the temporal-jackknife timescales, could appear

in Â
(jk)
0 . Since this is unlikely, we proceed with the jack-

knife test and treat any deviation from the background-
only simulations as evidence for a systematic bias.

C. Global systematics assessment

For the nine nontemporal jackknives listed in Sec. V A,
we calculate the test statistic ∆q̂(jk) (Eq. 71). For the
five temporal jackknives listed in Sec. V B, we calculate
the test statistic â(jk) (Eq. 74). For the four temporal
jackknives selected in Sec. V B 1, we calculate the test

statistic Â
(jk)
0 (Eq. 72). In total, then, we are performing

18 tests for consistency with simulations. For each test,
we form a p-value, which we will denote pi, where i is an
index labeling each of the 18 tests. All of these p-values
are calibrated by comparing with an ensemble of 5 ×
103 background-only pseudo-simulations (Sec. IV A 1). A
simulation ensemble of this size allows us to estimate p-
values down to the level of ∼ 10−3. It is not important to
precisely estimate smaller values, since we consider values
below this level to indicate unacceptable inconsistency
with the model. If we obtain such extreme values, we
would consider our measurements to be systematically
biased and would investigate the source before unblinding
the undifferenced data.

Because we perform 18 systematics tests, we must ac-
count for a trials factor in determining the statistical sig-
nificance of the most extreme result. We take the mini-
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mum jackknife p-value

p̂(sys) ≡ min
i
pi (75)

as a global test statistic for consistency with the simula-
tion ensemble. While p̂(sys) tests for signal-like system-
atics, we also check the sensitivity of the jackknife tests
with the test statistic

ĉ(sys) ≡ 1−max
i
pi, (76)

which is a measure of how well the model variances have
been estimated. A small value for ĉ(sys) indicates that the
variances have been overestimated, which would degrade
the sensitivity of the jackknife tests.

The quantities p̂(sys) and ĉ(sys) are drawn from an en-
semble of p-values but are to be regarded as test statis-
tics. We use the ensemble of 110 reobservations to es-
timate p-values for these test statistics. The reason we
do not use the ensemble of 5 × 103 pseudo-simulations
is that these do not include covariances between jack-
knife tests. The reobservations show negligible covari-
ances among the 18 test statistics, but we do not wish
to depend on that statistical independence for any of our
results. Let pp be the p-value of the test statistic p̂(sys)

and pc the p-value for ĉ(sys). Because these p-values are
estimated from an ensemble of only 110 realizations, we
provide only two significant figures instead of the three
significant figures provided for the individual jackknife
tests.

We require both p̂(sys) and ĉ(sys) to lie within the cen-
tral 2σ region of the background distribution. Although
there are two test statistics, we do not account for a tri-
als factor. Our requirement, therefore, is more stringent
than simply requiring overall 2σ consistency.

VI. RESULTS

For a first demonstration of the methods described in
Secs. III, IV and V, we selected the 2012 observing sea-
son of the Keck Array. During this season, all five re-
ceivers observed at 150 GHz, and the dataset has been
thoroughly vetted by the standard BICEP CMB analy-
ses [38]. The data volume is small enough for relatively
quick iteration but large enough to understand computa-
tional scalings. The 2012 season represents only a small
fraction of the total BICEP dataset, and we intend to
extend this analysis to include more data in future pub-
lications.

An important element in the analysis is the rotated
map r̄i(n̂, τ) (Eqs. 10 and 20), which is constructed from
the coadded maps Q̄(n̂) and Ū (n̂). In principle, these
coadded maps could be constructed from the full BICEP

dataset, while the time series f̂(τ) could be restricted
to the 2012 season. For computational speed, however,
we used only 2012 data in all components of the analy-
sis, which produces a moderate but non-negligible signal
suppression (Sec. III F).

A. Mass coverage

Our upper limits (Sec. IV C) are estimated for each
value of m independently. The set of m-values represents
a discrete sampling in mass space rather than a binning.
These m-values can, in principle, be chosen arbitrarily.
We wish, however, to achieve approximately continuous
coverage over as broad a mass range as possible. Unlike
a discrete Fourier transform (DFT), we aim to have some
redundancy between neighboring mass values in order to
justify interpolation. The methods of Secs. IV and V do
not require the results from different mass values to be
independent.

