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We investigate the observability of higher harmonics in gravitational wave signals emitted during
the coalescence of binary black holes. We decompose each harmonic into an overall amplitude,
dependent upon the masses and spins of the system, and an orientation-dependent term, dependent
upon the inclination and polarization of the source. Using this decomposition, we investigate the
significance of higher multipole moments over the parameter space and show that the ` = |m| = 3
harmonic is most significant across much of the sensitive band of ground-based interferometric
detectors, with the ` = |m| = 4 harmonic having a significant contribution at high masses. We
introduce the higher harmonic signal-to-noise ratio (SNR), and show that a simple threshold on
this SNR can be used as a criterion for observation of higher harmonics. Finally, we investigate
observability in a population of binaries and show that higher harmonics will be observable in a
few percent of binaries, typically those with unequal masses and viewed close to edge-on. We find
that he majority of binaries with mass ratio greater than 4:1 will have an observable ` = |m| = 3
harmonic.

I. INTRODUCTION

Gravitational waves emitted during the coalescence of
black hole and/or neutron star binaries are emitted pre-
dominantly at twice the orbital frequency, during the in-
spiral phase of the coalescence [1]. However, it is also
well-known that the gravitational wave signal cannot
be completely characterized by a single harmonic but,
rather, is better decomposed as a sum of spin-weighed
spherical [2, 3] (or spheroidal [4–8]) harmonics. The
dominant harmonic is the (`, |m|) = (2, 2) harmonic, but
there is also power in higher harmonics, most notably
the (`, |m|) = (2, 1), (3, 2), (3, 3) and (4, 4) harmonics 1

[9, 10]. The importance of these additional harmonics
increases as the mass ratio between the two black holes
increases and also increases for observed signals where the
late inspiral and merger of the objects contribute signif-
icantly to the SNR [10–28]. Recent semi-analytical and
numerical relativity models have provided expressions for
an increasing number of the higher harmonics accurate
across the inspiral, merger and ringdown regimes [8, 29–
41].

Clear evidence of higher gravitational-wave harmonics
has been observed in two recent observations, GW190412
[42] and GW190814 [43], as well as weaker evidence in the
high-mass system GW170729 [44]. These observations
provide further evidence that Einstein’s general relativ-
ity is an accurate description of gravity, including in the
strong-field, highly dynamic regime of the merger of two
black holes [9, 45]. By incorporating knowledge of the
higher harmonics into a search for gravitational waves,
the sensitivity of gravitational wave searches can be im-
proved, leading to an increase in the rate of observed
systems [23]; furthermore these observations would typi-

1 When we refer to a multipole by the label (`,m) we always mean
(`, |m|).

cally be from less densely populated regions of the param-
eter space [46], for example high mass binaries and those
with unequal mass components. Finally, the observation
of higher harmonics enables more accurate measurement
of the properties of system [42, 43, 47]. For example, the
measurement of multiple harmonics can be used to break
well-known degeneracies between the measured distance
and orientation of the system [48], or the mass ratio and
spins of the black holes [49, 50].

The observation of other features in the gravitational
waveform, most notably spin-induced orbital precession
in black-hole binaries [51, 52] and matter effects in bi-
naries containing neutron stars [53, 54], will also en-
able more accurate measurements of the source proper-
ties. Measurements of neutron-star structure have been
inferred from GW170817 [55, 56], while there is some
evidence for precession in the black hole binary merg-
ers GW190521 [57] and GW190412 [42]. The inclu-
sion of matter effects will not affect the applicability of
the spin-weighted spherical harmonic decomposition dis-
cussed above, and we do not consider these effects in this
paper.

Orbital precession does change the structure of the
emitted gravitational waveform. The waveform can still
be decomposed into a basis of spin-weighted spherical
harmonics, but now each of the harmonics shows the
characteristic amplitude and phase modulations associ-
ated with time-dependent evolution of the orbital plane
[32]. Alternatively, this can be understood as the split-
ting of each gravitational wave multipole into several
precession-induced harmonics, which are offset by multi-
ples of the precession frequency [32, 58, 59]. Thus, a full
analysis of the observability of higher multipole moments
requires a detailed treatment of precession. However, for
the majority of events observed to date [60], there is little,
if any, evidence for precession. In this paper, we restrict
attention to aligned-spin systems, which do not exhibit
precession. This will provide good insight into the sig-
nificance of higher gravitational wave multipoles in the
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observed population.
While the gravitational waveform is comprised of an

infinite number of harmonics, it is the unambiguous
measurement of a second harmonic, in addition to the
(`, |m|) = (2, 2) harmonic, which will lead to a step-
change in our ability to measure the properties of the
system; additional harmonics will then further refine the
measurement accuracy. In this paper, we perform an
in-depth investigation of the importance of the higher
harmonics across the parameter space and identify re-
gions of the parameter space where particular harmonics
are most likely to make a significant contribution. The
amplitude of each harmonic depends both upon the in-
trinsic parameters of the system (its masses and spins,
both magnitudes and orientations) as well as the extrin-
sic parameters (the orientation of the binary and the de-
tector network’s sensitivity to the two polarizations of
gravitational waves). For simplicity, we decompose the
harmonics into an overall amplitude factor, dependent
only upon the intrinsic parameters, and an orientation
dependent term. We then investigate the significance of
each harmonic across the parameter space.

Next, we turn to the question of when additional har-
monics have been unambiguously observed. From a
model selection perspective, this can be addressed by
considering the evidence in favour of a waveform con-
taining higher harmonics against one without. Here, we
introduce the higher-harmonic signal to noise ratio, and
argue that it can be used as an alternative method of es-
tablishing the observability of higher harmonics. 2 It is
straightforward to calculate the SNR contained in each
of the higher waveform harmonics, and compare to the
expectation due to noise-only in the higher harmonics.
This approach has been used to verify the observation
of higher harmonics from the binary mergers observed as
GW190412 and GW190814 [42, 43].

The structure of the paper is as follows. In section
II, we provide a brief review of the gravitational wave-
form, incorporating the higher harmonics, and use this
to fix the notation for the remainder of the paper; in
section III we explore the significance of the higher har-
monics over the parameter space, both intrinsic (masses
and spins) and extrinsic (binary orientation); in section
IV we investigate the observability of higher harmonics
and introduce a simple criterion for detection; finally in
section V we investigate observability for a population of
events.

II. THE GRAVITATIONAL WAVEFORM

The measured gravitational wave strain h can be writ-
ten as

h = F+h+ + F×h×, (1)

2 A similar prescription has recently been introduced for precessing
systems [59, 61].

where the antenna factors F+ and F× depend upon
the sky location (right-ascension and declination) of the
source, as well as the polarization of the source. It is often
convenient to explicitly extract the unknown polarization
angle ψ and then consider the detector response to be a
known quantity dependent upon only the details of the
detector and the direction to the source. Thus, we write
the detector response as,

F+ = w+ cos 2ψ + w× sin 2ψ,

F× = −w+ sin 2ψ + w× cos 2ψ, (2)

where w+ and w× are the detector response functions
in a fixed frame — for a single detector it is natural to
choose w× = 0 and for a network to work in the dominant
polarization, in which for each sky point the polarization
angle χ is chosen to maximize the network sensitivity to
w+ [62, 63]. The relative amplitude of w× to w+ de-
scribes the sensitivity of the network to the second gravi-
tational wave polarization. The unknown polarization of
the source relative to this preferred frame is denoted ψ.

