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Generation of simulated data is essential for data analysis in particle physics, but current Monte
Carlo methods are very computationally expensive. Deep-learning-based generative models have
successfully generated simulated data at lower cost, but struggle when the data are very sparse. We
introduce a novel deep sparse autoregressive model (SARM) that explicitly learns the sparseness
of the data with a tractable likelihood, making it more stable and interpretable when compared
to Generative Adversarial Networks (GANs) and other methods. In two case studies, we compare
SARM to a GAN model and a non-sparse autoregressive model. As a quantitative measure of perfor-
mance, we compute the Wasserstein distance (Wp) between the distributions of physical quantities
calculated on the generated images and on the training images. In the first study, featuring images
of jets in which 90% of the pixels are zero-valued, SARM produces images with Wp scores that are
24-52% better than the scores obtained with other state-of-the-art generative models. In the sec-
ond study, on calorimeter images in the vicinity of muons where 98% of the pixels are zero-valued,
SARM produces images with Wp scores that are 66-68% better. Similar observations made with
other metrics confirm the usefulness of SARM for sparse data in particle physics. Original data and
software will be made available upon acceptance of the manuscript from the UCI Machine Learning
in Physics web portal at: http://mlphysics.ics.uci.edu/.

I. INTRODUCTION

Experiments in particle physics seek to uncover the
building blocks of matter and their interactions, which
determine the structure of the Universe from subatomic
to cosmic distances. Analyses of the data produced by
these experiments make extensive use of simulations to
predict the experimental signature of particle interac-
tions under various theoretical hypothesis. These sim-
ulations are used in likelihood-free inference as well as in
the development of data selection and analysis strategies
which optimize the statistical power of the data. Current
state-of-the-art simulators apply Monte Carlo techniques
to the microphysical processes governing individual par-
ticles’ propagation and interaction [1], making them com-
putationally expensive [2, 3].

Detectors in particle physics experiments have a multi-
layer architecture which produces highly structured data.
One essential layer, the calorimeter, measures the en-
ergy of passing particles, and is subdivided into small
cells to ensure spatial resolution. In collider experiments,
the calorimeter is typically cylindrical [4], while in fixed-
target experiments it may be a surface [5]. In both cases,
the data can be represented as an image, allowing for the
application of image-processing methods initially devel-
oped for natural images. However, in contrast to natural
images, pixels in calorimeter images (figure 1) are very
sparse, where usually 90% or more of the pixel values
are zero. In addition, these images are not as uniform as
natural images, featuring clusters in the center and noise
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in the periphery.

Recently, deep generative models [8–10] have produced
high-quality artificial natural images [11–13] at a rela-
tively low computational cost. The successful application
of machine learning in high energy physics [14–21], and
generative models in natural images has inspired the use
of these models for generating image-like data in physical
sciences applications [6, 22–32], often employing Genera-
tive Adversarial Networks (GAN) [8] or, less frequently,
Variational Auto-encoders (VAE) [9]. However, the ex-
treme sparsity of the images in particle physics and other
areas of the physical sciences [33] presents unique chal-
lenges for generative models.

The leading applications of GAN-based generative
models for sparse image synthesis in high-energy physics,
LAGAN [6] and CALOGAN [34], make use of the ReLU
activation function in the final layer to induce sparsity in
the output image. The flat portion of the ReLU activa-
tion function can lead to many error gradients being zero
at the output layer, creating challenges [35] for stochastic
gradient descent [36, 37] methods. In addition, GANs are
notoriously unstable during training [38] and can suffer
from mode collapse, which restricts the diversity of events
in the generated data [39, 40]. Despite these difficulties,
GANs have been one of the most popular deep generative
models in particle physics.

However, other generative models may be better suited
for sparse data. For example, deep autoregressive models
(ARMs) have also demonstrated impressive performance
for generating natural images among likelihood based
generative models [10, 41]. In this paper, we develop
sparse autoregressive models (SARM), a class of ARMs
specifically tuned to produce sparse images. We present
a systematic approach for designing SARMs and demon-
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FIG. 1. Calorimeter images in particle physics are often very sparse, where most of their pixels have very small values. Left:
Typical signal image of a hadronic jet from [6] Right: Typical signal image of the vicinity of a muon from [7].

strate their effectiveness through multiple experiments.
SARMs are stable during training with respect to hyper-
parameter variations and weight initializations. SARMs
are also interpretable in the sense that it is possible for
these model to produce an analytic likelihood for any
given sample. We then evaluate SARMs on two bench-
mark data sets. Given their flexibility, SARMs may be
applicable to areas beyond particle physics where sparse
images must be generated.

II. DATASETS

An important statistical task in the analysis of particle
physics data is identifying the particle source of a partic-
ular detector signature. Below, we describe two datasets,
one which distinguishes between the detector signatures
of single quarks and collimated pairs of quarks, and a
second which distinguishes between muons produced in
isolation and those produced as part of a shower of par-
ticles.

A. Jet Substructure Study

Quarks or gluons produced in collisions leave a par-
ticular detector signature: a jet, or shower of collimated
particles, which deposit most of their energy in a tight
core. In many applications, it is important to distinguish
the signatures of a single quark or gluon from that of a
collimated pair of quarks, which may leave two poten-
tially overlapping cores. This task is a natural setting
for image-recognition algorithms, and has been the fo-
cus of many deep learning studies [33, 42–45] which rely
on simplified calorimeter simulations due to the cost of
generating realistic samples. Thus, an inexpensive gen-
eration of realistic datasets would be very valuable as a
classification training sample.

We use a set of benchmark jet images from Ref. [6],
where a full description of this dataset can be found as

well as the code to generate it. In this dataset, quark
pairs from W -boson decay are labeled as signal and sin-
gle quark or gluon jets are labeled as background images.
The intensity of each pixel value represents the sum of the
momenta transverse to the beam (PT) over the particles
which strike a particular cell. The images are generated
using PYTHIA 8.219 [46] simulations of proton collisions
at a center-of-mass energy

√
s = 14 TeV, selecting jets

with 250 < PT < 300 GeV. Instead of a realistic detector
simulation, the calorimeter response is mimicked via a
regular 0.1×0.1 grid in the η and φ coordinates. The jet
images are constructed and preprocessed as described in
[43], including the centering and rotations of the images.
The resulting images are 25×25 pixels, with intensity val-
ues in the [0,276] range. We divide them into a training
set containing 400,000 images for the signal and 400,000
images for the background, and a testing set containing
36,000 images for the signal and 36,000 images for the
background. A typical image from this dataset is shown
in figure 1. This dataset has a high degree of sparseness:
more than 90% of its pixels are zero valued.