Since we bin our results by ∼ 45-minute scansets
(Sec. III C), we take the minimum oscillation period con-
sidered in the analysis to be 2 hr. As described in
Sec. III C, the constraints on gφγ from SN1987A are suf-
ficiently strong that there is little motivation to push to
oscillation periods smaller than 2 hr. This sets a max-
imum frequency for the analysis νmax = 0.5 hr−1 and
an associated maximum mass mmax = 2πνmax. Let T
be the total time range covered by the time series f̂(τ).
Each season, science observations for the Keck Array
typically lasted from early March until late October, so
T ≈ 8 mo for a single season. We set a frequency reso-
lution ∆ν ≡ 1/(βT ), where β is a factor that determines
the amount of oversampling relative to a conventional
DFT. In the results shown below, we use β = 3. With
this frequency resolution, we consider the mass range
0 ≤ m ≤ mmax. For the 2012 Keck Array season, this
amounts to 8638 m-values. The m = 0 results are used
only for the temporal-jackknife test statistic Â

(jk)
0 and are

explicitly excluded from all other data products. We also
ignore the results for oscillation periods longer than 30 d
in order to satisfy the approximation that the coadded
maps contain only a negligible contribution from polar-
ization oscillations (Eq. 28). This last condition removes
only 23 m-values, but it limits the low-frequency extent
of our results. In a future iteration of the analysis, it
may be computationally feasible to account for the os-
cillation residual in the coadded maps and set limits at
arbitrarily low frequencies, though we expect degraded
sensitivity when the oscillation period is on the order of
or larger than the total observing time.

B. Unblinding procedure

All real data products were kept blinded until the
jackknife tests had been designed and shown in simula-
tion to substantially suppress oscillation signals. From
that point on, the results of real jackknife tests were
unblinded. When it was concluded that there was no
evidence for systematic effects in the jackknife tests, we
agreed on a decision tree for unblinding the undifferenced
data. Since the Keck Array has collected data for eight
seasons, the results from the 2012 season shown below
represent a partial unblinding of the full dataset. To pre-
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Jackknife test p
(

∆q̂(jk)
)

Scan direction 0.954

Tile 0.709

Tile/deck 0.333

Focal plane inner/outer 0.434

Tile top/bottom 0.965

Tile inner/outer 0.534

Mux column 0.970

Mux row 0.994

Differential pointing best/worst 0.999

TABLE I. Nontemporal-jackknife p-values for the test statis-
tic ∆q̂(jk) (Eq. 71). Several p-values are close to 1, and this
may be due to overestimates of the model variances, which
would weaken but not invalidate the jackknife tests. We assess
the statistical significance of the most extreme value with the
test statistic ĉ(sys) (Eq. 76), which gives a p-value pc = 0.044
and is, therefore, in tension with the background model at
the level of 1.7σ.

pare for the possibility of a signal-like excess, we decided
before unblinding that a measurement of p̂ ≤ 6.2× 10−3

(see Sec. IV D), which would indicate tension with the
background model in excess of 2.5σ, would trigger an
analysis of an additional season of data and allow for un-
blinded investigation of systematic effects in 2012 data.
If the excess persisted, it would trigger an analysis of all
four of the seasons of Keck Array observations contribut-
ing to [38]. This strategy would allow us to distinguish
between a real signal and a statistical fluctuation while
also providing more opportunities and data to search for
systematic effects. We measured p̂ = 0.14, which indi-
cates 1.1σ signal-like tension with the background model.
As this tension is significantly below the 2.5σ threshold,
we present results from only the 2012 season below. The
results from additional seasons are being processed, and
we intend to present them in subsequent publications.