The radiation-frame gravitational wave polarizations
h+ and h× can be decomposed into multipole moments
using spin-weighted spherical harmonics of spin weight
−2, −2Y`m, which are functions of the inclination angle
ι and a reference phase φo (see Appendix A for a more
detailed discussion of the decomposition).

For binaries with aligned spins, the orbital plane re-
mains unchanged during the merger, and this provides
a natural fixed basis for the spherical harmonic decom-
position. However, if spin-induced precession is present,
the orbital plane changes during the course of the merger
(equivalently, the inclination angle becomes time depen-
dent). In this case, it is natural to consider the waveform
in a co-precessing frame, i.e. a frame which is locked
to the binary’s orbit [58, 64]. While it is still possible
to decompose as a series of spin-weighted spherical har-
monics, each multipole moment of the waveform in the
observer’s frame involves a sum over multiple harmonics
in the co-precessing frame [32]. In this paper, we re-
strict attention to binaries which do not exhibit preces-
sion. While we do expect generic black hole binaries to
have spins which are mis-aligned with the orbital angular
momentum (and hence will precess), in the majority of
observations to date [60] there has been little evidence
for precession and low black hole spins are inferred from
current observations. Furthermore, as discussed in [59],
the (2, 2) multipole moment of a precessing waveform
can be decomposed into five precession harmonics with
the two leading harmonics providing the majority of the
signal power. A similar decomposition is possible for the
higher (`, |m|) multipoles and, over much of the param-
eter space, it is only the leading precession harmonic of
the higher (`, |m|) multipoles that will provide significant
power. Consequently, for many signals with non-zero in-
plane spins, our analysis will remain valid. We leave the
detailed examination of the interplay between precession
and higher harmonics to future investigations.

For a binary merger which does not exhibit precession,
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the waveform can be expressed in the frequency domain,
using the stationary-phase approximation, as

h̃+(f) =
do
dL

∑
`≥2

∑̀
m=0

A`m+ (ι)eimφo h̃`m(f) (3)

h̃×(f) =
do
dL

∑
`≥2

∑̀
m=0

A`m× (ι)ieimφo h̃`m(f)

where dL is the luminosity distance, do is a fiducial dis-
tance used to normalize the waveforms h̃`m. The am-
plitude factors A`m are functions only of the inclination
angle and are given below for the most significant har-
monics:

A22
+ = 1

2 (1 + cos2 ι) (4)

A22
× = cos ι

A21
+ = sin ι

A21
× = sin ι cos ι

A33
+ = sin ι(1 + cos2 ι)

A33
× = 2 sin ι cos ι

A32
+ = 1− 2 cos2 ι

A32
× = 1

2 (cos ι− 3 cos3 ι)

A44
+ = sin2 ι(1 + cos2 ι)

A44
× = 2 sin2 ι cos ι

There is a freedom in choice of overall normalization for
these amplitude factors, which corresponds to an overall
rescaling of the waveform defining each harmonic, h̃`m.
For the (`, |m|) = (2, 2) multipole moment, it is custom-
ary to choose a normalization such that A22

+ = A22
× = 1

for a face-on system, and we use that normalization
here. Since many of the higher harmonics vanish for
face-on systems, we instead choose a normalization for
the higher-harmonic amplitude factors, A`m+,× in Eq. (4),

by requiring that for the plus polarization A`m+ = 1 at
ι = π

2 , i.e. when the system is edge on 3.
Fig. 1 shows the dependence of the multipole moments

on inclination. The plus polarization of the (2, 2) har-
monic peaks at face-on, while the (2, 1) and (4, 4) har-
monics peak at edge-on. The (3, 2) amplitude factor is
maximum at both face-on and edge-on orientations while

the (3, 3) harmonic peaks at sin ι =
√

2
3 . The different

dependence of the harmonics on the binary orientation
can lead to the improved measurement of the inclination,

3 The normalization obtained by directly expanding the spherical
harmonics from Eq. (A2) in Eq. (A6) differs by multiplicative

factors of 1
4

√
5
π

, 1
4

√
5
π

, − 1
8

√
21
2π

, − 1
4

√
7
π

and 3
16

√
7
π

for the

(2,2), (2,1), (3,3), (3,2) and (4,4) multipoles respectively. The
calculation is presented in Appendix A.

when more than one harmonic is observed [42, 47], break-
ing the well-known degeneracy between distance and in-
clination angle that arises when observing only the dom-
inant harmonic [48].

During inspiral, the frequency evolution of a multi-
pole, ω`m, is related to the orbital frequency, ωorb, as
ω`m ∼ mωorb [9]. Phenomenologically, it has been quali-
tatively observed that during the ringdown the frequency
approximately evolves as ω`m ∼ lωorb [5, 65]. Thus it is
possible to scale the frequencies of the (2, 2) multipole
moment in quite a simple manner to obtain an approxi-
mate phase evolution of the l = m harmonics, for exam-
ple the phase evolution of the (3, 3) multipole moment is
approximately a factor of 1.5 times ω22 [66].

III. THE SIGNIFICANCE OF HIGHER
HARMONICS

In this section, we investigate the observability of the
different (`,m) multipole moments, and how this varies
across the mass and spin parameter space. For concrete-
ness, we restrict attention to a single detector with a
sensitivity comparable to that achieved by the LIGO ob-
servatories during their third observing run [67].

The key metric for waveform observability is the opti-
mal signal-to-noise ratio (SNR) defined as

ρ̂ =
√

(h|h) , (5)

where we have introduced the inner product weighted by
noise (characterized by a power spectrum S(f)) as

(a|b) := 4 Re

∫ fmax

0

ã(f)b̃(f)?

S(f)
df . (6)

Consider the situation where the (`, |m|) = (2, 2) har-
monic has been observed, and we are interested in ob-
taining an estimate of the expected SNR in the other
harmonics. As is clear from Eq. (3), the SNR in the
higher harmonics will depend upon the detector sensitiv-
ity to the higher harmonic waveform, h̃`m, as well as the
amplitude factor A`m+,×.

Let us examine the single-detector case in detail. For
simplicity, we choose a detector sensitive only to the +
polarization (in the preferred frame), so that w× = 0, and
we take w+ = 1. Furthermore, we simplify the calcula-
tion to consider only two multipole moments, the (2, 2)
harmonic and one other generic (`,m) harmonic. The
amplitude of each multipole depends on both the intrin-
sic properties of the system and the orientation relative
to the network of detectors.

The waveform observed at the detector is

h = cos 2ψ(h22
+ + h`m+ )− sin 2ψ(h22

× + h`m× ) , (7)

where h`m+,× are the two orthogonal components for the
(`,m) multipole moment of the waveform. For the
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FIG. 1. The absolute amplitude factors of the (2, 2), (2, 1), (3, 3), (3, 2) and (4, 4) harmonics as a function of the inclination
ι of the binary. The (2, 2) multipole moment is normalized to unity at ι = 0◦ while other multipoles are normalized to unit
amplitude in the + polarization at ι = 90◦. Left: + polarization Right: × polarization.

explicit frequency domain decomposition introduced in
Eq. (3), we can write

h̃`m+ (f) =
do
dL
A`m+ (ι)eimφo h̃`m(f)

h̃`m× (f) =
do
dL
A`m× (ι)ieimφo h̃`m(f) (8)

using the fact that F+ = cos 2ψ, F× = − sin 2ψ.

