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We investigate the consequences of different regularizations and ambiguities in loop cosmological
models on the predictions in the scalar and tensor primordial spectrum of the cosmic microwave
background using the dressed metric approach. Three models, standard loop quantum cosmology
(LQC), and two modified loop quantum cosmologies (mLQC-I and mLQC-II) arising from different
regularizations of the Lorentzian term in the classical Hamiltonian constraint are explored for chaotic
inflation in spatially-flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe. In each model,
two different treatments of the conjugate momentum of the scale factor are considered. The first
one corresponds to the conventional treatment in dressed metric approach, and the second one is
inspired from the hybrid approach which uses the effective Hamiltonian constraint. For these two
choices, we find the power spectrum to be scale-invariant in the ultra-violet regime for all three
models, but there is at least a 10% relative difference in amplitude in the infra-red and intermediate
regimes. All three models result in significant differences in the latter regimes. In mLQC-I, the
magnitude of the power spectrum in the infra-red regime is of the order of Planck scale irrespective
of the ambiguity in conjugate momentum of the scale factor. The relative difference in the amplitude
of the power spectrum between LQC and mLQC-II can be as large as 50% throughout the infra-red
and intermediate regimes. Differences in amplitude due to regularizations and ambiguities turn out
to be small in the ultra-violet regime.

I. INTRODUCTION

The inflationary paradigm not only resolves several
long-standing puzzles in the standard cosmological model
but also provides a framework to explain the formation of
large scale cosmic structure in the universe [1, 2]. How-
ever, it also suffers from several problems, such as the
origin of the inflaton field, the problem of the initial con-
ditions and the past incompleteness of inflationary space-
times due to big bang singularity. The conventional in-
flationary paradigm is essentially based on the classical
description of spacetime dealing with physics at energy
scales about 103 ∼ 1012 orders of magnitude lower than
the Planck scale [3, 4]. In order to resolve above open
questions in the inflationary models, one has to turn to
physics at the Planck scale which entails to understand-
ing effects of the quantum description of spacetime. Any
such quantum description is expected to involve quanti-
zation ambiguities. Under what conditions such ambigu-
ities can reveal themselves in pre-inflationary physics is
an interesting avenue to explore.

Loop quantum gravity (LQG) [5] is one of the leading
approaches to quantize gravity whose avatar in symmetry
reduced setting as loop quantum cosmology (LQC) has
been extensively used to study cosmological implications
of Planck scale physics [6]. A key prediction of LQC
is that the big bang singularity is replaced by a quan-
tum bounce due to the underlying discrete structure of
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quantum geometry [7–10]. As a result, the evolution of
the universe in LQC generically undergoes a contract-
ing phase before the bounce followed by an expanding
phase. At the fundamental level, the dynamics in LQC
is dictated by a Hamiltonian constraint which is a second
order quantum difference equation. For a large variety of
physical states, quantum evolution can be very well ap-
proximated by an effective dynamics [11–13]. This effec-
tive dynamics has been shown to generically resolve all
strong singularities [14] and lead to an interesting phe-
nomenology [15]. Furthermore, the slow-roll inflationary
phase can be naturally included in LQC and made past-
complete using a minimally coupling of an inflaton to
gravity [16–20]. After fixing the free parameters in the
coupled system via the observed amplitude of the pri-
mordial scalar power spectrum and the scalar spectral
index, the background dynamics from the bounce to the
moment when the pivot mode exits the horizon can be
completely fixed by the value of the scalar field and the
sign of its velocity at the bounce. The nature of bounce
and pre-inflationary dynamics is such that onset of infla-
tion is natural to occur in LQC, even in the presence of
anisotropies [21].

An important question is the way the pre-inflationary
dynamics in loop cosmology results in signatures in the
primordial power spectrum of the cosmological perturba-
tions. Since LQC is a quantization of the homogeneous
spacetimes and its connection with full LQG is not yet es-
tablished, at present there are different approaches, based
on different sets of assumptions, to understand quantum
gravitational effects encoded in cosmological perturba-
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tions. These approaches include1: the deformed algebra
approach [23–25], the dressed metric approach [26–28],
the hybrid approach [29–31], and the separate universe
approach [32]. Amongst these, the dressed metric and the
hybrid approach have been extensively applied to phe-
nomenology in recent times [28, 31, 33–43]. One common
feature between these approaches is the usage of loop
quantized background on which linear perturbations are
treated using Fock quantization. In this paper, we focus
on the dressed metric approach which uses elements from
propagation of quantum test fields on quantum geome-
try [44]. In this approach, the quantum perturbations
are described as propagating on a loop quantized back-
ground which can be effectively described by a dressed
metric on a continuum spacetime with classical proper-
ties. For sharply peaked coherent states, evolution of
the scale factor in the dressed metric is governed by the
effective dynamics of LQC. The initial states for the per-
turbations are usually imposed right at the bounce as
the obvious adiabatic states generated by an iterative
process. Generally, the 4th-order adiabatic states are
sufficient for the normalization of the energy momentum
tensor of the perturbations [27]. Like hybrid approach,
the dressed metric approach predicts an oscillating pat-
tern of the power spectrum with amplified magnitude
in a regime preceding the observed scale-invariant power
spectrum in CMB. Since the comoving Hubble horizon is
shrinking at the present time, these super-horizon modes
with amplified magnitude can only be observed indirectly
via the non-Gaussianity effects [40, 41].

While above developments provide novel ways to test
features of quantum geometry as understood in LQC
using CMB, we should note that there exist different
regularizations of the Hamiltonian constraint and quan-
tization ambiguities which can potentially affect phys-
ical implications. In LQC, one combines the Euclidean
and Lorentzian parts of the Hamiltonian constraint using
classical symmetries before quantization. If these parts
are treated independently during quantization, one finds
alternate in-equivalent quantizations of LQC. Two in-
equivalent quantizations resulting in modified loop quan-
tum cosmologies, mLQC-I and mLQC-II, were first stud-
ied by Yang, Ding and Ma [45]. Recently, mLQC-I
was rediscovered by computing the expectation values
of the Hamiltonian constraint using complexifier coher-
ent states [46]. In mLQC-I one uses a classical identity
on gravitational phase space to write the extrinsic cur-
vature in the Lorentzian part of the Hamiltonian con-
straint in terms of holonomies. In contrast, in mLQC-
II one uses symmetry between extrinsic curvature and
Ashtekar-Barbero connection in the spatially-flat space-
time and then expresses the Lorentzian part in terms
of holonomies. While, like LQC, mLQC-I and mLQC-
II result in resolution of strong singularities [47], and
genericness of inflation [4, 48], there are some striking

1 See [22] for earlier works preceding these approaches.

differences between these models. Unlike LQC where
the quantum Hamiltonian constraint is a second order
finite difference equation, in mLQC-I/II, the quantum
Hamiltonian constraint is a fourth order quantum differ-
ence equation [49]. The effective Friedmann equations in
mLQC-I/II contain higher than quadratic corrections in
energy density [50]. The nature of bounce in mLQC-I is
asymmetric [46] with an emergent Planck scale cosmo-
logical constant2 [51], and a rescaled Newton’s constant
in the contracting branch [50]. On the other hand, in
mLQC-II, the background evolution is symmetric about
the bounce as in LQC.

