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We study entanglement harvesting for matter systems such as atoms, ions or molecules, whose
center of mass degrees of freedom are quantum delocalized and which couple to a relativistic quantum
field. We employ a generalized Unruh-deWitt detector model for the light-matter interaction, and
we investigate how the coherent spreading of the quantum center of mass wave function of two
delocalized detector systems impacts their ability to become entangled with one another, via their
respective interaction with a quantum field. For very massive detectors with initially highly localized
centers of mass, we recover the results of entanglement harvesting for pointlike Unruh-deWitt
detectors with classical center of mass degrees of freedom. We find that entanglement harvesting is
Gaussian suppressed in the initial center of mass delocalization of the detectors. We further find
that spatial smearing profiles, which are commonly employed to model the finite size of atoms due
to their atomic orbitals, are not suited to model center of mass delocalization. Finally, for coherently
delocalized detectors, we compare entanglement harvesting in the vacuum to entanglement harvesting
in media. We find that entanglement harvesting is significantly suppressed in media in which the

wave propagation speed is much smaller than the vacuum speed of light.

I. INTRODUCTION

As is well known, first-quantized, localizable matter
systems can become entangled with one another via their
respective interaction with the electromagnetic vacuum [1-
8]. This is possible due to the fact that the vacuum state of
a quantum field is entangled [9-13]: Apart from functional
analytic subtleties, quantum fields, such as the Klein
Gordon field, can be viewed as consisting of a harmonic
oscillator at each point in space, with these oscillators
being dynamically coupled through the Laplace operator
in the equations of motion. In any circumstance, the
ground state of coupled harmonic oscillators is generally
an entangled state. This means that, for quantum fields,
the ground state of the coupled local field oscillators
(which in Minkowski space is the vacuum state) is a
spatially entangled state. Early references are, e.g., [1, 9].
The associated vacuum entanglement entropy obeys an
area law in 3+1 dimensions [2], which is of great interest,
for example, in the context of the black hole information
paradox. This is one of several reasons why the entangling
power of quantum fields in the vacuum has been of much
interest in the field of relativistic quantum information
[3-8].

Studies such as [9, 10] showed that by coupling a quan-
tum field to local first quantized systems via monopole or
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dipole interactions, entanglement can be swapped from
the field to these so-called detectors.

Historically, the question of whether or not a pair of
detectors can extract pre-existing entanglement from the
vacuum even at spacelike separation has been settled,
positively, in [10]. With this question settled, and as de-
tector couplings are generically neither completely space-
like or non-spacelike, the term “entanglement harvest-
ing” has been established with a broader meaning in
the literature[14-17]. Entanglement harvesting refers to
the entangling power of quantum fields [7], both due
to the extraction of pre-existing vacuum entanglement
and due to the additional production of entanglement at
non-spacelike detector separations through field-mediated
interactions. In the present paper, we investigate the
impact of the detectors’ quantum delocalization on entan-
glement harvesting.

Entanglement harvesting has been studied extensively
within the Unruh-deWitt (UdW) detector model. Despite
its simplicity, the UdW detector model qualitatively cap-
tures many aspects of the light-matter interaction [18-20].
On the one hand, it models matter systems as two-level
detector systems with classical center of mass degrees of
freedom. On the other hand, it replaces the electromag-
netic quantum field by a simpler scalar quantum field.
Entanglement harvesting has been studied for UdW de-
tectors not only interacting with the vacuum, but also for
instance with general coherent field states [14, 21], with
quantum fields in curved spacetimes [3, 22-25] and with
quantum fields in spacetimes with non-trivial topology
[15, 26].



The process of entanglement harvesting depends very
sensitively on the detector details [4, 5, 16, 27-29]. For
instance, it depends on whether or not the detectors are
assumed to have a finite spatial extent, which is oftentimes
incorporated into the UdW detector model by equipping
the detectors with classical smearing functions [28]. Thus,
for the purpose of studying entanglement harvesting in
the light-matter interaction, it is crucial to let the details
of the detector model reflect the physics of realistic matter
systems, such as atoms, molecules or ions. The interaction
of such matter systems and light is affected by two main
aspects. First, matter systems such as atoms, molecules or
ions can have a finite spatial extent due to their internal
degrees of freedom, that is, due to their orbital wave
functions. Second, their center of mass degrees of freedom
can be quantum delocalized. While classical smearing
functions have been shown to be appropriate for the
purpose of modelling atomic orbitals [4], they are not
suited to model center of mass delocalization [30].

The aim of this paper is to investigate how the quantum
nature of the center of mass degrees of freedom of matter
affects the process of entanglement harvesting. In the first
section of this paper, we review the process of entangle-
ment harvesting for both pointlike and spatially smeared
UdW detectors, which interact with a scalar quantum
field. In the second section, we then employ a generalized
UdW detector model [30], such as to describe the interac-
tion between quantum delocalized, first quantized matter
systems and a second quantized field. We consider two
quantum delocalized detectors in their respective ground
states, and we ask how their ability to become entangled
with each other is affected by their mass and their initial
center of mass delocalization. We recover the results of
vacuum entanglement harvesting for two pointlike UdW
detectors, in the limit of very large detector masses and
very sharply localized center of mass degrees of freedom.
We find that there is however no limit in which one re-
covers the results of vacuum entanglement harvesting for
two spatially smeared UdW detectors. Further, we find
that vacuum entanglement harvesting is suppressed in the
initial delocalization, and that very delocalized detectors
can not harvest any entanglement from the vacuum.

