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A Fuzzy Dark Matter (FDM) halo consists of a soliton core close to the center and an NFW-like
density profile in the outer region. Previous investigations found that the soliton core exhibits tem-
poral oscillations and random walk excursions around the halo center. Analyzing a set of numerical
simulations, we show that both phenomena can be understood as the results of wave interference—a
suitable superposition of the ground (solitonic) state and excited states in a fixed potential suffices
to account for the main features of these phenomena. Such an eigenmode analysis can shed light
on the evolution of a satellite halo undergoing tidal disruption. As the outer halo is stripped away,
reducing the amplitudes of the excited states, the ground state evolves adiabatically. This sug-
gests diminished soliton oscillations and random walk excursions, an effect to consider in deducing
constraints from stellar heating.

I. INTRODUCTION

Despite the rich astronomical evidence for dark mat-
ter, its basic properties remain mysterious. An example
is the mass of its constituents. Proposals ranging from
10−22 eV [1] to tens of solar mass [2–5] can be found
in the literature. In this article, we are interested in
the ultra-light end of the spectrum 10−22 − 10−20 eV,
known as fuzzy dark matter (FDM) [1] (see also [6–14]).
A concrete realization is an axion, or axion-like-particle,
whose relic abundance is determined by the misalignment
mechanism [15–28]. It can be shown the relic abundance
from the big bang matches that for dark matter if the
misalignment angle is order unity, the axion decay con-
stant is between Grand Unification and Planck scales,
and the axion mass is around 10−22 eV [26, 29, 30]. 1 In
the non-relativistic regime, the Klein-Gordon equation
for the real axion field 2 can be recast as a Schrödinger
equation for a complex scalar ψ:

i~∂tψ =

(
− ~2

2ma
∇2 +maV

)
ψ , (1)
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1 It is worth emphasizing the relic abundance is more sensitive to

the choice of the axion decay constant F than to the axion mass

ma, scaling as F 2m
1/2
a . There is thus a rather large possible

range for ma. Note also this particular choice of parameters
does not correspond to that of the QCD axion.

2 Self-interaction for the axion can be largely ignored as far as
structure formation is concerned.

where ma is the mass of the particle, and the gravita-
tional potential V obeys the Poisson equation 3

∇2V = 4πG(ρ− ρ̄) . (2)

Here, ρ is the mass density, related to ψ by ρ = ma|ψ|2
and ρ̄ is the mean density. In other words, |ψ|2 expresses
the number density of particles. We will follow custom
and refer to ψ as the wavefunction, though it is worth
stressing that ψ is a classical complex scalar field. We are
interested in a regime where there are many particles per
de Broglie volume, such that quantum fluctuations are
negligible. 4 The situation is similar to the one in elec-
tromagnetism: a state with many photons is often well
described by the classical electric and magnetic fields. 5

The Schrödinger-Poisson system can be interpreted as
describing a fluid, where the fluid density ρ and velocity
~v are defined by [31]:

ψ ≡
√

ρ

ma
eiθ , ~v ≡ ~

ma

~∇θ . (3)

3 For a version of these equations accounting for cosmic expansion,
see e.g. [30].

4 The de Broglie wavelength is λdB = 2π~/(mav) =
0.5 kpc(ma/10−22 eV)−1(v/250 km/s)−1. It can be shown
the number of particles in a de Broglie volume is roughly
(30 eV/ma)4 for a dark matter density around the solar neigh-
borhood value.

5 One might wonder how to think about the factors of ~ in our
classical wave setting. Imagine dividing the Schrödinger equa-
tion by ma. One sees that ~ always comes in the combination
~/ma. This quantity has the dimension of length2/ time. At
a pragmatic level, in terms of solving the equation, one could
think of ~/ma as just some given quantity with this dimension.
Of course, ultimately this quantity is connected with the mass
of the particle in question, and the relation involves ~.

mailto:xli@cita.utoronto.ca
mailto:lhui@astro.columbia.edu
mailto:t.yavetz@columbia.edu


2

The Schrödinger equation can be rewritten as

∂tρ+ ~∇ · (ρ~v) = 0 , (4)

∂t~v + (~v · ~∇)~v = −~∇V +
~2

2m2
a

~∇∇
2√ρ
√
ρ

. (5)

The first equation expresses mass conservation, while the
second is the Euler equation. The last term of the Euler
equation is often referred to as the quantum pressure
term, though it arises from a non-trivial stress tensor
rather than mere pressure. It is worth stressing that
while the fluid formulation is useful for understanding
many aspects of the Schrödinger-Poisson system [32], it
fails at locations where ρ vanishes [33]. These are sites of
vortices which occur at a rate of roughly one vortex ring
per de Broglie volume [34].