Apart from the various regularizations of the back-
ground Hamiltonians, there can also exist ambiguities
related with the treatment of perturbations. The dressed
metric approach is built on the classical perturbation
theory in the Hamiltonian formalism [53]. This formal-
ism converts the problem of solving a nonlinear partial
differential equation (PDE) to the problem of solving
one nonlinear ordinary differential equation (the back-
ground) and an infinite series of linear PDEs (the per-
turbations) [27]. The solutions of the lower order pertur-
bations are required for solving the equations of motion
of the higher order perturbations. As a result, in the
equations of motion of the linear perturbations, there
appears the conjugate momentum of the scale factor,
namely πa, of the background FLRW metric. The con-
jugate of the scale factor can been expressed in different
ways. In the dressed metric approach this term has been
treated conventionally using in part the classical Fried-
mann equation [28], whereas in the hybrid approach πa
is determined using effective Hamiltonian constraint. So
far effects of these choices have not been compared, and
it is pertinent to ask whether these ambiguities affect
the primordial power spectrum. In the present work,
we consider two choices of πa for each model. The first
choice uses the conventional treatment in dressed metric
approach, and the second choice is based on the treat-
ment in hybrid approach and generalized appropriately
to mLQC-I and mLQC-II. It turns out that conventional
treatment of momentum of scale factor in dressed metric
also results in a subtlety with a potential term in equa-
tion of motion of perturbations. Effects of this subtlety
become transparent if initial conditions are imposed be-
fore the bounce. In such a case, there is a discontinuity
in potential term which in particular results in drastic
effects in the UV regime of power spectrum for mLQC-
I, essentially ruling out the model. We show that this
problem can be resolved by considering a smooth func-
tion interpolating the potential term before and after the
bounce.

2 Interestingly the nature of matter in pre-bounce regime is de-
termined by the way areas of loops, over which holonomies are
considered, is assigned. If instead of ‘improved dynamics’ or µ̄-
scheme [9] as used in the manuscript, one uses µ0-scheme of LQC
[8], one obtains an emergent matter with equation of state of a
string gas or an effective negative spatial curvature term [52].
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The goal of this manuscript is to compare primor-
dial power spectrum of cosmological perturbations for
LQC, mQLC-I and mLQC-II using the dressed metric
approach. Previous works have investigated properties of
power spectrum in LQC [26–28, 33, 35] as well as mLQC-
I [54]. Our objective is to not only compare predictions
from different regularizations but also understand effects
due to different choices of πa. Unlike the conventional
approach where initial conditions are set at the bounce,
we consider initial conditions in the contracting branch
and point out certain subtleties in the process. Choosing
initial conditions in the contracting branch allows us to
test the robustness of results on primordial perturbations
in LQC. Further, given that in mLQC-I dynamics in the
pre-bounce phase is significantly different from the post-
bounce phase, the primordial power spectrum is sensitive
to whether we choose the initial conditions for perturba-
tions at the bounce or in the pre-bounce regime. For the
latter, where one can use the Bunch-Davies (BD) vacuum
initial conditions for mLQC-I, we find a Planckian scale
amplitude of the power spectrum in the infra-red (IR)
regime. This turns out to be the main discriminating
feature between mLQC-I and the other two models.

Our analysis is performed using the chaotic φ2 poten-
tial. Although it is constrained by CMB observations
due to its large tensor-to-scalar ratio, it essentially pos-
sesses the same qualitative properties as of more favored
potentials, like the Starobinsky potential. Note that if
the bounce is dominated by the kinetic energy of the
inflaton, as is generally considered in previous studies,
the form of inflationary potentials play a little role in
the pre-inflationary regime where quantum gravity ef-
fects are most important [16–20]. As a result, many fea-
tures of LQC as studied for CMB [28, 31, 33–43] are at
least qualitatively independent of the choice of potential.
Thus, even though one can use more favorable potentials
such as the Starobinsky potential and the monodromy
potential, we do not expect any qualitative differences
to results from our analysis, especially the ones resulting
from physics of the bounce regime. This allows a direct
and transparent comparison with phenomenological im-
plications from primordial power spectrum using dressed
metric approach studied in detail using φ2 potential for
LQC in Ref. [28], permitting us to focus on differences
resulting from ambiguities in comparison to earlier works.

For the background dynamics in LQC, we use the same
initial conditions as in [28]. While, for the other models,
like mLQC-I and mLQC-II, we carefully choose the ini-
tial conditions so that the inflationary e-folds are exactly
same in all three models. To be more specific, the num-
ber of the inflationary e-foldings in all three models is
set to 72.8 to ensure that quantum gravity effects are
possibly observable in the CMB. Under these conditions,
we find that differences between these models and re-
sults from ambiguities in πa do not affect the UV part of
the power spectrum. But there are significant differences
in the IR and the oscillatory regime. The relative dif-
ference in magnitude of power spectrum can be at least

10% in the latter regimes purely from the ambiguity in
πa. Differences between LQC and mLQC-II can be as
large as 50% in these regimes. There are huge differ-
ences between mLQC-I and other two models in the IR
regime with power spectrum in mLQC-I having an ex-
tremely large magnitude due to Planck sized emergent
cosmological constant in the contracting branch.

This paper is organized as follows. In Sec. II, we begin
with a brief summary of the first-order perturbation the-
ory and dressed metric approach in LQC, and then we
continue to fix the free parameters in the slow-roll infla-
tionary model and the adiabatic initial states of the per-
turbations. Finally, we present and compare the scalar
power spectrum in LQC with two different regulariza-
tions of πa. In Sec. III, the scalar power spectrum in
mLQC-I is obtained on the same lines as in Sec. II, and
the emphasis is placed on the peculiarities of contract-
ing phase of the model. In Sec. IV, the power spectrum
in mLQC-II is presented and compared with LQC. Also
the tensor perturbations in all three models are discussed
and compared. We summarize our main results in Sec.
V. In the appendix, we discuss the consequence of a dis-
continuity at the bounce in the equations of motion of
the perturbations in each model. Our analysis in this
paper will be based on assuming validity of all assump-
tions underlying the dressed metric approach and that
the approach can be extended to mLQC-I and mLQC-II.
Throughout this paper, we use c = G = ~ = 1.

II. BASICS OF DRESSED METRIC APPROACH
IN LQC

This section is divided into three parts. In the first
part, a brief review of the dressed metric approach in
LQC is given and a special emphasis is put on the dif-
ferent ways to deal with the conjugate momentum of
the scale factor in the equations of motion of the lin-
ear perturbations. In the second part, after fixing the
parameters in the slow-roll model, the initial conditions
of both background dynamics and the perturbations are
discussed. Finally, numerical simulations of the primor-
dial power spectrum are presented. As both the approach
and the results have already be extensively studied in the
literature, only the most necessary parts that are relevant
to our discussion are recalled. For more detailed exposi-
tion of this approach and its implications, one can refer
to seminal papers [26–28].