B. Muon Isolation Study

Muons leave a very clear detector signature which is
difficult to mimic. However, physicists must distinguish
between two modes of muon production: a rare mode
in which muons are produced from the decay of a heavy
boson and are isolated in the detector, and a second pro-
lific mode in which muons are produced inside a jet, sur-
rounded by other particles. Fluctuations in the jet can
occasionally produce apparently-isolated muons.

We use a set of benchmark calorimeter images from
[7], where muons from heavy bosons are labeled as sig-
nal and muons produced within jets are labeled as back-
ground. The signal muons are generated with the process
pp → Z ′ → µ+µ− with a Z ′ mass of 20 GeV/c2. Back-
ground muons are generated with the process pp → bb̄.
Both signal and background datasets are generated at a



3

center of mass energy
√
s = 13 TeV. The collisions and

immediate decays are simulated with madgraph5 2.3.3
[47], showering and hadronization with pythia
6.428 [46], and detector response with delphes
3.4.0 [48] using the delphes ATLAS detector
model. Additional proton interactions are overlaid on
top of the primary process, at a rate of 50 additional in-
teractions per event. This dataset only considers muons
with PT in the range: PT ∈ [10, 15] GeV/c. The sig-
nal events are weighted to match the transverse muon
momentum distribution of the background events. The
calorimeter images in the vicinity of the muon are cre-
ated from the calorimeter deposits within η − φ radius
of R < 0.4, where each pixel represents the momentum
transverse to the beam axis. The deposits are prepro-
cessed by centering the image on the coordinates of the
identified muon propagated to the calorimeter. The im-
ages are pixelated using a 32x32 grid to roughly match
the granularity of the calorimeters of ATLAS and CMS,
and the pixels have values in the range [0, 172]. The
training set contains 41250 signal images and 41246 back-
ground images, and the testing set contains 41344 signal
images and 41151 background images. A typical image
from this dataset is shown in figure 1. This dataset has
an even greater level of sparsity: more than 98% of its
pixels have zero-value.

III. AUTOREGRESSIVE MODELS (ARMS)

Autoregressive models (ARMs) approximate a high di-
mensional data distribution Pdata(x) with P (x), the dis-
tribution induced by the model where x ∈ RD. For exam-
ple, when working with images, Pdata(x) represents the
distribution of the values of D pixels in the image. ARMs
are generative models that create outputs sequentially,
where each new output is conditioned on the previous
output [49]. Formally, ARMs transform the problem of
learning the joint distribution Pdata(x) into learning a se-
quence of tractable conditional distributions P (xi|xj<i).
The ordering of the pixels can influence the model’s per-
formance and will be discussed later in the paper. ARMs
rely on the basic factorization:

P (x) = P (x0, x1, . . . , xD)

= P (x0)P (x1|x0)P (x2|x0, x1) . . . P (xD−1|x0 . . . xD−2)
(1)

The conditional densities P (xi|xj<i) can be parameter-
ized by deep neural networks [10, 41, 50, 51] so that: (1)
P (xi|xj<i) = P (xi|θi), where θi represents the parame-
ters of a distribution (e.g. mean and standard deviation);
(2) θi = fi(x0, . . . , xi−1), such that θi depends on previ-
ous output; and (3) the function fi is implemented by
a neural network. At generation time, the pixel values
xi are generated sequentially by sampling in order from
the distributions P (xi|θi). A simplified implementation
of this process using a single neural network is depicted

in figure 2. The weights of the neural networks that com-
pute the θi’s are shared across different values of i, for
regularization [51] purposes and to reduce computational
costs, hence the zero-padding of the input vector.

x0

Pixels
P(xi | θi)

xi-1

0
0

… θi

Parameters Density Prediction

DNN

~       xi

FIG. 2. Pixel generation process by a deep ARM to create
an image with D pixels. For the pixel xi, a deep neural net-
work (DNN) is evaluated on a vector with values x0, . . . , xi−1,
zero-padded to length D. The output of the network are the
parameters θi of a parametric probability density P (xi|θi),
from which xi is sampled.

A common concern with ARMs is that by generating
pixels in sequence, conditioning only on previously vis-
ited pixels, the model may not be able to take into ac-
count the dependence of a current pixel on subsequent
pixels. However, this is not the case because the weights
are trained using all the data (i.e. “past” and “fu-
ture” pixels) and the model always learns to generate the
joint marginal distribution of previous and current pix-
els. This idea is further illustrated with a toy example in
Appendix VII A.

Learning in ARMs is different from learning in other
generative models such as GANs and VAEs. ARMs di-
rectly minimize the discrepancy, in terms of KL diver-
gence, between the data distribution Pdata(x) and the
model distribution P (x) which is produced explicitly. In
contrast, neither GANs nor VAEs produce a tractable

FIG. 3. Generation process of a deep autoregressive model.
During generation, the first pixel x0 is sampled from x0 ∼
P (x0|θ0). Next, the pixel x0 is zero-padded to a D dimen-
sional vector and passed to the neural network ARM model,
which evaluates the parameters θ = {θ0, . . . , θD−1}, though
only θ1 is needed to sample the next pixel x1 ∼ P (x1|θ1).
The pixels x0 and x1 are again zero-padded to create a D
dimensional vector which is passed into the neural network to
generate the next pixel. This process is repeated until all pix-
els are generated. Note that the same neural network is used
at each generation step, and part of its weight connections
are disabled to preserve the autoregressive structure.
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marginal likelihood model P (x) and, as a result, they
have to resort to approximations for minimizing the KL
divergence between the data and model distributions.
ARMs avoid this issue by sequentially modeling each con-
ditional probability distribution, allowing them to min-
imize the KL divergence directly with a tractable likeli-
hood P (x). Leveraging the flexibility of deep neural net-
works to learn each conditional probability, ARMs are
able to approximate a large family of continuous distri-
butions in RD [52].

The implementation of ARMs for images can follow
several approaches [10, 41, 50, 53]. For scalability during
training and generation, we use a single neural network
to model the parameters of the conditional probabilities
at each step, where some connections are intentionally
disabled to preserve the autoregressive structure (see Ap-
pendix VII B), similar to the structure used in [50]. Given
a training image, this makes it possible to calculate all
the parameters θ0, . . . , θD−1 in parallel, instead of calcu-
lating each θi sequentially. During generation, the model
generates the output elements one-by-one as illustrated
in figure 3.

IV. SPARSE AUTOREGRESSIVE MODELS
(SARMS)

To deal with sparsity in images, we introduce sparse
ARMs (SARMs) in which each conditional distribution
is a mixture comprising a Dirac delta distribution at the
zero pixel value, as one of its components. The proba-
bility associated with the zero-pixel value is learnable by
gradient descent, providing a flexible and efficient way of
modeling and fitting highly sparse datasets. The other
components of the mixture can be modeled in different
ways, as described below.