There is a substantial literature devoted to the study of
structure formation in FDM using numerical simulations,
starting from the work of Schive, Chiueh, and Broadhurst
[33, 35–44]. It is found that an FDM halo has an outer
NFW-like [45] density profile, and a distinctive central
core with the profile [35, 36]:

ρc(r) =
0.019(rc/ kpc)−4

[1 + 0.091(r/rc)2]8

( ma

10−22 eV

)−2

M�pc−3.

(6)
The core resembles a soliton or boson star—a gravitation-
ally bound object supported by quantum pressure. Its
properties can be deduced by balancing gravity against
quantum pressure (the two terms on the right hand side
of the Euler equation), giving roughly

GMc

rc
∼ ~2

m2
ar

2
c

or rc ∼
~2

m2
aGMc

, (7)

where rc and Mc are the radius and mass of the soliton.
This is why the density ρc scales as r−4

c m−2
a or M4

cm
6
a.

A soliton is strictly speaking a stationary state, that is,
the corresponding wavefunction has a time dependence
that resides entirely in its phase — the associated den-
sity should be time independent. It is thus a very inter-
esting finding by Veltmaat, Niemeyer, and Schwabe [43]
that the central density of an isolated FDM halo oscil-
lates in time, with an order unity amplitude. The central
core of an FDM halo is hence not a strict soliton, but a
perturbed one. This phenomenon was used to constrain
FDM based on the existence of a stellar cluster close to
the center of Eridanus II [46]: oscillations of the soliton
(or more precisely, the perturbed soliton) have the po-
tential to completely disrupt the stellar cluster. It was
subsequently pointed out by [47] that not only does the
soliton oscillate, it also random walks around the central
region of the halo. It was also shown that if the halo is
a satellite of some larger parent halo, as is in the case
of Eridanus II, the random walk excursions are dimin-
ished in amplitude after accounting for tidal stripping,
alleviating the constraint from stellar heating.

In this article, we offer an interpretation of the soli-
ton oscillation and random walk phenomena based on

wave interference. The idea is a simple one: think
of the halo wavefunction as composed of a superpo-
sition of energy eigenstates, schematically of the form
ψ =

∑
p apψpe

−iEpt/~ where ψp’s represent the energy
eigenstates labeled by p with amplitudes ap’s. When the
wavefunction is “squared” to obtain the density, time de-
pendence arises from cross terms that involve different
eigenmodes, in other words interference terms. In par-
ticular, interference between the ground state and excited
states explains the oscillation and random walk phenom-
ena, as we will see. It is not a priori obvious this is a fruit-
ful way of thinking. The issue is that the gravitational
potential itself fluctuates in time, and thus the time de-
pendence is not completely captured by the phase factor
of e−iEpt/~ for each state (i.e. effectively, apψp fluctu-
ates with time). At a detailed level, this is undoubtedly
true, but we will see that modeling the FDM halo as a
superposition of energy eigenstates in a fixed potential is
a reasonable first approximation. We demonstrate this
by performing numerical simulations of halos from gravi-
tational collapse, and carrying out an eigenmode analysis
of them. The goal is a unified, wave-interference explana-
tion of both the oscillation and random walk phenomena
of the central soliton in an FDM halo. For an earlier ap-
plication of the eigenmode technique to construct FDM
halos, see [48]. See also [49] for an independent analysis
that overlaps with ours.

II. NUMERICAL SIMULATIONS AND
EIGENMODE ANALYSIS

Our numerical simulations utilize the SPoS code pre-
sented and tested in [33]. The FDM mass is chosen to
be ma = 10−22 eV. The box size is 25 kpc on a 2563

grid, giving a resolution of about 0.1 kpc. These are not
cosmological simulations, but rather simulations of the
formation of isolated halos from gravitational collapse—
we study a case of a spherically symmetric collapse, and a
case involving the collision of seed solitons. In both cases,
the final halo mass is 1−2×109M�. We have checked that
the corresponding de Broglie wavelength is resolved. Pe-
riodic boundary conditions are imposed, though we have
verified simulations with absorbing boundary conditions
yield similar results.