A simple substitution of Eq. (7) into Eq. (6) gives the
optimal SNR for a signal comprising two harmonics as

ρ̂2 = cos2 2ψ
[
|h̃22

+ |2 + |h̃`m+ |2 + 2(h̃`m+ |h̃22
+ )
]

+ sin2 2ψ
[
|h̃22
× |2 + |h̃`m× |2 + 2(h̃`m× |h̃22

× )
]

−2 sin 2ψ cos 2ψ
[
(h̃22

+ |h̃`m× ) + (h22
× |h`m+ )

]
(9)

where the cross terms (sin 2ψ cos 2ψ) between polariza-

tions for a single mode cancel since (h̃`m+ |h̃`m× ) = 0.

The cross terms between different multipole moments,
(h̃`m+,×|h̃22

+,×), can be both positive or negative, causing
constructive or destructive interference between the har-
monics. As discussed previously, the frequency during
inspiral scales with m while the ringdown frequency has
been observed to scale approximately with `. Conse-
quently, there is typically little overlap between the (2,
2) multipole and multipoles for which both ` 6= 2 and
m 6= 2. Thus, in many cases, the cross terms between
different harmonics will not make a significant contribu-
tion. We examine in detail the importance of the overlap
between different multipole moments in section III A. For
now, we restrict to the case where these terms can be ne-
glected.

Neglecting the cross terms between harmonics,
(h̃`m+,×|h̃22

+,×), we are able to re-express the optimal SNR

as

ρ̂2 =(cos2 2ψ|h̃22
+ |2 + sin2 2ψ|h̃22

× |2)

+ (cos2 2ψ|h̃`m+ |2 + sin2 2ψ|h̃`m× |2)

=: ρ2
22 + ρ2

`m . (10)

We have defined, in the obvious way, the power in the
(2, 2) and (`,m) multipole moments as ρ2

22 and ρ2
`m re-

spectively.
Next, using the form of h`m+,× from Eq. (8), we can write

ρ2
`m =

[
(A`m+ )2 cos2 2ψ + (A`m× )2 sin2 2ψ

]
|h̃`m|2 , (11)

which is also valid for (`,m) = (2, 2). The SNR in the
(`,m) harmonic is given by an orientation contribution,
dependent upon inclination and polarization, and a term
that depends upon the overall amplitude of the given
multipole moment. Consequently, we can express the
SNR in the higher harmonic as:

ρ`m = ρ22 α`mR`m , (12)

where α`m encodes the relative, intrinic amplitude of the
(`,m) multipole moment relative to the (2, 2) multipole
and R`,m encodes the relative size of the orientation fac-
tors. Specifically,

α2
`m =

(h̃`m|h̃`m)

(h̃22|h̃22)
(13)

and

R2
`m =

[
(A`m+ )2 cos2 2ψ + (A`m× )2 sin2 2ψ

][
(A22

+ )2 cos2 2ψ + (A22
× )2 sin2 2ψ

] . (14)

In general, the relative amplitudes R`m will depend
upon both the inclination and polarization angles. How-
ever, for the ` = m multipole moments, the expression
simplifies as the relative amplitudes are the same for both
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+,× polarization. In this case, there is no dependence
upon the polarization angle and 4

R33(ι) = 2 sin ι

R44(ι) = 2 sin2 ι . (15)

In Section III A, we explore the dependence of the rel-
ative amplitudes α`m over the mass and spin parameter
space and, in Section III B, the expected distribution of
R`m for a population of sources.

A. Dependence upon intrinsic parameters

The two important intrinsic parameters determining
the relative power in the higher harmonics are mass ratio
and total mass, with spin effects entering at higher post-
Newtonian (PN) order for most harmonics [10]. The con-
tribution of a higher harmonic relative to the (2,2) har-
monic generically increases with an increasing mass ratio.
The relative amplitudes of the multipole moments are in-
dependent of the total mass of the system. However the
frequency content of each multipole does depend upon
the total mass and thus, depending on the shape of the
detector power spectral density, certain higher harmon-
ics might be preferentially observed. In particular, the
contribution of higher harmonics can become more sig-
nificant at high masses, for which the merger frequency of
the dominant harmonic lies below the optimal sensitivity
of the detector.

In Fig. 2 we show the relative amplitude, αlm, of the
four multipoles that we are considering: the (3,3), (4,4),
(2,1) and (3,2) harmonics. The amplitudes have been
calculated using the PhenomHM waveform [30], for a signal
observed in a detector with LIGO O3 sensitivity [60, 67],
as a function of the (detector frame) total mass and mass
ratio of the system.

Over much of the parameter space, the (3,3) harmonic
is the most significant, with the relative amplitude of the
(3,3) harmonic increasing with mass ratio. For example,
at a total mass of 50M�, the (3,3) harmonic has 10% of
the amplitude of the leading harmonic at a mass ratio of
2:1 and 20% at 5:1. At high masses, and significant mass
ratios, the relative sensitivity to the (3,3) harmonic is
greater than one third of the (2,2) multipole. The (4,4)
multipole is generally the third most significant, after
the (2,2) and (3,3) harmonics. However, sensitivity to
the (4,4) multipole increases rapidly as the mass of the
system increases so that for total mass above ∼ 75M�
and mass ratio less than 2:1, the (4,4) multipole is more
significant than the (3,3) multipole.

The intrinsic amplitudes of the (2,1) and (3,2) harmon-
ics are always lower than at least one of the (3,3) and (4,4)

4 In this case, the cross term between polarizations in Eq. (9) also
vanishes.

harmonics, over the mass and mass ratio ranges explored
in Figure 2. As with the other harmonics, their relative
importance increases as the mass ratio decreases and also,
for the (3,2) harmonic in particular, as the total mass in-
creases. The (2,1) multipole is the only subdominant
multipole considered in this paper which has spin terms
in the amplitude at 1 PN order [10]. For this reason,
the (2,1) multipole is more significant for binaries with
large anti-aligned spins: the intrinsic amplitude roughly
doubles for a binary with effective spin χeff = −0.8, rel-
ative to a non-spinning system. Even then, the relative
contribution of the (2,1) harmonic is less than the (3,3)
harmonic.

For the power in these higher harmonics to be observ-
able, it must be possible to distinguish the signal in the
higher harmonic from the (2,2) harmonic. Generally, it is
only the contribution which is orthogonal to the (2,2) har-
monic which will be observable. Any contribution from
the higher harmonics which is proportional to the (2,2)
harmonic will simply serve to change the power observed
in the (2,2). Consequently, we are interested in knowing
whether the waveforms are orthogonal or, equivalently, in
the overlap between the harmonics. Here, we define the
normalized overlap maximized over the reference phase,
φo,

O(`m, 22) =
Maxφo(h̃`m|h̃22)

|h̃`m||h̃22|
. (16)

The overlap between the (3,3) and (4,4) multipoles
with the (2,2) harmonic is < 10% across the parameter
space explored, as expected due to the fact that the fre-
quency evolution of these harmonics differs significantly
from the (2,2). However, the overlap of the (2,2) har-
monic with the (2,1) and (3,2) multipoles can be signif-
icant. These overlaps are shown in Fig. 3 as a function
of total mass and mass ratio. As the (2,1) multipole
has approximately the same frequency as the (2,2) mul-
tipole during ringdown, we expect a significant overlap
at higher masses when the (merger and) ringdown occur
within the sensitive band of the detector. Similarly, for
the (3,2) multipole, the frequency evolution during the
inspiral matches closely with the (2,2) multipole and we
therefore expect a significant overlap between the (2,2)
and (3,2) multipoles, particularly for low masses. Con-
sequently, it can be difficult to identify these harmonics
in the signal. Interestingly, one of the most significant
impacts of the (3,2) multipole can be to produce an in-
correct estimate of the amplitude of the (2,2) harmonic,
and consequently introduce an error in the measured dis-
tance, as power from the (3,2) multipole will be mistak-
enly attributed to the (2,2) harmonic [45].