Finally, in the third section of this paper, we briefly
discuss entanglement harvesting for delocalized detectors
in media—which might be of interest not only for the pur-
pose of experimentally observing entanglement harvesting,
but also to potentially make use of entanglement harvest-
ing in quantum technologies. For the sake of simplicity,
we model a medium as a scalar quantum field, whose wave
propagation speed differs from the vacuum propagation
speed of light. As the wave propagation speed decreases,
we find that less entanglement can be harvested from
the phononic ground state. Intuitively, this is because
the phononic ground state transforms non-trivially under
a quantum reference frame transformation into the rest
frame of the coherently delocalized detectors, subjecting
the detectors to noisy excitations which make it more
difficult for the detectors to harvest entanglement. We

conjecture that matter systems are less likely to become
entangled with each other by interacting with a medium
than they are by interacting with the electromagnetic
field.

II. REVIEW: ENTANGLEMENT HARVESTED
BY UDW DETECTORS FROM THE VACUUM

Before taking into account the quantum delocalization
of the centers of mass of the detectors, we briefly review
the process of vacuum entanglement harvesting for detec-
tors whose center of mass degrees of freedom are described
classically. We consider two UdW detectors, labeled by
J = A, B, which interact with a scalar quantum field.
We assume that the two detectors have the same energy
gap ) and that their classical centers of mass are located
respectively at the positions x;. We let S := |x4 — x|
denote the center of mass separation of the two detec-
tors. We work within the interaction picture, in which
operators evolve according to the free Hamiltonian

ﬁo = Z Q|€J> <eﬂ+/d3k‘ck&;r(&k (1)
J=A,B

We here let |e;) and |gs) denote the respective excited
and ground energy eigenstates of the two detectors. The
operators a, and dL are the annihilation and creation
operators of scalar field modes of momentum k. We clas-
sically model the extended spatial profile of the detectors
(as is common practice in the literature, see, e.g., [28])
by introducing smearing profiles {(x — x;) for the two
detectors. We now assume that the monopole moment
operators of the two detectors, ji; = |es) (g1 + |gs) (e],
couple to the field operators é(x) via the linear monopole
moment operator coupling. In the interaction picture, the
state of the system then evolves in time according to the
interaction Hamiltonian

Hi(t) = ) Hy(t), (2)

J=A,B

where the interaction Hamiltonians H(t) respectively
capture the interaction of the two detectors with the
quantum field:

)0 = WO [ Eaelx-x)dtxn  (6)
We here let A denote the interaction strength, and we
introduced a switching function x(t), via which the inter-
action between the detectors and the quantum field may
be switched on and off. The monopole moment opera-
tors and the field operators evolve according to their free
Hamiltonians as follows:

fy(t) = e les) (gs] +hec., (4)
R B3k 2 i
o(x, t) = / W\/;[e—ukt—i-zkxak +h.c. (5)



FIG. 1:

Emission and absorption processes which contribute to the final state of the two UdW detectors (6). The arrows

denotes the state of the detector (| represents |g) and 1 represents |e)) [10, 31].

Perturbatively in the interaction strength, we can
now study how much the two detectors become entan-
gled with each other, via their respective interaction
with the quantum field (see, e.g., [4, 5] for a deriva-
tion and in-depth discussion of what follows in this
paragraph). To this end, we consider the initial state
p(0) = |ga) (9al ® |gB) (95| ® |0) (0], for which the two
detectors are unentangled and the quantum field is in its
vacuum state |0). Evolving the initial state in time and
taking the partial trace over the field degrees of freedom,
one obtains the partial state pap(t) of the two detectors
after their interaction with the quantum field. Employing
the basis {[g4) |95),l94) les),lea)gp) . lea) les)}, the
partial state of the detectors becomes

1-2P¢ 0 0 Mce*
0 Pc Lc 0
PAB(t) = 0 Lec pec 0 + O(A4) ) (6)

Me¢ 0 0 0

to second perturbative order in the interaction strength.
Here, P denotes the excitation probability of the two
detectors respectively, and M€ has traditionally been
referred to as the entangling term. The excitation prob-
abilities of the two detectors are equal, since we here
consider the same switching function and the same smear-
ing profile (up to a displacement in space) for the two
detectors. We here let the superscript ¢ remind us of the
classical nature of the center of mass degrees of freedom
of the two UdW detectors.

As shown in Refs. [10, 31], both matrix elements can
be understood through Feynman-type diagrams like those
given in Fig.(1). The transition of a UdW detector from
the ground to excited state is always accompanied by
either absorption or emission of a field quantum. Since
the ground state of the field has no quanta to be absorbed,
the lowest-order transition probability of detector A or
B is the probability of emission, shown in (1a) or (1b),
respectively. This probability (equal for both detectors) is
captured as P°. The entangling term, M ¢, is the coher-
ence term—an amplitude, not a probability—associated

with the process shown in (1c¢) [10, 31]. This process
involves the emission of a field quantum from one detec-
tor and its absorption by the other detector. Crucially,
while the probability for this process to happen is strictly
nonzero—that is, the process actually occurs in the model
we consider—it is also O(\*), so it does not appear ex-
plicitly in Eq. (6). Its corresponding coherence term M €,
however, is O(\?) and thus appears in Eq. (6). Note that
the diagram (1c) is the same whether the field quanta
being exchanged through this process are on or off shell,
and it applies regardless of the spatial configuration of
the detectors.