A. The dressed metric approach in LQC

1. Brief review of the perturbation theory in the
Hamiltonian formalism

In the dressed metric approach, the quantum fluctua-
tions are described as propagating on a quantum back-
ground spacetime which can be described by a dressed
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metric. The general formalism is based on the Hamil-
tonian formulation of the perturbation theory in general
relativity introduced by Langlois [53]. In the following,
we consider a single scalar field minimally coupled to
gravity on a spatially-flat FLRW background. Therefore,
the phase space consists of fields: Γ={Φ, πΦ, hij , π

ij},
which is endowed with the canonical Poisson brackets:

{Φ(x), πΦ(y)} = δ3 (x− y) ,

{hij(x), πkl(y)} =
1

2

(
δki δ

l
j + δliδ

k
j

)
δ3 (x− y) . (2.1)

The Hamiltonian function of this coupled system takes
the form [53]

H =

∫
d3x

(
NH+N iHi

)
, (2.2)

where

H =
2κ√
h

(
πijπij −

π2

2

)
−
√
h

2κ
R+

π2
Φ

2
√
h

+
√
hV +

√
h

2
∂iφ∂

iφ, (2.3)

Hi = −2∂k
(
hijπ

jk
)

+ πlm∂ihlm + πΦ∂iφ. (2.4)

Here κ = 8πG, h is the determinant of the three-metric,
R denotes the intrinsic Ricci scalar on the three-surface,
and V is the self-interaction potential term of the scalar
field. The perturbations around the background can be
written in the following form:3

Φ = φ(t) + δφ(t, x),

πΦ = pφ(t) + δpφ(t, x),

hij = h̊ij(t) + δhij(t, x),

πij = π̊ij(t) + δπij(t, x), (2.5)

Here Γ0 = {φ(t), pφ(t), h̊ij(t), π̊
ij(t)} is the

phase space of the spatially-flat FLRW back-
ground and the phase space of the perturbations
Γ1 = {δφ(t, x), δpφ(t, x), δhij(t, x), δπij(t, x)} are re-
garded as purely inhomogeneous. In the following, the
arguments of both background and perturbations are
suppressed for simplicity.

3 Note that in this approach of Hamiltonian theory of perturba-
tions, the lapse and shift functions are regarded as Lagrange
multipliers and hence no perturbations of these two functions are
considered. The method is restrictive in being unable to provide
a natural canonical description in terms of gauge-invariant vari-
ables except Mukhanov-Sasaki variables, such as the Bardeen po-
tentials whose natural interpretation is tied to longitudinal gauge
requiring fixing perturbation in the shift variable. However, this
formalism can be generalized to bring it closer to covariant ap-
proach and to investigate canonical formalism in terms of all
gauge-invariant variables, not only the Mukhanov-Sasaki vari-
ables, by treating the lapse and shift functions as the dynamical
variables in an extended phase space [57].

The dynamics in the perturbation theory is deter-
mined order by order, with Eq. (2.5) plugged into Eq.
(2.3)-(2.4) and then truncating the result at the required
order. If the linear order perturbations are considered,
one should keep the terms up to the second order in the
perturbations. In the following, we briefly summarize
the results until the second order (for details see [41, 53]).

Zeroth order: As the spatially-flat FLRW back-
ground is both homogeneous and isotropic, the phase
space Γ0 is four dimensional, composed of {a, πa, φ, pφ}.
The scale factor a and its conjugate momentum πa are

related with h̊ij and π̊ij via

h̊ij = a2δij , π̊ij =
πa
6a
δij , (2.6)

which, once plugged back into Eqs. (2.3)-(2.4), give
scalar and vector constraints at the zeroth order, that
is

H(0) = −κπ
2
a

12a
+

p2
φ

2a3
+ a3V ≈ 0, (2.7)

and H(0)
i vanishes identically. H(0) is the classical back-

ground Hamiltonian constraint whose vanishing yields
the classical Friedmann equation in spatially-flat FLRW
cosmology. The zeroth order Hamiltonian is a direct re-
sult of Eqs. (2.2) and (2.7) with only one subtlety. Since
the spatial manifold is noncompact, any integral of ho-
mogenous fields would inevitably become infinite. In or-
der to avoid such spurious divergences, one can simply
restrict the integrals to the fiducial cell with comoving
volume Vo. In this way, the Hamiltonian at zeroth order
reads

H0 = N(t)VoH(0), (2.8)

with the only nonvanishing Poisson bracket being
{a, πa} = {φ, pφ} = 1/Vo. The dynamics of the back-
ground is thus prescribed by the Hamilton’s equations
for the phase space variables (a, πa, φ, pφ). In particular,
the equation of motion of the scale factor is given by

ȧ = −N κπa
6a

, (2.9)

which in turn relates the momentum πa with the Hubble
rate H via

πa = −6Ha2/ (Nκ) . (2.10)

It is worth noting that the Hamilton’s equations do not
depend on Vo which is an infrared regulator with no
physical significance.

First order: The first-order scalar and vector con-
straints can be computed in a straightforward way from
Eqs. (2.3)-(2.4). As is well-known, any 3× 3 symmetric
tensor can be decomposed into two scalar components,
two vector components and two tensor components. The
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first-order scalar and vector constraints turn out to be
equivalent to two constraints on the scalar components
and two constraints on the vector components. Thus,
there is only one degree of freedom (DOF) in the scalar
sector which corresponds to the comoving curvature per-
turbation R and two DOFs in the tensor sector which
are two transverse and traceless primordial gravitational
wave polarizations. The vector sector has no physical
DOF unless other vector field perturbations are intro-
duced into the system.

Since the primordial power spectrum is computed in
the momentum space, in the following, we only deal with
the linear perturbations in the momentum space which
are

δh̃ij(~k) =

∫
d3x

(2π)
3 δhij(~x)e−i

~k·~x.

Hereafter, both the tilde and the argument of h̃ij(~k)
are suppressed for simplicity. In order to extract
scalar/vector/tensor components of δhij and δπij , one
can introduce a set of orthogonal basis Amij , where m =
1, 2, · · · 6 and then project δhij onto it as

δhij = γmA
m
ij . (2.11)

Here γ1 and γ2 are the scalar components when the first
two Amij are given by

A1
ij = h̊ij , A2

ij = k̂ik̂j −
1

3
h̊ij . (2.12)

Meanwhile, the conjugate momentum of γm can be de-
rived from π(m) = Amij δπ

ij . In terms of the scalar compo-
nents γ1, γ2, δφ and their conjugate momenta, the scalar
constraint at the linear order takes the form [53]

E= −κπ
2
aγ1

24a
−

3p2
φγ1

4a3
+

3γ1a
3V

2
− ak2γ1

κ

+
ak2γ2

3κ
− κπaπ

(1)

3a2
+
pφδpφ
a3

+ a3V,φδφ, (2.13)

while the projection of the vector constraint onto the
scalar modes reads

M =
a

6
πaγ1 −

2a

9
πaγ2 −

2

3
π(1) − 2π(2) + pφδφ. (2.14)

It can be easily checked that both E and M commute
with themselves and they also commute with each other
due to the classical background Hamiltonian constraint
Eq. (2.7).

