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Galactic core-collapse supernovae are among the possible sources of gravitational waves. We investigate the
ability of gravitational-wave observatories to extract the properties of the collapsing progenitor from the gravita-
tional waves radiated. We use simulations of supernovae that explore a variety of progenitor core rotation rates
and nuclear equations of state and examine the ability of current and future observatories to determine these
properties using gravitational-wave parameter estimation. We use principal component analysis of the simula-
tion catalog to determine the dominant features of the waveforms and create a map between the measured prop-
erties of the waveform and the physical properties of the progenitor star. We use Bayesian parameter inference
and the parameter map to calculate posterior probabilities for the physical properties given a gravitational-wave
observation. We demonstrate our method on a random sample of the waveform catalog that was excluded from
construction of the principal component analysis and estimate the ratio of the progenitor’s core rotational kinetic
energy to potential energy (3) and the post bounce oscillation frequency. For a supernovae at the distance of
the galactic center (8.1 kpc) with 8 = 0.02 our method can estimate 3 with a 90% credible interval of 0.004
for Advanced LIGO, improving to 0.0008 for Cosmic Explorer, the proposed third-generation detector. We
demonstrate that if the core is rotating sufficiently rapidly for a signal source within the Milky Way observed
by Cosmic Explorer, our method can also extract the post bounce oscillation frequency of the protoneutron star
to a precision of within 5 Hz (90% credible interval) allowing us to constrain the nuclear equation of state. For
a supernovae at the distance of the Magellanic Clouds (48.5 kpc) Cosmic Explorer’s ability to measure these
parameters decreases slightly to 0.003 for rotation and 11 Hz for the postbounce oscillation frequency (90%
credible interval). Sources in Magellanic Clouds with § < 0.02 will be too distant for Advanced LIGO to

measure these properties.

I. INTRODUCTION

When the core of a massive star exceeds its Chandrasekhar
mass, it begins to undergo gravitational collapse [[1-4]. The
core collapse and subsequent bounce can power a super-
novae explosion that radiates light, neutrinos, and gravita-
tional waves (see e.g. Refs. [SHS] and references therein).
Gravitational waves generated during the supernovae travel
unhindered through the stellar envelope, carrying information
about the structure and dynamics of the collapsing star. Ad-
vanced LIGO will be able to detect core collapse supernovae
out to 50 kpc if the cores are rapidly rotating and the explosion
is magnetorotationally driven, and to 5 kpc if the explosion is
neutrino driven [9, [10]. Cosmic Explorer, a proposed third-
generation detector will be able to observe neutrino driven ex-
plosion signals out to a few hundred kiloparsecs [11]], and the
magnetorotationally driven explosion signals out to 2 Mpc.
The estimated event rate for core-collapse supernovae in the
Milky Way is 1-3 per century [12H15]. While the probabil-
ity of observing a signal within the reach of these detectors is
low, if the information about the supernova can be extracted
from the gravitational waves, it would shed new light on the
physical processes of core collapse.

Significant advances have been made over the last two
decades in the simulation of core collapse supernovae (see
e.g. Refs. [16, [17] and references therein). Abdikamalov
et al. [18] performed 132 simulations in which they studied
the dependence of the gravitational-wave signal at the core
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bounce and postbounce on the rotational properties of the pro-
genitor core. They quantify rotation of the core by the ratio
of the rotational kinetic energy and the gravitational potential
energy 3 = T/|W| and find that the gravitational-wave strain
amplitude at the bounce primarily depends on [, while the
degree of differential rotation only becomes relevant for cores
with 8 2 0.08. They use two equations of state (LS220 and
HShen) and explore the difference between the waveforms as-
sociated with the two equations of state. Richers et al. [[19]]
used the progenitor star identical to Ref. [[18] in their simula-
tions. They investigated the dependence of the gravitational-
wave signal on the nuclear equation of state. They performed
a total of 1764 simulations exploring 18 equations of state
and 98 rotation profiles (varying 3 and differential rotation).
They confirm that the gravitational-wave signal at the bounce
is most sensitive to 3, while the postbounce oscillations de-
pends on the equation of state, which manifests itself through
the characteristic frequency of the oscillations, fpcak.

Abdikamalov et al. attempted to determine if gravitational-
wave observations could be used to extract physical informa-
tion about the core rotation. They constructed a template bank
of waveforms spanning the range of rotation rates in their sim-
ulations, projected signals against this bank, and found that a
signal observed at 10 kpc by Advanced LIGO could be used to
constrain 3 to within 20% when 8 2 0.05. Heng introduced
the idea of using principal component analysis to model a set
of supernovae waveforms, rather than using the waveforms
themselves as a template bank [20]. Previous studies have
used principal component analysis to infer the core-collapse
explosion mechanism [21H24]].

Edwards et al. [25] used a principal component basis of
the Abdikamalov et al. waveform catalog and Bayesian pa-
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rameter estimation [26] to determine if the core rotation 3
could be extracted from the observation of a signal. Using
a linear model, they fit the posterior means of the principal
component coefficients to the known values of the physical
parameter. Then they sample from the posterior predictive ¢-
distribution to make probabilistic statements about 3 estima-
tion. They test their method on signals observed in Advanced
LIGO with a signal-to-noise ratio of 20 and are able to recover
signals with 8 = 0.02 with 8 = 0.05 £ 0.03, improving the
accuracy of measurement to 5 = 0.05 4 0.04 for signals with
B = 0.05, with average 90% credible interval widths of 0.06.