To measure the entanglement between the internal de-
grees of freedom of the two detectors, we will here employ
the entanglement negativity [32], which is an entangle-
ment monotone [33, 34]. The entanglement negativity
is defined for a density matrix as the absolute value of
the sum of the negative eigenvalues of the partially trans-
posed density matrix. To second perturbative order in
the interaction strength, the negativity for the partial
state of the two detectors becomes (see, e.g., [4, 5])

N¢ = max {0, —P°+ |M*|}. (7)

It is worth mentioning here that a rich variety of quanti-
tative entanglement measures have been established in the
literature (see, e.g., [35]). For instance, we could just as
well use concurrence [36] as our measure for entanglement.
For two identical detectors and to second perturbative
order, concurrence and entanglement negativity have how-
ever been shown to be equivalent entanglement measures
[26]. For the purpose of this paper, we will restrict our
attention to entanglement negativity.

Let us now consider a switching function of compact
support of the form

() = {sin(t/a), for 0<t<mo ®

0 otherwise .

Examples for the use of compact switching functions can
be found e.g. in [5, 37]. We employ a compact switching



function in order to ensure that the interaction between
the detectors and the field is switched on only during
a compact time interval, ¢ € [0,70]. The importance
of employing a compact switching function will become
apparent in the next section. For the finite duration of
time during which the coupling strength is nonzero, the
negativity increases. After that time interval, that is, after
time 7o, the detector is “off” again and the joint state

of the detectors, and its entanglement, stays constant.

Throughout this paper, we will not discuss the details of
the time evolution, but rather we will focus on the end
result, i.e., on the amount of entanglement negativity that
has accumulated after the end of the interaction and that
then stays constant. We find the excitation probabilities
and the entangling term after the end of the interaction
to be given as follows,

2,2 37
P = 555 [ G R A, Q

M - _)\20.262'7790' /ﬂ e2ik-xo §~(k)2B(k;)
k 1—o02(Q+ck)?’

: (10)

where (k) denotes the Fourier transformation of the
spatial smearing profile £(x) and where we defined the
following functions:

1+ cos(ma (2 + ck))

A(k) = (0_2(9 + Ck)2 _ 1)2 ) (11)
(29 + ck)sin(nQo) e im0 4 eincho
B(k) = 2Q(1 — Q202) + 1—02(Q — ck)? (12)

We can now specify a spatial smearing function according

to which the detectors couple to the field. We could for
instance model the spatial extent of the detectors via
Gaussian smearing profiles of standard deviation L/2:

2 \*? -
(0 = () e (13)

We will here refer to L as the “width” of the smearing
profiles. Since the smearing profiles are normalized, we
may interpret them as classical probability distributions,
according to which the detectors couple to the quantum
field. We find that the excitation probabilities and the
entangling term depend on the width L of the smearing
profiles, the energy gap ) of the detectors and the total
interaction time mo, and the entangling term additionally
depends on the separation S of the two detectors:

A2g? [° L2k
Pf = R 14
P = g | dkke S A, (14
Ng2eimto o0 gin(kS)e~ L B(k)
S 1
M; 212cS /0 1—02(Q+ ck)? (15)

We here let the subscript L indicate that we employed
Gaussian smearing profiles. In the limit of very sharply
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FIG. 2: The negativity N after the end of the interaction,
as a function of the energy gap €2 and the separation S of
the detectors, plotted (top) for pointlike UdW detectors and
(bottom) for spatially smeared UdW detectors with L = o.
The regions of zero negativity are marked in grey.

peaked smearing profiles (L — 0), we recover the excita-
tion probabilities and the entangling term for pointlike
UdW detectors:

)\20.2 00
Py = A 1
§ = g | dERAG). (16)
Ng2eimtlo oo sin(kS)B(k)
o NTC [ gy SME)BE) g
Mo 2m2¢S /0 1—02(Q+ ck)? (17)

The upper plot in Fig.(2) shows the negativity after
the end of the interaction for a pointlike detector, as a
function of the energy gap Q2 of the detectors and their
separation S. The pointlike detector will be our reference
setup for comparison below.

We observe in passing that these pointlike UdW detec-
tors do not harvest entanglement when they are spacelike
separated [37]. This is due to our choice of switching
function in Eq. (8). Spacelike entanglement harvesting is



possible, for example, when choosing a Gaussian switch-
ing function [4, 5], and it is possible also in setups where
the detectors are switched on only during strictly compact
time intervals that are fully and unambiguously spacelike
separated [10], thereby sidestepping any questions about
the effects of long Gaussian tails.

The ability to harvest preexisting entanglement from
the vacuum arises inseparably with the ability to harvest
entanglement by letting two detectors interact via the
field. This can be seen by considering the exchange of a
field quantum as shown in Fig.(1c), which involves the
Feynman propagator. Notably, the tails that all Feynman
propagators possess outside the lightcone are expressing
correlations that are solely due to vacuum entanglement
since for spacelike separations there are no correlations
that are due to causal interaction. This can equally well
be described as being due to the (acausal) exchange of
virtual field quanta [38]. For other types of separation
between extended events, the explanation for the origin
of any generated entanglement is ambiguous. This is
because the Feynman propagator, being a time-ordered
two-point correlator, describes both (1) field correlations
that are due to causal interaction involving the exchange
of real (i.e., on-shell) field quanta and (2) those that are
due to the exchange of virtual (i.e., off-shell) field quanta.

In fact, Fig.(1c) makes no distinction at all between
these explanations and applies regardless of the nature
of the separation between the events. Previous litera-
ture has paid particular attention to the phenomenon
of entanglement harvesting specifically through extrac-
tion of preexisting vacuum entanglement at spacelike
separations [9-13] in order to unambiguously distinguish
between explanations (1) and (2). We do not dwell on
such concerns here. Instead, we focus in this work on
the question of how the ability of detectors to harvest
entanglement in a given circumstance depends on the way
the spatial extent of each individual detector is modelled.
To this end, after considering (presently) the case of spa-
tially smeared detectors, we will turn our attention in
Section III to the novel situation of quantum-delocalized
detectors.