Second order: The dynamics of the scalar and ten-
sor modes in the linear perturbations is prescribed by
the Hamiltonian at the second order in the linear pertur-
bations. For the scalar part, due to the two first-class
constraints E and M , it’s necessary to first separate the
gauge DOFs from the true physical DOFs in the scalar
subspace spanned by {γ1, γ2, δφ} and their conjugate mo-
menta. One can do this in two steps:

1. Rewrite two constraints in their equivalent forms:

E = π(1) − f1(γ1, γ2, δφ, δpφ) ≡ P ∗1 ,
M = π(2) − f2(γ1, γ2, δφ, δpφ) ≡ P ∗2 . (2.15)

Thus, we can safely choose {γ1, P
∗
1 , γ2, P

∗
2 } as the canoni-

cal variables for gauge DOFs. On the other hand, follow-
ing Langlois’s approach [53], the canonical pair for the
physical sector can be chosen as the Mukhanov-Sasaki’s
variable Q and its conjugate momentum P .

2. Solving for the generating function S of the canon-
ical transformation from the constraints E and M by
replacing the canonical momenta in these constraints by
the partial derivatives of the generating function with re-
spect to their respective canonical variables, the resulting
Hamiltonian for the physical sector can be shown as [53]

HS =
N(t)

2

∫
d3k

(
P 2
s

a3
+ a

(
Ω2
Q + k2

)
Q2
s

)
, (2.16)

where

Ω2
Q = 3κ

p2
φ

a4
− 18

p4
φ

a6π2
a

− 12a
pφ
πa
V,φ + a2V,φφ. (2.17)

Above V,φ denotes the derivative of the potential with re-
spect to the scalar field φ. On the other hand, there exists
no constraints on the tensor modes and their Hamiltonian
is given by

HT = N(t)

∫
d3k

(
2κ
P 2
t

a3
+

a

8κ
k2Q2

t

)
. (2.18)

Thus, the dynamics of the scalar and tensor perturba-
tions denoted collectively by Q are prescribed by the
Hamilton’s equations Q̇ = {Q, HQ}, where HQ = HS

or HT given respectively by Eq. (2.16) for scalar, or
(2.18) for tensor perturbations. The tensor modes can
also be regarded as two massless scalar modes, as HS in
Eq. (2.16) reduces to HT in Eq. (2.18) when the poten-
tial term (and thus Ω2) vanishes and meanwhile setting

Qt =
√

32πGQs, Pt =
Ps√
32πG

. (2.19)

Therefore, in the following, we mainly focus on the scalar
modes, knowing that the tensor modes can be recovered
by setting V = 0 and the normalization condition Eq.
(2.19).

2. The dressed metric approach

Now that the classical physical degrees of freedom and
their Hamiltonians are known, we can proceed with the
quantization of the classical perturbation theory. The
classical phase space consists of the homogeneous sector
and the inhomogeneous perturbations. Similarly, in the
quantum theory, the quantum state is assumed to be a
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tensor product of the homogeneous and inhomogeneous
quantum states as

|ψ〉 = |ψ0〉 × |ψ1〉, (2.20)

where |ψ0〉 stands for the quantum background while
|ψ1〉 is the quantized inhomogeneous perturbations. The
background is quantized using the polymer quantization
as in LQC [7, 9], and the resulting quantum equation of
motion for the quantum state ψ0 is a difference equation
which reads [7]

−i~∂φψ0(ν̃, φ) = Ĥ0ψ0(ν̃, φ), (2.21)

with Ĥ0 = ~
√

Θ and

Θψ0(ν̃, φ) =
3πG

λ2
ν̃
{

(ν̃ + 2λ)ψ0(ν̃ + 4λ, φ)

−2ν̃ψ0(ν̃, φ) + (ν̃ − 2λ)ψ0(ν̃ − 4λ, φ)
}
, (2.22)

where ν̃ = a3/(2πGγ), λ2 = 4
√

3πγl2Pl is the small-
est nonzero eigenvalue of the area operator and γ is
the Barbero-Immirzi parameter. In LQC, the value of
Barbero-Immrizi parameter is fixed to γ ≈ 0.2375 using
black hole thermodynamics in LQG. Note that the above
Schrödinger-like equation is only valid for the massless
scalar field. In principle, one can add a potential term
with a subtlety that φ does no longer serve as a good
clock, especially in the reheating phase. Further, the ef-
fective Hamiltonian and modified Friedmann equations
used in LQC have been so far derived only for the mass-
less scalar field case. As in previous works, we assume
the validity of effective equations when a non-vanishing
potential is present. This assumption gets support from
numerical simulations with potentials where effective dy-
namics is found to be in excellent agreement with quan-
tum evolution [55].

In the dressed metric approach, the inhomogeneous
perturbations, Fock quantized, can be interpreted as
propagating on a quantum background spacetime with
the effective metric given by

g̃abdx
adxb = ã

(
−dη̃2 + dxidx

i
)
, (2.23)

where

ã4 =
〈Ĥ−1/2

0 â4Ĥ
−1/2
0 〉

〈Ĥ−1
0 〉

, (2.24)

dη̃ =
(
〈Ĥ−1

0 〉〈Ĥ
−1/2
0 â4Ĥ

−1/2
0 〉

)1/2

dφ. (2.25)

The expectation values in the above formula are evalu-
ated with respect to the background state ψ0. The equa-
tions of motion of the perturbations take the same form
as in the classical perturbation theory which can be for-
mally derived from Eq. (2.16) as

Q̈k + 3HQ̇k +
k2 + Ω̃2

ã2
Qk = 0, (2.26)

where H = ˙̃a/ã. The expression for Ω̃2 is given by

Ω̃2 =
〈Ĥ−1/2

0 â2Ω̂2â2Ĥ
−1/2
0 〉

〈Ĥ−1/2
0 â4Ĥ

−1/2
0 〉

, (2.27)

here Ω̂2 is the quantum operator of Ω2
Q in Eq. (2.17).