It is worth noting that the simulations can be rescaled
to describe halos with different masses and sizes. The
Schrödinger-Poisson system is invariant under the follow-
ing Lifshitz-type transformation

{t, x, V, ψ, ρ} → {λt, λ1/2x, λ−1V, λ−1ψ, λ−2ρ} , (8)

where λ is the scaling parameter. The ratio of de Broglie
wavelength to halo size is invariant under this transfor-
mation, as is the product of soliton size and soliton mass.
The FDM mass ma is held fixed in this transformation.
One could also contemplate rescaling ma:

{ma, t, x, V, ψ, ρ} → {αma, αt, x, α
−2V, α−3/2ψ, α−2ρ} ,

(9)
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with α as the scaling parameter.

A. Collapse of a Spherically Symmetric Halo

Our first numerical experiment starts with an initial
spherical top-hat density profile:

ρ = 0.137 Θ(r0 − r)M�pc−3 , (10)

where r0 = 1.25 kpc and Θ is the Heaviside step function.
The initial wave function is taken to be real ψ =

√
ρ/ma

i.e. no initial velocity.
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FIG. 1. Evolution of total mass enclosed inside different radii
from the halo center in the simulation of a spherically sym-
metric collapse.

Gravitational collapse leads to the formation of a halo
with a central core. Figure 1 shows the evolution of to-
tal mass enclosed inside different radii (0.2 kpc, 0.5 kpc
and 1 kpc) from the halo center. The y-axis shows the
enclosed mass normalized by the average value between
1− 1.6 Gyr for each radius. Large oscillations commence
early on, settling down to order unity oscillations (within
0.2 kpc) after about 1 Gyr. The oscillation period is
about 0.05 Gyr.

Figure 2 offers a more detailed view of what is go-
ing on. The two panels show respectively the density
and gravitational potential profiles at several different in-
stants that span over an oscillation period. The central
density profile reveals a soliton-like object. In this case of
spherical symmetry, the halo center and the soliton cen-
ter coincide. The soliton (or more properly, the perturbed
soliton) exhibits oscillations like a pulsating sphere. The
gravitational potential displays less variation with time
compared to the density. This is to be expected: the
potential is sourced by the density over many locations
and is thus smoother. The largest variations in poten-
tial occur at small radii, and even there, the oscillation
amplitude is less than 10 percent.

This motivates us to perform an eigenmode decompo-
sition of the halo wavefunction, where the eigenmodes are
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FIG. 2. Snapshots of the halo density (upper panel) and
gravitational potential (lower panel) profiles over an oscilla-
tion period. This is for the halo that forms from a spherically
symmetric collapse.

for a fixed gravitational potential — we use the average
potential between 1 − 1.6 Gyr. The eigenfunctions are
labeled by n, l,m:

Fnlm(r, θ, φ) = Rnl(r)Y
m
l (θ, φ) , (11)

where Y ml denotes the spherical harmonics, and Rnl is
the radial eigenfunction. The use of spherical harmonics
is not strictly necessary for a spherically symmetric sit-
uation, but will be useful for more general cases. Each
eigenfunction satisfies:

EnlRnl = − ~2

2mar2

d

dr

(
r2 dRnl

dr

)
+

[
~2

2mar2
l(l + 1) +maV

]
Rnl , (12)

where Enl is the energy eigenvalue, and V is the aver-
age (fixed) potential. The eigenfunctions are properly
normalized in the sense that∫

r2 sinθ dθ dφ dr |Fnlm|2 = 1 , (13)
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where we integrate over the whole computational box.
Figure 3 shows nine radial eigenfunctions with the small-
est l and nr which we numerically obtain. Here nr is
the radial quantum number which counts the number of
nodes in Rnl; it is related to the principle quantum num-
ber n through n = nr + l + 1.
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FIG. 3. Nine radial eigenfunctions Rnl with lowest energies
for the averaged potential. nr is the radial quantum number
which counts the number of nodes in Rnl with n = nr + l+ 1.

