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Production of massless, scalar particles by a relativistic, semi-transparent, plane mirror in (1+3)D
Minkowski spacetime based on the Barton-Calogeracos (BC) action is investigated. The correspond-
ing Bogoliubov coefficients are derived for a mirror with arbitrary, relativistic trajectories. We apply
our derived formula to two specific trajectories. One is commonly used in the (1+1)D literature to
mimic gravitational collapse theoretically, and the other is proposed to be realizable experimentally.
In addition, we identify the relation between the particle spectrum and the particle production
probability, and we demonstrate the equivalence between our approach and the existing approach in
the literature, which is restricted to (1+1)D. In short, our treatment extends the study to (1+3)D
spacetime for a relativistic, plane mirror. Lastly, we offer a third approach for finding the particle
spectrum using the S-matrix formalism.

I. INTRODUCTION

In 1970, Moore demonstrated [1] that quanta of elec-
tromagnetic field may be produced from the initial vac-
uum state if the field is constrained in a one-dimensional
cavity and subject to time-dependent Dirichlet bound-
ary conditions in (1+1)D Minkowski spacetime. This
phenomenon is a manifestation of the interaction be-
tween vacuum fluctuations of the quantized field and
moving boundaries. A few years later, DeWitt [2] showed
that, for a scalar field subject to a single time-dependent
Dirichlet boundary condition, i.e., a moving, perfect,
point mirror, in (1+1)D Minkowski spacetime, the pro-
duction of particles out of the initial vacuum state is
also possible. Soon after, Fulling and Davies studied the
energy-momentum tensor [3] and particle spectrum [4]
for a perfect, point mirror following prescribed trajecto-
ries in (1+1)D. The production of particles out of the
vacuum due to time-dependent boundary condition(s) is
therefore referred to as the: ”Moore effect”, ”dynamical
Casimir effect”, ”motion-induced radiation”, or ”moving
mirror radiation”. For mirrors with a variety of trajecto-
ries mimicking different scenarios of black hole radiation,
please see Good’s recent works, e.g., [5][6], whereas for
various trajectories mimicking different candidate resolu-
tions to the information loss paradox of black hole evap-
oration, please see Chen and Yeom [7].

Most works in this subject are studied in (1+1)D
Minkowski spacetime in which the massless, scalar field
and the Klein-Gordon equation are conformal invariant.
Conformal invariance allows for exact solutions to the
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Klein-Gordon equation for a perfect, point mirror in ar-
bitrary motion, i.e., arbitrary time-dependent Dirichlet
boundary condition. In addition, when expanding the
scalar field in terms of mode functions, the past null in-
finity I − and the future null infinity I + can always
serve as the in-region and the out-region, respectively,
and thus the concept of particle is well defined in these
two regions. Nevertheless, conformal invariance breaks
down in higher dimensions and thus the techniques de-
veloped for (1+1)D no longer apply. Instead, in (1+3)D
spacetime, the proper in-region and the out-region are,
respectively, the remote past (x0 → −∞) and the re-
mote future (x0 →∞). In this case, particle spectra for
a non-relativistic mirror with bounded motions starting
and stopping at the same position have been worked out
[8]−[12] based on the perturbative approach proposed by
Ford and Vilenkin [13].

Aside from the concept of particles, another physi-
cal quantity of common interest is the (local) energy-
momentum tensor. This quantity may be easier to obtain
than the particle spectrum (if it may be defined) for mir-
rors with arbitrary trajectories and even in higher dimen-
sional spacetimes since it only requires the knowledge of
the in-mode and the in-vacuum. Energy-momentum ten-
sor is, in general, not related to the particle spectrum by
a simple mode-summation procedure of adding up the en-
ergy carried by each particle, see, e.g., [3][4][5][6][13][14],
because it also contains the effect of vacuum polar-
ization. Energy-momentum tensor for an infinite-size,
plane, Rindler mirror in (1+3)D has been worked out by
Candelas and Raine [15] and Candelas and Deutsch [16],
while spherical mirrors with shells expanding/contracting
with near-uniform acceleration are also studied in, e.g.,
[17][18][19].

Limited by technologies, a direct construction of a rel-
ativistic mirror in laboratories to test the above studies
were not feasible. Therefore, alternative experimental
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proposals had been conceived and conducted, e.g., the
superconducting quantum interference device (SQUID)
experiment [20] and references therein. Nevertheless, it
is recently proposed by Chen and Mourou [21][22] that
the relativistic mirror may be manifested through plasma
wakefields.

In actual experiments, such as that proposed in [21][22]
that involve physical, relativistic mirrors, one tends to
encounter the following situations: (i) the spacetime is
(1+3)D Minkowskian, (ii) the mirror is not a perfect re-
flector, (iii) the mirror is roughly planar, and (iv) the
mirror has a finite transverse dimension. Therefore, for-
mulations that incorporate these realistic, less than per-
fect situations are desirable for the cross-check with fu-
ture experimental results. In this paper, the approach we
adopted, in principle, enables the inclusion of these situ-
ations. However, we will only focus on (i), (ii), and (iii)
in the present paper and leave (iv) for further discussions
in our future work since the aims of the present paper are
to lay down the framework that applies to a plane mir-
ror following a general, relativistic trajectory in (1+3)D
Minkowski spacetime and to explore new features that
do not show up in the standard (1+1)D literature or the
studied (1+3)D non-relativistic, plane mirror model.

The first example that we study is the trajectory that
is often used to mimic the physics of gravitational col-
lapse of a spherical null shell in (1+3)D curved spacetime
in the (1+1)D moving mirror literature. It is fortunate
that this trajectory enables an analytic computation and
allows us to check whether our (1+3)D results are, in
the k⊥ = 0 limit, consistent with the (1+1)D literature
that uses different approaches. The corresponding new
features that arise in (1+3)D due to the non-vanishing
transverse momentum are also readily distinguished from
the usual behavior in (1+1)D. Despite this trajectory is
not yet realizable in practice, it suffices to meet our aim
of the present paper, i.e., to see the emergence of new
physical properties when a relativistic, plane mirror is
considered. The second example that we study is one of
the trajectories proposed in [22] that might be realizable
in practice. In this paper, we study that trajectory under
certain assumptions such that analytic computations are
possible.