C. Systematics

The results of the 18 jackknife tests described in Sec. V
are shown in Tabs. I and II. We find pi ≥ 12.7% for
all tests i, and this indicates that no individual test has
revealed a spurious signal. Two of the nontemporal jack-
knife tests (Tab. I) show pi > 99%, which may be in-
terpreted as statistically anomalous agreement with the
background model. These large p-values suggest possi-
ble overestimates of the model variances, which lower
the sensitivity of the jackknife tests to systematic ef-
fects. We provide a global assessment of the jackknife
results by considering the test statistics p̂(sys) (Eq. 75)
and ĉ(sys) (Eq. 76). The associated p-values come to
pp = 0.45 and pc = 0.044, respectively. The latter
value is relatively low but lies within the central 2σ re-

Jackknife test p
(
â(jk)

)
p
(
Â

(jk)
0

)
Deck angle 0.481 0.220

Alternative deck 0.330 0.621

Temporal split 0.127 –

Azimuth 0.760 0.927

Moon up/down 0.621 0.191

TABLE II. Temporal-jackknife p-values for the test statis-

tics â(jk) (Eq. 74) and Â
(jk)
0 (Eq. 72 and Sec. V B 1). As dis-

cussed in Sec. V B 1, we do not consider Â
(jk)
0 for the temporal

split.

gion (0.0228 ≤ p ≤ 0.9772), and we, therefore, conclude
that there is no statistically significant tension with the
background model.

A possible improvement for a future iteration of the
systematics analysis is to consider, in addition to the
most extreme p-values p̂(sys) and ĉ(sys), the p-value distri-
bution, though it should be noted that the introduction
of additional test statistics dilutes the sensitivity of each.

D. Background consistency

To check for consistency with the background model,
we consider the test statistic ∆qm (Sec. IV D), which is
plotted in Fig. 4 for real data from the 2012 observ-
ing season of the Keck Array. Since there are roughly
104 frequencies included in our analysis, we use the test
statistic ∆q̂ (Eq. 68), which is simply the maximum value
of ∆qm, to estimate a global p-value p̂. In Fig. 4, we show
the 2.5σ levels for ∆q̂, and we see that the entire spec-
trum lies within this region. We find p̂ = 0.14, which
indicates a 1.1σ signal-like fluctuation in ∆q̂. As the sta-
tistical significance of this fluctuation is far below the
threshold set in Sec. VI B, we claim no evidence for ten-
sion with the background model.

E. Upper limits

The direct observable in this analysis is the Stokes mix-
ing amplitude A. For A� 1, which is a good approxima-
tion in this case, the amplitude of polarization rotations
on the sky is A/2. Following the convention of [15], we
express our upper limits in terms of the rotation am-
plitude A/2. We follow the prescription of Sec. IV C to
compute 95%-confidence upper limits, and we present the
results in Fig. 5. For oscillation periods longer than one
day (m/(2π) < 1 d−1), the median limit is

A/2 < 0.68◦. (77)

For visual comparison, we also show the expected dis-
tribution of upper limits as implied by background-only
simulations.
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FIG. 4. The test statistic ∆qm for consistency with the back-
ground model (Eq. 67) for real data from the 2012 observing

season of the Keck Array. We plot ∆q
1/4
m on the vertical axis

in order to compress the distribution for visual purposes, and
we plot frequency m/(2π) in units of inverse days (d−1) on
the horizontal axis. The maximum and minimum values are
indicated in the legend with their corresponding oscillation
periods. The levels for global 2.5σ fluctuations in both di-
rections are indicated by horizontal red lines, i.e., there is a
1.2% probability in the background model that at least one
value of ∆qm will lie outside the region bounded by the red
lines.

For periods shorter than one day (m/(2π) > 1 d−1),
the limits degrade by ∼ 20% as we approach the binning
timescale (Sec. III C). Over the entire frequency range,
we can obtain a smoothed approximation to our upper
limits by performing a least-squares fit to

A

2
<

A0

2 sinc (m∆t/2)
(78)

with ∆t = 44.2 min., which is the median scanset dura-
tion, and A0 as a free parameter. The sum over m 6= 0
of squared residuals is minimized with A0/2 = 0.71◦.