Returning now to the plots above, we notice that the
lower plot in Fig.(2) shows the negativity for Gaussian-
smeared UdW detectors. The Gaussian smearing profile
given in Eq. (13) provides a simple modification to the
UdW detectors that is distinct from delocalization of their
center of mass. We find that the smeared detectors can
harvest entanglement for larger values of separation of the
center of their distributions than is possible with pointlike
detectors. Physically, this is expected since the smeared
detectors have a spatial extent, so their near sides will
be closer than their centers of mass. As expected, this
extends the range for harvesting entanglement.

Additionally, we find that the negativity decreases with
increasing widths, L, of the smearing profiles. Intuitively,
we can understand this behaviour as follows: We can
interpret the spatially smeared UdW detectors as a having
a physical size, which introduces a soft momentum cutoff,

and as a result, they have a reduced probability of emitting
very high-energy field quanta. This ultimately reduces
the amplitude of the exchange of a field quantum between
the detectors, Fig.(1c), reducing the entanglement. From
an alternative perspective, spatially smeared detectors
average the quantum field fluctuations over extended
spatial regions, and the larger these spatial regions are,
the harder it is to swap correlations from the quantum
field (since the small-scale correlations are inaccessible).

In the negativity plots in Fig.(2) we further observe a
resonance-like behaviour, for energy gaps that are mul-
tiples of the switching scale o, which manifests itself in
slight ripples in the negativity for pointlike UdW detectors,
and more pronounced oscillations for spatially smeared
UdW detectors.

III. ENTANGLEMENT HARVESTED BY
COHERENTLY DELOCALIZED DETECTORS
FROM THE VACUUM

The results for entanglement harvesting in the previous
section relied on the assumption that the center of mass
degrees of freedom of the matter systems under investiga-
tion are classical. In this section, we want to study how
the process of entanglement harvestingis affected when
the center of mass motion of the two detectors is quantum
uncertain.

A possible setup we have in mind here is the following:
Let us consider two atoms, which are initially localized in
a certain region of space via a center of mass position mea-
surement, and which are then left to evolve freely. The
center of mass wave functions of the two initially localized
atoms spread and the atoms dynamically delocalize in
space. Let us now imagine that these two coherently delo-
calizing atoms interact with the electromagnetic vacuum.
How much will the internal degrees of freedom of the
atoms become entangled with each other? How will the
result depend on the mass of the detectors, their initial
localization, and their dynamical delocalization process?
How will the results compare to the results for entangle-
ment harvesting with classical center of mass degrees of
freedom?

To study these questions, we employ a generalized UdW
detector model, as described in [30]: We again replace
the electromagnetic field by a simpler scalar field, and we
model the atoms as two-level detector systems. However,
in order to allow the detectors to coherently delocalize, we
now consider the center of mass degrees of freedom of the
two detectors to be quantized. We let x; and p; denote
the center of mass position and momentum operators
of the two detectors. We will here assume that the two
detectors are of equal mass M. In the interaction picture,
operators then evolve according to the free Hamiltonian

=3

N2
{pJ +Qley) <eJ|} + /d3kck ala, . (18)
J=A,B

2M

We again couple the detectors to the quantum field via the



monopole moment coupling. However, the field operators
now take the center of mass position operators of the two
detectors as their argument:

J=A,B

s ()%, t) (19)

We note that the interaction Hamiltonian involves func-
tions ¢(x s, t) which are dependent on operators and which
are operator valued themselves. An interaction of this
form can be made sense of via the spectral theorem of
functional calculus [30, 39, 40] as follows,

P(xs,t / By P(xy,t)p(x,1), (20)
where the operators P(x,t) are given by

Plxsit) = [xs(t) (xs(t)] (21)

d’pd’q e~ i(p—a) st Pt
3 X 1 QJW . 22
/ 2n)? |p> (af . (22)

We again assume that initially the two detectors are in
their ground states and the field is in its vacuum state.
We further let |¢ ) denote the initial center of mass states
of the two detectors. The initial state of the system then
reads p(0) = [pa) (0al®[ga) (9a4]®|eB) (¢B|®lgB) (98|®
|0) (0]. We can express the initial center of mass states
both in terms of the initial center of mass wave functions
in the position and in the momentum representation:

los) = / P05 (x) [x) = / FpEip)p)  (23)

We again want to investigate how entangled the internal
degrees of freedom are with each other after the end of the
interaction of the detectors with the quantum field. To
this end, we evolve the initial state in time and trace over
both the field and the center of mass degrees of freedom.
To second perturbative order, we again obtain the partial
state of the two detectors after the end of the interaction:

1-Py—Pg 0 0 M*
0 P L 0

pap = o By | ronn e
M 0 0 O

We again calculate the entanglement negativity for this
density matrix, as a quantitative measure for how much
entanglement the internal degrees of freedom of the two
coherently delocalizing detectors can harvest from the
vacuum:

= o B - )

We find the excitation probabilities P; of the two detectors

to be
AZ To To .
o A [ diax((e) / d*p

Bk it — ol E2=2pk
X/ X P () )

PJ =

and we note that the excitation probabilities of the two de-
tectors depend on their center of mass states only via their
respective momentum probability distributions | ;(p)|?.
Unlike the excitation probabilities, we find that the en-
tangling term M also depends on the phases of the initial
center of mass momentum wave functions:

t1 B d®
= —)\2/ dtl/ dtg X tl tQ)/ (pl )p2

x / Sk oa(p1+k)op(P2 — k) 9A(P1) 25(P2)

. k(py — 2 . k(pj+
s pititt) (o-Eegzp2) 42 |:6—7,(t1—t2) (ck—Eleip2))

+e

—i<t1—f2>(ck+k“’%ﬂ?’”)] (27)

The phases of the momentum wave functions carry the
position information of the two wave functions, and as
expected, the entangling term thus depends on the spatial
locations of the two center of mass wave packets. While
the excitation probabilities of the detectors respectively
only depend on the properties of one detector, the en-
tangling term thus depends on the properties of both
detectors. As suggested e.g. in [4], we can thus think
of the excitation of the respective detectors according to
Pj as local noise, while the nonlocal entangling term M
describes entangling excitations which are shared by the
two detectors.