We will begin with the Barton-Calogeracos (BC) ac-
tion [24]:

Sα[φ] = −1

2

∫
R
d4x ∂µφ(x)∂µφ(x)

− α

2

∫
R
d4xγ−1(x0)δ(x3 − q(x0))φ2(x) ,

(1)

where α is a coupling constant with the dimension of
length−1, γ(x0) is the usual Lorentz factor, and q(x0)
denotes the mirror’s trajectory. In this action, the scalar
field φ(x) interacts quadratically with a Dirac-delta func-
tion that simulates the moving mirror. Their interaction
is adiabatically switched on and off in the remote past
(x0 → −∞) and the remote future (x0 → ∞) and thus
we will identify them as the in-region and the out-region,

respectively. The BC action is applicable to relativistic,
partial reflecting mirrors and general spacetime dimen-
sions. The model is equivalent to a jellium sheet of zero
width, i.e., a surface of zero thickness with a surface cur-
rent density generated by the motion of small charge ele-
ments with charge density ns (number of charge elements
per unit area) and the coupling constant is identified as
α = 4πnse

2/me, where e and me are the charge and the
mass of the individual entity, respectively [24][25].

Despite the generalizability of the BC action, so far
only reductions to (1+1)D or the non-relativistic limit
have been studied, e.g., [26]−[32]. Recently, Fosco, Gi-
raldo and Mazzitelli [33] studied the pair production
probability for the BC action in higher dimensional
spacetime by using the in-out effective action approach.
In this paper, we (i) derive the particle spectrum for a
mirror following general, prescribed trajectories by solv-
ing the inhomogeneous Klein-Gordon equation for the
BC action using the Born approximation and subse-
quently (ii) identify the relation between the particle
spectrum and the particle production probability. In ad-
dition, we demonstrate the equivalence of our approach
to Nicolaevici’s approach [29][30] in the (1+1)D limit.

This paper is organized as follows. In Sec. II, the
(1+3)D inhomogeneous Klein-Gordon equation is solved
perturbatively. The Bogoliubov transformation between
the in-/out-creation and annihilation operators are sub-
sequently derived and the particle spectrum follows
straightforwardly. The relation between the particle
spectrum and the particle production probability is also
identified. In Sec. III, we demonstrate the equivalence
between our treatment and the approach adopted in the
literature in (1+1)D. In Sec. IV, we apply our (1+3)D
formula to two specific trajectories. In Appendix A, we
offer a third approach for finding the particle spectrum
using the S-matrix.

In this paper, we use ~ = kB = c = 1 and the metric
signature (−,+,+,+) in (1+3)D. The symbol x refers to
(x0,x⊥, x3), where x⊥ are the coordinates x1, x2 that are
transverse to the mirror’s motion, k⊥ ≡ |k⊥|, R refers to
(−∞,∞), and R+ refers to (0,∞), etc.

II. PARTICLE PRODUCTION IN (1+3)D

A. Particle Spectrum

The equation of motion (EOM) for the BC action is

∂µ∂µφ(x) = αγ−1(x0)δ(x3 − q(x0))φ(x) . (2)

Due to the linearity of the differential equation, its solu-
tion[36] can be superposed by

φ(x) = φh(x) + φp(x) , (3)
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where (after second-quantization)

φ̂h(x) =

∫
d3k′

(2π)3/2(2|k′|)1/2

[
âk′e

−i|k′|x0+ik′·x + H.c
]
,

(4)
is the homogeneous solution with its integration range to
be determined and

φ̂p(x) = −α
∫
R
d4x′γ−1(x′0)δ(x′3 − q(x′0))φ̂(x′)GR(x, x′) ,

(5)
is the particular solution; GR(x, x′) is the free field re-
tarded Green function. Applying the Born approxima-
tion to the first order in α, we obtain

φ̂(1)(x) = φ̂h(x) + φ̂(1)
p (x)

= φ̂h(x)

− α
∫
R
d4x′γ−1(x′0)δ(x′3 − q(x′0))φ̂h(x′)GR(x, x′) ,

(6)

where the homogeneous solution is now

φ̂h =

∫
D

d3k′

(2π)3/2(2|k′|)1/2

[
âk′e

−i|k′|x0+ik′·x + H.c
]
.

(7)
The domain for the integration over momentum is de-

termined as k′ ∈ D by the semi-transparent condition:

|φ(1)
p (x)| � |φh(x)| due to the first-order approximation

made. This constraint would lead to a physical infrared
cutoff for the incident free modes. This can be expected
directly from physical grounds. Semi-transparency of the
mirror is just another way of saying the incident modes
interact weakly with the mirror, which is comprised of,
e.g., electrons. For the interaction to be weak, the inci-
dent modes should have wavelengths small enough com-
pared to the spacing between the adjacent electrons so
as to pass by the mirror without much scattering. This

then imposes the infrared cutoff for φ̂(1)(x) since the elec-
tron density is proportional to the coupling constant α
as mentioned in Sec. I. In principle, the perturbation in
α can be extended to higher orders since Eq.(3) is an in-
tegral equation. Had all the orders been kept, the mirror
would then become a perfect reflector for all momenta by
taking α → ∞. Nevertheless, it may be technically im-
practical to discuss the high reflection case by using the
perturbative approach. As a side remark, comparisons
between our and Ford-Vilenkin’s perturbative approach
are summarized in Table I and comparisons between our
and Nicolaevici’s, Haro-Elizalde’s approaches, which are
exact in α, are summarized in Table II.

The counterpart of φ(1)(x) using the free field advanced
Green function, GA(x, x′), is similarly obtained:

φ̂(1)(x) = φ̂h(x)

− α
∫
R
d4x′γ−1(x′0)δ(x′3 − q(x′0))φ̂h(x′)GA(x, x′) .

(8)

Using the retarded Green function, we are in fact as-
suming the vacuum state defined by âin

k |0, in〉 = 0. In

addition, since we are considering the first-order field, we
may identify the homogeneous part of (8) as the out-field

while the remaining φ̂h in (6) and (8) as the in-field.

To obtain the knowledge of creation and annihilation

operators, we Fourier transform φ̂(1)(x) by

∫
R
dx0d

2x⊥

∫ ∞
0

dx3 φ̂
(1)(x)eiωx0−ik·x , (9)

and use the Green functions of the following form

GR/A(x, x′) =

∫
R

dω

2π

e−iω(x0−x′0)±iω|x−x′|

4π|x− x′|
, (10)

where the Weyl identity for ω ∈ R+

eiω|x−x
′|

4π|x− x′|
=

i

8π2

∫
R
d2k⊥

eik⊥·(x⊥−x
′
⊥)+i(ω2−k2⊥)1/2|x3−x′3|

(ω2 − k2
⊥)1/2

,

(11)
is to be used in the calculation. To proceed with compu-
tational ease, we temporary assume q(x′0) ≤ 0 ∀ x′0 since
x3 is already positive in (9). Finally, by equating the
Fourier transform of (6) and (8) and subsequently choos-
ing ω > 0, (ω2 − k2

⊥)1/2 > 0, and k3 = (ω2 − k2
⊥)1/2 > 0

after lengthy calculations, we obtain the Bogoliubov
transformation on the mirror’s right as