In the actual numerical simulations of the power spec-
trum, we usually employ the test-field approximation in
which the background state ψ0 is chosen to be highly
peaked around its classical trajectories during the infla-
tionary region4 , thus all the background quantities in Eq.
(2.26) can be replaced by those from the effective theory
of LQC in which the effective dynamics is determined by
the Hamiltonian constraint

HLQC
0 = −3v sin2 (λb)

8πGλ2γ2
+
p2
φ

2v
+ vV (φ) ≈ 0, (2.28)

where v = a3 and the Poisson brackets are given by
{b, v} = 4πGγ and {φ, pφ} = 1. Therefore, the equa-
tions of motion in the effective theory take the form

v̇ =
3v

2λγ
sin(2λb), (2.29)

ḃ = −3 sin2 (λb)

2γλ2
− 4πGγ

(
p2
φ

2v2
− V

)
, (2.30)

φ̇ =
pφ
v
, ṗφ = −vV,φ. (2.31)

The bounce in LQC takes place when the energy den-
sity of the scalar field reaches the critical energy density
ρc = 3/

(
8πGγ2λ2

)
. It should be noted that in order

to apply the effective Hamilton’s equations to the back-
ground quantities in Eq. (2.17), one has to be careful
with the 1/πa factor as there is ambiguity in dealing
with it at the level of effective theory. If the classical
equation of πa in Eq. (2.10) is directly substituted into
Eq. (2.17), Ω2

Q is singular right at the bounce where the
Hubble rate and πa vanish. In order to avoid this singu-
larity, in [27, 28], the zeroth order classical constraint in
Eq. (2.7) is used to replace 1/π2

a by κ/(12a4ρ), where ρ
is the energy density of the scalar field. This leads to an
expression of Ω2

Q in terms of the potential and its deriva-
tives, using the classical Hamiltonian constraint, which
reads5

Ω2
± = a2

(
V,φφ ± 2fV,φ + f2V

)
, (2.32)

with f =
√

24πG/ρφ̇. Here, for brevity we have sup-
pressed the subscript Q in Ω2

±. Note Ω2
± vanishes identi-

cally for the tensor modes. In Eq. (2.32), the subscript

4 Our analysis will assume the validity of this approximation in all
the considered models. In particualr, we assume that subtleties
noted in Ref. [56] can be addressed using sharply peaked states.

5 Note the second term in the parenthesis of Eq. (2.32) is different
from Eq. (A8) in [28]. We follow the expression given by Eq.
(4.7) in [39]. See also [42].
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‘±’ indicates the sign in front of the term 2fV,φ. More-
over, Ω+ is valid only in the expanding phase where πa
is negative, while Ω− is valid in the contracting phase
where πa becomes positive. If the initial conditions for
perturbations are given right at the bounce, then Ω+ suf-
fices. But, if one is interested in exploring the evolution
of perturbation through the bounce, then one needs a
corresponding equation for the contracting phase with
Ω2
− and match the potentials Ω2

± at the bounce. As we
would see in the following, Ω2

+ and Ω2
− do not coincide

at the bounce, because of the behavior of πa across the
bounce, and one needs a smooth interpolation to propa-
gate perturbations across the bounce.

In Sec. III and IV, the dressed metric approach is ap-
plied to two other loop cosmological models, i.e. mLQC-I
and mLQC-II. The difference among these three models
lies only in the regularization of the homogeneous sector,
as a result the Schrödinger’s equation of the background
state ψ0 is modified. The form of the equation of mo-
tion of the linear perturbations remain unchanged since
the classical second-order Hamiltonian is not changed
and the same Fock representation is used to quantize
these perturbations. As a result, Eq. (2.26) is still valid
in both mLQC-I and mLQC-II, and the only difference
comes from the background dynamics which should be
prescribed by the effective Hamiltonian in each case.

B. Fixing the parameters in the slow-roll model
and the initial conditions for the numeric simulations

In order to compare our results with those in the
dressed metric literature, we use the WMAP data [58]
in which the pivot mode k∗0 = 0.002 Mpc−1. From the
observed scalar power spectrum As = 2.43×10−9 and the
scalar spectral index ns = 0.968 with error bars of about
±4.50% for As and ±1.25% for ns, the relevant parame-
ters in the slow-roll inflationary model with V = 1

2m
2φ2,

can be uniquely fixed as [17]:

m = 1.21× 10−6, φ∗ = ±3.15,

H∗ = 7.83× 10−6, φe = 0.282, (2.33)

where the star denotes the quantities at the moment
when the pivot mode exits the horizon in the slow-roll
inflation, and φe is the value of the scalar field at the end
of the inflation. From these quantities, one can first fix
the e-folds from the horizon exit to the end of inflation
which can be shown as

N∗ =

∫ φ∗

φend

dφ
8πV

V,φ
= 61.8. (2.34)

On the other hand, the comoving wavenumber of the
pivot mode can be simply computed as

k∗ = a∗H∗ = a0k
∗
0 , (2.35)

where k∗0 is the pivot mode observed today, namely
k∗0 = 0.002 Mpc−1, and a0 is the scale factor at present.

Thus the e-folds from the horizon crossing to the present
is about 126. This indicates that if the initial conditions
in LQC are imposed at the bounce, they would only af-
fect the background dynamics from the bounce to the
horizon crossing since the LQC corrections to general rel-
ativity are negligible in the slow-roll phase, considering
the energy scale of the slow-roll is about 10−12 order of
magnitude lower than the Planck scale.

Our numeric simulations are based on the Hamilton’s
equations (2.29)-(2.31). If the initial conditions of the
background are imposed right at the bounce, then the
only free parameter is the value of the scalar field φB (also

the sign of φ̇B is left undetermined). The other parame-
ters can be fixed as vB = 1, bB = π

2λ and the magnitude

of pφ is determined by the identity ρc = 1
2p

2
φ+ 1

2m
2φ2
B at

the bounce. In our numeric simulations, the cosmic time
t is set to zero at the bounce. We first choose some φB at
the bounce then evolve the universe backwards in time
until t = tp < 0. Then at t = tp, the initial conditions for
the linear perturbations are chosen to be the adiabatic
states which are the solutions of the equation

ν′′k + (k2 + s)νk = 0, (2.36)

where νk = aQk and s is the effective mass squared term
in the model. The general WKB solution of the above
equation can be written in the form

νk =
1√

2Wk

e−i
∫ ηWk(η̄)dη̄, (2.37)

which, once plugged back into Eq. (2.36), generates a
differential equation of Wk that takes the form

W 2
k = k2 + s− W

′′

k

2Wk
+

3

4

(
W ′k
Wk

)2

. (2.38)

Now, the nth-order adiabatic state can be derived by
plugging into the right hand side of Eq. (2.38) the (n−
2)th order solution. If we take the Minkowski vacuum as

the zeroth order solution, namely W
(0)
k = k, the second

order adiabatic solution can be easily found as

W
(2)
k =

√
k2 + s. (2.39)

Thus, the second order obvious adiabatic state consid-
ered in [28] is obtained by performing an asymptotic ex-
pansion of the solution (2.39) in the limit of large k and
then truncating it to the second order. This procedure
can be continued to an arbitrary order. However, for
our purposes, it is sufficient to consider the fourth order
adiabatic state, which is explicitly given by

W
(4)
k = k +

s

2k
− s2 + s′′

8k3
. (2.40)

In our simulations, this initial state of the linear pertur-
bations is imposed at some finite time in the contracting

phase where W
(4)
k is positive for all the modes k ≥ 10−6.
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Although the mass squared term s depends on the model
and the potential, one can choose a time far before the

bounce so that W
(4)
k is positive for Ω2 and Ω2

eff in both
LQC and mLQC-II when k ≥ 10−6. Our choice of this
initial time is t/tPl = −1.10 × 105. The results are ro-
bust for different choices of the initial time as long as it

is chosen such that W
(4)
k > 0 for relevant modes.