In this paper, we use the waveform catalog of Richers et
al. to determine how accurately Advanced LIGO and the
proposed third-generation detector Cosmic Explorer could
extract information about the nuclear equation of state and
the progenitor core rotation rate from observations of core-
collapse supernovae. Since the progenitor cores of supernovae
are expected to be rotating relatively slowly (core rotation pe-
riods 2 30 s) [27H29]], we focus on the waveforms in the Rich-
ers et al. set with 0 < /3 < 0.07. We use a total of 659 wave-
forms spanning 13 nuclear equations of state. We use prin-
cipal component analysis to construct a model that captures
the features of the Richers et al. catalog and construct a map
between the parameters measured by the principal component
model and the physical parameters of the waveform fpcax and
B. We use Monte Carlo methods to perform Bayesian pa-
rameter estimation to measure the posterior probability distri-
bution of the principal component model parameters and the
constructed map to transform these into the posterior proba-
bility distributions of the physical parameters.

We find that for sources with 8 > 0.02 at a distance of 8
kpc, 3 can be estimated with a 90% credible interval of 0.004
for Advanced LIGO, and 0.0008 for Cosmic Explorer detec-
tors. The precision of measurement for signal sources at 48.5
kpc observed in Cosmic Explorer deteriorates to 90% credible
interval of 0.003. We can constrain fpeak for sources within
the Milky Way galaxy to with 90% credible interval of 5 Hz
for detections in the third-generation detectors, if the 5 for
the signal is more than 0.02, thus allowing us to constrain the
nuclear equation of state.

This paper is organized as follows: In Sec. [I] we describe
the the construction of a principal component basis set using
the Richers et al. waveforms from which we withhold a ran-
dom sample of 10% to test our method. In Sec. we de-
scribe the construction of the map between the parameters of
the principal component model and the physical waveform. In
Sec.[IV]we describe our Bayesian parameter estimation meth-
ods, and in Sec.[V]we present the results of the methods using
simulated signals in Advanced LIGO and Cosmic Explorer.
In Sec |VI| we summarize our findings and discuss directions
for future work.

II. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis extracts the dominant fea-
tures from a set of waveforms as linearly-independent prin-
cipal components [20]. In this study, we use singular value

decomposition to compute the principal components. A set
of discretely and evenly sampled-in-time waveforms can be
written as the columns of a matrix D which can be written as

D=UxVT, )

where the matrices U and V' contain the orthonormal eigen-
vectors of DDT and DT D, respectively, and the diagonal
matrix ¥ contains the eigenvalues of DD?. The orthonor-
mal vectors in the matrix U are the principal components, and
are sorted in decreasing order of the size of the square root
of the eigenvalues. Hence, the first principal component de-
scribes the most dominant feature in the set of waveforms.
If we have N waveforms in the catalog D, then U contains
N principal components. By constructing a principal compo-
nent decomposition of the catalog, we attempt to construct a
set of basis vectors that captures the features of signals that
lie in the space spanned by the waveform catalog, without re-
quiring modelling every possible core-collapse in the catalog
space. The principal component analysis provides us with a
semi-analytic model for core-collapse waveforms, given by

N
H =~ Z o;Uj, (2)
j=1

where the «; are the coefficients of the signal H expressed
in terms of the basis vectors U;. We can use Bayesian pa-
rameter estimation to construct posterior probability densities
on the model parameters «; and hence the gravitational-wave
signal H. However, there are two challenges to directly im-
plementing this approach. First, the number of waveforms
used to construct the principal component analysis N must be
large enough to accurately explore the features in the catalog
(typically of order 102-10% waveforms), but this N may be
significantly larger than the number of basis vectors needed
to capture the essential features of the waveforms. Second,
the measured «; are parameters of the basis vectors and are
not directly related to physical parameters of the waveforms.
As suggested in previous works, we address these challenges
in two ways. Since the principal component analysis tells us
which basis vectors capture the dominant features of the cata-
log, we can construct an approximation to each waveform h as
a linear combination of a subset of the principal components

k
h:ZajUj~ (3)
j=1

where & < N. Here, we use two approaches to choose the
value of k; we study the overlap between the original wave-
forms in the catalog and approximations to these waveforms
using a subset of basis vectors. If the overlap is unity, then
the approximate decomposition exactly reproduces the origi-
nal waveforms. We use the overlap method to make an ini-
tial choice of the number of basis vectors k and then perform
parameter estimation to confirm that the choice is sufficient;
that is statistical error dominates over the systematic error that
arises from choosing £ < N. Finally, we determine which of
the «; are needed to extract the physical parameters S and



fpeax and use the catalog to construct the maps 3(«;) and
f peak (Oéi ) .

To construct the basis set, we use the axisymmetric general-
relativistic hydrodynamic simulations from Richers et al. that
span 18 different equations of state and 98 rotation pro-
files [19]]. They use a 12M, nonrotating progenitor (model
s12WHO7 from [30]) in the CoCoNuT code [31}132] once for
each of the 18 equations of state. Richers et al. imposed a
rotation profile on the progenitor according to the cylindrical
rotation law [33]]:

971
Q(r) = Qg {1+(;) } : @)
where A (measured in km) depicts the measure of degree of
differential rotation, ) is the maximum initial rotation rate,
and r is the distance from the rotational axis in km.