âout
k⊥k3

≈ âin
k⊥k3

+
α

4πi

1

|k|1/2

∫
R
dx′0

∫
D
dk′3

γ−1(x′0)

(k2
⊥ + k′3

2)1/4

×
[
âin
k⊥k′3

e−i(
√
k2⊥+k′3

2−|k|)x′0+i(k′3−k3)q(x′0)

+ âin†
−k⊥k′3

ei(
√
k2⊥+k′3

2+|k|)x′0−i(k
′
3+k3)q(x′0)

]
,

(12)
where

βkk′ ≈
α

4πi

1

|k|1/2

∫
R
dx′0

γ−1(x′0)

(k2
⊥ + k′3

2)1/4

× ei(
√
k2⊥+k′3

2+|k|)x′0−i(k
′
3+k3)q(x′0) ,

(13)

is our desired beta-coefficient that is relevant to parti-
cles emitted to the mirror’s right. Similarly, choosing
ω > 0, (ω2 − k2

⊥)1/2 > 0 and k3 = −(ω2 − k2
⊥)1/2 < 0,

one obtains the same expression of Bogoliubov transfor-
mation as above but with k3 now being negative and
the corresponding beta-coefficient is relevant to particles
emitted to the mirror’s left.

The number of particles with k ∈ D per mode in the
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out-region is thus

dN

d2k⊥dk3
=
〈

0, in|âout†
k⊥k3

âout
k⊥k3
|0, in

〉
=

A

4π2

∫
D
dk′3 |βkk′ |2

≈ Aα2

64π4|k|

∫
D
dk′3

1√
k2
⊥ + k′3

2

×
∣∣∣∣∫

R
dx′0γ

−1(x′0)ei(|k|+
√
k2⊥+k′3

2)x′0−i(k3+k′3)q(x′0)

∣∣∣∣2 ,
(14)

where A is the area of the infinite-size, plane mirror. The
beta-coefficient and particle spectrum in (1+1)D follow
directly from (13) and (14) by letting k⊥ = 0.

B. Particle Production Probability

The vacuum persistence amplitude Zα corresponding
to the BC action is defined as

Zα = eiWα =

∫
Dφ eiSα[φ] , (15)

where Wα is the effective action. By decomposing Wα as
Wα = W0 + WI , where W0 is the effective action in the
absence of interaction, i.e., free field effective action, the
interaction effective action WI can be written as

eiWI = 〈0| T e− iα2
∫
R d

4xγ−1(x0)δ(x3−q(x0))φ̂2(x) |0〉 , (16)

where T is the time-ordering operator, φ̂ is a free scalar
field operator, and |0〉 is the free field vacuum state. By
expanding to the second order in α and using Wick’s
theorem, we obtain

eiWI ≈ 1 +
α

2

∫
R
d4xγ−1(x0)δ(x3 − q(x0))GF (x, x)

+
α2

8

[∫
R
d4xγ−1(x0)δ(x3 − q(x0))GF (x, x)

]2

+
α2

4

∫
R
d4xd4x′γ−1(x0)δ(x3 − q(x0))

× γ−1(x′0)δ(x′3 − q(x′0))G2
F (x, x′) ,

(17)
where GF (x, x′) is the free field Feynman propagator.
The constant factors in the denominator of each term
are the symmetry factors for the corresponding processes.
For example, the symmetry factor 2 for the O(α) process
comes from the propagator starting and ending on the
same spacetime point (vertex); the factor 4 = 2× 21× 1!
for the last term originates, respectively, from (i) two
propagators connecting x and x′, (ii) 22/2 = 21 ways of
choosing 2/2 = 1 vertex among the 2 vertices as an in
vertex, and (iii) 1! way to pair the in vertex with the

remaining (out) vertex. WI is approximately

iWI ≈
α

2
GF (0)A

∫
R
dτ +

α2

4

∫
R
d4xd4x′γ−1(x0)

× δ(x3 − q(x0))γ−1(x′0)δ(x′3 − q(x′0))G2
F (x, x′) ,

(18)

where we have used ln(1 + x) ≈ x − x2/2 and τ is the
mirror’s proper time. The above equation has also been
derived in [33]. However, in our following treatment, we
use the following expression for the Feynman propagator:

GF (x, x′) = −iΘ(∆x0)

∫
R

d3k

(2π)3

e−i|k|∆x0+ik·∆x

2|k|

− iΘ(−∆x0)

∫
R

d3k

(2π)3

ei|k|∆x0+ik·∆x

2|k|
,

(19)

where Θ is the Heaviside step function, ∆x0 = x0 −
x′0, ∆x = x − x′, and replace Θ(−∆x0) by 1 − Θ(∆x0)
instead of using Feynman parametrization as [33] did, we
then obtain the probability of particle production as

P ≈ 2ImW ≈ 1

2

∫
D
d3k

Aα2

64π4|k|

∫
D
dk′3

1√
k2
⊥ + k′3

2

×
∣∣∣∣∫

R
dx′0γ

−1(x′0)ei(|k|+
√
k2⊥+k′3

2)x′0−i(k3+k′3)q(x′0)

∣∣∣∣2 ,
(20)

where the factor of 1/2 on the right-hand side is the prod-
uct of 2 × 1/4. Note that the domains for the momenta
are D since we are only considering the case of a semi-
transparent mirror, i.e., second order in α for the proba-
bility. Finally, by comparing (20) with (14), we observe
that the probability of particle production is related to
the particle spectrum by

P ≈ 2ImW ≈ 1

2

∫
D
d3k

dN

d2k⊥dk3
. (21)

III. EQUIVALENCE OF DIFFERENT
APPROACHES IN (1+1)D

A. Our approach

From (6), which applies in (1+3)D, we can deduce the
in-mode in (1+1)D straightforwardly by

u(1)(t, x) ≈ uh(t, x)− α
∫
R
dt′mdx

′ γ−1(t′m)

× δ(x′ − zm(t′m))uh(t′m, x
′)GR(t, x; t′m, x

′) ,

(22)

where

GR(t, x; t′m, x
′) =

1

2
Θ(t− t′m − |x− x′|)

=
1

2

∫ t

−∞
dt
′′
δ(t
′′
− t′m − |x− x′|) ,

(23)
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TABLE I: Comparisons between two different perturbative approaches that can be applied to (1+3)D.

Lin-Chou-Chen Ford-Vilenkin [13]

Mirror reflectivity Semi-transparent Perfect reflector

In-/Out-field Free field Static-mirror field

Spacetime dimension (1+1)D and (1+3)D (1+1)D and (1+3)D

Coordinate frame Lab (x0, x1, x2, x3) Lab (x0, x1, x2, x3)

Perturbation in Coupling constant: α Boundary condition: q(x0)/x3, q̇
2(x0), etc.