A. Sparse Images Likelihood Models

In SARM, the likelihood function for the i-th pixel xi
is formulated as:

p(xi|θi) = γi · δxi=0 + (1− γi) · δxi 6=0 · p(xi|φi) (2)

where the parameters θi = {γi, φi} are predicted by the
underlying neural network taking x0, . . . , xi−1 as its in-
puts. Since the pixel values in the calorimeter images
represent the physical deposition of energy, they must be
non-negative, i.e. p(xi|φi) > 0 only when xi > 0. To sat-
isfy this constraint, we explore two options. First, we use
a mixture of a Dirac delta distribution at zero with a dis-
crete distribution for the non-zero pixels (D+D). Second,
we use a mixture of Dirac delta distribution at zero with
a continuous distribution for the non-zero pixels (D+C).

Discrete Mixture Model (D+D): We discretize
each pixel value xi by rounding it to the nearest value in
a pre-determined grid with points {0, g1, . . . , gN}, where
gj > 0 for j from 1 to N , and gN corresponds to the

largest pixel value after rounding. The model learns the
probability of each discrete value as a categorical distri-
bution:

p(xi|θi) = γi,0 · δxi=0 +

N∑
j=1

γi,j · δxi=gj (3)

where each γi,j is predicted by the parameter θi =
(θi0, . . . , θiN ) using a softmax function. When the grid
is uniform, this likelihood is the same as the discretized
softmax likelihood used by Pixel RNN [10], which has
achieved state-of-the-art results on benchmark datasets
of natural images. [54]. However, in particle physics the
distribution of pixel values is typically far from uniform.
In many typical cases, there is a large number of pixels
with small values, and a few pixels with large values, as
seen in figure 5. To better represent the pixel distribution
and minimize the error due to quantization, we assign
more grid points to the region of low pixel values. We
achieve this by using a power transformation x̂ = x1/p on
the pixel values, where p is a hyperparameter such that
p ≥ 1.
Discrete and Continuous Mixture Model

(D+C): The pixel values of natural images are usually
represented by unsigned integer values between 0 and
255. However, in particle physics images, the pixel val-
ues are typically real-valued. To avoid explicit rounding,
SARM (D+C) is built with a truncated logistic distri-
bution that models the non-zero distribution component
of each pixel. To generate the D+C mixture, we repa-
rameterize each pixel as xi = x̃i · zi, where x̃i follows
a truncated logistic distribution TL(µi, si) with mean µi

and scale parameter si. Here zi ∼ Bern(γi) is a Bernoulli
random variable with probability p(zi = 1) = γi, which
controls the sparsity level. By assuming independence of
x̃i and zi, the likelihood function of xi becomes:

p(xi|θi) = γi · δzi=0 + (1− γi) · δzi 6=0 · p(x̃i|µi, si) (4)

where θi = {µi, si, γi} are functions of the previous pixel
values x0:i−1, to ensure the autoregressive structure. In
order to allow for unconstrained optimization, we treat
log(si) as the learning parameter and take its exponential
in the likelihood equation 4. Since the pixel distribution
could be multi-modal, we use a mixture of truncated lo-
gistic (MTL) distributions for x̃i which is more flexible.

The mixture of truncated logistic likelihood differs
from the discretized logistic mixture used in Pixel
CNN++ [41] in the way it handles continuous pixel val-
ues. Pixel CNN++ requires discretizing xi and then
maximizing the probability on the discretized grid. In
contrast, SARM can directly maximize the probability
density function of xi, allowing it to handle continuous
pixel values without incurring quantization errors.

There are several differences between the D+D and the
D+C models. The D+D model allows enough flexibility
to represent multi-modal distributions, as each grid point
has its own learnable probability. However, there is a



5

FIG. 4. Generation process for the D+C model. The blue circle dots represent the value sampled for each pixel. For example,
given the first pixel value of 6.7, sampled from the empirical distribution of the dataset, the neural network outputs the
distribution parameters γ1 = 0.1, µ1 = 3.1, s1 = 3.9 to generate the second pixel. Then a Bernoulli random variable is sampled
from z1 ∼ Bern(γi) and a logistic random variable is sampled from x̃i ∼ Logistic(µi, si). The value of the second pixel xi is
produced by the product of these two variables as: xi = zi · x̃i = 0 · 2.9 = 0. This sequential process is repeated until every
pixel is generated.

price for this flexibility. It is significantly more time-
consuming to generate an (N + 1)-way softmax vector
and sample from a discrete mixture (D+D) than it is
to generate the parameters of γ, µ, s and then sample
from a discrete and continuous mixture (D+C). Other
constrained domain distributions such as the exponential
and the gamma distributions were also considered but led
to inferior results. The exponential distribution suffers
from a lack of flexibility due to having only one learnable
parameter.

B. Multi-Stage Generation for Heterogeneous
Areas

In many ARM applications, a single network is used
to predict the parameters θi of the conditional probabil-
ity distribution P (xi|θi). This approach works well if the
distribution of pixel values is similar across pixels, as is
often the case in natural images. However, as shown in
figure 5 (left), the pixel value distribution in the central
square of a calorimeter image containing a jet is very
different from the distribution in the rest of the image
(see also [43]). In order to handle these heterogeneous
regions, we use a two-stage approach by stacking two
distinct deep SARM modules, one for the center and one
for the periphery. When the model generates the image
from the inside out, the outer module generates pixels
conditioned on the outputs of the center module, as il-
lustrated in figure 5 (right). We refer to this model as
SARM-2 while the single stage model is SARM-1. Since
the center may not have a clear border, we treat the size
of the center relative to the periphery as a hyperparam-
eter during training. Note that in general the number of

stages depends on the structure of the data and is not
limited to two. Furthermore, it is possible to learn the
SARMs associated with each region in any order.

Thus, in summary, through the experiments to be
presented, we show that a good heuristic approach for
SARM design is to: (1) decompose the images into rel-
evant regions (e.g. center vs background); (2) use a dif-
ferent SARM for each region type; and (3) within each
region type, preferably choose a systematic and congru-
ent order for generating the pixels, as these compare fa-
vorably to random generation orders. By systematic and
congruent orders we mean orders that have some kind of
continuity for the location of the pixels being generated–
subsequent generated pixels should be close in the image–
while respecting the geometry of the highly activated re-
gion (e.g. a spiral order for a globular region, a linear
order for a linear region).