We exclude the prompt convection part of the waveforms
when building the principal component basis set. This part of
the signal is highly stochastic in nature making it challenging
to model with principal component analysis. However, the
prompt convection phase is retained in the waveforms that are
used as signals to test our method. Richers et al. suggest that
information on the progenitor core rotation and the equation
of state can be extracted from the core bounce and the post-
bounce oscillations of the protoneutron star. We therefore use
the criteria proposed by Richers et al. to truncate the wave-
form 6 ms after the third zero-crossing of the strain waveform
after the bounce. We resample the waveforms to 16 384 Hz
and ensure that the length of all waveforms is 1 s by zero
padding them with the core bounce aligned at ¢ = 0.5 s for
all the waveforms. In our analysis, we only use the plus po-
larization of the waveforms.

The general morphology of the waveforms can be seen in
Fig.[I] Prior to the core bounce, the strain increases slowly. It
decreases rapidly through the bounce to a local minimum. The
depth of the local minimum increases with the rotation rate of
the inner core at the time of the bounce. This phase is followed
by the postbounce ringdown oscillations of the newly formed
protoneutron star, which lasts ~ 6 ms. The characteristic fre-
quency of these oscillations depends on the equation of state
of the inner core. The top panel of Fig.[T|shows the waveforms
for SFHx equation of state and the rotation rates of the inner
core between 5 = 0.02 and 0.06. We can see that the depth
of the first local minimum immediately after the core bounce
increases with the rotation rate. However, the postbounce os-
cillations have almost the same frequency irrespective of the
rotation rate. The bottom panel shows us the waveforms for
Q = 2.50 rad/sec and the precollapse differential rotation rate
A = 467 km for various equations of state listed in Table[l]
We can note that the depth of the first local minimum is nearly
the same for waveforms with different equation of state since
the rotation rate is the same while the postbounce oscillation
frequency is different for different equations of state.

In order to focus on slowly rotating progenitor cores, we re-
strict the catalog to the set of simulations with 5 < 0.07. We
also exclude simulations whose equation of state is ruled out
by observations of GW170817 [34H36], giving us 659 wave-
forms in total. We select 60 waveforms at random from this set
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FIG. 1. Gravitational wave strain assuming the distance to the pro-
genitor of 10 kpc as function of time for bounce and postbounce
oscillation phases of a core-collapse process. The waveforms are
zero buffered to make them 1 second long, and the time of bounce
is aligned at 0.5 seconds for all the waveforms. The top panel shows
the waveforms for the SFHx equation of state with varying rotation
rates between § = 0.02 and 5 = 0.06. The strain amplitude at
the bounce increases with increasing [, while the postbounce os-
cillation frequency remains almost the same for all the waveforms
corresponding to a given equation of state. Bottom panel shows the
waveforms for 2 = 2.50 rad/sec and A = 467 km for the equa-
tions of state listed in Table[l] The bounce amplitude remains almost
the same for the waveforms with the same core rotation rate, while
the postbounce oscillation frequency varies for different equations of
state.

and reserve them for testing our methods; these test signals are
not included in the construction of either the principal compo-
nent decomposition or the map between principal component
parameters and physical parameters. We construct a principal
component basis set from the remaining 599 waveforms. We
do not consider the affects of the pre-collapse differential core
rotation since Refs. [[18]] and [[19] show that the waveforms for
slowly rotating cores are only very weakly dependent on the
differential rotation profile. Therefore we consider parameter-
ization of the catalog only by /3, regardless of the differential
rotation. Figureshows the values of 3 and fpcax of the simu-
lations used to construct the principal component analysis and
map (crosses) and and the signals reserved to test our method
(dots).

Figure [3|shows the reconstruction of each of the 599 wave-
forms using the principal component basis set. The horizontal
axis represents the number of principal components & used to
generate the waveform by Eq. 3| and the vertical axis repre-
sents the overlap between the original catalog waveform H
and the approximate reconstructed waveform h for each value
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FIG. 2. Frequency of postbounce oscillations is plotted on the ver-
tical axis against 8 of the waveforms on the horizontal axis. The
crosses represent the waveforms that are used to build the principal
component basis. This also includes the green crosses, showing the
waveforms that are affected the most by only considering 15 princi-
pal components and not more. The simulations that use the SFHx
equation of state are shown in brown crosses. The fpeax value for
a given equation of state is independent of 3 for 0.02 < g < 0.06.
The dashed lines represent the average fpecax values of the waveforms
of a given equation of state in this range, also given in Tab. ] The or-
ange dots represent the parameter values of the waveforms that are
used as astrophysical signals in this study.
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FIG. 3. The plot shows how well can a given number of principal
components (plotted on the horizontal axis) reconstruct the original
waveform. We quantify this by computing the overlap between the
original waveform and the reconstructed waveform, and show it on
the vertical axis. Each of the waveforms is represented by a grey line,
and the mean overlap of all the waveforms as a function of number
of basis vectors used for construction is represented by the red line.

of k, where the overlap between is defined as [37]:

(H|h) = 4R /Ooo h(gigf)f) de, (5)

where H (f) and h(f) are the Fourier transforms of the wave-
forms and S,,(f) is the power spectral density of the Cosmic
Explorer (CE1) detector noise. This figure shows that by us-
ing the first 50 of the 599 principal components, we are able
to reconstruct the all 599 original waveforms with more than
90% overlap. However, we find that using 50 basis vectors
in the Bayesian parameter estimation is computationally ex-
pensive and note that if only 15 basis vectors are used, 96%
of the waveforms are reconstructed with an overlap greater
than 90%. In Fig. 2| the catalog waveforms for which 15 ba-
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sis vectors are sufficient to reconstruct the overlap to > 90%
are shown with blue crosses and the catalog waveforms that
fail this criteria are shown with green crosses. We see that all
the waveforms that require more than fifteen principal compo-
nents to reproduce the waveform with at least 90% overlap lie
in the region of slowest core rotation /3. These are the wave-
forms for which it is most challenging to extract 3 and fpecak
[19]. However, we still include these waveforms in our analy-
sis.