Approach Retarded Green function Retarded Green function

Advanced Green function Advanced Green function

Valid trajectories Relativistic Non-relativistic

Mirror’s initial/final location No restriction Static at the same location

Beta-coefficient is found by Fourier transformation Fourier transformation

TABLE II: Comparisons between different approaches for a relativistic, partially reflecting mirror.

Lin-Chou-Chen Nicolaevici [29][30] Haro-Elizalde [26]

Action Barton-Calogeracos action Barton-Calogeracos action Barton-Calogeracos action

Spacetime dimension (1+1)D and (1+3)D (1+1)D (1+1)D

Coordinate frame Lab (x0, x1, x2, x3) Lab (u, v) Lab (u, v), Comoving (ū, v̄)

Perturbation or exact Perturbation in α Exact in α Exact in α

Approach Retarded Green function Differential equation for Conformal transformation

Advanced Green function reflection coefficient of S-matrix elements

Valid trajectories Relativistic Relativistic Relativistic

Mirror’s initial/final location No restriction No restriction No restriction

Beta-coefficient is found by Fourier transformation Klein-Gordon inner product Klein-Gordon inner product

is the (1+1)D retarded Green function, and we have
changed the notations for the mirror’s trajectory by
q(x′0)→ zm(t′m), the observation points by x0 → t, x3 →
x, and the dummy variables by x′0 → t′m, x

′
3 → x′ for a

clear correspondence with the typical (1+1)D literature.
For uh(t, x) = e−iωt−iωx and on the mirror’s right, i.e.,

x − zm(t′m) > 0, the inhomogeneous part of (22) can be
evaluated as

− α

2

∫ t

−∞
dt
′′
∫
R
dt′mγ

−1(t′m)e−iωt
′
m−iωzm(t′m)

× δ(t
′′
− t′m − x+ zm(t′m))

= −α
2

∫ t

−∞
dt
′′
∫

dR(t′m)

1− żm(t′m)
γ−1(t′m)

× e−iωt
′
m−iωzm(t′m)δ(t

′′
− x−R(t′m))

= −α
2

∫ tm(u)

−∞
dt′mγ

−1(t′m)e−iωt
′
m−iωzm(t′m) ,

(24)

where R(t′m) = t′m − zm(t′m) in the first equality and
R(tm) = t− x in the last equality. Notice that R(tm) =
t − x recovers the standard condition for an out-going

massless particle in the null coordinates u = t − x, and
hence we denote tm by tm(u). On the mirror’s left, i.e.,
x− zm(t′m) < 0, we have

− α

2

∫ tm(v)

−∞
dt′mγ

−1(t′m)e−iωt
′
m−iωzm(t′m)

= −α
2

∫ tm(u)

−∞
dt′mγ

−1(t′m)

× eiω[tm+zm(tm)−t′m−zm(t′m)]e−iωt−iωx ,

(25)

instead, where tm(v) is determined by tm+zm(tm) = t+
x, which again recovers the standard condition v = t+ x
for an in-coming massless particle.

For the out-mode, we use the advanced Green function

GA(t, x; t′m, x
′) =

1

2
Θ(t′m − t− |x− x′|)

= −1

2

∫ t

∞
dt
′′
δ(t′m − t

′′
− |x− x′|) ,

(26)

in (22) instead. Following the same procedure as above,
we find, for uh(t, x) = e−iωt+iωx and on the mirror’s
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right, i.e., x− zm(t′m) > 0, the inhomogeneous part as

−α
2

∫ ∞
tm(v)

dt′mγ
−1(t′m)e−iωt

′
m+iωzm(t′m) . (27)

The other situations, e.g., uh(t, x) = e−iωt−iωx and on
the mirror’s left, may be straightforwardly found by using
the same procedure and thus we shall not repeat it here.

B. Nicolaevici’s approach

The in-mode given by Nicolaevici [29][30] is, e.g.,

V R = e−iωv −RR(u)e−iωp(u), V L = TL(v)e−iωv , (28)

where the superscripts R/L refer to the mirror’s
right/left, (u, v) are the (1+1)D null coordinates, and
the ray-tracing function is

p(u) = 2zm(u) + u , (29)

and the reflection and transmission coefficients are [37]

RR(u) =
α

2

∫ τ

−∞
dτ ′ e−

α
2 (τ−τ ′)+iω[v(τ)−v(τ ′)] ,

TL(v) = 1−RR(u) ,

(30)

where τ is the mirror’s proper time and v(τ) = tm(u) +
zm(tm) = p(u). In the first-order approximation, which
corresponds to the semi-transparent limit [38], the reflec-
tion coefficient becomes

RR(u) ≈ α

2

∫ τ

−∞
dτ ′ eiω[v(τ)−v(τ ′)] . (31)

Therefore, we have

−RR(u)e−iωp(u) ≈ −α
2

∫ τ

−∞
dτ ′ e−iωt

′
m−iωzm(t′m)

= −α
2

∫ tm(u)

−∞
dt′mγ

−1(t′m)e−iωt
′
m−iωzm(t′m) ,

(32)

which recovers our result (24).
The out-mode is given by [29][30]

UR = e−iωu −RR(v)e−iωf(v), UL = TL(u)e−iωu , (33)

where the ray-tracing function is

f(v) = −2zm(v) + v , (34)

and the reflection and transmission coefficients are

RR(v) =
α

2

∫ ∞
τ

dτ ′ e
α
2 (τ−τ ′)+iω[u(τ)−u(τ ′)] ,

TL(u) = 1−RR(v) ,

(35)

where u(τ) = tm(v) − zm(tm) = f(v). In the first-order
limit, we obtain

−RR(v)e−iωf(v)

≈ −α
2

∫ ∞
tm(v)

dt′mγ
−1(t′m)e−iωt

′
m+iω′zm(t′m) ,

(36)

which is identical to our (27).
The beta-coefficients on the mirror’s right using Nico-

laevici’s modes are

βrefωω′ = −
〈
Uout∗(ω > 0), V in(ω′ > 0)

〉
KG

IBP
= −

[
ω

2π
√
ωω′

∫ ∞
−∞

du RR(u)e−iω
′p(u)e−iωu

]∗
IBP
≈ α

4πi
√
ωω′

∫ ∞
−∞

du
γ−1(tm)

1− żm(tm)
ei(ω+ω′)tm−i(ω−ω′)zm(tm)

=
α

4πi
√
ωω′

∫ ∞
−∞

dtmγ
−1(tm)ei(ω+ω′)tm−i(ω−ω′)zm(tm) ,

(37)
where the superscript ”ref ” refers to the beta-coefficient
contributed by the reflected modes, ”IBP” refers to in-
tegration by parts, du = (1 − żm(tm))dtm, and 〈· · · 〉KG
is the Klein-Gordon inner product defined by

〈A,B〉KG = −i
∫
R
du
[
A(u, v)

←→
∂ uB

∗(u, v)
]
v→∞

. (38)

For the beta-coefficient contributed by the transmitted
modes, the other set of in-mode is required, see [29][30].
Since the discussion is similar, we simply list the result
we obtained:

βtranωω′

≈ α

4πi

1√
ωω′

∫ ∞
−∞

dtmγ
−1(tm)ei(ω+ω′)tm−i(ω+ω′)zm(tm).