V. EVALUATION METHODS

The goal is to train generative models which create im-
ages indistinguishable from images created by the slower
Monte Carlo methods. We compare the performance of
our models, both in terms of image quality and gener-
ation time, against two other generative models: LA-
GAN [6], the current state-of-the-art generative model
for sparse images in particle physics; and Pixel CNN++
[41], a widely used autoregressive model for natural im-
ages not tuned for sparse images. We evaluate all models
on both datasets described above; note that LAGAN was
designed to handle images typically found in the jet sub-
structure dataset, while the muon dataset features ex-
treme sparsity in comparison. We measure the quality
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peripheral regions using a spiral path and two different SARM modules. Using different networks for each region improves
performance.

of the generated images both qualitatively and quantita-
tively.

Qualitative Evaluation: We examine typical images
generated by each model, as well as the pixel-wise aver-
age intensity of the generated images, using the images
produced by the Monte Carlo methods, which in the jet
substructure study are referred to as the Pythia images.
Additional qualitative comparisons are described in the
Appendix VII C and VII D.

Quantitative Evaluation: Comparisons of distribu-
tions in high-dimensional datasets should focus on the
scientific context and potential applications. In parti-
cle physics, the calorimeter information is typically used
to calculate physical quantities, such as invariant mass
or transverse momentum (PT), which are especially re-
vealing as metrics because they have not been explicitly
optimized by the models. In addition, calorimeter images
are used to train classifiers which can identify particles
from their patterns of depositions.

One-dimensional distributions of mass and PT can be
evaluated in comparison to the distributions from Monte
Carlo generators using the Wasserstein distance, the min-
imum cost to transform one distribution into the other
one, expressed by:

Wp(P,Q) =

(
inf

J∈J (P,Q)

∫
‖x− y‖pdJ(x, y)

)1/p

(5)

where J (x, y) is the family of joint probability distribu-
tion of x and y; P and Q are marginal distributions, and
p ≥ 1. When p = 1, this metric is also known as the
Earth Mover’s Distance [55]. To match the results in [6],
we computed W1(P,Q), where P represents one of jet
observable distributions from the Pythia images, and Q
represents the corresponding jet observable distribution
from the generated images.

An important motivation for developing generative
models for fast simulations is to provide a computation-
ally inexpensive method to augment existing datasets in

classification task [43, 56]. The jet substructure dataset
was generated to train classifiers to distinguish between
jets from W boson decays (signal) and those from sin-
gle quarks and gluons, a well-known classification task
[43, 56]. The muon isolation dataset was generated to
train classifiers to distinguish isolated muons from those
due to heavy-flavor jet production. Therefore, an essen-
tial test for the quality of the generated images is whether
they can be used in these classification tasks. To quantify
this, the generated images were used as training sets to
develop a classifier whose performance was assessed using
the Monte Carlo images. The same convolutional neural
network architecture was trained with the same hyper-
parameters on five different data sets: Monte Carlo im-
ages, images generated by SARM-2 (D+C) images gener-
ated by SARM-2 (D+D), images generated by LAGAN,
and images generated by Pixel CNN++. Because higher
quality images should lead to improved classification of
the Monte Carlo images, we used the classification per-
formance as the evaluation metric.
Speed: Each generative model was used to generate

batches of images multiple times to measure the average
speed of image generation.

VI. RESULTS

A. Jet Substructure Study

1. Qualitative Analysis

An example image from each generative model and
from the Pythia Monte Carlo generator is shown in fig-
ure 6. It is clear that SARM-2 (D+C) excels at gener-
ating pixels with small values around the periphery in
comparison to the other models. Additional samples for
each model can be seen in Appendix VII H. To assess the
overall quality of the generated images, figure 7 shows the
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FIG. 6. Example jet images generated from each model. Notice that SARM-2 (D+C) is able to produce small value pixels in
the periphery of the images. The intensity of each pixel is shown on a log scale, where the white space represents pixels with
value zero.
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FIG. 7. Pixel-wise average of the images generated by each model. Notice that LAGAN struggles to capture the distribution of
low value pixels in the periphery of the images and has a non-smooth radial transition compared to the autoregressive models.
The intensity of each pixel is shown on a log scale, where the white space represents pixels with value zero.

pixel-wise average of each dataset. The autoregressive
models, SARMs and Pixel CNN++, are able to model
the peripheral radial region around the center more ac-
curately. This region has higher degree of sparseness than
the center region, making it more challenging for the gen-
erative models to accurately capture. We note that the
images from the SARM-2 (D+C) model appear to be
most similar to the Pythia images, while the other models
are less able to generate the peripheral region faithfully.
In addition, Pixel CNN++ struggles to achieve the ra-
dial structure present in the Pythia images and creates a
square-like structure instead. In general, the images from
figure 7 generated by the autoregressive models show a
smooth transition from the highly activated center to the
sparse border, similar to that seen in the Pythia dataset.
In contrast, the border of the LAGAN images is irregular,
which could be due to its reliance on the ReLU activation
function to induce the sparsity, making the model unable
to estimate the sparseness level directly.

2. Quantitative Analysis: Jet Observables as Metrics for
Quality

To quantify the fidelity of the images generated by each
model as compared with the original samples, we insert
them into typical applications in particle physics. In the
context of collisions that produce jets, it is common to
calculate the invariant mass of the jet, and the transverse
momentum. Distributions of jet mass and PT are shown
in figure 8 for all models, which all succeed in matching
the general shape, though discrepancies are visible, and
Wasserstein distances are shown in table I.

All SARM variants achieve lower distances in the PT

distributions than LAGAN and Pixel CNN+, and com-
parable or better distances in jet mass. The best results
in all categories are obtained by the SARM-2 (D+D).
Compared to the best of Pixel CNN++ and LAGAN,
SARM-2 (D+D) provides a 51.92% improvement for PT,
and a 23.79% improvement for mass, averaged over the
signal and background sets. These results demonstrate
the effectiveness of taking sparseness into account during
learning and generation. Secondly, the SARM-2 mod-
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TABLE I. Comparison of images created by various generative
models with original images from Pythia, evaluated using the
Wasserstein distance (with p = 1) between one-dimensional
distributions of physical quantities calculated from the im-
ages: jet PT and invariant mass, also shown in figure 8.
Smaller values indicate a closer match to the Pythia im-
ages. Four SARMs are evaluated, those with either one-stage
(SARM-1) or two-stage (SARM-2) models, and those with
either discrete and continuous distributions (D+C) or a mix-
ture of discrete distributions (D+D).

PT Mass
Model Signal Background Signal Background
LAGAN 3.15 3.29 1.45 1.39
Pixel CNN++ 3.46 3.59 1.09 1.56
SARM-1 (D+C) 2.33 2.46 1.07 1.54
SARM-2 (D+C) 2.32 2.71 1.06 1.39
SARM-1 (D+D) 1.95 2.52 1.34 2.45
SARM-2 (D+D) 1.44 1.66 0.94 0.92

els clearly outperform the SARM-1 models for both the
(D+D) and (D+C) likelihoods, which shows the effec-
tiveness of the multi-stage approach in modeling hetero-
geneous areas in the images.