Previous studies have used principal component analysis to
construct a gravitational-waveform model for rotating core-
collapse supernovae that is used for Bayesian reconstruction
of the signal observed in the detector. Rover et al. [26] also
used overlaps between the original waveforms and the wave-
forms generated through a subset of principal component ba-
sis to determine the number of basis vectors to be used in their
waveform model. They used 128 waveform simulations from
Dimmelmeier et al. [38]] to construct their basis set and used
10 basis vectors. Edwards et al. [25] used a constrained op-
timization approach to select the number of basis vectors in
their study. They used 132 waveforms in the Abdikamalov et
al. catalog [18] to construct their basis set and used the first
14 of the basis vectors in their model.

III. MAPPING TO PHYSICAL PARAMETERS

Having constructed a principal component model and de-
termined that fifteen basis vectors are adequate to capture the
essential features of the catalog space, we construct a map
between the unphysical parameters of our model a; and the
physical parameters of interest 3 and fpcak. The ratio of the
rotational kinetic energy to the gravitational potential energy
of the inner core 3, is a robust way of quantifying the rotation
rate of the inner core [18}[19]. 3 is a time dependent quantity
that evolves during the core collapse event. In our work we
quantify the rotation rate of the core of the progenitor with /3
at the time of the core bounce.

Fig. 4] shows the values of the coefficients of the first four
principal components «; (2 = 1,2, 3,4) as a function of the
rotation rate /3 for the waveforms in the catalog. We see that
a1 is the parameter most strongly correlated with /3, exhibit-
ing a roughly linear dependence across the catalog space. The
increase in the spread of points in «; as (3 increases is caused
by waveforms with similar values of 8 but different equations
of state; the change in equation of state weakly affects the
map between the two parameters. The correlation between
the other three model parameters and [ is not as obvious. We
use the data shown in Fig.to construct a map S(ayq, ..., k),
where k£ < 8.

To construct the map using just the first model parameter
B(aq), we use the least square fit for a straight line, obtain-
ing the slope 0.0326 and the intercept 0.0007. If we want to
incorporate more than one model parameters to construct the
map, we use interpolation to find S(A) for an arbitrary point
A = (a1,...,q,) with 2 < n < 8 using the known values
of 8 and (v, ..., ay,). This interpolation is performed using
the linear method of scipy.interpolate.griddata



FIG. 4. The coefficients of the first four principal components as
a function of 5. The coefficient of the first principle component,
a1 (shown in blue) is most strongly correlated with /3, exhibiting a
roughly linear relation. The correlation between the other three coef-
ficients and (3 can be seen to be weaker. The values of the coefficients
spread as [ increases because of different equations of state used in
simulation of the waveforms.

which finds the convex hull of A, which consist of the near-
est n+ 1 neighbours of A that contain A: Ay,..., A1, for
which the 3 values are known. A can be written as a weighted

average of Ay,..., Any1:
n+1
i=1

where «; > 0 and Y +; = 1. The map for an arbitrary point
is then generated using the linear interpolation with the ;s as
the weights in the interpolation:

n+1

B(A)~ > viB(A). (7)
=1

The interpolation fails if A does not lie within a convex hull
of points with known values of 5. Finding the convex hull
of A becomes increasingly computationally expensive as the
number of model parameters (and hence, the number of di-
mensions) used in the interpolation increases. To determine
how many model parameters should be used in the map to
construct a robust and sufficiently accurate map, we perform
the following test. We first note that since our waveform cat-
alog is large, the omission of one waveform from the con-
struction of the principal component basis does not signifi-
cantly change the principal component decomposition. Given
this, we can exclude a waveform from the principal compo-
nent analysis, construct the interpolation function using the
remaining waveforms, and use this interpolating function to
estimate the known value of S for the waveform excluded
from our algorithm. We repeat this procedure for each of
the waveforms in the catalog used to construct the principal
component basis and the interpolation function. Note that we
do not use the 10% of the catalog reserved for astrophysical
testing here, as we reserve those waveforms for use until our
method is fully tuned.

The outcome of this test is shown in Fig.[5] The horizontal
axis shows the number of model parameters used to construct
the map B(a, ..., a) for k < 8. The median error in recon-
structing 8 from each of these maps for the waveforms in the
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FIG. 5. For each waveform in the catalog, a principal component ba-
sis set is constructed using all remaining waveforms. Using this basis
set, B(au, . . ., ay ) maps are constructed using interpolation with the
first k = 2,...,8 model parameters, and 3 of the excluded wave-
form is estimated using these maps. Least square fit for a straight
line is used while using just the first model parameter to construct
the map B(«1). The median error in reconstructing 3 through vari-
ous maps and the respective failure rate in interpolation are plotted on
the vertical axes. Using more number of model parameters reduces
the error in interpolation, however increases the number of times the
interpolation fails.

catalog is plotted on the vertical axis. The failure rate of in-
terpolation corresponding to each map is also shown. We see
that as the number of model parameters used to construct the
map increases, the interpolation error decreases. Maps that
use interpolation with two or more model parameters have
significantly less error as compared to the map S(a;) con-
structed using the least square fit. Hence we do not use the
map B(«q) in our analysis. However, with increasing number
of model parameters, the failure rate for interpolation also in-
creases. The interpolation fails for more than 80% of the cases
when we use eight model parameters. The failure rate of the
map constructed by using nine model parameters or more is
even higher and we do not consider that in our analysis. We
also note that the error in reconstruction of 3 using the inter-
polation increases as 3 increases. This can be attributed to the
fact that that the volume of parameter space sampled is sparser
as (J increases.