(39)
The above coefficients agree with the (1+1)D limit of
(13) for k′3 < 0 and k′3 > 0, respectively.

We have now completed the demonstration of the
equivalence between our approach and the literature’s
since we are able to obtain identical expressions for the
mode functions and the beta-coefficients by further ma-
nipulating the standard expressions by integration by
parts and a change of variable. Notice that the approach
adopted and the expressions given in the standard liter-
ature are restricted to (1+1)D since those analyses are
based on the null coordinates. Nevertheless, our treat-
ment and expressions extend the discussion to higher di-
mensions.

IV. EXAMPLES

A. Trajectory 1

We now apply our (1+3)D formula, Eq.(13), to the tra-
jectory that is used to mimic the physics of gravitational
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collapse of a spherical null shell in (1+3)D curved space-
time in the (1+1)D moving mirror literature [26]−[29].
By comparing with the (1+1)D literature, we identify
properties that are exclusive to the plane mirror model
in higher, (1+3)-dimensional spacetime, whereas the con-
ventional (1+1)D results are reproduced by taking the
limit: k⊥ = 0. In addition to the trajectory’s connection
with gravitational collapse, this trajectory is also one of
the few trajectories that allows analytic studies and thus
it helps to develop intuitions for particle production by
a relativistic, plane mirror in (1+3)D flat spacetime.

In this section, the trajectory of interest is

zm(tm)

=

{
0 , −∞ < tm ≤ 0

−tm + 1
κ −

W [e1−2κtm ]
κ , 0 ≤ tm <∞ ,

(40)

where W (x) is the product logarithm and κ is a parame-
ter that can be identified as a black hole’s surface gravity
in the (1+1)D literature. Note that, in the following dis-
cussion, we will change the notations in (13) by q → zm
and x′0 → tm. This mirror is initially static and it be-
gins to execute Carlitz-Willey(CW)-like acceleration af-
ter tm = 0 toward timelike infinity. The following list the
results for quantities in the acceleration phase that will
appear in our later computation.

dzm
dtm

= −1−W [e1−2κtm ]

1 +W [e1−2κtm ]
,

γ−1(tm) =
2
√
W [e1−2κtm ]

1 +W [e1−2κtm ]
.

(41)

On the mirror’s right, the beta-coefficient due to the re-
flected mode may be evaluated by

βrefkk′ (k
′
3 > 0)

≈ α

4πi

1√
|k||k′|

∫ ∞
−∞

dtmγ
−1(tm)ei(|k|+|k

′|)tm−i(k3−k′3)zm(tm)

= − α

4π
√
|k||k′|

[
1

|k|+ |k′|

]
+

α

4πi

1√
|k||k′|

∫ ∞
0

dtmγ
−1(tm)ei(|k|+|k

′|)tm−i(k3−k′3)zm(tm).

By making the change of variable:

dζ =
2W [e1−2κtm ]

1 +W [e1−2κtm ]
dtm

ζ =
1

κ
− W [e1−2κtm ]

κ
, tm =

ζ

2
− 1

2κ
ln(1− κζ) ,

(42)

we obtain

βrefkk′ (k
′
3 > 0) ≈ − α

4π
√
|k||k′|

[
1

|k|+ |k′|

]
+

α

4πi

1√
|k||k′|

∫ 1
κ

0

dζ (1− κζ)−
1
2−

i
2κ (|k|+k3+|k′|−k′3)

× e i2 (|k|−k3+|k′|+k′3)ζ

= − α

4π
√
|k||k′|

[
1

|k|+ |k′|

]
+

α

4πiκ

e
i
2κ (|k|−k3+|k′|+k′3)√

|k||k′|

×
∫ 1

0

dz z−
1
2−

i
2κ (|k|+k3+|k′|−k′3)e−

i
2κ (|k|−k3+|k′|+k′3)z ,

where z = 1 − κζ. Next, performing a contour integra-
tion in the lower complex plane of z and deforming the
contour away from the pole z = 0 (this small arc gives
no contribution), we obtain

βrefkk′ (k
′
3 > 0) ≈ − α

4π
√
|k||k′|

[
1

|k|+ |k′|

]
− α

4πκ
√
|k||k′|

[
e
i
2κ (|k|−k3+|k′|+k′3)e

iπ
4 e−

π
4κ (|k|+k3+|k′|−k′3)

×
∫ ∞

0

ds s−
1
2−

i
2κ (|k|+k3+|k′|−k′3)e−

(|k|−k3+|k′|+k′3)

2κ s︸ ︷︷ ︸
z=−is

−
∫ ∞

0

ds (1− is)− 1
2−

i
2κ (|k|+k3+|k′|−k′3)e−

(|k|−k3+|k′|+k′3)

2κ s︸ ︷︷ ︸
z=1−is

]
.

The integrals can be evaluated in terms of Gamma and
upper incomplete Gamma functions and the result is

βrefkk′ (k
′
3 > 0) ≈ − α

4π
√
ωω′

[
1

ω + ω′

]

− αe
iωr−
2κ e

iπ
4 e−

πωr+
4κ

4πκ
√
ωω′

[
2κ

ωr−

] 1
2−

iωr+
2κ

×
{

Γ

[
1

2
−
iωr+
2κ

]
− Γ

[
1

2
−
iωr+
2κ

,
iωr−
2κ

]}
,

(43)

where we have defined ωr+ = |k| + k3 + |k′| − k′3, ωr− =

|k| − k3 + |k′| + k′3, and ω = |k| = (k2
⊥ + k2

3)1/2, ω′ =

|k′| = (k2
⊥ + k′3

2
)1/2 for brevity. Following similar pro-

cedures, we obtain the beta-coefficient due to the trans-
mitted modes as

βtrankk′ (k′3 > 0) ≈ − α

4π
√
ωω′

[
1

ω + ω′

]

− αe
iωt−
2κ e

iπ
4 e−

πωt+
4κ

4πκ
√
ωω′

[
2κ

ωt−

] 1
2−

iωt+
2κ

×
{

Γ

[
1

2
−
iωt+
2κ

]
− Γ

[
1

2
−
iωt+
2κ

,
iωt−
2κ

]}
,

(44)

where ωt+ = |k|+k3 + |k′|+k′3, ω
t
− = |k|−k3 + |k′|−k′3.
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Equations (43) and (44) apply in (1+3)D for k, k′ ∈ D
satisfying the semi-transparent condition. However, we
will take this physical infrared cutoffs for k3, k

′
3 as kc ∼ α

in this paper for simplicity.