The halo wavefunction ψ is decomposed as a superpo-
sition of the eigenmodes:

ψ(r, θ, φ, t) =
∑
n,l,m

AnlmFnlm(r, θ, φ)e−iEnlt/~ . (14)
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FIG. 4. The superposition coefficients Anlm at different mo-
ments in time during one period of oscillation, for the halo
that forms from spherical collapse. The eigenstates are la-
beled by nlm.

Figure 4 shows the superposition coefficients Anlm
for all eigenstates with n ≤ 5. Here, and in the fig-
ures in the rest of the paper, we show Anlm divided by
(
∫
d3x |ψ|2)1/2. The precise superposition depends on

the time at which ψ is decomposed, and the figure dis-
plays several different snapshots over an oscillation pe-
riod. The wavefunction ψ has the largest projection onto
the ground state (nlm) = (100). The coefficient A100 is
also the most stable over time. The next dominant modes
are the excited states (nlm) = (200) and (400). Modes
with non-zero l’s have small amplitudes by virtue of the
spherically symmetric initial conditions; their amplitudes
do not exactly vanish because of numerical noise and the
cubic box boundary condition. (Modes with non-zerom’s
have even smaller coefficients, which are not shown.) We
have alternatively carried out the decomposition using
the eigenfunctions corresponding to the gravitational po-
tential at each snapshot—the results are similar to what
is shown in Figure 4.
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FIG. 5. Comparison of soliton oscillation measured from the
simulation against that implied by the reconstructed wave-
function ψ̃ (Equation 15). Top figure: the mass inside several
different radii from the halo/soliton center. The upper panel
is from the simulation, and the lower panel is from the re-
constructed model wavefunction (which includes only l = 0

modes). Bottom figure: Fourier coefficients |M̃(ω)| of the
mass oscillation as a function of frequency ω.

Encouraged by the relatively small temporal variation
of the Anlm’s, we reconstruct a model wavefunction ψ̃,
which is none other than Equation 14 except that the
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Anlm’s are fixed (to be the values measured at 1.09 Gyr):

ψ̃(r, θ, φ, t) =
∑
n,l,m

Afix
nlmFnlm(r, θ, φ)e−iEnlt/~ , (15)

and the eigenmodes Fnlm are as before, computed based
on the average gravitational potential between 1 − 1.6
Gyr. As such, the time dependence of ψ̃ arises com-
pletely from the time dependent phase factor e−iEnlt/~

for each eigenmode. Figure 5 shows the comparison of
soliton oscillation between the simulation and our re-
constructed wave function ψ̃. The upper panel in the
top figure shows the mass enclosed within different radii
as a function of time from the simulated halo (spanning
1−1.4 Gyr as shown in Figure 1). The lower panel in the
top figure shows what the reconstructed wave function
ψ̃ implies about these interior mass fluctuations. The
two panels are broadly similar, suggesting that interfer-
ence of a fixed superposition of eigenmodes, each with its
e−iEnlt/~ phase, is sufficient to approximately account for
the observed time-variability. In other words, the (num-
ber) density implied by the reconstructed wave function
is:

|ψ̃|2 =
∑
n,l,m

∑
n′,l′,m′

Afix ∗
n′l′m′Afix

nlm

F ∗n′l′m′Fnlme
−i(Enl−En′l′ )t/~ , (16)

where the time dependence of |ψ̃|2 arises entirely from the
phase factors associated with the cross terms Enl 6= En′l′ .

To further quantify the agreement between simulation
and reconstruction, we Fourier transform the curves of
mass fluctuation (interior to 0.2 kpc) as a function of
time, and display the Fourier coefficients in the bottom
figure (the ω = 0 mode is removed by subtracting out
the mean). The reconstruction reproduces reasonably
well the two prominent peaks observed in the fluctuation
power spectrum of the simulated halo. The peak fre-
quency around 20 Gyr−1 can be identified with ∆E/~,
with ∆E being the energy difference between the eigen-
states (200) and (100). The secondary peak frequency
of about 33 Gyr−1 is associated with the energy differ-
ence between the eigenstates (400) and (100). The (300)
eigenmode has a much smaller amplitude and can be ig-
nored; see Figure 4.

B. Collision of Solitons

In our second numerical experiment, we study an FDM
halo formed from asymmetric initial conditions. The ini-
tial configuration consists of 10 identical rc = 1.2 kpc
solitons (i.e., real wavefunctions, each with the density
profile given by Equation 6), placed randomly within the
computational box. Gravity causes them to fall towards
each other, collide, and eventually merge.