B. Dependence upon extrinsic parameters

The observed SNR in the higher harmonics depends
upon the orientation of the binary, through the R`m fac-
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FIG. 2. Ratio of the intrinsic amplitude, αlm, (defined in equation (13)) of signal harmonics to the (2,2) harmonic as a function
of the total (detector frame) mass and mass ratio of the system, in a detector with sensitivity matching the Advanced LIGO
detectors during O3 [67]. Upper left: the (3,3) harmonic; Upper right: the (4,4) harmonic; lower left: the (2,1) harmonic;
lower right: the (3,2) harmonic. In all cases, the spins of the black holes are set to zero. The solid white line corresponds to
α`m = 5.3/20 and the dashed line to α`m = 2.1/20, which correspond, approximately, to the threshold for the higher harmonics
being confidently/marginally observable for a signal with SNR=20 in the (2,2) multipole. Note that the colorbar is normalized
differently between the top and bottom row to improve the visibility of the weaker harmonics.

tor defined in Eq. (14), in addition to the intrinsic ampli-
tude of the harmonics discussed above. We can make sev-
eral immediate observations from Fig. 1 or, equivalently,
directly from the functional form of the spin-weighted
spherical harmonics. The (3,3), (4, 4) and (2, 1) multi-
poles vanish for a signal observed face-on (ι = 0), so the
miminum value of R`m for these harmonics is zero; in
contrast, there is no orientation for which both polariza-
tions of the (3, 2) harmonic vanishes. Next, there is no
orientation where the (2,2) harmonic vanishes, but the
other harmonics do not — the (2,2) harmonic only van-
ishes for the × polarization for an edge-on system, but
all other harmonics we are considering also vanish there.
Thus, there is a finite, maximum value of R`m for all har-
monics, and it’s easy to see from Fig. 1 that Rmax

`m = 2,
which occurs for edge-on systems.

In Fig. 4 we plot the distribution of the geometri-

cal factors R33(ι) and R44(ι). We have restricted at-
tention to the (3, 3) and (4, 4) multipoles as these are
the most significant, as seen in Fig. 2, and also the ex-
pression for R`m is independent of the observed grav-
itational wave polarization. We consider the distribu-
tion of R`m for a population of sources distributed uni-
formly in volume 5 and with uniformly distributed ori-
entation. We show both the distribution of R`m for a
uniform population of sources, as well as the expected
observed distribution. In order to obtain the observed

5 Realistically, we do not expect sources to be uniformly dis-
tributed, due to both cosmological effects and a redshift depen-
dent star formation and, hence, merger rate [68]. Nonetheless,
this simple model provides a reasonably approximation to gain
an understanding of the likely values of R.
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FIG. 3. Absolute value of the noise-weighted inner product between multipoles, evaluated using the Advanced LIGO (O3)
sensitivity, as a function of mass ratio and total mass for non-spinning black holes (χeff = 0). Left: the overlap between the
(2,2) and (2,1) multipoles; Right: the overlap between (2,2) and (3,2) multipoles.

FIG. 4. Distribution of R33(ι) and R44(ι) for all binaries (Universe) as well as that subset that would be detected above a
fixed SNR threshold for the (2,2) harmonic (Detected). We show both the results from a Monte-Carlo simulation as well as
the analytical prediction.

distribution for R33(ι) and R44(ι), it is sufficient to con-
sider selection effects only on the inclination angle. If
binaries are uniformly distributed in volume and orien-
tation the distribution of inclinations for signals above
an arbritrary detection threshold is known analytically
[69] (see Eq. (B3)). This allows us to derive analytical
expressions for the p(R33(ι)) and p(R44(ι)) distributions
shown in Fig. 4, which we do in Appendix B.

For both the (3,3) and (4,4) harmonics, the distribu-
tion peaks at R`m = 2, the value for an edge-on sys-
tem, with mean values of R̄33 = 1.57 and R̄44 = 1.33.
However, since the emission in the (2, 2) harmonic is
weakest when the system is observed edge on, selection
effects serve to significantly reduce the peak in the ob-

served population. For the (3, 3) harmonic, the peak
remains at Robs

33 = 2, but the distribution is broad, with
significant support over the full range from 0 to 2 and a
mean value of R̄obs

33 = 1.16. The mode of the observed
Robs

44 distribution is zero, although again there is broad
support over the range from 0 to 2 with a mean value of
R̄obs

33 = 0.79.

For other harmonics, the expected distribution of R`m
will depend upon the sensitivity of the detector network
to the two polarizations of the gravitational wave — the
distribution for R`m will differ between a single detector,
sensitive to only one polarization, and a network with
good sensitivity to both polarizations. Nonetheless, the
distribution for R21 will share features with R33 and R44,



8

namely it will take values between 0 (face on) and 2 (edge
on), with a peak at R21 = 2 which is reduced by selection
effects in the observed population. The distribution for
R32 will also be bounded between 0 and 2, although, due
to the fact that the (3, 2) multipole doesn’t vanish for
face-on sources, there is also a significant contribution at
R32 ≈ 1 from face-on sources.

IV. OBSERVING HIGHER HARMONICS

When a gravitational wave signal from a binary merger
is observed, it is natural to ask whether the higher mul-
tipoles have been observed. Typically, the searches that
identify events do not use higher harmonics to extract
events from the data [70–72] (although see [23] for ways to
incorporate them). However, parameter estimation rou-
tines do incorporate higher harmonics into the recovery
of parameters, and a natural way to ask whether higher
harmonics have been observed is to calculate the Bayes
factor (or odds ratio) between parameter recovery with
and without higher multipoles in the waveform [42, 43].
In this Section, we show that the SNR in higher harmon-
ics is also an effective tool in determining observability
of higher harmonics.

A. Measured SNR in higher harmonics

We assume that the (2, 2) harmonic has been observed
and consider the SNR contained in the higher multipoles.
As in Eq. (7), we consider only two harmonics, the (2, 2)
harmonic and a single additional harmonic. Since the (2,
2) harmonic has been identified, it is straightforward to
calculate the SNR in the (`,m) harmonic, by generating

the h̃`m waveform, with the same masses, spins and ar-
rival time, and filtering it against the data. If the overlap
between the (`,m) and (2, 2) harmonics is non-zero, then
this will pick up power contained in the (2, 2) harmonic,
and it is necessary to remove it by first computing the
orthogonal component,

h̃⊥`m = h̃`m −
1

|h̃22|2
[
(h̃`m|h̃22)h̃22 + (h̃`m|ih̃22)ih̃22

]
.