� Case 1: k⊥ = 0 ((1+1)D limit)
Perpendicular modes are effectively (1+1)D.

Letting k⊥ = 0 in (43) and (44) give

βrefωω′ ≈ −
α

4π
√
ωω′

[
1

ω + ω′

]
− αe

iω′
κ e

iπ
4

4πκ
√
ωω′

[ κ
ω′

] 1
2−

iω
κ

e−
πω
2κ

×
{

Γ

[
1

2
− iω

κ

]
− Γ

[
1

2
− iω

κ
,
iω′

κ

]}
,

(45)

and

βtranωω′ ≈ −
α

4π
√
ωω′

[
1

ω + ω′

]
+

α

4πi

1√
ωω′

[
2

κ− 2i(ω + ω′)

]
.

(46)

In the high frequency regime: ω′ � κ for βrefωω′ , us-
ing the asymptotic behavior for the upper incomplete
Gamma function, i.e., Γ(s, n) ≈ ns−1e−n for n → ∞,

the third term exactly cancels out the first term in βrefωω′

by further assuming ω′ � ω (late time). The remaining

contribution to βrefωω′ is the second term and it gives

|βrefωω′ |
2 ≈ α2

8πκωω′2

[
1

e2πω/κ + 1

]
, (47)

which reproduces the spectrum in Refs.[26]−[29]. At this
point, ω > kc while ω′ > kc, ω

′ � κ, and ω′ � ω. On
the other hand, all the terms in (46) combine to give

|βtranωω′ |2 ≈
α2κ2

16π2ωω′
1

(ω + ω′)2[κ2 + 4(ω + ω′)2]
. (48)

� Case 2: ω− � κ

For ωr− � κ, the first term in βrefkk′ dominates:

|βrefkk′ (k
′
3 > 0)|2 ≈ α2

16π2ωω′
1

(ω + ω′)2
. (49)

For 0 < ωt− � κ, the first term in βtrankk′ dominates:

|βtrankk′ (k′3 > 0)|2 ≈ α2

16π2ωω′
1

(ω + ω′)2
. (50)

� Case 3: ω′ � ω (late time) ∧ ω′ � κ

In this case, only the second term in βrefkk′ survives:

|βrefkk′ (k
′
3 > 0)|2

≈ α2

8πκωk′23

[
1− 3(ω sin θ)2

4k′23

] [
1

eω/Teff(θ) + 1

]
,

(51)

where Teff(θ) = κ/[(1+cos θ)π] is identified as an effective
temperature. At this point, the conditions required are:
k3 > kc, k

′
3 > kc, ω

′ ∼ k′3 � ω, and ω′ ∼ k′3 � κ.
On the other hand, to expand the incomplete Gamma

function for ωt− � κ in βtrankk′ , the additional conditions:
θ 6= 0 and ω � κ are required. However, in such a case,
the third term no longer cancels with the first term in
βtrankk′ but only indicates the latter is negligible compared
to the former. Nevertheless, since ωt− � κ, the third term
is negligible compared to the second term. Therefore, at
the end of the day, the second term in βtrankk′ dominates
and gives

|βtrankk′ (k′3 > 0)|2 ≈ α2

4πκω2k′3

[
e−2πk′3/κ

1− cos θ

]
, (52)

under the conditions: k3 > kc, k
′
3 > kc, ω

′ ∼ k′3 � ω,
ω′ ∼ k′3 � κ, ω � κ, and θ 6= 0.

Using (14), (51), and (52), we are able to obtain ana-
lytic expressions for their respective particle spectra.

The reflected particle spectrum is

dNref (0 ≤ θ ≤ π/2)

dωdΩ
≈ Aω2

4π2

∫ ∞
Λ1

dk′3 |β
ref
kk′ |

2

=
Aα2

32π3κΛ1

[
1− (ω sin θ)2

4Λ2
1

] [
ω

eω/Teff(θ) + 1

]
,

(53)

where Λ1 is a physical infrared cutoff approximated by
κ or ω. This cutoff is introduced since (51) is valid for
k′3 > kc (semi-transparent condition), k′3 � ω, and k′3 �
κ (the last two conditions make the second term in (43)
dominate). Naively, if the parameter κ is less than kc,
then Λ1 should be approximated by ω since k′3 � ω >
kc > κ. However, from (51), we know that α/κ should be
less than one since the spectrum should vanish without
ambiguity in the no-coupling limit, i.e., α = 0. This
then rules out the above naive parameter regime since
kc ∼ α. Therefore, we are only left with the following two
legitimate regimes: k′3 � κ > ω > kc and k′3 � ω > κ >
kc. In the former case, Λ1 should be approximated by κ,
whereas, in the latter case, Λ1 should be approximated
by ω instead. Thus, Λ1 is approximated by κ or ω.

The transmitted particle spectrum is

dNtran(θ = 0)

dωdΩ
≈ Aω2

4π2

∫ ∞
Λ2

dk′3 |βtrankk′ |2

≈ Aα2

1024π4

[
κ2ω

Λ4
2

]
,

dNtran(0 < θ ≤ π/2)

dωdΩ
≈ Aω2

4π2

∫ ∞
Λ2

dk′3 |βtrankk′ |2

≈ Aα2

16π3κ

[
Γ (0, 2πΛ2/κ)

1− cos θ

]
,

(54)

where Λ2 ∼ ω. This cutoff is introduced since (52) is valid
for k′3 > kc, k

′
3 � ω, k′3 � κ, and ω � κ. There are two

possibilities within these regimes, i.e., k′3 � ω > κ > kc
and k′3 � ω > kc > κ. For both situations, Λ2 should be
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approximated by ω. However, following similar argument
as the case for reflected spectrum, we conclude only the
former regime is legitimate.

FIG. 1: Angular spectrum for Eq.(53)
when k′3 � κ > ω > kc. We roughly take
Λ1 ∼ κ and normalize the spectrum by

its value at ω = 2, κ = 4.

FIG. 2: Angular spectrum for Eq.(53)
when k′3 � ω > κ > kc. We take Λ1 ∼ ω
and normalize the spectrum by its value

at ω = 4, κ = 2. The subgraph is a
zoom-in for the case: ω = 4, κ = 1

normalized by the value at θ = π/2.

FIG. 3: Angular spectrum for Eq.(54).
The spectrum is normalized by the value

at θ = 0.1.