3. Classification of Generated Images

An important application of generated calorimeter im-
ages is to augment training sets for networks learning
to perform vital signal-background classification tasks.
As a high-level test of the image quality, we train net-
works using images generated by each model (200k sig-
nal, 200k background), and evaluate the performance on
the original images from Pythia (20k signal, 20k back-
ground). Training sets which best mimic the original
Pythia images should lead to networks which most closely
match the performance of a network trained on Pythia
images. Detailed information about the classifier and
training procedure are given in Appendix VII F. The
receiver operating characteristic (ROC) curves for net-
works trained on images from Pythia , SARM-2 (D+C),
SARM-2 (D+D), Pixel CNN++ and LAGAN are shown
in figure 9. Classifiers trained on both SARM generated
datasets have higher AUC (area under the ROC curve)
scores than the classifiers trained on the LAGAN images
and Pixel CNN++ images.

4. Generation Order

SARMs generate images pixel by pixel, conditioning
each step on the previously generated pixels. The order
of the pixel generation corresponds to a dependency de-
composition in Equation 1, which may impact training
performance. The traversal path is especially important
for images containing heterogeneous areas. For natural
images, [50] uses an ensemble of models with random

paths, while Pixel CNN++ and other models [10, 41] use
the row-by-row pixel ordering.

TABLE II. Quality of jet substructure signal images gener-
ated by SARM-1 (D+D) with various pixel-generation or-
derings. The quality is measured by the Wasserstein dis-
tance for the physical observables (PT and mass) between
the generated images and the original Pythia images. Spiral-
in clockwise/counterclockwise (CW/CCW), spiral-out clock-
wise/counterclockwise (CW/CCW), column-wise, row-wise,
and two random approaches are compared. The outward spi-
ral orders show good performance due to the radial structure
of the images.

PT (std) Mass (std)
Spiral-out CCW 1.94 (0.09) 1.38 (0.10)
Spiral-out CW 2.47 (0.23) 1.53 (0.22)
Spiral-in CCW 3.64 (0.32) 1.62 (0.14)
Spiral-in CW 3.20 (0.22) 1.45 (0.16)
Row-wise 3.06 (0.30) 2.01 (0.11)
Column-wise 3.38 (0.39) 1.90 (0.08)
Random I 4.05 (0.51) 1.74 (0.53)
Random II 3.41 (0.33) 1.25 (0.26)

The average performance of various pixel orderings for
SARM-1 (D+D) over 10 repeated runs is shown in table
II. Each order is evaluated by using the Wasserstein dis-
tance between the distributions of the generated signal
images and the Pythia signal images for the jet PT and
invariant mass.

The spiral paths, clockwise (CW) and counterclock-
wise (CCW), achieve the stronger results. This could
be understood in terms of mutual information between
neighboring pixels. Unlike the other orderings, the spiral
ordering is continuous, i.e. it always generates a pixel
adjacent to the previously generated pixel. Furthermore,
the spiral order is congruent with the globular shape of
the highly activated region in the jet images, e.g. Fig.
7. Starting the spiral from the center outperforms in-
ward spirals, indicating that it may be easier to learn
the correlations between the pixels starting with pixels
that are more active (more non-zero pixel values). The
difference between CW and CCW is likely due to asym-
metries generated by the rotation and centering steps in
the preprocessing of the data. We use this asymmetric
version of the data in order to enable direct comparison
to the LAGAN model. These results confirm that non-
random, systematic, generation orders that have good
continuity and congruence properties perform well (and
outperform random orders). A full exploration of the or-
dering dependency is beyond the scope of this work and
computationally challenging due to the factorial number
of possible orderings.

5. Computational Costs

Table III shows the speed of the generative models in
comparison to the Monte Carlo method (Pythia). The
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FIG. 8. Distributions of jet observables (Top: Mass, Bottom: PT) calculated from images generated by several generative
models and from the original images generated by Pythia. Signal images, with two collimated quarks, are on the left; background
images, with a single quark or gluon, are on the right.
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FIG. 9. Evaluation of the fidelity of images generated by sev-
eral models in the context of a classification task. Images
generated by the model are used to train a network to dis-
criminate between signal and background, but performance is
measured using the original Pythia images.

SARM-2 models are five times slower than LAGAN,
which is mainly due to the extra computational cost of
the autoregressive structure. On the other hand, the
SARM-2 models are two orders of magnitude faster than
Pythia and Pixel CNN++. The forward pass of the Pixel

CNN++ model is computationally expensive due to the
ResNet blocks with convolutional layers and skip con-
nections [41, 57]. In contrast, SARMs use a simple feed
forward network with disabled connections to preserve
autoregressive structure. The speed of the generative
models is measured on a machine with 4 TITANX GPU
cards each with 12G of memory. The speed of Pythia
was assessed in [6] using Amazon Web Services (AWS)
and an IntelR XeonR E5-2686 v4 at 2.30GHz CPU.

TABLE III. Comparison of image generation speed between
the Monte Carlo approach (Pythia) and various generative
models. The SARM-2 models are slower than LAGAN, but
still considerably faster than Pythia and Pixel CNN++.

Model Speed (images/sec)
Pythia [6] 34
Pixel CNN++ 50
SARM-2 (D+D) 1612
SARM-2 (D+C) 2480
LAGAN 10176

There is room to further optimize the speed of the
SARM models. For instance, we find that reducing the
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TABLE IV. Comparison of images created by various gener-
ative models to the original Monte Carlo images using the
Wasserstein distance (with p = 1) between one-dimensional
distributions of physical quantities calculated from the im-
ages: PT and invariant mass, also shown in figure 12. Smaller
values indicate a closer match to the Monte Carlo images.
Two SARMs are evaluated, with either discrete and continu-
ous distributions (D+C) or a mixture of discrete distributions
(D+D).

PT Mass
Model Signal Background Signal Background
PixelCNN++ 1.75 2.92 0.58 0.82
SARM-2 (D+C) 0.79 0.97 0.25 0.21
SARM-2 (D+D) 0.56 0.93 0.17 0.31

size of the intermediate upsampling layer of the SARM
(D+D) drastically reduces the memory requirements and
improves the generation speed. Another direction is to
explore model pruning and compression.

B. Muon Isolation Study

1. Qualitative Analysis: Average Generated Images

Typical calorimeter images in the vicinity of a muon
generated by the standard Monte Carlo method, Pixel
CNN++ as well as two SARMs are shown in figure 10.
In this context, LAGAN suffered from mode collapse and
failed to generate reasonable quality images (See figure 18
in the Appendix). This is a well known problem when
training GANs [6, 38, 39], especially with sparse data.