Ω+
�

Ω-
�

Ω�

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

1.×10-10

2.×10-10

3.×10-10

4.×10-10

5.×10-10

6.×10-10

t

FIG. 1. This figure shows the difference between Ω2
+, Ω2

− and
Ω2 near the bounce in the cosmic time for LQC. The blue
dotted line represents Ω2

+ in the expanding phase, the black
dot-dashed line is for Ω2

− in the contracting phase while the
red dashed line is the smooth extension Ω2 which connects
Ω2

+ with Ω2
− near the bounce. The middle vertical gray line

represents the bounce point at t = 0.

C. The primordial power spectrum

One of the most important features of the primordial
power spectrum is that the magnitude of the comoving
curvature perturbations freezes once these modes exit the
Hubble horizon in the inflationary epoch. The primordial
power spectrum PR is usually evaluated at the end of
inflation by

PR =
k3

2π2

|Qk|2

z2
, (2.41)

where z = φ̇/H and Qk is computed from Eq. (2.26)
with the normalization condition

QkQ̇
∗
k −Q∗kQ̇k =

i

a3
, (2.42)

where the star denotes the complex conjugate and a dot
stands for a derivative with respect to the cosmic time.
Similarly, the primordial power spectrum of the tensor
perturbations is given by

PT =
16k3

π
|Qk|2, (2.43)

with the same normalization condition Eq. (2.42). The
initial conditions for the background are chosen at the

bounce (we first try φB = 1.15 mPl and φ̇B > 0 in
order to compare our results with those in [28]), then
the universe is first evolved backwards in time until
tp = −1.10× 105 tPl in the contracting phase where the
initial conditions of the linear perturbations are imposed.
With φB = 1.15 mPl at the bounce, the number of e-folds
from the bounce to the onset of the slow-roll is 4.21 and
the inflationary e-folds are 72.8. The initial states of the
scalar perturbations are the adiabatic states introduced
in the last subsection. In particular, for the scalar per-
turbations, the mass squared term s in Eqs. (2.39)-(2.40)
is explicitly given by

s = Ω2
o −

a′′

a
. (2.44)

Here a′′/a (in the spatially-flat FLRW spacetime, the
Ricci scalar R = 6a′′/a3) is the curvature term deter-
mined by the geometry of the background spacetime
while Ω2

o denotes the corresponding expression for any
given model, including Ω2

Q, Ω2
±, or Ω2 introduced below.

In all cases it is determined by the potential of the scalar
field, and can be regarded as an effective potential term
for the perturbations in the considered background space-
time. In terms of the variables Qk and its derivative, the
initial conditions are equivalent to

Qk =
1

a(tp)
√

2W (n)(tp)
,

Q̇k =
dQk
dt
|t=tp −

i

a2(tp)

√
W (n)(tp)

2
, (2.45)

whereW (n) denotes the nth adiabatic state, in particular,
W (0) = k is the Minkowski vacuum.

Before proceeding to the main results on the power
spectrum, we would like to clarify the Ω2

Q term employed
in our simulations. Basically, there are two ansatz for
Ω2
Q. One is by using the classical Friedmann constraint

as discussed in Sec. II.A, which leads to Ω2
± in Eq. (2.32).

However, as Ω2
+ and Ω2

− do not coincide at the bounce,
the second ansatz is a smooth extension which connects
Ω2

+ in the expanding phase with Ω2
− in the contracting

phase is required. Inspired by the hybrid approach (see
Eq. (2.48)), this smooth extension can be given by

Ω2 = a2
(
V,φφ + 2 cos (λb) fV,φ + f2V

)
. (2.46)

The difference between Ω2
+, Ω2

− and Ω2 near the bounce
are compared in Fig. 1. Since cos (λb) behaves like a
step function across the bounce, Ω2 quickly tends to Ω2

+

in the expanding phase, and to Ω2
− in the contracting

phase. Moreover, it takes the average value of Ω2
+ and Ω2

−
at the bounce. In the appendix, we compare the power
spectrum resulting from Ω2 with Ω2

±, and show that dif-
ferences are rather small for LQC as well as mLQC-II.
However, for mLQC-I there is a significant difference with
a divergent power spectrum in UV regime if Ω2

± is used.
The second ansatz to incorporate 1/πa and 1/π2

a terms is
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motivated from the hybrid approach in which these terms
are effectively given by [29, 30]

1

π2
a

→ 16π2G2γ2λ2

9a4 sin2 (λb)
, (2.47)

1

πa
→ −4πγλ cos (λb)

3a2 sin (λb)
. (2.48)

Note if Eq. (2.47) is used in the classical background
Hamiltonian constraint, one directly arrives at the effec-
tive Hamiltonian constraint in LQC given by Eq. (2.28).
Besides, the cos(λb) term in Eq. (2.48) makes 1/πa
smooth near the bounce and meanwhile picks up the
same sign of πa as in the classical case in both contract-
ing and expanding phases. In the following, we call Ω2

derived from the substitutions Eqs. (2.47)-(2.48) as Ω2
eff .

However, it is important to note that the replacement in
Eq. (2.47) is only valid in the effective dynamics of LQC,
and not for mLQC-I and mLQC-II. For latter models, a
similar substitution can be made using the same motiva-
tion.

In order to compare two different ansatz, it is neces-
sary to understand the way Ω2 and Ω2

eff would change
in the entire range from the moment where the initial
conditions of the perturbations are imposed to the time
when the power spectra are evaluated. Fig. 2 is plot-
ted for this purpose. In the first panel, Ω2, Ω2

eff and
a′′/a are compared in the interval t/tPl ∈ (0, 2 × 104).
It can be seen from this figure that the difference be-
tween Ω2 and Ω2

eff becomes negligible after t/tPl = 1000
while for t/tPl ∈ (0, 5000), the curvature term is much
larger than the potential terms, i.e. Ω2 and Ω2

eff . Right
at the bounce, the curvature term reaches its maximum
and hence defines a characteristic wavenumber in LQC,
namely,

kLQC =

√
a′′

a

∣∣∣∣∣
t=tB

≈ 3.20, (2.49)

where Planck units are used. Comparatively, we find
Ω2 ≈ 10−10 and Ω2

eff = 0.009 at the bounce. In the
second panel, the behavior of the same quantities are
compared in the interval t/tPl ∈ (2 × 104, 4 × 106). For
φB/mPl = 1.15, φ2 inflation takes place at t/tPl = 4.64×
104. Although near the onset of inflation, the potential
term Ω2 is of similar magnitude with the curvature term,
the latter quickly becomes dominant after a few e-folds.
In particular, a′′/a is about 100 times larger than Ω2/Ω2