In (1+3)D spacetime, the number of particles emitted
in the off-perpendicular directions due to the reflected
modes is larger than those emitted perpendicularly to

the mirror’s surface, as illustrated in Fig. 1 and Fig. 2.
In addition, the motion of the mirror being relativis-
tic is also crucial for this phenomenon to occur. This
should be expected since, classically, the reflection of pho-
tons off a relativistic, receding mirror in 3-dimensional
space tends to spread in large angles when the striking
process is off-perpendicular [34][35]. Therefore, in our
current situation, there are more in-modes reflected off-
perpendicularly and thus the excitation of these modes
leads to more off-perpendicular particles being created
compared to their perpendicular counterparts. As for
the particles created by the transmitted modes, they are
mainly focused within a small emission angle, as illus-
trated in Fig. 3. Thus, for a relativistic, plane mirror in
(1+3)D, the created perpendicular particles are the prod-
uct of both the reflected, perpendicular in-modes and the
transmitted modes although the contribution from the
latter may be negligible in comparison. However, for off-
perpendicular directions, the created particles may serve
as a characteristic product of the reflected in-modes.

Furthermore, the effective temperature Teff(θ) is emis-
sion angle (θ)-dependent. In the perpendicular direction,
i.e., effectively (1+1)D, the effective temperature recov-
ers the familiar temperature TH ≡ Teff(θ = 0) = κ/2π
in the (1+1)D literature. However, as the emission
angle gets larger, the effective temperature monotoni-
cally increases and eventually reaches twice the value of
Teff(θ = 0) = κ/2π at θ = π/2, i.e., Teff(θ = π/2) = κ/π.
This tendency may be understood as a manifestation of
the fact that off-perpendicular particles are more proba-
ble to be created as mentioned in the last paragraph.

B. Trajectory 2

We now consider one of the trajectories proposed in
[22] for a plasma mirror that may be realizable in future
experiments. From Eqs.(23) and (28) of [22], one obtains
the following trajectory:

tm(zm) = −zm
ε

+
3π

2εωp0(a+ b)

[
a+ b

a+ bezm/D
− 1

]
, (55)

where {ωp0, a, b,D} > 0 are positive constants, −∞ <
zm ≤ 0, 0 ≤ tm < ∞, 0 < ε ≤ 1, and we have
made the mirror left-moving as opposed to the original
right-moving setup in [22]. For simplicity, we will take
ε = 1 and a = 1 hereafter. This trajectory is designed
such that it asymptotes the Davies-Fulling trajectory [4],
which mimics gravitational collapse by a point mirror in
(1+1)D, in the late time tm →∞ or simply in the limit:
a � b. Therefore, one would expect to obtain similar
particle spectra for this trajectory as the previous exam-
ple. The above trajectory only describes the accelerating
phase of the mirror. Before the mirror accelerates, i.e.,
−∞ < tm ≤ 0, it moves at a constant velocity approach-
ing the speed of light [22]:

tm(zm) = −zm
v
, 0 ≤ zm <∞ , v → 1 . (56)
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Having the trajectories, we now compute the corre-
sponding beta-coefficient on the mirror’s right due to the
reflected modes.

βrefkk′ (k
′
3 > 0)

≈ α

4πi

1√
ωω′

∫ ∞
−∞

dtmγ
−1(tm)ei(ω+ω′)tm−i(k3−k′3)zm(tm)

=
α

4πi

1√
ωω′

∫ −∞
∞

dzm
t′m
√
t′2m − 1

|t′m|
ei(ω+ω′)tm−i(k3−k′3)zm(tm)

≈ − α

4π
√
ωω′

[ √
1− v2

ω+ + vk−3

]

+
αe

3iπω+b
2ωp0

4πi
√
ωω′

√
3πb

ωp0D

∫ ∞
0

dzme
− zm2D ei(ω

++k−3 )zme
− 3iπω+b

2ωp0
e−

zm
D

,

where ω = |k|, ω′ = |k′|, t′m = dtm/dzm, ω+ =
ω + ω′, k−3 = k3 − k′3, and the second ”≈” refers to
assuming b � ωp0D (this makes the velocity more con-
tinuous at tm = 0), b � 1 (this makes the trajectory
Davies-Fulling-like), ω+ � ωp0b

−2 and leaving terms to
the leading order. The integral in the last line can be
done by performing contour integrations in the complex
plane. The result is

βrefkk′ (k
′
3 > 0) ≈ − α

4π
√
ωω′

[ √
1− v2

ω+ + vk−3

]

− α
√

2D e
3iπω+b
2ωp0 e

iπ
4 e−

πD(ω++k
−
3 )

2

4π
√
ω+
√
ωω′

×
[

3πω+b

2ωp0

]iD(ω++k−3 ){
Γ

[
1

2
− iD(ω+ + k−3 )

]
− Γ

[
1

2
− iD(ω+ + k−3 ),

3iπω+b

2ωp0

]}
.

(57)

By further taking the limit: ω+b � ωp0 and recalling
v → 1, (57) simplifies to

βrefkk′ (k
′
3 > 0) ≈ α

4πω+
√
ωω′

√
4Dωp0

3πb

− α
√

2D e
3iπω+b
2ωp0 e

iπ
4 e−

πD(ω++k
−
3 )

2

4π
√
ω+
√
ωω′

×
[

3πω+b

2ωp0

]iD(ω++k−3 )

Γ

[
1

2
− iD(ω+ + k−3 )

]
.

(58)

Its modulus squared is

|βrefkk′ (k
′
3 > 0)|2

≈ α2D

4πωω′ω+

[
1

e2πD(ω++k−3 ) + 1

]
+ terms irrelevant to our interest .

(59)

For ω′ ∼ k′3, (59) becomes

|βrefkk′ (k
′
3 > 0)|2

≈ α2D

4πωk′3(ω + k′3)

[
1

eω/Teff(θ) + 1

]
+ terms irrelevant to our interest ,

(60)

where Teff(θ) = 1/[(1+cos θ)2πD] is identified as an effec-
tive temperature. For particles emitted perpendicularly
to the mirror’s surface, i.e., θ = 0, the temperature be-
comes TH ≡ Teff(θ = 0) = 1/4πD, which leads to the
identification of the surface gravity of an analog black
hole as κ = 1/2D. For ω′ ∼ k′3 � ω (late time), the
corresponding particle spectrum is

dNref (0 ≤ θ ≤ π/2)

dωdΩ
≈ Aω2

4π2

∫ Λ2

Λ1

dk′3 |β
ref
kk′ |

2

=
Aα2

32π3κ

[
1

Λ1
− 1

Λ2

] [
ω

eω/Teff(θ) + 1

]
+ terms irrelevant to our interest ,

(61)

where Λ1 ∼ ω ∨ ωp0b−1 and Λ2 ∼ ωp0b
−2. Since (61) is

derived under several above-mentioned assumptions, the
only possible legitimate cases are: (i) ωp0b

−2 � k′3 �
ω > kc > ωp0b

−1, (ii) ωp0b
−2 � k′3 � ω > ωp0b

−1 > kc,
and (iii) ωp0b

−2 � k′3 � ωp0b
−1 > ω > kc, for (61) to

be valid. For (i) and (ii), the infrared cutoffs are both
approximately ω, whereas the infrared cutoff for (iii) is
approximately ωp0b

−1. However, for all cases, the upper
cutoffs are approximately ωp0b

−2, which originates from
the condition ω+ � ωp0b

−2 imposed at the very begin-
ning. Notice that the condition: kc ∼ α < κ = 1/2D is
also obeyed by the above spectra based on similar argu-
ment addressed in the previous subsection. However, in
the current example, this condition is irrelevant to the
determination of legitimate parameter regimes.