Figure 11 shows the pixel-wise average images. The
SARM-2 models and the Pixel CNN++ reproduce the
radial symmetry seen in the original images. However,
the average images produced by Pixel CNN++ contain
noticeable artifacts, potentially due to the convolutional
layers in the model [58].

2. Quantitative Analysis: Calorimeter Observables as
Metrics for Quality

To assess the fidelity of the images quantitatively, we
calculate physical quantities which summarize the con-
tent of the images and allow for comparison of one-
dimensional distributions. While calorimeter images in
the vicinity of a muon do not necessarily contain a clus-
tered jet, the total PT and invariant mass of the entire
image do have physical meaning. Figure 12 shows the dis-
tributions of these quantities for the original Monte Carlo
images, as well as for the generated images, and table IV
provides the corresponding Wasserstein distances.

The datasets generated by both SARM-2 models
have considerably smaller Wasserstein distances than the
datasets generated by the Pixel CNN++ model for both

signal and background. The distributions of all the gener-
ated datasets approximate the shape of the Monte Carlo
distributions quite well for PT and mass, but the distri-
butions of the Pixel CNN++ dataset have a small shift
towards higher values, for both the signal and the back-
ground. In addition, for the background they are more
concentrated around the mean. This is potentially due
to the fact that Pixel CNN++ fails to model the right
tail of the pixel distribution, where the pixels have higher
values but appear much less frequently in the data (fig-
ure 21 in Appendix). The SARM-2 (D+D) has the best
overall performance, with improvements of 68.08% for
PT and 66.44% for mass, averaged over the signal and
background datasets.

3. Classification of Generated Images

The fidelity of the images can be evaluated in the
context of the data analysis task for which they were
created, training a network to distinguish between sig-
nal (calorimeter images near isolated muons) and back-
ground (calorimeter images near non-isolated muons).

A convolutional neural network classifier was trained
using images generated exclusively by each of the models
(SARM-2 (D+C), SARM-2 (D+D), or Pixel CNN++);
one additional network was trained using images from
the Monte Carlo generator. The quality of the images is
measured by comparing the classification performance of
these networks on images from the Monte Carlo genera-
tor, see figure 13. The classifiers trained on each SARM
dataset have higher AUC score than the classifier trained
on the Pixel CNN++ dataset, providing additional evi-
dence that the SARM datasets are more similar to the
Monte Carlo images and thus better suited for down-
stream tasks such as data augmentation.

4. Generation Order

In this section, we discuss the impact of the pixel or-
der for SARMs associated with the signal dataset of the
muon isolation study. Similarly to section VI A 4, we con-
ducted 10 repeated experiments for each of the orders and
summarized the results in Table V.

In contrast to the jet substructure study, the muon iso-
lation data is not rotated and the pixel value distribution
is quite uniform. Therefore we see that different gener-
ation orders have similar performance in terms of mass
and PT distances. In addition, all the models trained
using systematic orders that have some continuity in the
sequence of pixels slightly outperform the models trained
using random orders. In combination, these results con-
firm the validity of the heuristic strategy outlined at the
end of Section IV, providing general guidelines for SARM
design and pixel generation when applying these models
to other datasets.
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FIG. 10. Example calorimeter images in the vicinity of a muon from the generative models as well as the original Monte
Carlo generator. Top row shows isolated muons (signal), while the bottom shows muons produced in association with a jet
(background). The intensity of each pixel is shown on a log scale, where the white space represents pixels with value zero.
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FIG. 11. Pixel-wise averages of calorimeter images in the vicinity of a muon from the generative models as well as the original
Monte Carlo generator. Top row shows isolated muons (signal), where little calorimeter activity is expected. The bottom row
shows muons produced in association with a jet (background), which deposits significant energy near the muon. A linear scale
is used to reveal the differences between signal and background images.
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FIG. 13. Evaluation of the fidelity of images generated by
several models in the context of a classification task, distin-
guishing muons produced in isolation from those produced in
association with a jet. Images generated by the model are
used to train a network to discriminate between signal and
background, but performance is measured using the original
Monte Carlo images.

TABLE V. Quality of images generated by SARM-1 models
with various pixel-generation orderings for the muon isolation
signal dataset. The quality is measured by the Wasserstein
distance for the physical observables (PT and mass) between
the generated images and the original Monte Carlo images.

PT (std) Mass (std)
Spiral-out CCW 0.99 (0.37) 0.27 (0.10)
Spiral-out CW 0.92 (0.33) 0.26 (0.09)
Spiral-in CCW 0.81 (0.23) 0.20 (0.05)
Spiral-in CW 0.95 (0.24) 0.24 (0.07)
Row-wise 0.99 (0.28) 0.20 (0.05)
Column-wise 0.90 (0.26) 0.22 (0.05)
Random I 1.17 (0.30) 0.32 (0.08)
Random II 1.34 (0.41) 0.37 (0.11)
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FIG. 12. Distributions of calorimeter observables (top: invariant mass, bottom: total PT) calculated from images generated by
several generative models and the originals generated by a Monte Carlo generator. Signal images, in the vicinity of an isolated
muon, are on the left. Background images, in the vicinity of a muon produced with an associated jet, are on the right.

5. Computational Costs

Calorimeter image generation speeds in the context
of the muon isolation study are shown in table VI for
the SARM models, Pixel CNN++ and the Monte Carlo
generator. The SARM models are one to two orders of
magnitude faster than Pixel CNN++, similar to the ob-
servation of the jet substructure study. The generation
speed of each generative model is measured with the same
hardware as described in Section VI A 5. The speed for
the Monte Carlo generator is measured on an Intel(R)
Xeon(R) E5-2680 at 2.70GHz CPU.

TABLE VI. Comparison of image generation speed between
the Monte Carlo approach and various generative mod-
els. The SARM-2 models are considerably faster than Pixel
CNN++ and the Monte Carlo generator.

Model Speed (images/sec)
Monte Carlo 5
Pixel CNN++ 10
SARM-2 (D+D) 625
SARM-2 (D+C) 1136

VII. CONCLUSION

Sparse images, prevalent in particle physics datasets,
present unique challenges for generative models. We have
developed and applied a new class of models, deep sparse
autoregressive generative models (SARMs), specifically
designed to handle extreme sparseness. These compo-
sitional models are also able to take advantage of the
structure present in particle physics images by using a
multi-stage generation approach. Using several different
metrics, we compared SARMs to other generative mod-
els, in particular to Pixel CNN++, a popular autoregres-
sive model not adapted for sparsity, and to LAGAN, a
state-of-the-art GAN for sparse images. The comparisons
were carried using two benchmark data sets.