We can now specify the initial center of mass wave
functions for the two detectors. Let us here consider
detectors whose center of mass position wave functions
are Gaussian wave packets of initial width L, respectively

centered around xj, at a separation S := |x4 — xp|:
3/4 2
2 o xtxgl
pi(x) = (W> e, (28)
~ L2 3/4 B 2L2
B) = (5) e @

The momentum probability distributions resulting from
these momentum wave functions are the same for both
detectors, |3, (p)[2 = L3/(2r)3/2¢=7"L*/2. We thus find
that the excitation probabilities of the two detectors are
equal, P4 = P =: P, and the negativity reduces to

N = max{(), M| —P}. (30)

In order for the two detectors to harvest entanglement
from the vacuum, the nonlocal entangling excitations
thus need to dominate over the local excitation of the
respective detectors [4].

We can now see why it is important to employ a switch-
ing function of compact support. Under the free quantum
mechanical time evolution, the wave packets in Eq.(29)
start out completely delocalized in space for t — —oo,
then flow together to Gaussians of width L at time ¢ = 0,
and then spread again into completely delocalized states



for t — oco. If we employed a switching function of non-
compact support, such as a Gaussian switching function,
we would need to consider the completely delocalized cen-
ter of mass wave packets at time ¢ — —oo as the initial
center of mass states. However, we want to consider the
localized wave packets in Eq.(29) as the center of mass
states at the initial time ¢ = 0, since our aim here is
to study how entanglement harvesting is affected by the
center of mass spreading of initially localized detectors.
We therefore need to ensure that the interaction with the
quantum field is switched on precisely at time ¢ = 0, which
in turn is why we need to employ a switching function of
compact support. Let us here again employ the compact
sine switching function in Eq.(8). We obtain

A2o2

e

P / T ar? 15 )PUw) (1)
0

We here defined the

for the excitation probabilities.
template function

Ulp) = /_11dz /Ooodk;k {l—i—cos <m (F_k]\’j)ﬂ

o? (F—]ﬂ}\’;)z—1] , (32)

where p is the detector’s recoil momentum and where
we defined F := Q + ck + k?/(2M) for convenience of
notation. We refer to U(p) as a “template function” due
to the fact that the function is independent of the center
of mass states of the detectors. For the entangling term
we obtain

N2 [ o 0 sin(kS)
M= S L] e )

we~ L2 (01 +p3) /2~ L7k /4 V(k,p1,p2) - (33)

X

We here again defined a template function,

1

V(kvplap2) = Z

=0

" <i(2a + 5;) sin(rao)

20 (1 — a20?)

ITQo

e

efiﬂ’aa +67i7rﬁj(r
34
+ 1—02(a—ﬁ])2>,( )

and we defined o := Q —k(p1 —p2)/(2M) as well as 3; :=
ck + (—1)7k(p1 + p2)/(2M) for convenience of notation.

Since we work within a framework in which the cen-
ter of mass dynamics are described by the Schrodinger
equation, we need to ensure that the virtual center of
mass velocities are well within the non-relativistic regime.
That is, we need to ensure that the momentum proba-
bility distributions |@(p)|? have contributions only for
momenta corresponding to virtual velocities much smaller
than the speed of light. Let us here restrict the virtual
velocities to velocities no larger than one percent of the
vacuum speed of light, v := p/M < 0.0le. The Gaussian

momentum probability distributions of the detectors have
a standard deviation of 1/L. We can thus assume to a
very good approximation (within 3.5 standard deviations
away from the mean) that the center of mass momenta p
in the probability distributions satisfy pL < 3.5. The non-
relativistic regime therefore corresponds to parameters L
and M satisfying

LMc > 3.5 x 10°. (35)

The center of mass wave function of a coherently delocal-
ized detector spreads faster for smaller L and M, that
is, for initially more sharply localized detectors and for
smaller detector masses. Consequently, for a given detec-
tor mass, there is a minimal initial delocalization width
we can consider while staying within the non-relativistic
regime for the virtual center of mass velocities.

Provided that we chose appropriate parameters M and
L, we can now expand the template functions ¢ and V for
non-relativistic virtual center of mass velocities. We Tay-
lor expand U around p/(Mc) = 0, and we Taylor expand
V around both p; /(M¢) = 0 and py/(Mc) = 0. To second
order, we then obtain the following simplified expressions
for the excitation probabilities and the entangling term:
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For notational convenience, we here defined:
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As displayed in Fig.(3), we find that the excitation
probabilities decrease, both for increasing energy gaps
Q and decreasing detector masses M. Intuitively, this
behavior can be explained as follows: switching the in-
teraction on and off breaks time translation invariance
and therefore provides energy for the excitation and the
recoil of the detectors and the excitation of the field. The
kinetic energy of the recoil becomes larger for smaller
detector masses. Since the excitation of the detector is al-
ways accompanied by the emission of a field quantum and
the recoil of the detector, the excitation process becomes
energetically more expensive for larger energy gaps and
smaller detector masses. In the limit of infinitely small
energy gaps, the detectors essentially turn into simple
charges and all the switching energy can go into the recoil
of the detectors and the excitation of the field. Similarly,
in the limit of infinitely large detector masses, the kinetic
recoil energy tends to zero and all the switching energy
can go into the excitation of the field and the internal
degrees of freedom. For the excitation probability of a
very massive detector, it is therefore justifiable to neglect
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FIG. 3: The transition probability for a detector as a function
of its mass, after the end of the interaction, for different
energy gaps and with L = 10000. The dotted lines represent
the excitation probabilities of pointlike UdW detectors with
the same energy gaps as the respective massive detectors.
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FIG. 4: The entangling term M for pointlike UdW detectors
as well as for massive detectors, after the end of the interaction,
as a function of the detector’s separation S (with Qo = 0.1).
For the massive detectors, we chose different values for M and
L such as to keep their product constant (ML = 500), which
fixes the virtual velocities at which the detectors dynamically
delocalize.