The spectra for this trajectory contain the same distri-
butions, which are the parts relevant to mimic gravita-
tional collapse, as (51) and (53). The spectra also contain
two terms, which are contributed from the first term in
(58) and its cross-term with the Gamma function term,
that are not relevant to our interest of mimicking gravita-
tional collapse. Nevertheless, by comparing the modulus
squared of the first term in (58) to the second term in-
volving the Gamma function, we find the first terms in
(60) and (61) dominate over the terms irrelevant to our
interest in the regime: ω � κ ln [bk′3/ωp0].

Consider future flying plasma mirror experiments [22]
with ns = 1.6 × 105 (eV)2, α = 2.8 × 10−2 eV, ωp0 =
0.6 × 10−2 eV, and D = 0.5 µm, the corresponding
characteristic frequency of the emitted particle would be
ωchar = Teff ∼ 1/4πD = 3.1 × 10−2 eV > ωp0, i.e., these
emitted particles can propagate through the plasma for
detection. In addition, for, say, b = 0.2, condition (ii) is
satisfied and the emitted particles within the frequency
range: 3. × 10−2 eV < ω < 14.8 × 10−2 eV should dis-
tribute themselves according to (61).
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In this subsection, we omit the computation of quan-
tities due to the transmitted modes since we are only
interested in quantities that can be associated with an
analog black hole. However, these computations should
follow straightforwardly as the discussions made in the
previous example.

V. CONCLUSION

In this paper, we have investigated the production
of massless, scalar particles by a relativistic, semi-
transparent, plane mirror with arbitrary, relativistic
trajectories based on the Barton-Calogeracos (BC) ac-
tion and derived the corresponding particle spectrum in
(1+3)D Minkowski spacetime and identified the relation
between the spectrum and the particle production prob-
ability. Comparisons of our treatment to the approaches
adopted in the (1+1)D literature for a relativistic, point
mirror and the (1+3)D literature for a non-relativistic,
plane mirror are summarized in Table I and Table II.

We apply our derived (1+3)D spectrum formula to the
trajectory that is often used in the (1+1)D literature to
mimic gravitational collapse. The spectra in various fre-
quency/momentum regimes are derived analytically. In
particular, in the regime ω′ � ω and ω′ � κ, we find
the particle spectrum created by the reflected in-modes
has an effective temperature depending on the emission
angle monotonically and the conventional (1+1)D result
is recovered at θ = 0. In addition, there are more parti-
cles created with non-vanishing transverse momenta com-
pared to the perpendicular ones due to the relativistic
property of the mirror and the spacetime dimension be-
ing (1+3)D.

As a second example, we apply our derived spectrum
formula to the Chen-Mourou trajectory proposed in [22].
This trajectory asymptotes the Davies-Fulling trajectory
[4] in the limits: tm →∞ or a� b. Thus, there will be a
period which mimics gravitational collapse for a (1+1)D
moving mirror model. For the sake of analytic compu-
tations to extract the explicit distribution of the parti-
cle spectrum, we make some assumptions throughout the
discussion and find the corresponding particle spectrum
due to the reflected modes is similar to that of the pre-
vious example, which should be expected, and thus the
discussions made previously also apply directly to this
case.

In this paper, the mirror considered is an infinite-size,
homogeneous, plane mirror in (1+3)D Minkowski space-
time. However, the formalism adopted in principle al-
lows the consideration of a mirror with finite size by,
e.g., inserting a density function describing the mirror’s
transverse geometry. In addition, the geometric factor
of the mirror is incorporated into the particle spectra,
i.e., (53) and (54), via the area A, which has a dimen-
sion of length2. If we group a factor of ω2 to the area A,
they combine to give A/λ2 → ∞, where λ is the wave-
length of the particle (another ω2 should be divided by

α2 simultaneously giving the semi-transparent condition
α/ω � 1). This observation indicates that the quantities
we discussed are valid in the realm of geometric optics.
When the finite-size effect is considered, the character-
istic length

√
A may be comparable to the wavelength

λ. In such a case, diffraction may occur and the particle
spectrum may include other corrections in terms of the
characteristic length. The issue of finite-size effect will
be further investigated in our upcoming work.
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Appendix A: S-matrix approach

In this appendix, we offer an alternative and fast way
for computing the particle spectrum. This approach be-
gins by recognizing the S-matrix of the BC action as

S = T e− iα2
∫
R d

4xγ−1(x0)δ(x3−q(x0))φ̂2
I(x) , (A1)

where T is the time-ordering operator and the subscript
I refers to the interaction picture.

By using the relation between the in-state/operator
and the out-state/operator:

|0, out〉 = S |0, in〉 & âout
k = S†âin

k S , (A2)

and the identity (for later convenience):

〈0, in| âin
k′ â

in
p â

in†
k âin

k â
in†
p′ â

in†
q |0, in〉

= δ(k′ − q)δ(p− k)δ(k− p′)

+ δ(k′ − k)δ(k− p′)δ(p− q)

+ δ(k′ − p′)δ(p− k)δ(q− k)

+ δ(k′ − k)δ(q− k)δ(p− p′) ,

(A3)

we may then compute the particle spectrum by

dN

d2k⊥dk3
= 〈0, in| âout†

k âout
k |0, in〉

= 〈0, in|S†âin†
k âin

k S |0, in〉

≈ Aα2

64π4|k|

∫
D
dk′3

1√
k2
⊥ + k′3

2

×
∣∣∣∣∫

R
dx′0γ

−1(x′0)ei(|k|+
√
k2⊥+k′3

2)x′0−i(k3+k′3)q(x′0)

∣∣∣∣2 ,
(A4)
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which agrees exactly with our previous result, Eq.(14).
The advantage of the S-matrix approach is that it enables
one to obtain the particle spectrum directly in a simpler
manner without the need of finding the mode functions,
Eq.(6) and Eq.(8), first and performing laborious calcu-

lations. Nevertheless, the mode functions derived in the
main text may be important for future studies of, e.g.,
energy-momentum tensor, correlation functions, detector
response function, etc.
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