Figure 6 shows the zoomed-in projected density at 4
different moments of the simulation. The merger prod-
uct stabilizes after about 1 Gyr. It has its own solitonic
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FIG. 6. Snapshots of the projected density in the soliton
collision simulation. The black cross in each panel denotes
the center of mass.
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FIG. 7. Evolution of mass enclosed inside different radii from
the soliton center, for t = 1− 1.6 Gyr in the soliton collision
simulation. Here, the mass is normalized by the average value
in the same period.

core — the final soliton is more compact than the initial
seed solitons, respecting the reciprocal relation between
radius and mass (Section I). The black crosses show the
position of the halo center of mass; notice how the soliton
center is close by, but random walks around it, consistent
with the findings of [47]. (The random walk phenomenon
is, by construction, absent from the spherically symmet-
ric simulation.) Figure 7 shows the variation of mass
enclosed within a few radii from the soliton center. The
solitonic core reaches a more or less steady state by 1
Gyr, with order unity oscillations. Just as in the spheri-
cally symmetric case, the oscillation amplitude is smaller
for larger radii.

Figure 8 shows the density and gravitational potential
profiles of the halo where r = 0 is the halo center of mass.
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(lower panel) profiles at several moments spanning an oscil-
lation period, for the halo that forms from soliton collisions.
Here, the profiles are spherically averaged, with r = 0 being
the halo center of mass.
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FIG. 9. Coefficients of eigenstate decomposition of ψ during
one period of oscillation in the soliton collision simulation.

Note that these are spherically averaged profiles. As be-
fore, both the density and the potential fluctuate with
time, but the latter fluctuates less—and the fluctuations
are confined to the central region. Encouraged by this, we
compute the eigenstates using the average halo potential
for t > 1 Gyr, and perform an eigenstate decomposition
of ψ, just as in Equation (14). Figure 9 shows the coef-
ficients Anlm for n ≤ 3, from decomposing ψ at different
moments in time. Similar to the spherically symmetric
case, the ground state (100) has the largest amplitude
A100, which also has the least variability. Overall, com-
pared to Figure 4, there are more temporal variations.
The modes with non-vanishing l and m are also more
prominent.
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FIG. 10. Comparison of soliton oscillations observed in the
simulation and implied by the reconstructed wavefunction ψ̃.
Upper figure: the temporal variation of mass within several
different radii from the soliton center. Lower figure: Fourier
coefficients |M̃(ω)| of the mass oscillation as a function of
frequency ω.

We repeat the same procedure as before, putting to-
gether ψ̃ (Equation (15)) using fixed coefficients Anlm
(adopting their values at 1.2 Gyr), including all modes
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FIG. 11. The distance ∆r of the soliton center from the halo
center as a function of time (i.e. the soliton random walk), as
measured from the soliton collision simulation and predicted
by the reconstructed wavefunction.

with n ≤ 3. 6 The top 2-panel plot in Figure 10 shows
the temporal variations of the mass enclosed within a
few different radii of the soliton, both measured from
the simulation and implied by the reconstruction ψ̃. The
bottom plot in Figure 10 shows the Fourier transform
of the mass fluctuation curves. The peak frequency of
15.1 Gyr−1 can be identified with ∆E/~, with ∆E being
the energy difference between the eigenstates (200) and
(100).

The reconstructed ψ̃ can also be used to predict how
the peak of the density (where the soliton is) moves with
respect to the halo center of mass. This is shown in
Figure 11, which shows the distance between the soliton
center and the halo center as a function of time, from
both the simulation and the reconstruction. As can be
seen, the soliton random walks by an amount of the order
of the soliton radius.

For both the soliton oscillation and random walk phe-
nomena, the reconstructed ψ̃, with its time dependent
phase factor for each eigenmode, is sufficient to account
for the broad features. In particular, the dominant os-
cillation frequency matches the energy difference of the
two dominant ` = 0 modes. The ` 6= 0 eigenmodes are
suppressed at small radii (see Figure 4), but they do con-
tribute to fluctuations at some level. In particular, the
soliton random walk excursions are driven by them.