We use the maps S(a, ..., ;) with & < 8 to translate
the posteriors obtained for the model parameters from the
Bayesian inference of simulated signals to the posteriors on f.
We constrain the samples to be in the convex hull of the first
two model parameters, as shown in Fig. []in order to success-
fully interpolate using the first three parameters. We first use
the map constructed by using eight model parameters, which
would result in some samples in the posteriors getting rejected
because of the failure in interpolation. We then use the map
formed by seven model parameters for the samples for which
the interpolation failed previously, and repeat the procedure
with maps constructed using fewer model parameters for the
samples for which interpolation fails. Eventually, all the re-
maining samples are successfully interpolated by using the
map 3(aq, ae, as). Constraining the samples within the con-
vex hull using four parameters or higher is computationally
expensive. A much more robust map can be constructed by
using machine learning and by populating the parameter space
with more simulations. We leave the construction and testing



FIG. 6. The aia (vertical axis) vs a1 (horizontal axis) parameter
plane for the waveforms in the catalog. The colorbar shows the 3
corresponding to each of the waveforms. The two dimensional con-
vex hull of the all the points is shown by the dashed black line. Inter-
polation fails for a point outside the convex hull. We can construct
a three dimensional convex hull if we also incorporate cus. We con-
strain our MCMC samples to be within the three dimensional convex
hull.

Equation Speak Soeak
of State Mean value Standard deviation
[Hz] [Hz]
SFHo 772.1 5.6
SFHx 768.9 6.2
LS180 728.4 6.4
HSIUF 724.2 8.4
LS220 723.7 6.4
GShenFSU2.1  723.2 11.1
GShenFSUL1.7  721.1 10.3
LS375 709.1 8.1
HSTMA 704.1 5.7
HSFSG 702.1 7.9
HSDD2 701.6 8.3
BHBLP 699.7 8.6
BHBL 699.7 8.2

TABLE I. The mean and standard deviation of the fycak values of the
waveforms used to form the principal component basis belonging to
a particular equation of state with 0.02 < 8 < 0.06.

of that map for future work.

The postbounce oscillation frequency fpeax is the [ = 2 f-
mode peak frequency of the protoneutron star after the core
bounce [39, 40]. Richers et al. observed that for simulations
with 0.02 < 3 < 0.06, fpeak for a given nuclear equation of
state is independent of the value of 8 (see Fig. 2), with the
softer equations of state having a higher postbounce oscilla-
tion frequency. We use this relation between f,ecai and the
equation of state, shown in Table[l] to infer the equation of
state dependence on fpeax. To measure fpeak, in our analysis,
we the method of Richers et al. We first isolate the postbounce
oscillation from the earlier bounce and the later convection
phases of the waveform by taking the Fourier transform of the
waveform up to the end of the bounce phase ¢ (taken to be

the third zero crossing after the core bounce) and, separately,
the Fourier transform of the waveform up to ¢y, + 6 ms, in or-
der to include a few cycles of the postbounce oscillations and
isolate them from the convective phase. The Fourier transform
of the waveform up to the bounce phase is subtracted from the
Fourier transform that includes postbounce oscillations and
the largest spectral feature within the window 600 - 1075 Hz
is fpeak. As found by Richers et al., for slowly rotating cores
with 8 < 0.02 this method to extract fpcax is unreliable since
the protoneutron star oscillations are only weakly excited. For
B > 0.06, centrifugal forces start affecting the postbounce os-
cillations and the f,eak value depends on differential rotation
in addition to the equation of state.

In our analysis, we measure fpeak Of a signal observed in
a detector by applying the method of Richers et al. to the
waveform reconstructed by our Bayesian parameter estima-
tion. For each sample in our posterior probability distribution,
we construct the approximate signal given by Eq. [3|using all
15 measured principal component parameters. We then deter-
mine the postbounce oscillation frequency using the the ap-
proximate posterior waveform. Evaluating fpeai for all the
samples gives a posterior probability distribution for fpcaxk.
Comparing the posterior with Table [I] enables us to rule out
the equations of state inconsistent with the signal waveform.
In this way gravitational waves from core-collapse provide us
a different regime than binary neutron star mergers to study
the nuclear equation of state.

IV. PARAMETER ESTIMATION

By combining the methods described above with Bayesian
parameter estimation [41} 42]] we can estimate the posterior
probability distributions for the physical parameters of astro-
physical signals. Our Bayesian parameter estimation sam-
ples the probability of the modeled parameter values given a
model and set of detectors’ data using Markov Chain Monte
Carlo methods. We calculate the posterior probability den-

sity function, p(dJ|d(t), H), for the set of parameters ¥ for
the gravitational-waveform model, H, given the gravitational-

-

wave data from the detectors d(t)

—

S\de). H _ P, H)p(J|H)
p(9]d(t), H) GO

where p(J|H) is the prior—the assumed knowledge of the
distributions for the parameters ¢ describing the signal, be-
fore considering the data. p(d(t)|¢, H) is the likelihood—the

probability of obtaining the data d(t) given the model H with

parameters . We use the Gaussian likelihood in this analysis,
which is given by [43]:

; ®)

p(d(t)|7, H) = exp H > <ﬁi(f)lm(f)>]

=1
[ 1
=exp |—=
D

N
1=

(di(f) = 3(f,0)|di(f) = 3(, 19))] ©

1



where NV is the number of detectors (in our case, N = 1), and
d;(f) and 7n;(f) are the Fourier transforms of the data and
the noise in the detector. We sample the posterior probability
distribution using stochastic sampling methods. Our choice
of sampler in PyCBC Inference [44]is guided by the fact
that the default parallel tempered MCMC sampler emcee_pt
[45-47] can experience problems converging for signals with
signal-to-noise ratios greater than 100. To address this, we
use the dynamic nested sampling package Dynesty [48H50]
which provides posterior probability distributions for all the
signals explored here. For signals with very high signal-to-
noise ratio, the detector noise becomes negligible and so it is
possible to obtain a point estimate of the signal parameters by
directly computing the inner product between the signal and
the basis vectors. By performing this spot-check for the high
signal-to-noise ratio signals, we find that these point estimates
agree with the posteriors obtained by the Dynesty sampler.