In the first case study on jet substructure, the adap-
tation to sparseness enables SARMs to produce qualita-
tively and quantitatively higher quality images than Pixel
CNN++ and LAGAN. SARM are also orders of magni-
tude faster than traditional Monte Carlo methods and
Pixel CNN++, but slower than the non-autoregressive
model LAGAN, showing a trade-off between speed and
quality. The second case study features extremely sparse
images corresponding to calorimeter images in the vicin-
ity of muons. While competing models produce artifacts
or suffer from mode collapse, SARMs are able to handle
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and model extreme degrees of sparseness.
In sum, given the prevalence of sparse images in parti-

cle physics and beyond, SARMs can be expected to pro-
vide an important option for rapid, high-quality, image
generation from training data. Because of their quality,
the generated images in turn will be able to benefit a
variety of downstream data analyses.
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APPENDIX

A. 2D Toy Example

We simulate a dataset containing pairs of two variables
x0 and x1, such that x0 ∼ p(x0|x1) and x1 ∼ p(x1). In
this toy example we show that the autoregressive model
is still able to learn to generate the joint distribution
of x0 and x1, even though during training it is forced
to learn x0 ∼ p(x0) first, and then to learn the depen-
dency p(x1|x0). The simulated training data contains
1000 pairs of {x0, x1} according to x1 ∼ N(0, 1) and
x0 = x1 + ε, where ε ∼ N(0, 1), a standard normal
distribution independent of x1. The joint distribution
of x0, x1 is shown in figure 14. The toy autoregressive
model learns to generate x0 using two learnable pa-
rameters, µ0 and log(σ0), corresponding to the mean
and log standard deviation of x0. It has a single linear
layer for predicting µ0 and log(σ0), which corresponds
to the mean and log standard deviation of x1. The
model is trained for 5000 iterations, by maximizing the
likelihood p(x0, x1). During the generation stage, the
model generates x0 without knowing x1. Since the goal
of the model is to generate the joint distribution of
(x0, x1) ∼ P (x0, x1), to do this it only needs to learn
the marginal distribution, which is x0 ∼ N(0, 2) and the
relationship x1 = x0 − ε. figure 14 shows the result of
training this model and we can see it correctly learns
the means and variances of {x0, x1} along with the data
distribution despite the fact that it has to generate x0
before generating x1.

B. MADE Structure

The MADE structure enforces the auto-regressive
property on fully connected layers by using a carefully
selected binary mask on the weights of the layer. The
joint likelihood of the MADE structure can be evaluated
in one forward pass of the network during training, which
is not possible in other models like Pixel-RNN [10] and
Pixel CNN++ [41]. This allows MADE to take advantage
of the GPU acceleration. In our SARM implementation,
we consider a simple MADE structure with input x and
a stack of multiple hidden layers h(x), where each h(x)
follows:

h(x) = f
(
b +

(
W �MW

)
x
)

θ = f
(
c +

(
V �MV

)
h(x)

) (6)

Here θ is the output, and f is the activation function
of the hidden layer. In practice, we found Gaussian Error
Linear Units (GeLU) [59] works better in our experiments
than other activations such as Sigmoid and tanh. Both
W and V are weight matrices, with corresponding masks:

the hidden mask MW, and the output mask MV. Each
matrix is multiplied element-wise with each mask.

Suppose x ∈ RD, it can be shown that for the input
mask:

MW
k,d = 1k mod D≤d =

{
1 if k mod D ≤ d
0 otherwise

(7)

Likewise, suppose h(x) ∈ RH , then for the output mask:

MV
k,d = 1k mod D<d =

{
1 if k mod D < d
0 otherwise

(8)

Then the output θ satisfies autoregressive structure:
for any i, θi only depends on xj<i. As shown in figure 3,
the parameter θi is used to generate the ith pixel during
generation. For example, if the likelihood is a logistic
distribution, then θi = [µi, si], where µi, si corresponds
to the mean and scale of a logistic distribution.

During generation, at step i we take the previ-
ously generated x0, x1, . . . , xi−1 and pad the remaining
xi, . . . , xD−1 with zeros. Then we input this vector in
the MADE structure so that the output θi depends only
on x0, . . . , xi−1. Finally, we sample the pixel xi condi-
tioned on θi and repeat this process until every pixel is
generated.

C. Further Analysis of the Jet Structure Study

Figure 15 shows the subtraction between the pixel-wise
average of the images from each generative model and
the pixel-wise average from Pythia. Notice the differ-
ences are concentrated in the middle of the images where
there are higher value pixels. The images generated by
both SARM models have small differences compared to
the ones generated by LAGAN for both signal and back-
ground and by Pixel CNN++ for background. Also,
Pixel CNN++ has higher errors in background images
compared to signal images.

Figure 16 shows the distribution of pixel values across
all the generated images. For the signal images, all the
models match the Pythia distribution for pixel values be-
low 200 but the models have difficulties at higher values.
SARM-2 (D+D) and LAGAN have the closest match
at high pixel values while SARM-2 (D+C) and Pixel
CNN++ overestimate them. For the background images,
most of the models accurately predict low value pixels,
but LAGAN slightly overestimates pixels in the range 50
to 100 and underestimates them afterwards. For high
pixel values, Pixel CNN++ strongly over-estimates pix-
els in the range 250-300 while the other models remain
reasonably close to Pythia. In both cases the models
have difficulties learning the high value pixels, which is
expected since there are very few pixels in this range in
the Pythia distribution.
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showing the ARM is able to learn the joint distribution of x0 and x1 well.
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D. Further Analysis of the Muon Isolation Study

1. LAGAN

Despite our best efforts, the LAGAN model performed
poorly every time it was trained on the muon isolation
dataset. As seen in Figures 17 and 18 the pixel-wise av-
erage image doesn’t capture the radial structure present
in the dataset and some of the pixels with high values
seem to be present in many of the images. This seems
to be due to a low amount of variability in the generated
images, typical of mode collapse in GANs. This per-
formance is also reflected in the distributions of PT and
mass (figure 19) and the respective Wasserstein distances
which are one order of magnitude worse than the values
for the other models (table VII).

TABLE VII. Wasserstein distance of the physical constituents
jet PT and mass distributions between the original muon im-
ages from the Monte Carlo generator and the images created
by the generative models. A small distance signifies a good
agreement. SARM-2 (D+D) is the two-stage SARM model
with a discrete mixture.