(17)

Here, h̃22 and ih̃22 denote the two orthogonal phases of
the (2, 2) harmonic. Filtering h̃⊥`m against the data, s,
gives

(ρ⊥`m)2 =
1

|h̃⊥`m|2
[
(s|h̃⊥`m)2 + (s|ih̃⊥`m)2

]
. (18)

When the parameters of the waveform are known, or have
been inferred through parameter estimation, we can cal-
culate the expected SNR in the (`,m) multipole as

ρ̂⊥`m = ρ̂`m
√

1−O(`m, 22)2 , (19)
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FIG. 5. Posterior probability distribution for ρ̂⊥33, the orthog-
onal optimal signal-to-noise ratio of the (3, 3) multipole. The
simulated waveform corresponds to system with m1 = 40M�,
m2 = 10M� and cos ι = 0.7. The two solid histograms show
the posterior distribution when the (3, 3) multipole is in-
cluded in the waveform, either with (green) or without (or-
ange) Gaussian noise. The dotted histogram shows the pos-
terior on the SNR in the (3, 3) harmonic inferred from the
measurement of the (2, 2) harmonic alone. The vertical line
indicates the simulated value of ρ̂⊥33 and the dashed lines in-
dicate the expected distribution, based on a non-central χ
distribution with two degrees of freedom and assuming a flat
prior (as derived in Section IV B), in the presence and ab-
sence of a signal in the (3, 3) harmonic. Also shown as a solid
brown line is the predicted posterior distribution for a sig-
nal with ρ̂⊥33 = 5.5, but instead using the inferred distribution
from the measurement of the (2, 2) harmonic (the dotted blue
histogram) as a prior. We see general agreement between the
predicted and measured posteriors, with the measured values
slightly smaller than predicted (see Section IV C for discus-
sion).

where ρ̂`m is the expected SNR in the (`,m) harmonic, as
defined in Eq. (12) and O(`m, 22) is the overlap between
the (`,m) and (2, 2) waveforms as defined in Eq. (16).

In Fig. 5 we show the inferred posterior probability
distribution for ρ̂⊥33 for a binary with masses m1 = 40M�,
m2 = 10M� inclined at cos ι = 0.7 (ι ≈ 45◦) and with
ρ22 = 22 under a variety of assumptions for signal and
model. 6 For the simulated signal the relative amplitude
of the (3, 3) harmonic is α33 ≈ 0.18, and the orientation
factor is R33 = 1.4, which implies ρ̂33 ≈ 5.5 and, since
the overlap between (2, 2) and (3, 3) harmonics is small,
ρ̂⊥33 ≈ ρ̂33. The recovered distribution of ρ̂⊥33, both with
and without noise [(3,3) zero noise and (3,3) Gaussian
noise in the figure], matches well with the simulated value

6 All parameter estimates reported in this paper were obtained
with LALInference [73] assuming a HLV network with the sensi-
tivities achieved during O3 [67].
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FIG. 6. 2D Posterior probability distribution for left: inclination and distance, right: polarization and phase at coalescence for
a signal model containing top: only the dominant (2, 2) multipole and bottom: the (2, 2) and (3, 3) multipoles. The simulated
waveform corresponds to a system with m1 = 40M�, m2 = 10M� and cos ι = 0.7. The solid (dashed) white contours denote
90% (50%) credible regions. These are not shown for polarization–phase for the (2, 2) waveform, due to the clear degeneracy.

but is shifted to lower values. We discuss this shift in
Section IV C.

We can also infer the power in the (3, 3) harmonic
even when we use only the (2, 2) harmonic to recover the
parameters, particularly masses and binary orientation,
of the system. Unsurprisingly, the distribution of ρ̂⊥33 no
longer matches well with the simulated value and now
spreads over a broad range from 0 to 8. In this case, it
seems clear that the (3, 3) harmonic has been observed,
as its inclusion leads to a significant change in the inferred
SNR in the (3, 3) harmonic.

In Fig. 6 we show the inferred posterior probability
distributions of inclination, distance, polarization and
phase at coalescence using waveform models that do/do
not include the higher harmonics. Although the binary
is generated with the orbital plane inclined at an angle
of ι ≈ 45◦, using only the (2, 2) harmonic, the system
is recovered consistent with face-on, due to well-known
degeneracies between distance in inclination [48]. Con-
sequently, the only well measured quantities are the am-
plitude and phase of the circularly polarized waveform
that is recovered: A22 ≈ cos ι

DL
and φ22 ≈ ψ + φo, with

the inclination bounded between 0 ≤ ι ≤ 45◦. When the
(3, 3) harmonic is added, the degeneracy is broken and
the distance, inclination, polarization and phase are all
measured with good accuracy.

B. Expectation due to noise

The question, then, is whether an observed SNR in a
given higher harmonic is evidence that the higher har-
monic has been observed, or if this is to be expected due
to noise alone. Similar questions have been addressed
multiple times in the gravitational wave literature, for
example in [74–78]. Here, we follow the methods devel-
oped in those earlier papers, focusing on a specific appli-
cation to higher harmonics. We calculate the expected
distribution of ρ̂⊥`m under some simplifying assumptions.
Specifically, we consider the scenario where measurement
of the (2, 2) harmonic has already fixed the parameters
which determine the phase evolution of the binary (pri-
marily the chirp mass, but also a combination of aligned
spin and mass ratio [78]), the time of arrival and sky lo-



10

cation of the system. Furthermore, we assume that the
(`,m) multipole is the second most significant (in many
cases, this is the (3, 3) harmonic), and other multipoles
do not contribute significantly.

We will treat the overall amplitude and phase of the
(`,m) multipole as unconstrained by the observation of
the (2, 2) harmonic. As shown in Fig. 6, there are degen-
eracies in the measurement of distance/inclination and
polarization/phase when observing only the (2, 2) har-
monic. The amplitude of the higher harmonics, and in
particular the (3, 3) and (4, 4) harnomics, varies signif-
icantly over the range 0◦ ≤ ι ≤ 45◦ and can therefore
be treated as unconstrained. Similarly, the overall phase
of these multipoles differs from the (2, 2) by a factor of
(m−2)φo and is therefore unconstrained by the measure-
ment of the (2, 2) harmonic. Another way to see this is to
look at the posterior probability distribution for the (3,
3) amplitude inferred when using a waveform containing
only the (2, 2) multipole in Fig. 5. The distribution is
broad and has support across a large range of ρ̂⊥33. This
argument will only hold for the subdominant harmonic:
once the amplitude of a second harmonic is fixed, the four
orientation parameters of the binary are determined and,
consequently, the amplitude of the remaining harmonics
is significantly constrained.

We are interested in obtaining the expected distribu-
tion for ρ̂`m

7 under the noise-only hypothesis (i.e. only
power in the (2, 2) harmonic). In this case, we are fitting
the data with a template waveform

h̃ = ah̃`m + ibh̃`m + ch̃22 + idh̃22 , (20)

where h̃`m and ih̃`m are the two phases of the waveform
of the `m harmonic, a and b control the overall amplitude
of this harmonic, and h̃22, c and d give the contribution
of the dominant harmonic to the waveform. We are inter-
ested in the expected distribution of a and b when there
is no power in higher harmonics. Based upon the discus-
sion above, we choose a uniform prior π(a, b) on a and b.
In what follows we neglect the terms related to the dom-
inant harmonic as they are unaffected, to the level of our
approximation, by the presence of the higher harmonics.
The posterior will be

p(a, b|s) ∝ Λ(a, b)π(a, b) . (21)

where the likelihood of a signal s given the amplitudes a,
b and Gaussian noise is

Λ(s|a, b) ∝ exp

[
−1

2

(
s− h̃(a, b)|s− h̃(a, b)

)]
. (22)