In our analysis, we assume that any gravitational-wave sig-
nal from a core collapse supernova will be accompanied by a
neutrino signal detected by neutrino observatories such as Ice-
Cube [51]], Super-Kamiokande [52]] or DUNE [53]. The neu-
trino observations can estimate the time of the core bounce to
within 3 — 4 ms [6, 154} 55]]. Our analysis only considers the
core bounce and the next 5 — 7 ms, and we use assume that
information from the neutrino observations can provide a nar-
row prior of 8 ms for the time of the bounce. We also assume
that the distance and sky location to the source are known and
we do not include them in the parameter estimation.

We use PyCBC Inference [44] to obtain posteriors for
the coefficients of the first fifteen principal components of the
waveform catalog. We use uniform priors for all the fifteen
coefficients as shown in Table[Il} in addition to the constraint
that the samples are restricted with the convex hull formed
by the point cloud of the first three model parameters for the
waveforms in the catalog. Using the map discussed in section
and the methods to extract fpeai values, we translate the
posteriors on the coefficients to posteriors on 5 and fpeak-

V. RESULTS

We test our method using the 60 signal waveforms reserved
from above. Each waveform, consisting of the core collapse,
postbounce oscillation, and prompt convection phases, is used
to create a simulated observation by adding it to Gaussian
noise colored to the strain sensitivity of the Advanced LIGO
detectors and the third-generation detectors: Cosmic Explorer
1 (CEl), and Cosmic Explorer 2 (CE2). Cosmic Explorer is
the proposed third generation detector which is planned to be-
gin observing in 2030s [56]. The first stage of the observatory,
Cosmic Explorer 1, is the scaling up of the Advanced LIGO
technologies to an interferometer with 40 km arm length. The
second stage of the observatory, Cosmic Explorer 2, will be
an upgrade on the core optics of Cosmic Explorer 1 by us-
ing cryogenic technologies and new mirror substrates. The
predicted noise power spectral densities of the three detectors
used in this study are shown in Fig.[7| We place the sources at
distances corresponding to the center of the Milky Way galaxy

Parameter Upper bound on prior Lower bound on prior
ay 0.0 10.5
o -5.0 3.55
as -2.0 2.0
oy -1.5 2.0
as -1.0 1.75
o -0.85 1.05
ar -0.75 1.5
o -0.75 0.75
Qg -0.75 0.75
10 -0.75 0.75
11 -0.75 0.75
12 -0.75 0.75
13 -0.75 0.75
14 -0.75 0.75
15 -0.75 0.75
thounce (GPS time)  1126259469.517 1126259469.525

TABLE II. Upper and lower bounds on the uniform priors used for
the model parameters «; and tpounce in Bayesian parameter esti-
mation. The values for a; were chosen based on the range of val-
ues obtained from the construction of principal component basis set.
tbounce has a uniform prior width of 8ms. All signals are aligned
such that the bounce is at tgps = 1126259469.5 + 0.02125 where
0.02125 is the light travel time between the center of the Earth and
the detectors. Note that an additional constraint on the priors is to
restrict the samples with the convex hull formed by the first three
model parameters of the waveforms in the catalog (see Sec. [III).

(8 kpc), far edge of the Milky Way from the Earth (23 kpc),
the Large Magellanic Cloud (48.5 kpc), and out to 242 kpc to
capture the dwarf satellite galaxies of the Milky Way in the
local group. In addition, we place the sources at the distances
of 40.5 kpc and at 115 kpc. The sources are assumed to be
optimally oriented for the detector. The signal-to-noise ratio
of the signal waveforms and its variation with /3 is plotted in
Fig.[8} We do not perform the analysis if the simulated signal
has a signal-to-noise ratio less than 8 (shown as purple points
in the figure). We note that more sensitive interferometers
are able to detect more number of signals with low 3. Ad-
vanced LIGO is not able to detect any sources at 115 kpc or
beyond. It is also unable to detect the sources with 5 < 0.02
at 40.5 kpc and beyond. The signal-to-noise ratios and de-
tection ranges in our study are consistent with those obtained
for comparable signals in previous core-collapse supernovae
search studies [9, [10]].

We summarize our results in Table[[ll We measure the me-
dian values and the 90% credible intervals from the posteriors
obtained from MCMC for 5 and fpeax. The width of 90%
credible intervals show how precisely we can measure the pa-
rameters. 90% credible interval of fpeax is useful to determine
the equations of state consistent with the signal, using Table[]
The mean of the median values provides an estimate of the
accuracy of the measurement of the parameters. We present
our results by classifying the signals in two sets: 5 < 0.02,
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FIG. 7. Predicted noise power spectral densities for Advanced LIGO,
Cosmic Explorer 1, and Cosmic Explorer 2 detectors.
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FIG. 8. The vertical axis shows the signal-to-noise ratios of wave-
forms used as astrophysical signals. The horizontal axis shows the
[ of the core progenitor at bounce. These sources are assumed to
be at distances of 8.1 kpc, 23 kpc, 40.5 kpe, 48.5 kpe, 115 kpc,
and 242 kpc and the signals are observed in the Cosmic Explorer
1 (CE1), Cosmic Explorer 2 (CE2), and Advanced LIGO (aLIGO)
gravitational wave detectors. We ignore the waveforms with signal-
to-noise ratios below 8 (shown as purple dots) and do not perform
parameter estimation on them.

and 5 > 0.02.