To convert our limits on rotation amplitude to the ax-
ion parameter space, we identify

A = gφγφ0 (79)

from Eqs. 3 and 41. The m-dependence of the axion field
strength φ0 (Eq. 4) implies that our limits on the cou-
pling constant will roughly follow gφγ ∝ m. In Fig. 6,
we present our constraints on the parameter space of
axion-like particles from the 2012 observation season of

the Keck Array. Combining Eqs. 4, 78 and 79, we can
approximate our limits on the coupling constant by

gφγ <
(
1.2× 10−11 GeV−1

)
sinc−1

(
m

5.0× 10−19 eV

)
×
( m

10−21 eV

)( κρ0
0.3 GeV/cm3

)−1/2
.

(80)

For periods greater than 24 hr, which corresponds to m <
4.8 × 10−20 eV, we can convert the median limit from
Eq. 77 to

gφγ <
(
1.1× 10−11 GeV−1

) ( m

10−21 eV

)
×
(

κρ0
0.3 GeV/cm3

)−1/2
.

(81)

For comparison, we include in Fig. 6 the constraints from
other probes. Our constraints from only 2012 data do
not exclude new regions of parameter space, but we note
that the time-domain polarization-oscillation observable
is distinct from all others and, consequently, subject to a
different set of possible systematic biases. Furthermore,
we emphasize that the 2012 observing season of the Keck
Array represents only a small subset of the total CMB
data collected to date and that more sensitive observa-
tions will be conducted in the future.

VII. CONCLUSIONS AND OUTLOOK

We have presented a method to search for axion-like
polarization oscillations in the CMB, and we have demon-
strated the use of this method with data from the 2012
observing season of the Keck Array. The search is com-
patible with the design and operation of experiments tar-
geting primordial B-modes and can be continued by cur-
rent and future projects with no change to scan strategy
nor to low-level data processing.

With only 2012 data from the Keck Array, we do not
exclude any new regions of the parameter space. We
note, however, that we have analyzed only a relatively
small fraction of the total BICEP dataset. The Keck
Array observed for eight seasons, and we have in this
work analyzed only one season. Additionally, BICEP3
has been observing at 95 GHz since 2015 with more than
twice the mapping speed of the entire Keck Array [41].
The full BICEP dataset has a survey weight more than an
order of magnitude greater than that of the 2012 season.

When more of the BICEP dataset is included in an
axion-oscillation analysis, we expect improvements in
sensitivity for two reasons. The first is a decrease in
residual map noise in the template maps Q̄(n̂) and Ū (n̂).
With a better template, we more efficiently extract an
oscillation-like signal from the pairmaps. Preliminary in-
vestigations indicate that the elimination of residual map
noise can improve the per-scanset signal-to-noise ratio
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FIG. 5. Bayesian 95%-confidence upper limits on rotation amplitude A/2 (Sec. IV C). We also provide the median expectation
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local rather than global percentiles. With nearly 104 frequencies under consideration, we expect several values outside of the
2σ region. The question of background consistency is addressed by Fig. 4 and the test statistic ∆q̂ (Eq. 68). The median limit
for oscillation periods larger than 24 hr (frequency less than 1 d−1) is 0.68◦. For shorter periods (larger frequencies), the limits
are degraded due to binning observations in ∼ 1-hr scansets (Sec. III C). Additionally, we plot a smoothed approximation to
our upper limits (Eq. 78) in cyan.

by ∼ 15% for the 150-GHz observations analyzed in this
work. For frequencies above∼ 200 GHz, which tend to be
significantly noisier due to stronger atmospheric fluctua-
tions, the signal-to-noise ratio can be improved by more
than a factor of 2 by using lower-frequency maps as the
CMB templates. The second improvement in sensitivity
will come from the increased sample size. We have ver-
ified through simulations that, when the template maps
are held constant, our expected upper limits scale ap-
proximately as 1/

√
n, where n is the number of scansets

included in the analysis. With existing BICEP data, we
conservatively anticipate an improvement in upper limits
by at least a factor of 3.