Using polar variables ρ̂`m =
√
a2 + b2 and φ̂`m =

arctan(b/a), and assuming a uniform prior we can write

7 For simplicity of presentation, we drop the ⊥ from the equations
in the remainder of the section. Where the harmonic has overlap
with the (2, 2) waveform, the calculation should be understood
to be performed with the orthogonal component.
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FIG. 7. Posterior probability distribution for ρ̂⊥33, the orthog-
onal optimal signal-to-noise ratio of the (3, 3) multipole, when
the simulated signal contains the (3, 3) multipole for a variety
of models and noise realizations. The injected parameters are
m1 = 40M�, m2 = 10M� at cos ι = 0.7.

the posterior probability distribution for the amplitudes
a and b given a signal s as

p(a, b|s)dadb ∝ Λ(a, b)dadb

∝ e
[
a(s|h`m)+b(s|ih`m)− a

2+b2

2

]
da db

= ρ̂`mdρ̂`mdφ̂`m×

e

[
− ρ̂

2
`m
2 +ρ̂`m[cos φ̂`m(s|h̃`m)+sin φ̂`m(s|ih̃`m)]

]

Defining the matched filter signal-to-noise ratio, ρ`m as
in Eq. (18) and the phase

φ`m = arctan
(s|ih̃`m)

(s|h̃`m)
(23)

and marginalizing over φ̂`m, we obtain

p(ρ̂`m|s) ∝ ρ̂`me

[
− ρ̂

2
`m
2

] ∫ 2π

0

e[ρ̂`mρ`m cos(φ̂`m−φ`m)]dφ̂`m

∝ ρ̂`m exp

[
− ρ̂

2
`m + ρ2

`m

2

]
I0(ρ̂`mρ`m) (24)

where I0 is the modified Bessel function of the first kind.
We recognize Eq. (24) as the non-central chi distribution
with 2 degrees of freedom and non-centrality parame-
ter equal to ρ`m. In the absence of signal power in the
higher harmonics, the probability distributions for the
filters (s|h̃`m) and (s|ih̃`m) are zero-mean, unit-variance
gaussians and ρ`m is chi-distributed with 2 degrees of
freedom.
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C. Observation of higher harmonics

In Fig. 7 we show the distribution of ρ̂33, in the absence
of a signal in the (3, 3) harmonic. First, we have the re-
covered distribution when performing parameter estima-
tion on a signal containing only the (2, 2) harmonic and
the zero instance of the noise distribution. Based upon
the calculation above, we expect this to follow the χ dis-
tribution with two degrees of freedom, and we see that
it does. We also show the distribution for three different
instances of Gaussian noise. In each of these cases, the
distribution is expected to follow a non-central χ distri-
bution, where the non-centrality parameter is given by
the matched filter SNR in the (3, 3) harmonic – in this
case, there is no signal and any power is simply due to
noise. For two of the noise realizations (Gaussian noise
1 and Gaussian noise 3), there was minimal power in the
(3, 3) harmonic and the ρ̂33 distribution matches closely
with the zero-noise case. However, in the Gaussian noise
2 realization, the SNR in the (3, 3) multipole is higher,
and the mode of the distribution is moved significantly
away from zero.

We propose a simple test for the observability of higher
multipole moments in a gravitational waveform: if the
SNR in the second most significant harmonic satisfies
ρ`m > 2.1, this signifies the observation of power in the
higher multipole moments. We have argued that the
matched filter SNR, in the absence of signal, will be well
approximated by a χ distribution with two degrees of
freedom. We expect Gaussian noise to produce an SNR
greater than 2.1 less than 10% of the time and therefore
require ρ`m > 2.1. 8

The estimate of ρ`m can be obtained either by matched
filtering, or by fitting the measured distribution of ρ̂`m
from parameter estimation results and obtaining the non-
centrality parameter. Based on this criteria, our third
noise trial would show marginal evidence for presence of
the (3, 3) harmonic. This prescription can be easily ex-
tended to a criterion for confident detection of the higher
harmonics: a “5-sigma” observation could correspond to
ρ`m > 5.3. In Fig. 2, we have added contours at val-
ues of α`m = 2.1/20 and 5.3/20. These indicate the
approximate boundaries in the mass space where higher
harmonics would be marginally/confidently observed for
a signal at SNR = 20. Of course, the actual higher har-
monic SNR will depend also on the orientation factor
R`m, which varies between 0 and 2, with a median value
around 1 for the (3, 3) and (4, 4) harmonics.

Next, we return to Fig. 5 and note that the distribution
of ρ̂33 for the signal containing higher harmonics matches

8 In [79], the authors propose an observability criterion specifi-
cally for higher harmonics observed during the ringdown of the
final black hole. They require an SNR in each harmonic above
5, corresponding to our 5-sigma detection. In addition, require
distinguishability between the ringdown mode frequencies which
(as can be seen in their Table 1) is virtually always satisfied if
the modes can be observed.

well with expectation – a non-central χ distribution with
non centrality parameter 5.5 – but is shifted to lower val-
ues. A more accurate prediction for the distribution can
be made by revisiting our assumptions. The derivation
of the expected distribution Eq. (24), assumed a uni-
form prior for ρ̂33. We note that the dotted histogram
in Fig. 5 is the probability of ρ̂33 before we probe the
likelihood associated with the (3,3) harmonic and so is
approximately equivalent to the prior on ρ̂33. Thus, the
prior distribution is broad but not flat. The solid curve
in Fig. 5 shows the product of the likelihood in Eq. (24)
with the prior as approximated by the dotted histogram.
We see that this results in a more accurate predicted pos-
terior. Remaining differences between the predicted and
measured posteriors can be sourced to our assumption
that the phase evolution (or equivalently the masses and
spins) of the waveform templates are fixed. During in-
ference, as the masses and spins are varied, the matched
filter SNR is never larger and is usually lower than the
simulated value. By fixing the SNR to the simulated
value we therefore overestimate the actual value and the
distribution is shifted to larger values of ρ̂33.

An alternative method of establishing the observability
of higher harmonics is to compare the Bayes factor (or
evidence) between a waveform model additionally con-
taining the (3, 3) multipole and a model with only the
(2, 2) multipole [42, 43]. The difference in Bayes factor,
obtained by marginalizing the likelihood [73], between
the two parameter estimation runs (with and without (3,
3) harmonic) is log10 BF = 4.7. We can compare this to
our results on the SNR in the higher harmonics by not-
ing that an increase in SNR corresponds to an increase

of the likelihood by a factor of ≈ eρ
2/2. Our injected

value of ρ33 = 5.5, leads to an estimate of log10 Bayes
factor of 6.6 (log10 of the increase in the likelihood). For
a more accurate comparison, we should also account for
the prior distribution, as well as the width of the pos-
teriors. Since both the (2, 2) only and higher harmonic
waveforms are described by the same parameters, the pri-
ors are unchanged. However, as is clear from Fig. 6, the
posterior is significantly more peaked when the higher
harmonics are included. The improved constraints from
the (3, 3) multipole reduce the prior volume by a fac-
tor of ∼ 2 in the distance inclination plane (assuming
a uniform in volume prior), and a factor of ∼ 5 in the
polarization phase plane. This implies the Bayes Factor
based purely on the increased likelihood be reduced by
a factor of ∼ 10, equivalent to reducing the log10 Bayes
Factor by one to 5.6. Finally, as discussed above, the
higher harmonic SNR is generally inferred to be smaller
than the simulated value. Indeed, from Fig. 5, the peak
occurs at ρ̂33 ∼ 5.0, which corresponds to a log10 Bayes
Factor of 4.4. This is in close, but not perfect agreement
with the full parameter estimation result.
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V. HIGHER HARMONICS IN A POPULATION
OF BINARY MERGERS