the recoil of the detector and to model the center of mass
degrees of freedom classically. As can be seen in Fig.(3),
the excitation probability in the limit of large detector
masses indeed approaches the excitation probability of a
pointlike UdW detector.

As displayed in Fig.(4), we further find that the entan-
gling term is suppressed both in the separation of the two
detectors and in the initial center of mass delocalization
widths.

The intuition for this follows from the intuition given
for the behaviour seen in Fig.(2): the more delocalized

the detectors are initially, the larger the length scale of
the detectors and the smaller the entangling term. In
fact, as we can see from Eq.(37), the entangling term for
coherently delocalized detectors is Gaussian suppressed
in the initial delocalization width—contrary to the exci-
tation probabilities, whose leading order term does not
depend on the initial delocalization width at all, as we
can see from Eq.(36). Therefore, the ability of quantum
delocalized detectors to harvest entanglement from the
vacuum is Gaussian suppressed in the initial center of
mass delocalization.

Let us now see whether we can find a limit in which
we recover the entanglement harvesting results for UdW
detectors, that is, for detectors with classical center of
mass degrees of freedom. We start by exploring the nega-
tivity in the limit of very large detector masses (M — o0),
while keeping the initial delocalization width L fixed. One
might expect to recover the classical behaviour of UdW
detectors in this limit, since the dynamical quantum cen-
ter of mass delocalization process becomes very slow: the
virtual center of mass velocities satisfy v < 3.5/(LM) and
thus tend to zero in this limit. Even though the detectors
each have a finite initial delocalization width, their center
of mass wave packets do not coherently spread any fur-
ther. We indeed find that the excitation probabilities and
the entangling term respectively reduce to the excitation
probabilities and the entangling term for UdW detectors.
However, there is a twist: The excitation probabilities
reduce to the excitation probabilities for pointlike UdW
detectors, P — Fy°, while the entangling term reduces to
the entangling term for Gaussian smeared UdW detec-
tors, M — Mf. Thus, in the limit of very large detector
masses and for finite initial delocalization widths L, the
negativity neither reduces to the negativity for a pair of
pointlike UdW detectors, nor to the negativity for a pair
of Gaussian smeared UdW detectors.

Intuitively, we can understand this behavior as follows.
In the infinite mass limit, the kinetic energy of the re-
coil of the detectors tends to zero. The center of mass
degrees of freedom no longer play a role in the energy
balance of the excitation process of the detectors, and the
recoil of the detector becomes negligible. We can thus
effectively interpret the center of mass probability distri-
butions as classical probability distributions, of finite and
constant width, for the positions of two pointlike UdW
detectors. Since the excitation probability of a pointlike
UdW detector is independent of the position of the detec-
tor, we recover the results for pointlike UdW detectors
for the excitation probabilities. On the other hand, the
nonlocal entangling excitations shared by two pointlike
UdW detectors depend on the detector separation, and
therefore they also depend on the classical position prob-
ability distributions for the two detectors. Consequently,
the entangling term for incoherently delocalized detectors
does not reduce to the entangling term for pointlike UdW
detectors, but rather to the entangling term for spatially
smeared UdW detectors.

Let us now recall that Gaussians of width L approach
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FIG. 5: The negativity AV for two coherently delocalizing detectors, after the end of the interaction, plotted as a function of the
energy gap 2 and the separation S of the two detectors. Regions of zero negativity are marked in grey. We chose the detector
masses M and the initial center of mass localization widths L so that v decreases from left to right and from top to bottom. In
the first five plots we fixed 1/(Imc) = 2.5 x 1073, while in the sixth plot we chose parameters satisfying 1/(Imc) =5 x 1074,
such as to see what happens to the negativity as we further decrease 1/(Imc). As expected, as we approach the limit v — 0 and
1/(Imc) — 0, we find that the negativity resembles more and more the negativity displayed in Fig.(2) for two pointlike UdW
detectors.



delta distributions in the limit L — 0. Clearly, we should
be able to recover the entanglement harvesting results for
a pair of pointlike UdW detectors, in the limit of very large
detector masses and center of mass distributions which
are very sharply peaked (and thus essentially completely
localized) at all times. However, we need to approach
this limit in a way that ensures that the virtual center
of mass velocities stay within the non-relativistic regime
identified in Eq.(35). To this end, we define M =: m/~
and L =: [y, with v a regularization factor and with m
and [ constants satisfying Imc > 3.5 x 10%. Letting v — 0
then lets the initial center of mass localization become
very sharp (L — 0) and the detector masses become very
large (M — o0), while keeping the virtual center of mass
velocities fixed and therefore non-relativistic. In the limit
v — 0, the excitation probabilities and the entangling
term reduce to