Current and future BICEP observations will allow for
even more sensitive measurements. We are continuing
observations with BICEP3 at 95 GHz. The BICEP Ar-
ray has begun a staged deployment of four new receivers

of similar size to BICEP3 [42]. The first receiver, which
observes at 30 and 40 GHz, achieved first light in Febru-
ary 2020. The second and third receivers will observe
at 150 and 95 GHz, respectively, and the fourth receiver
will observe at 220 and 270 GHz.

Additional improvements in sensitivity can be achieved
by correlating in the time domain with other CMB ex-
periments. The South Pole Observatory is a formal part-
nership between the BICEP collaboration and the South
Pole Telescope (SPT) collaboration. The current gen-
eration of SPT, which is called SPT-3G [43], has been
observing from the South Pole since 2017. While the
BICEP dataset has greater integrated polarization sensi-
tivity, SPT has greater angular resolution and is, there-
fore, sensitive to more polarization modes. All else be-
ing equal, a higher-resolution CMB experiment is more
sensitive to polarization oscillations due to the increased
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is the limit set by the CAST experiment [21]. The dotted grey vertical line is a constraint on the minimum axion mass from
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number of modes, though this advantage is less signifi-
cant for multipoles larger than ` ∼ 2000, where the CMB
anisotropies are suppressed.

The CMB Stage-4 (CMB-S4) project will contain more
than an order of magnitude more detectors than any
current-generation experiment, and this will provide yet
another boost in sensitivity [44, 45]. An axion-oscillation
search imposes few requirements on the design and scan
strategy of CMB-S4, since the main elements are noth-
ing more than sensitive, repetitive measurements of CMB

polarization. The search is more sensitive at CMB-
dominated frequency bands like 95 and 150 GHz, since
the global oscillation affects only the CMB component of
the polarization field. To take full advantage of the po-
larization information in the CMB and thereby increase
the signal-to-noise ratio, higher-resolution instruments
are preferred, e.g., with aperture diameters of 5-10 m,
which allow for sensitivity to polarization modes into the
CMB damping tail.

The methods presented in this work can be adapted
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with relatively minor alterations to analyze data from
other CMB polarimetry experiments. Some of our analy-
sis choices take advantage of unique characteristics of the
Keck Array, and we have attempted to draw attention to
those experiment-specific assumptions. As the signal is
coherent over large time and length scales (Sec. I), obser-
vations from several CMB experiments can be combined
to protect against systematics and improve sensitivity.
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H. Bräuninger, G. Cantatore, J. M. Carmona, J. F. Cas-
tel, S. A. Cetin, F. Christensen, J. I. Collar, T. Dafni,
M. Davenport, T. A. Decker, A. Dermenev, K. Desch,
C. Eleftheriadis, G. Fanourakis, E. Ferrer-Ribas, H. Fis-
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A. Bonaldi, L. Bonavera, J. R. Bond, J. Borrill, F. R.
Bouchet, F. Boulanger, M. Bucher, R. Burenin, C. Buri-
gana, R. C. Butler, E. Calabrese, J. F. Cardoso,
P. Carvalho, B. Casaponsa, G. Castex, A. Catalano,
A. Challinor, A. Chamballu, R. R. Chary, H. C. Chi-
ang, J. Chluba, G. Chon, P. R. Christensen, S. Church,
M. Clemens, D. L. Clements, S. Colombi, L. P. L.
Colombo, C. Combet, B. Comis, D. Contreras, F. Cou-
chot, A. Coulais, B. P. Crill, M. Cruz, A. Curto, F. Cut-
taia, L. Danese, R. D. Davies, R. J. Davis, P. de
Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, J. M.
Delouis, F. X. Désert, E. Di Valentino, C. Dickinson,
J. M. Diego, K. Dolag, H. Dole, S. Donzelli, O. Doré,
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rese, P. Mazzotta, J. D. McEwen, P. McGehee, S. Mei,
P. R. Meinhold, A. Melchiorri, J. B. Melin, L. Mendes,
A. Mennella, M. Migliaccio, K. Mikkelsen, M. Millea,
S. Mitra, M. A. Miville-Deschênes, D. Molinari, A. Mon-
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