Here, we consider the likelihood of observing the higher
harmonics in signals drawn from a population. To do so,
we generate a large number of potential signals from a
given population and assess which would be observable
above a given threshold and, of those, which would have
sufficient power in the (3, 3) and/or (4, 4) harmonics for
them to be observable (above the threshold of ρ`m = 2.1).
We choose a mass distribution of black holes in binary
systems where the mass of the more massive black hole is
taken from a power-law distribution p(m1) ∝ m−α1 and
choose the power law parameter of α = −2.35, while
restricting the mass to lie in the range [5, 50] M�; the
distribution for m2 is taken to be uniform in the range
[5M�,m1]. The spins of the individual black holes are
assumed to be isotropically distributed, with low spin
magnitudes (the magnitude is a triangular distribution
peaked at spin magnitude of zero and falling to zero at
maximal spin) [80]. Binaries are assumed to be isotropic
on the sky, with uniform orientations and distances dis-
tributed uniformly in comoving volume.

In Fig. 8 we show the subset of this population which
would be detectable with the HLV network operating at
the sensitivities achieved during O3 [67]. More perti-
nently, we also plot the subset from this detected pop-
ulation which result in gravitational waves with a mea-
surable signal in the two loudest subdominant multipoles.
Overall around 5.5% of binaries are expected to have suf-
ficient power in the higher harmonics for them to be ob-
served. Of these, the vast majority will have an observ-
able (3, 3) harmonic (5.3%), with the (4, 4) harmonic
observable in 0.85% of binaries, but for the majority of
these, the (3, 3) harmonic will also be observable. Only
two to three observable events in 1,000 from this popula-
tion are expected to have an observable (4, 4) harmonic
but not observable (3, 3).

The higher harmonics are preferentially observable in
signals with unequal masses and for sources for binaries
which are significantly inclined. In particular, for bina-
ries with mass ratio between 4:1 and 10:1, the majority of
signals will have observable higher harmonics, and even
at a mass ratio of 2:1, around 10% of binaries will have
observable higher harmonics. Convolving the observed
distribution with the fraction of binaries with significant
higher harmonics gives a peak of signals with observable
higher harmonics around a mass ratio of 3:1. Interest-
ingly, for binaries close to equal mass, it is the (4, 4)
harmonic which is more likely to be observed, and es-
sentially all binaries where the (4, 4) but not (3, 3) is
observed have close to equal masses (between 1:1 and
5:4).

VI. DISCUSSION

We have explored the relative significance of the higher
gravitational wave harmonics in binary merger signals.
For simplicity, we have decomposed the harmonics into
an overall amplitude — dependent upon the masses and
spins of the system — and an orientation-dependent term
— dependent upon the inclination and polarization. This
allows us to easily identify the most significant harmon-
ics, and the regions of parameter space where they are
most likely to be observable. As is well known [9, 10, 47],
the higher harmonics are most significant when the bi-
nary is observed edge on. As expected, our orientation
amplitudes are largest for edge-on systems although, due
to selection effects, we observe that the most likely ob-
served configuration is a binary with axes orientated at
around 45◦ to the line of sight. In addition, we show that
for much of the binary parameter space, the (3, 3) multi-
pole will be the most significant sub-dominant harmonic,
with an amplitude about one tenth of the (2, 2) harmonic
for a mass-ratio 2 binary (over a broad range of masses).
The (4, 4) multipole becomes more significant at higher
masses and, although the relative amplitude is less than
0.1 for much of the parameter space, it is still the most
significant sub-dominant harmonic for high-mass systems
where the two components have comparable masses

For signals which are observed at low SNR, it is likely
that at most one additional harmonic will be clearly ob-
servable. Thus, for simplicity, we have introduced an
observability criterion for the second harmonic. In many
cases, the amplitude and phase of the second harmonic
is largely unconstrained by the observation of the (2, 2)
multipole: there are often large degeneracies between the
measurement of the distance and inclination of the binary
and also the polarization and phase [48]. Consequently,
in the absence of a signal, the power in the second most
significant harmonic will be χ2 distributed with two de-
grees of freedom, corresponding to the unknown ampli-
tude and phase of the harmonic. If there is power in
the higher harmonic, the distribution will be non-central
χ2, where the non-centrality is given by the SNR in the
higher harmonic. We have performed a series of simula-
tions that demonstrate this expectation is valid. Using
this simple observation, we have introduced a criterion
for observation of power in a higher harmonic: if the
observed SNR in the second most significant harmonic
is above 2.1, then this is unlikely to occur due to noise
alone so there is marginal evidence of a higher multipole
signal, while an SNR > 5.3 would provide strong (“5-
sigma”) evidence.

We have identified regions in the parameter space
where higher harmonics are most likely to be observed.
These regions are those where higher harmonics are likely
to be observed, but also which are relatively common in
the underlying population of observed gravitational wave
signals [46]. We find that these correspond to signals with
mass ratios between 2:1 and 5:1 — for more equal masses,
the higher harmonics are too weak, more unequal mass
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FIG. 8. The mass ratio, total mass and orientation distribution for a simulated population of black hole binaries, and for that
subset of systems for which the (3, 3) or (4, 4) harmonics are visible. The population is modelled as a power law in masses,
with isotropic distribution of orientations, further details of the population are given in the text. The distribution is shown
as a function of Left: mass ratio; Middle: total mass’ right: orientation. The subset of sources for which the (3, 3) or (4, 4)
multipole moment is observable are shown by the dashed/dotted lines respectively, and those with observable (4, 4) multipole
where the (3, 3) multipole is not observable are shown by the dot-dashed line. We show the observed population divided by 10
as a grey solid line, and on the mass ratio plot, without reweighting as a black line. The total number of observed binaries in
the simulation is 78,000.

binaries are thought to be rarer. Furthermore, the most
likely orientation is for the axis to be inclined at between
30◦ and 60◦ to the observer — less inclined systems have
insufficient power in the higher harmonics while more in-
clined systems have a weaker overall emission.

There are several applications of the work presented
here. As already mentioned, the criterion for observ-
ability of higher harmonics has been in used, along with
other methods [66], in establishing the presence of power
in the (3, 3) harmonic in the observed signals GW190412
and GW190814 [42, 43]. Furthermore, the method can
be used in a straightforward way to determine whether it
is likely that the higher harmonics will be observable in
a given system, and we have provided an example in the
population study presented in section V. This is directly
applicable to signals observed using a search for the domi-
nant harmonic. Based upon the observed parameters, we
can calculate the expected power in the higher harmonics
and identify the expected SNR. If significant SNR is ex-
pected in higher harmonics, then it becomes worthwhile
to undertake the (computationally costly) parameter es-
timation with waveforms containing several gravitational
wave harmonics. This will lead either to the observation
of higher harmonics, and the subsequent improvement of
parameter measurement, or the non-observation of higher
harmonics and subsequent restriction of the binary pa-
rameters to regions of the parameter space where the
higher harmonic amplitudes are low.