III. DISCUSSION AND CONCLUSION

We have described two numerical experiments to study
the oscillations of the solitonic core in FDM halos. One

6 In general, the energy eigenvalue depends on n, l andm. Here, we
compute the eigenmodes using the spherically averaged potential,
and thus the energy depends only on n and l.

is from spherically symmetric initial data and the other
is from the merger of several randomly placed seed soli-
tons. In both cases, persistent order unity oscillations
are observed close to the central regions, even after the
overall halo appears to have virialized. In addition, for
the asymmetric case, the solitonic lump (or density peak)
random walks. These reproduce the findings of [43, 47].
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FIG. 12. A schematic plot of the radial eigenfunction Rnl for
a few modes. Solid/dashed portions of the curves are for pos-
itive/negative values of Rnl. Not shown here are eigenstates
with l 6= 0. The general trend holds regardless of l: excited
states are more extended in radius compared to the ground
state. The l 6= 0 states are suppressed at small radii and
hence not as important for soliton oscillations.

Both can be understood as wave interference phenom-
ena. As a first approximation, one can model the halo
wavefunction as in Equation (15). It bears repeating
here:

ψ̃(r, θ, φ, t) =
∑
n,l,m

Afix
nlmFnlm(r, θ, φ)e−iEnlt/~ . (17)

Here, Fnlm’s are the energy eigenmodes of the gravita-
tional potential of the virialized halo. The potential does
fluctuate in time (see Figures 2 and 8), but its fluctua-
tions are suppressed compared to those in density, for the
simple reason that gravity is a long range force, and the
potential is necessarily smoother than the density. Thus,
precisely which potential we use to formulate the eigen-
modes does not matter a great deal — in practice, we use
the potential averaged over a period of time. The coef-
ficients Afix

nlm’s are the superposition amplitudes for the
eigenmodes, and once again, the precise time at which
they are fixed does not matter a great deal. Once this
is done, the only time dependence of ψ̃ arises from the
energy dependent phase factor for each mode. The sit-
uation is schematically illustrated in Figure 12. When
such a superposition of eigenmodes is “squared” to obtain
the density, it is the cross-terms that contribute to time
variability, with frequencies set by the difference in ener-
gies between different modes. This has some quantitative
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success in matching what is observed in the simulations
(Figures 5 and 10).

It is worth stressing that while the agreement is reas-
suring, it is also not surprising that the order of mag-
nitude should work out. This is because the dynamical
time associated with the soliton is roughly√

r3
c

GMc
∼ ~3

m3
aG

2M2
c

, (18)

(see relation between soliton mass Mc and radius rc given
in Section I). This is also roughly ~/E where

E ∼ maGMc

rc
∼ m3

aG
2M2

c

~2
, (19)

is the ground state soliton energy.
The wave interference model presented here can be

thought of as a first approximation. There are quite
a few interesting phenomena that can be investigated
building on this approximation. They involve probing the
temporal variability in the coefficients Anlm’s, precisely
what is ignored in the simplified model. For instance, the
phenomenon of soliton condensation has to do with the
growth of A100. If the initial A100 were small relative to
the other amplitudes, how does it grow with time? And
what determines the ultimate ratio of this ground state
amplitude relative to others? It is the relative contribu-
tions of the different states that determine not only the
overall halo structure, but also the oscillation and ran-
dom walk amplitudes. An investigation along this line,
reminiscent of [50], would be interesting.

Another interesting application is the study of tidal
disruption. Imagine the halo of interest is in some tidal
environment, much like a satellite galaxy such as Eri-
danus II residing in the Milky Way. Let’s represent this
satellite halo as a superposition of eigenstates much as

in Figure 12. Tidal stripping preferentially removes the
outer parts of the halo where the density is lower. Keep
in mind that it is the excited states that contribute most
to the outer portions of the halo. 7 Meanwhile, as the
overall gravitational potential of the satellite halo evolves
due to mass loss, the ground state evolves adiabatically in
response. The net effect should be a reduction of the am-
plitudes of the excited states relative to the ground state.
Thus, we expect diminished soliton oscillations and ran-
dom walk excursions. This appears to be what is seen
in simulations by Schive, Chiueh, and Broadhurst [47],
who also considered the implications for deriving FDM
constraints from stellar heating. This whole discussion
ignores the fact that the waves associated with the par-
ent halo also superimpose with those of the satellite. It is
likely that the parent waves have a relative small impact
on the satellite, but it would be useful to verify this with
further simulations.
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