eff
at any moment after t/tPl = 1×105. Thus, the comoving
Hubble horizon λ2

H = 1/s is primarily determined by the
curvature term during the slow-roll phase. The behavior
of Ω2/Ω2

eff and a′′/a in the contracting phase is depicted
in the bottom two panels of Fig. 2. In the third panel,
the time interval is set to (−2× 104, 0). Again, near the
bounce, the highly oscillating Ω2

eff is larger than Ω2, while
both of them are much smaller than the curvature term
until t/tPl = −104. The difference between Ω2 and Ω2

eff
also becomes negligible when t/tPl ≤ −104. In the last
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FIG. 2. Setting φB = 1.15 mPl, we compare the rela-
tive magnitude of Ω2, Ω2

eff and a′′/a in the whole range
t/tPl ∈ (−1.1 × 105, 4 × 106). The top two panels are for
the expanding phase, while the bottom two panels are for
the contracting phase. In the second panel, the vertical line
at t = ton = 4.64 × 104 marks the onset of the inflationary
phase. The relative magnitude among Ω2, Ω2

eff and a′′/a im-
plies the dominant contribution to the mass squared term in
the equation of motion (2.36) and thus plays an important
role in comparing different ansatz for Ω2.
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panel, the time interval is set to (−1.10 × 105,−2.00 ×
104, ). We can see that in this range the potential term
and the curvature term are of similar magnitude while
the difference between Ω2 and Ω2

eff are indistinguishable.

Knowing the details of the potential and curvature
terms in both contracting and expanding phases, we can
conclude that the main difference between Ω2 and Ω2

eff is
located near the bounce, specifically, in a region whose
boundary is about three e-folds away from the bounce in
both expanding and contracting phases. Although right
at the bounce, Ω2

eff is 106 times larger than Ω2, since the
curvature term is overwhelming in this region, the dif-
ference between Ω2 and Ω2

eff is diluted. Beyond this re-
gion, there is no change to the comoving Hubble horizon
arising from employing different ansatz of Ω2. This in-
dicates that the equation of motion of the perturbations
are almost the same for both ansatz except in a small
region near the bounce. However, even in this region,
the dominant term is the curvature term rather than the
potential term. As a result, one might naively expect
very tiny changes to the power spectra when switching
between two different ansatz. However, to our surprise,
the profile of the power spectra still exhibits significant
changes in some regimes of the comoving wavenumbers
as discussed in the following.

As depicted in Fig. 3, there are three distinctive
regimes in the scalar power spectrum as already discussed
in LQC [59]:

1. The infrared (IR) regime, which approximately lies
in the interval k/k∗ ≤ 10−4. In the figure, the power
spectrum in this regime appears to be scale-invariant
when k/k∗ ≤ 10−5. However, scale invariance is not an
intrinsic property in this regime. It depends on the ini-
tial states of the perturbations. As discussed below, when
second-order adiabatic states are used as in Fig. 4, the
power spectrum keeps decreasing when the wavenumber
k decreases. For different Ω2, the scalar power spectra ex-
hibit the same order of magnitude which is around 10−8.
But, there are indeed some quantitative differences. To
be specific, at k = 5 × 10−6, PS = 1.69 × 10−8 for Ω2

while PS = 1.64 × 10−8 for Ω2
eff . The relative difference

in this regime is less than 10% as shown in the second
panel of Fig. 3.

2. The intermediate regime, which approximately lies
in the interval 10−4 ≤ k/k∗ ≤ 1. This is a regime with
characteristic oscillating behavior of the amplified power
spectrum. Also in this regime, the most striking differ-
ence between Ω2 and Ω2

eff can be seen in the figure. In
the interval k/k∗ ∈ (10−4, 10−3), the relative difference
can exceed 100% (the largest value of the relative differ-
ence is 200%) due to the spike in the power spectrum
resulting from Ω2

eff .

3. The ultraviolet regime (UV), which starts from
k/k∗ ≥ 1. In this regime, the power spectrum becomes
scale-invariant and the relative difference between two
ansatz become as small as 0.1%. This result is consistent
with the former analysis of the comoving Hubble horizon
in the slow-roll phase. Before the slow-roll, all the modes
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FIG. 3. In LQC, with the initial condition of the back-
ground taken to be φB = 1.15 mPl, the initial states of
the perturbations are chosen to be the fourth order adia-
batic states which are imposed at t = −1.1 × 105 tPl. We
show the averaged scalar power spectra with respect to small
bins of the wavenumber for Ω2 (black circles) and Ω2

eff (red
triangles), respectively. The wavenumber ranges between
k ∈

(
5× 10−6, 50

)
and k∗ = 7.28 in the figure. In the second

panel, the relative difference between two power spectra is de-
fined by E = 2|Q1−Q2|/|Q1+Q2|. Although in the top panel,
the black circles are located very close to the the red triangles
in the IR regime, their amplitudes are actually not exactly
the same. For example, at k = 5× 10−6, the power spectrum
from Ω2

eff is 1.64× 10−8 while the power spectrum from Ω2 is
1.69 × 10−8. Thus, the relative difference at k = 5 × 10−6 is
around 6%.

in this regime are inside the Hubble horizon. They exit
the horizon only during the slow-roll. As Ω2 and Ω2

eff
have the same limit in the slow-roll phase, the power
spectra should certainly bear no difference in shape as
well as in magnitude.

Other than the initial value φB = 1.15 tPl and the 4th-
order adiabatic states, we also consider other values of
φB along with other initial states. The main results are
summarized in Fig. 4 where Ω2 is adopted as the effective
potential. In the first subfigure of Fig. 4, φB is still set
to 1.15 mPl at the bounce, while the initial state of the
perturbations is changed to the second-order adiabatic
state. Its effect on the power spectrum is remarkable in
the IR regime. Compared to a scale-invariant IR regime
with the 4th-order adiabatic state, the power spectrum
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second order
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FIG. 4. In this figure, effects of initial conditions of back-
ground and the perturbations are examined. In the first sub-
figure, we only change the initial state of the perturbations to
the second-order adiabatic state while keeping φB = 1.15 mPl.
As a consequence, the power spectrum changes its qualitative
behavior in the IR regime. In the second panel, we continue
with φB = 1.19 mPl while keeping the initial state of the per-
turbations as the second-order adiabatic state. The net effect
is to move the observable window to the right as increasing
φB is equivalent to increasing the preinflationary e-folds and
thus increasing the value of k∗.

with the second-order adiabatic state is now decreasing
when the wavenumber decreases. We thus find that un-
like the scale-invariant property of the power spectrum
in the UV regime, the property of the power spectrum in
the IR regime is sensitive to the property of the initial
state. In the second subfigure, we changed the value of
φB to 1.19 mPl. As compared with the first subfigure,
the only effect of a different value of φB is to change the
value of k∗ and thus move the location of the observable
window which is determined by k/k∗ ∈ (1/8.58, 1000)
towards the right in the figure. Since the bounce is dom-
inated by the kinetic energy of the inflaton field, such a
change of φB does not produce any significant effect on
the scale factor in the bouncing phase. Therefore, the
equation of motion of the perturbations are not signifi-
cantly influenced by the change of φB . However, as φB
increases, there are now more e-folds from the bounce to
the horizon exit of the pivot mode. As a result, k∗ is
increased and hence the observable window is shifted to
the right.