While the method introduced here is straightforward,
there are several clear limitations. Most obviously, the
discussion has limited attention to a single observable
harmonic. In many cases, this will be a reasonable ap-
proximation as there will be one harmonic which is signif-
icantly larger than the others (as can be seen from Fig. 2).
Furthermore, from simple parameter counting, it seems
likely that the observation of a single higher harmonic

will be sufficient to significantly improve parameter re-
covery, most notably the binary orientation. Nonetheless,
the observation of additional multipoles will provide ad-
ditional improvements. For a detailed understanding of
the impact of all of the higher harmonics, a full, Bayesian
parameter estimation exploration of the issue will be nec-
essary [47]. Additionally, throughout the paper, we have
used a single waveform model, IMRPhenomHM [30] and
checked for consistency with a more recently updated
model IMRPhenomXHM [8]; but results are likely to vary
somewhat with other models of the higher harmonics (for
example, [35, 38, 39]). Finally, we have restricted at-
tention throughout the paper to non-precessing systems.
Recently, [59, 61], an analysis similar to the one pre-
sented here was performed on precessing systems, again
with a focus on the observability of the two dominant
harmonics. For systems where both higher harmonics
and precession have an significant impact on the wave-
form, it will be necessary to combine these approaches
to develop a straightforward categorization of precessing
systems with observable higher harmonics.
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Appendix A: Spin-weighted spherical harmonic
polarizations

The general form for the spin-weighted spherical har-
monics is

sYlm(ι, φo) = (−1)
m

√
(l +m)!(l −m)!(2l + 1)

4π(l + s)!(l − s)!
sin2l

( ι
2

)
×

l−s∑
r=0

(
l − s
r

)(
l + s

r + s−m

)
(−1)

l−r−s
eimφo cot2r+s−m

( ι
2

)
,

which can be written in terms of the Wigner d-functions
dlm−s(ι) (implicitly defined here)

sYlm(ι, φo) =

√
(2l + 1)

4π
dlm−s(ι)e

imφo . (A1)

They have the following symmetries

sȲlm = (−1)
s+m

−sYl(−m)

sYlm(π − ι, φo + π) = (−1)
l
−sYlm(ι, φo).

The spin-weighted spherical harmonics for the harmonics
we are interested in are

−2Y22 =
1

2

√
5

π
ei2φo cos4

( ι
2

)
(A2)
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π
e−i2φo sin4

( ι
2

)
−2Y21 =

1

2

√
5

π
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( ι
2
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sin(ι)
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π
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We can write the gravitational wave polarizations as a
sum of these spherical harmonics with coefficients hlm

h+ − ih× =
∑
l≥2

l∑
m=−l

−2Ylm(ι, φo)hlm . (A3)

Three properties of hlm help to simplify Eq. (A3). Firstly,
specializing to planar (i.e. non-precessing) binaries al-
lows us to write hl−m = (−1)lh∗lm[1]. Secondly, in the fre-

quency domain, h̃∗l−m(f) = h̃lm(−f)∗. Finally we make
the further approximation [81] that if we only care about
the waveform in direction n̂ we can neglect one side of the
frequency spectrum, depending on the sign of m. This
approximation is valid in particular where the stationary
phase approximation has been used. We therefore as-
sume, with the sign convention on the Fourier transform
as h̃(f) =

∫
dth(t)e+i2πft, that

h̃lm(f) ' 0

{
f > 0,m < 0

f < 0,m > 0.
(A4)

With these three properties we can obtain explicit ex-
pressions for the orientation dependence of each of the
harmonics for positive frequencies

h+ =
1

2

∑
l≥2

l∑
m=−l

[
−2Ylm(ι, φo)hlm + −2Y

∗
lm(ι, φo)h

∗
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]

h̃+(f) =
1

2

∑
l≥2

l∑
m=−l

[
−2Ylm(ι, φo)h̃lm(f)

+ −2Y
∗
lm(ι, φo)h̃lm(−f)∗

]
=

1

2

∑
l≥2

l∑
m=1

[
−2Ylm(ι, φo)

+ (−1)l−2Y
∗
l−m(ι, φo)

]
h̃lm(f)

(A5)
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and similarly we can show

h× =
i

2

∑
l≥2

l∑
m=−l

[
−2Ylm(ι, φo)hlm − −2Y

∗
lm(ι, φo)h

∗
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i

2
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− −2Y
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i

2
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− (−1)l−2Y
∗
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]
h̃lm(f) .

(A6)

where in both cases, we have neglected the m = 0 terms
in the sums as they are not considered in the models we
have used. Finally, we note that we have used a differ-
ent normalization convention in the main text, Eq. (3),
than the one typically used in the spin-weighted spheri-
cal harmonic decomposition described in this Appendix.
This has no impact on the results, but merely changes
the values of α`m and R`m while maintaining the same
values of the SNR in the higher harmonics.

Appendix B: Derivation of p(Rlm)

We now derive the probability distributions in Fig. 4.
Assuming no preferred orientation for binaries in the uni-
verse, the probability density function for cos ι, p(cos ι),
is

puniv(cos ι) = 1
2 (B1)

However, binaries which emit primarily in the 22 multi-
pole radiate most powerfully in the direction perpendic-
ular to the orbital plane, | cos ι| ∼ 1. Consequently, the
horizon for the subset of these binaries which are viewed
edge-on is much closer and we preferentially observe face-
on binaries. It can be shown [69] that the radiated power
of the dominant multipole as a function of inclination is

F (ι)22 = (A22
+ )2 + (A22

× )2 , (B2)

where A22
+,× are defined in Eq. (4). For a detector sen-

sitive to only one polarization of gravitational wave, the
observed power will depend upon the polarization. This

will also be the case for a network with different sensi-
tivities to the two polarization, but not for one equally
sensitive to both polarizations of the gravitational wave.
It is possible to approximately marginalize over the polar-
ization distribution and obtain a probability distribution
for the inclinations of detected binaries, assuming sources
are distributed uniformly in volume, as [69]

pdet(cos ι) ∝ F (ι)3/2 = (1 + 6 cos2 ι+ cos4 ι)3/2 . (B3)
Using these results, it is straightforward to obtain ex-

pressions for the distributions for the expected power in
the (3, 3) and (4, 4) multipoles, both for a uniform pop-
ulation of binaries and for those which are observable
above a fixed threshold. The distribution for other mul-
tipoles can also be obtained but, since in general R`m
will depend upon polarization angle, the results will be
dependent upon the details of the network and its sen-
sitivity to the two gravitational wave polarizations. For
the (3, 3) and (4, 4) multipole moments, the relative am-
plitude depends only on the inclination angle ι.

To obtain an expression for the probability distribution
for R`m, we change variables

p(R`m) =

(
d cos ι

dR`m

)
p(cos ι) (B4)

so that, recalling the functional form of R33 and R44 from
Eq. (15), we obtain

puniv(R33) =
R33

4

√
1−

(
R33

2

)2
puniv(R44) =

1

4
√

1−
(
R44

2

) . (B5)

Assuming binaries are detected with (2, 2) harmonic-only
waveforms, we can apply the same weighting factor as
above in obtaining the distributions for the observed bi-
naries, to obtain

pdet(R`m) =

(
d cos ι

dR`m

)
pdet(cos ι) (B6)

which gives

pdet(R33) ∝
(

8− 2R2
33 +

R4
33

16

)
puniv(R33)

pdet(R44) ∝
(

8− 4R44 +
R2

44

4

)
puniv(R44) (B7)

These distributions are plotted in Fig. 4, and discussed
in the surrounding text.
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