242 e o2c?k3
ey , T T
X (20(9 + k)22 + 4 + cos(ro(Q + ck))
x [20(Q + ck)?0? + 4 — 72 ((Q + ck)?0? — 1)?]
+8(Q + ck)mo[(Q + ck)20? — 1] sin(ro(Q + ck)))
+0 ((Ime)™) (39)

P — P+

. A2 o sin(kS)
M = Mg+ 47r2c(lmc)2/0 dk S (k)

+0 ((Ime)™) . (40)

By letting the virtual center of mass velocities go to zero,
we can then describe two detectors whose center of mass
degrees of freedom are localized very sharply at all times.
Indeed, taking the limit v — 0 first and then taking the
limit 1/(Imec) — 0, we recover the excitation probabilities
and the entangling term for two pointlike UdW detectors,
P — Py and M — Mg§. We hence identified the limit
in which entanglement harvesting for a pair of coherently
delocalized detectors reduces to entanglement harvesting
for a pair of pointlike UdW detectors. On the other hand,
we find that there is no limit in which the results reduce
to entanglement harvesting for a pair of spatially smeared
UdW detectors. This confirms what we mentioned before,
namely that spatial smearing profiles are appropriate
to model the finite spatial extent of atoms due to their
electronic orbitals [4], but not to model the coherent
center of mass delocalization of an atom [30].

In Fig.(5), we plotted the entanglement negativity for
two coherently delocalizing detectors, as a function of the
energy gap and the separation of the detectors. We can
clearly see how the negativity reduces to the negativity
for a pair of pointlike UdW detectors, when first letting
~ — 0 and then also letting 1/(Imc) — 0. We also observe
that entanglement harvesting is indeed highly suppressed
in the initial center of mass delocalization width.

Overall, we find that entanglement harvesting is sup-
pressed for coherently delocalized detectors (and thus
for actual physical matter systems such as atoms, ions
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or molecules), compared to entanglement harvesting for
UdW detectors, whose center of mass degrees of freedom
are assumed to be classical. An intuitive explanation for
this suppression might be the following. We here focused
on the entanglement harvested by the internal degrees of
freedom of the two detectors. However, further (bipartite
as well as multipartite) entanglement could potentially
build up between the respective internal and center of
mass degrees of freedom of the two detectors. This en-
tanglement, which remains to be calculated, might build
up at the expense of entanglement between the inter-
nal degrees of freedom of the two coherently delocalized
detectors.

IV. ENTANGLEMENT HARVESTED BY
COHERENTLY DELOCALIZED DETECTORS
FROM THE GROUND STATE OF A MEDIUM

Experimentally verifying entanglement harvesting from
the vacuum is a difficult task [16, 17, 27, 41]. It might
be more feasible to experimentally observe entanglement
harvesting from the ground state of a medium, e.g., by
sending atoms through a thin foil or a Bose-Einstein
condensate. We here want to shed some light on whether
the internal degrees of freedom of quantum delocalized
atoms might become entangled with each other, via their
respective interaction with the entangled ground state of
a medium.

In the previous sections, we modeled the electromag-
netic field via a simple scalar quantum field with dis-
persion relation w = ck, where ¢ stands for the vacuum
propagation speed of light. We will here model a medium
via a scalar quantum field with dispersion relation w = cgk,
with ¢; < ¢ the wave propagation speed in the medium.
The propagation of waves in the scalar field could then
for instance model the propagation of light in a medium,
or the propagation of sound in a phononic field, both
of which are known to propagate slower than light in
the vacuum. For concrete experimental setups, it will
be very interesting to pursue analogous calculations with
the there relevant realistic dispersion relation. Repeating
the calculations we performed in the previous section, we
obtain the excitation probabilities

Aot {u(o) +
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and the entangling term
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where U, V and C' are defined as in Eq.(32), Eq.(34) and
Eq.(38), with the exception that ¢ is being replaced by ¢4
in the definitions of ¢/ and 3;.
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FIG. 6: We consider two detectors (with detector masses
Mo = 900 and initial localization widths Lo = 4/9) in a
medium with wave propagation speed c¢s = 0.26c. We plot
(top) the transition probability P, the entangling term M and
the negativity N, after the end of the interaction, as function
of the energy gap €2 and for a detector separation S = 0/10,
and (bottom) the negativity NV, after the end of the interaction,
as a function of the energy gap and the detector separation.
The region of zero negativity is marked in grey.

In Fig.(6) we plotted the excitation probability, the en-
tangling term and the negativity for a pair of coherently
delocalized detectors in a medium with wave propagation
speed ¢; = 0.26c. We find that the negativity is signifi-
cantly suppressed, compared to the negativity in Fig.(5),
in which the detectors were in the vacuum. Intuitively,
this behavior can be explained as follows: transforming
into the quantum uncertain rest frame of the delocalizing
detectors, the phononic ground state transforms non-
trivially into an excited field state which might be more
entangled than the phononic ground state. The entangling
excitations thus potentially increase, but at the same time,
also the local “noisy” excitations increase. For the param-
eters we chose here, these two competing effects play out
in such a way that the negativity decreases significantly.
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FIG. 7:  We consider two detectors (with detector masses
Mo = 900, initial localization widths Lo = 4/9 and detector
separation S = ¢/10) in a medium with wave propagation
speed ¢; = 0.01c. We plot the transition probability P and
the entangling term M, after the end of the interaction and
as function of the energy gap, and we find that the negativity
N vanishes for this choice of parameters.