The mean width of the 90% credible interval for S for sig-
nals sources at the center of the Milky Way with 8 = 0.04
is 0.004 when observed in Advanced LIGO, improving to a
width of 0.0008 if observed in Cosmic Explorer detectors.
For sources at 48.5 kpc it increases to 0.02 for Advanced
LIGO detections and 0.003 for Cosmic Explorer detections.
We note that the width of the 90% credible intervals increases
as the source distance increases. In addition to that, as the
value of 3 of the injected signal increases the 90% credible
interval width also increase, even though the signal-to-noise
ratio also increases. As discussed in Sec.[[T] this is because
the coefficients for known values of 3 used to construct the
map become sparse for higher values of 5 and the interpola-
tion suffers. On an average, the 90% credible interval width
for signals observed in Cosmic Explorer 1 is 1.5 times that of
the signals observed in Cosmic Explorer 2. Fig. [9] shows the
90% credible interval width of the posteriors of 3 as a function
of the injected value of J for all the signals. For the sources
at a given distance observed in a particular detector, the 90%
credible interval does not vary significantly across the range
of injected values of /5. For some signals with 8 < 0.02, the
signal-to-noise ratio is less than 8, and hence we do not per-
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FIG. 9. The 90% credible interval width of the posteriors obtained
for 8 as a function of the 8 of the injected signal waveform. We
note that the signals observed in Cosmic Explorer 1 (blue) and Cos-
mic Explorer 2 (orange) are measured an order of magnitude more
precisely than the signals in Advanced LIGO (shown in green). On
an average, the 90% credible interval width for signals observed in
Cosmic Explorer 1 is 1.5 times that of the signals observed in Cosmic
Explorer 2.

form parameter estimation on them.

For signals sources at a distance of 23 kpc with 5 < 0.02
observed in Cosmic Explorer 1, we estimate [ with an error
of 21%. This increases to 24% for Cosmic Explorer 2. For
signal sources at 23 kpc with § > 0.02, we can estimate 3
with 6% error for Cosmic Explorer detectors. The error in-
creases as the source distance increases. Fig. [I0] shows the
a1 and a4 posteriors obtained for the signal with 8 = 0.0299
at a distance of 23 kpc observed in Cosmic Explorer 1 (blue)
and Cosmic Explorer 2 (orange). Since the signal is observed
with higher signal-to-noise ratio in Cosmic Explorer 2 than in
Cosmic Explorer 1, the posteriors obtained for the former are
smaller in area. However, the point with a; and o values cor-
responding to the signal (shown as the red star) is within the
90% credible region of both posteriors. When these posteriors
are translated to the posteriors of /3, using the map discussed
in Sec. [[II} the difference between the median value of 3 ob-
tained and the /3 of the injected signal is higher for Cosmic
Explorer 2 than that for Cosmic Explorer 1. Such error is in-
troduced for several signals and leads to lower overall error
for Cosmic Explorer 1 than its upgraded counterpart. For Ad-
vanced LIGO, 3 is measured with an error of 9%.

For signals with 5 > 0.02 observed in the third genera-
tion detectors, we can measure fpeax With an mean error of
upto 3%. The average 90% credible intervals obtained for
fpeak for such signals within the galaxy is 5 Hz. Estimat-
ing fpeak With such precision restricts the possible equations
of state consistent with the fycax values, specially for signals
with 0.02 < 8 < 0.06. We obtain an average 90% credible
intervals for fpcax of 7 Hz for signals at the center of Milky
way observed in Advanced LIGO noise, with a systematic er-
ror of 4%. For sources that are further away, the average 90%
credible interval are more that 35 Hz. The systematic error is
larger that the range spanned by the mean fpcax values of var-
ious equations of state listed in Table [[]and we conclude that
third-generation gravitational-wave detectors are required to
extract nuclear physics from core-collapse supernovae. The
method to extract fj,c.x for any waveform with a correspond-
ing 5 < 0.02 is unreliable, and hence we get large systematic



Detect Source 3 Number 8 foeak
etector distance [kpe]| © "18¢ | of Mean | Mean 90% | Mean
signals Mean 90% |fractional | credible | fractional