PT Mass
Signal Background Signal Background

LAGAN 4.81 10.88 1.81 2.17
SARM-2 (D+D) 0.56 0.93 0.17 0.31

2. SARM vs Pixel CNN++

Figure 20 shows the subtraction between the pixel-wise
average of the images from each generative model and
the pixel-wise average from Pythia in the muon isolation
dataset. For the signal data, all models show very small
differences, evenly distributed across the radial structure
of the images. In particular, Pixel CNN++ is over-
representing most of the pixels in the artificial checker-
board pattern noted before. For the background data
the errors are slightly higher for all models. The SARM
models have more difficulties with the pixels in the cen-
ter and tend to over-represent them while Pixel CNN++
under-represents the center and over-represents the pe-
riphery.

Figure 21 shows the distribution of pixel values across
all the generated images. For both signal and back-
ground the Pixel CNN++ model is under-representing
pixels with high intensity, while the SARM models match
the distribution quite well. Like in the jet substructure
study, most of the errors correspond to pixels with high
intensity values, which is expected since these values are
rare in the training data, making it difficult to correctly
learn their distribution.

E. Software Modifications

1. LAGAN

The code and weights of the original LAGAN model for
the jet substructure study dataset are publicly available.
This makes it possible to generate new images using the
original model’s weights for this dataset, but the model
needs to be retrained to generate images of a different
dataset. The model was retrained for the muon isolation
study and it also had to be modified to adapt it to the
larger images of 32 × 32 pixels since it has upsampling
layers in the generator part of the GAN.

2. PixelCNN++

As a baseline for autoregressive models we used the
Pixel CNN ++ [41]. Due to speed and memory restric-
tions, we had to modify the original model by reducing
the number of filters in the masked convolutional layers
and the number of residual blocks compared to the origi-
nal model. Both the number of filters and the number of
residual blocks are optimized as hyperparameters using
grid search with 5, 10 or 20 filters and 2 or 3 residual
blocks. However, we found most hyperparameter com-
binations to have similar performance. The model with
20 filters and 3 blocks performs slightly better in the jet
substructure study, and the model with 10 filters and
5 blocks performs slightly better in the muon isolation
study. Even though the models we used are smaller than
the original model in [41], they are almost as slow as the
traditional Monte Carlo methods (table III and VI).

F. Architecture and Hyperparameter Optimization

We performed a search over the architectures of the
SARMs including the number of hidden layers structure,
the size of the central area for the two-stage approach
and the size of the intermediate upsampling layer using
SHERPA [60]. We also conducted search of the transfor-
mation parameter p with values [1, 1.1, 1.2, 1.3, 1.5, 2] for
the D+D models. All models were implemented in Py-
torch [61], and were trained for 300 epochs with outward
spiral (CCW) order using the Adam optimizer [37] with
learning rate 3e-4, decreased by half every 100 epochs
and mini-batch size 128.

For the jet substructure study, the best SARM-2 con-
figuration had a center area of side length 3. For the D+D
models, we used 5 hidden layers with an upsampling layer
of size 10 and found that a power transformation with
p = 1.0 yields slightly better results. For the D+C mod-
els, we found that the model with 3 hidden layers and
a mixture of 5 truncated logistic for the C component
works well for both signal and background images. In the
generation order experiments, similarly we used SARM-1
(D+D) models with 5 hidden layers, an upsampling layer
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FIG. 17. Typical muon images generated using LAGAN. The figures are plotted in log scale, where the white space represents
pixels with value zero.
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FIG. 18. Pixel-wise average of muon images from LAGAN for signal and background. The average images generated by
LAGAN fail to reproduce the radial structure present in the average Monte Carlo images (figure 11).

of size 10 and a power transformation with p = 1.0, ef-
fectively no transformation. And all models are trained
with identical settings: learning rate of 3e-4, decreased
by half every 100 epochs and mini-batch size 128. For the
LAGAN model we used the publicly available version of
LAGAN optimized by the original authors.

For the muon isolation study, the best model we found
had 5 hidden layers, and a center area of side length
7 for both D+D and D+C models. For the SARM-2
(D+D), we used an upsampling layer of size 10 and found
that a power transformation with p = 1.2 for signal and
p = 1.3 for background provided the best results. And
for the D+C models, we found again that a mixture of
5 truncated logistic for the C component works well for
both signal and background images.

For the classification tasks, we trained five convolu-
tional neural networks with the same structure on each
of the datasets. We randomly split the data into a 90%
subset for training and a 10% subset for validation. The
validation set is used for early-stopping during training
to avoid over-fitting. The convolutional neural network
model has 2 convolutional blocks, 2 fully connected lay-
ers with 100 rectified linear units, and a sigmoid unit at

the end to predict the probability of the image being sig-
nal. Each convolutional block contains two convolutional
layers with 3x3 kernels and 30 filters with rectified lin-
ear units followed by a maxpooling layer with 2x2 kernel.
All models were trained in PyTorch using the Adam op-
timizer, with a learning rate of 0.001 and a batch size of
128.

G. Complexity Analysis

Next we compare the number of parameters for the
different models in table VIII. Note that the original
Pixel CNN++ model [41] uses 160 convolutional filters.
With all these filters, each forward pass takes more than
1 second on 4 NVIDIA TITANX GPU cards, resulting in
a generation speed that is one order of magnitude slower
than the traditional Monte Carlo methods, thus defeating
the original purpose. Therefore, in our implementation
of the Pixel CNN++ model, we limit the number of its
filters to 20 to speed up the generation process and reduce
the memory requirements.
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FIG. 19. Comparison of the mass and PT distributions of the images generated by LAGAN, SARM-2 (D+D), and the Monte
Carlo simulations for both signal and background muons.
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TABLE VIII. Model complexity comparison in terms of the
number of parameters.

Model Num. of Parameters
Pythia [6] -
Pixel CNN++ 0.7M
SARM-2 (D+D) 21M
SARM-2 (D+C) 7M
LAGAN 5M

H. Sample Images

In this section, we show more generated images from
both the jet substructure study and the muon isolation
study in figure 22 and figure 23.
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FIG. 22. Additional typical images from the jet substructure study
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FIG. 23. Additional typical images from the muon isolation study
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Regressive and Generative Neural Networks for Dcalar
Field Theory, Phys. Rev. D 100, 011501 (2019),
arXiv:1810.12879.

[25] G. r. Khattak, S. Vallecorsa, and F. Carminati, Three
Dimensional Energy Parametrized Generative Adversar-
ial Networks for Electromagnetic Shower Simulation,
in 2018 25th IEEE International Conference on Im-
age Processing (ICIP) (2018) pp. 3913–3917, https:

//ieeexplore.ieee.org/document/8451587.
[26] S. Alonso Monsalve and L. Whitehead, Image-Based

Model Parameter Optimization Using Model-Assisted
Generative Adversarial Networks, IEEE Transactions on
Neural Networks and Learning Systems PP, 1 (2020),
arXiv:1812.00879.



24
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