Both light and sound can be slowed down significantly
in media (e.g. light in crystals or sound in Bose-Einstein
condensates), to the extreme of being stopped completely
[42, 43]. The detectors in such media could coherently
delocalize with virtual velocities that are comparable to,
or even larger than, the propagation speed in the medium,
v 2 ¢g, while remaining well within the non-relativistic
regime, v < 0.0lc. Gaussian center of mass wave pack-
ets with support for supersonic virtual center of mass
velocities are ones for which LMc¢s 2 3.5, while the non-
relativistic regime is characterized by LMc > 3.5 x 102.
In Fig.(7) we plotted the excitation probabilities, the en-
tangling term and the negativity for two detectors in a
medium whose wave propagation speed is 1% of the vac-
uum speed of light. We chose the parameters so that the
maximal virtual center of mass velocities in the Gaussian
wave packet are close to the speed of sound in the medium
(LMec, = 4), while staying well within the non-relativistic
regime (LMc¢ = 400). We find that both the entangling
term and the excitation probabilities for detectors in the
medium are significantly enhanced, and we find that over-
all the negativity vanishes. We thus find that if the wave
propagation speed in the medium is too small, the inter-
nal degrees of freedom of a pair of coherently delocalizing
detectors cannot become entangled with each other.

We conjecture that it is generally harder for detectors
to harvest entanglement from a medium than from the
vacuum. Entanglement harvesting experiments in media
might however still be worth considering, given that they
may be more easily conducted than the harvesting of
entanglement from the vacuum.



V. CONCLUSIONS AND OUTLOOK

We here studied the ability of two quantum delocal-
ized detectors to become entangled with one another, via
their respective interaction with a scalar quantum field.
Specifically, we accounted for the quantum mechanical
nature of the center of mass degrees of freedom of the
detectors, and calculated the entanglement negativity for
the internal degrees of freedom of the two detectors. Our
calculations show that the process of entanglement har-
vesting is affected by the coherent delocalization of matter
and, in particular, that delocalized detectors harvest less
entanglement than detectors whose center of mass degrees
of freedom are assumed to behave classically.

We identified the limit in which the results for entan-
glement harvesting for coherently delocalized detectors
reduce to the results for detectors with classical external
degrees of freedom: For two detectors of very large mass,
whose center of mass wave functions are initially very
sharply peaked and which dynamically delocalize very
slowly, we recover the negativity for two pointlike UdW
detectors. This limit corresponds to detectors whose cen-
ters of mass are essentially completely localized at all
times.

Further, we found that the delocalization of the centre
of mass degree of freedom is fundamentally different from
the finite extent of a detector’s charge distribution that
arises from the finite size of its electronic orbitals. If the
description of the latter is desired, it can be modeled
separately through the use of smearing functions. Finally,
we discussed entanglement harvesting in media, where we
found that entanglement harvesting for coherently delocal-
ized detectors decreases with decreasing wave propagation
speeds.

Looking forward, it could be useful to adapt and apply
methods of quantum reference frames [44-48] to the study
of entanglement harvesting. On one hand, these methods
may allow one to extend our study to relativistic virtual
center of mass velocities. On the other hand it might also
be insightful to apply the quantum reference frame formal-
ism to entanglement harvesting for coherently delocalized
detectors in media. One could for instance consider the
ground state of a medium and perform a quantum refer-
ence frame transformation into the quantum uncertain
rest frame of the detectors. One might then explicitly
see whether the ground state transforms into an excited
field state, and whether this excited field state is more
entangled than the ground state. One could then try to
apply these insights towards finding quantum uncertain
detector states of motion that are best suited for the
purpose of optimally harvesting entanglement from the
medium.

A deeper understanding of entanglement harvesting in
the vacuum and in media may also be obtainable through
the study of entanglement harvesting from excited field
states. Intuitively, states with field quanta delocalized
over large distances may contain harvestable entangle-
ment over large distances. The intuition here is nontriv-
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ial, however, because while the entangling term might
increase, the excitation probabilities might also increase
significantly. Overall, their difference, the entanglement
negativity, might therefore decrease, similarly to what we
already observed in this paper for detectors in media.

Further, in this paper we focused on the entanglement
harvested only by the internal degrees of freedom of quan-
tum delocalized detectors. It will be very interesting to
investigate to what extent the center of mass degrees of
freedom of coherently delocalized detectors can harvest
entanglement from the vacuum. In addition, the center
of mass degrees of freedom can become entangled with
the internal degrees of freedom in the harvesting process.
We conjecture, for example, that for faster virtual recoil
velocities, the center of mass degree of freedom harvest
larger amounts of entanglement while, possibly due to
entanglement monogamy, the internal degrees of freedom
then might harvest less.

It will be technically difficult, however, to calculate
entanglement measures, such as the negativity, for the
center of mass degrees of freedom, since they possess
Hilbert spaces that are infinite dimensional. We antici-
pate that this can be addressed, for example, by either
postselecting for specific recoil momenta, by discretizing
the momentum space, e.g., by placing the detectors in a
confining potential or cavity and placing an energy cutoff,
or by binning momenta into a finite number of momentum
regions.

Such methods could then allow one, for example, to
study to what extent, e.g., a pre-existing entanglement
between the center of mass degrees of freedom can help or
hinder the harvesting of entanglement. It should also be
very interesting to explore how the delocalization of the
center of mass interacts with models of natural ultraviolet
cutoffs in quantum field theory, such as bandlimitation,
see, e.g., [49-51].

We close by highlighting that, after the harvesting pro-
cess, the extracted entanglement is available for arbitrary
purposes, including use in protocols that also involve two
detectors interacting with a quantum field, such as quan-
tum state teleportation and quantum energy teleportation.
It should be interesting to explore if these protocols could
be usefully merged with entanglement harvesting into one
protocol for, e.g., quantum state or energy teleportation
without the need of pre-existing entanglement.
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