credible interval | €TOT interval [Hz]| error

8 B <0.02| 13 0.004 22 % 289 26 %

6 >0.02| 35 0.004 10 % 7 4%

Advanced LIGO 2”3 B < 0.02 5 0.01 19% 780 3%

6 >0.02| 35 0.009 13% 39 4%

485 B < 0.02 0 - - - -

6 >0.02 25 0.02 12 % 57 3%

g 6 <0.02] 25 0.0004 26 % 37 18 %

B >0.02| 35 0.0008 6 % 2 3%

23 6 <0.02] 20 0.001 21 % 147 11 %

. B >0.02| 35 0.002 6% 5 3%
Cosmic Explorer 1

435 6 <0.02 17 0.002 15 % 167 5%

) B>0.02| 35 0.003 7% 11 3%

212 B <0.02 5 0.007 6 % 205 2%

8 >0.02 35 0.009 8 % 64 2%

8 B <0.02| 25 0.0002 27 % 4 21 %

6 >0.02| 35 0.0005 7% 1 3%

2”3 B8 <0.02| 24 0.0005 24 % 120 14 %

. 8 >0.02) 35 0.001 7% 3 3%
Cosmic Explorer 2

485 B <0.02| 18 0.001 18% 22 10 %

' B>0.02| 35 0.002 7% 6 3%

212 B <0.02] 11 0.004 8 % 227 3%

6 >0.02| 35 0.006 8 % 51 3%

TABLE III. The table summarizes the results of parameters estimation of 8 and fycai for signal sources at 8 kpe, 23 kpc, 48.5 kpe, and 242 kpc.
We have categorized the results for the all the signals on basis of the detector they are observed in, their distance and the corresponding value
of 3. We present the mean of the 90% credible interval widths and the mean value of the errors and from the posteriors obtained for fpeax
and 3. The average 90% credible interval width of 3 for sources at 8 kpc observed in Advanced LIGO is 0.004, while for the third generation
detectors its an order of magnitude less. The precision to which 8 can be measured decreases when the 3 of the signal waveform increases, or
the source distance increases. Note that the method to measure fpeak for signals with 8 < 0.02 is unreliable. We include these results here for

completeness.

errors and 90% credible intervals for such signals. We include
these results for completeness.

VI. CONCLUSION

Practical implementation of Bayesian inference relies on
the existence of parameterised gravitational-waveform mod-
els that are inexpensive to compute. Such models, with
parametrization for the core rotation rate and the postbounce
oscillation frequency, do not exist for complete core-collapse
supernovae waveforms due to the complexity of the physics
involved. In this paper, we address this problem for the first
two phases of core-collapse signals, namely the core bounce
and the postbounce oscillations. We use principal component
analysis to create a parameterised model that extracts the most
common features of the bounce signal onto the principal com-
ponents. We construct a map between the physical parameters
and the model parameters (principal components and their co-

efficients). We use Bayesian inference to measure the coef-
ficients of the first fifteen principal components for a signal
observed in gravitational-wave detectors, and use the inverse
of the aforementioned map to obtain posteriors of the physi-
cal parameters. In particular, we obtain posterior probability
distributions for the ratio of rotational kinetic energy to the
potential energy of the core at bounce () and the peak fre-
quency of the post bounce oscillations of the protoneutron star

(fpeak)-

B depicts the rotation rate of the inner core of the star at
the core bounce. We find the relationship between the model
parameters and 3 by interpolating known values of S from
the hyper-volume formed by the model parameters. fpcai €n-
codes useful information about the nuclear equation of state,
and tells us about the behaviour of hot, dense nuclear matter
in the core of the star. We can successfully measure fpeai for
waveforms with § > 0.02, however the method to extract it
fails for waveforms of extremely slowly rotating cores.

For signals with 5 > 0.02 at a distance of 8 kpc detected
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FIG. 10. The o and a2 posteriors obtained for the signal with
B = 0.0299 at 23 kpc observed in Cosmic Explorer 1 (shown in
blue) and Cosmic Explorer 2 (shown in orange). The (a1, a2) point
corresponding to the injected signal (shown as the red star) is within
the 90% contour region of both posteriors. The 90% contour re-
gion for the posterior of signal observed in Cosmic Explorer 2 is
smaller than that of Cosmic Explorer] because the signal has higher
signal-to-noise ratio in the former. However, when these posteriors
are transformed into the posteriors of /3, the error in median values
of 3 is larger for Cosmic Explorer 2 than Cosmic Explorer 1.

in Advanced LIGO, 3 can be estimated with a 90% credible
interval of 0.004 for Advanced LIGO, and 0.0008 for Cos-
mic Explorer detectors. The width of the 90% credible in-
terval for 5 increases to 0.002 (0.003) for sources at 23 kpc
(48.5 kpc). On an average, the 90% credible interval for 3
for signals observed in Cosmic Explorer 1 is 1.5 times larger
than that for signals observed in Cosmic Explorer 2. We can
also estimate fpeak to within ~ 6 Hz for signals sources upto
the distance of 48.5 kpc with 5 > 0.02 observed in the third-
generation detectors. Using the posteriors on fpeak, We can
successfully rule out the nuclear equations of state that are
inconsistent with the signal. The error in measuring fpeax for
the signals observed in Advanced LIGO is 4% with an average
90% credible interval width of 6 Hz for sources at the center

10

of the Milky Way. For sources that are further away, the 90%
credible interval width increases to more than 20 Hz. We con-
clude that third-generation detectors are required to constrain
the nuclear equation of state from gravitational-wave observa-
tions of core collapse supernovae.

Previous studies have used principal component analysis in
Bayesian reconstruction of the signal observed in the detec-
tors [26, I57]] or to infer the core-collapse explosion mecha-
nism [21-H24]. Edwards et al [25] used principal component
analysis to measure (3 for signals observed in Advanced LIGO
with signal-to-noise ratio 20, and obtained the 90% confi-
dence interval width of 0.06. We demonstrate a method that
uses principal component analysis in Bayesian estimation of
physical parameters § and fpeak, and to find the dependence
of gravitational-waveform morphology on these physical pa-
rameters. For a signal comparable to the ones in Edwards et al.
study, our method yields a confidence interval of 0.02, which
is three times smaller than that found by Edwards et al.

A more robust map between the model parameters and 3
can be constructed my populating the model parameter space
and using machine learning. We leave the construction of this
map and analysis of signals observed in Einstein telescope for
future work.
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