To summarize, in this section, we have compared the
power spectrum arising from two different effective po-
tential terms, i.e. Ω2 and Ω2

eff . We find the change of the
potential can affect the IR and oscillating regimes of the
power spectrum even though the magnitude of Ω2 near
the bounce is less than one thousandth of the magnitude
of the curvature term a′′/a. The influence on the UV
regime is quite limited as this part of the power spec-
trum is mainly determined by the slow-roll phase where
Ω2 and Ω2

eff become identical to each other. Moreover,
the IR behavior of the power spectrum also depends on
the initial states of the linear perturbations while the
initial conditions of the background would determine the
location of the observable window.

III. PRIMORDIAL POWER SPECTRUM IN
mLQC-I

In this section, we first give a brief review of the
effective dynamics in mLQC-I, focusing on the effec-
tive Hamiltonian and the resulting Hamilton’s equations.
Then we present two different ansatz of 1/π2

a when the
initial conditions are imposed in the contracting phase.
Finally, the scalar power spectra from two ansatz are
presented and compared.

A. Review of the effective dynamics in mLQC-I

The mLQC-I model was first proposed as an alterna-
tive quantization of the Hamiltonian in LQC and then
rediscovered by computing the expectation values of the
Hamiltonian constraint in the full loop quantum gravity
with complexifier coherent states [45, 46]. This model is
characterized by an asymmetric bounce: the contracting
branch is an emergent de Sitter phase with an effective
Planck-scale cosmological constant and a rescaled New-
ton’s constant. The effective dynamics of this model and
modified Friedmann equations were studied in detail in
[50], here we present only necessary details. The effective
Hamiltonian constraint in this model is explicitly given
by

HI =
3v

8πGλ2

{
sin2(λb)− (γ2 + 1) sin2(2λb)

4γ2

}
+
p2
φ

2v
+ vV (φ) ≈ 0, (3.1)
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from which it is straightforward to derive the Hamilton’s
equations which are

v̇ =
3v sin(2λb)

2γλ

{
(γ2 + 1) cos(2λb)− γ2

}
,

(3.2)

ḃ =
3 sin2(λb)

2γλ2

{
γ2 sin2(λb)− cos2(λb)

}
− 4πGγ

(
p2
φ

2v2
− V

)
. (3.3)

While the equations of motion in the matter sector are
the same as in LQC given by Eq. (2.31). It can be shown

that the bounce takes place at Ḣ = 0 and ä > 0 when
the energy density of the scalar field reaches its maximum
value

ρI

c ≡
ρc

4 (γ2 + 1)
. (3.4)

From the Hamilton’s equations, the modified Friedmann
equation can be derived. It turns out that unlike LQC,
the Friedmann equation in the contracting phase is differ-
ent from the one in the expanding phase, and has higher
than quadratic in energy density modifications [50]. More
specifically, in the expanding phase,

H2 =
8πGρ

3

(
1− ρ

ρI
c

)
×[

1 +
γ2ρ/ρI

c

(γ2 + 1)
(

1 +
√

1− ρ/ρI
c

)2

]
, (3.5)

while in the contracting phase,

H2 =
8πGαρΛ

3

(
1− ρ

ρI
c

)
×[

1 +
ρ
(

1− 2γ2 +
√

1− ρ/ρI
c

)
4γ2ρI

c

(
1 +

√
1− ρ/ρI

c

) ], (3.6)

here

α ≡ 1− 5γ2

γ2 + 1
, ρΛ ≡

3

8πGαλ2(1 + γ2)2
. (3.7)

From Eq. (3.6), one can see that H → − 1
λ(1+γ2) = −0.42

as long as ρ � ρI
c. Since the energy density drops

rather quickly near the bounce, the de Sitter phase be-
comes a very good approximation just a few Planck
seconds before the bounce. From our simulations, we
find H ≈ −0.42 when t/tPl ≤ −2. Moreover, as com-
pared with LQC, in mLQC-I, the value of sin(λb) ranges

over
[
0,
√

1/(γ2 + 1)
]

with sin(λb) =
√

1/(2γ2 + 2) at

the bounce. Therefore, sin(λb) never reaches unity dur-
ing the entire evolution. In contrast, b ∈ (0, π/λ) and
sin(λb) = 1 right at the bounce in LQC.
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FIG. 5. In the first panel, the potential terms Ω2
+, Ω2

− are
compared with their smooth extension Ω2 across the bounce
in mLQC-I. This smooth extension is achieved by the func-
tion Θ̃(b) in Eq. (3.11). In the second and third panels, we
compare the potential terms Ω2 and Ω2

eff with the curvature
term a′′/a in the whole range where our simulations are car-
ried out. The range of t ∈ (2× 104, 4× 106) is not plotted as
these three quantities have the same qualitative behavior as
in LQC plotted in Fig. 2.

B. The primordial power spectrum

Similar to LQC, the evolution of the background dy-
namics is completely fixed by assigning the initial condi-
tion of the scalar field at the bounce. In order to com-
pare with LQC and mQLC-II, the value of scalar field
at the bounce is set to φB = 1.27 and φ̇B > 0 so that
the number of the inflationary e-folds is still 72.8. With
this initial condition, the number of the pre-inflationary
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e-folds from the bounce to the onset of the inflation is
3.98, which in turn fixes k∗ to 5.57. On the other hand,
the initial states of the perturbations in mLQC-I are cho-
sen in the contracting branch where the de Sitter phase
is a very good approximation. In the de Sitter phase, the
equation of motion of the tensor perturbations become

ν′′ +

(
k2 − 2

η2

)
ν = 0, (3.8)

where aH = −1/η is used. Now in the contracting phase,
η must be a positive number as H is negative. Thus, the
relation between the conformal time η and the cosmic
time t takes the form

η =

∫ t

−∞

dt

a
. (3.9)

Moreover, Eq. (3.8) has the exact solutions which are

νk = αk
e−ikη√

2k

(
1− i

kη

)
+ βk

eikη√
2k

(
1 +

i

kη

)
, (3.10)

here αk and βk are two integration constants. The above
solution already indicates that the power spectrum of
the super-horizon modes in the slow-roll phase is scale-
invariant since |νk|2 ∝ 1/k3 for these modes, while the
power spectrum of the comoving curvature perturbations
is proportional to k3|νk|. In our simulations, the initial
states of the perturbations are chosen as the positive fre-
quency modes with αk = 1 and βk = 0.

As the initial conditions of both background and the
perturbations are fixed, we now need to figure out the
specific ansatz of Ω2 in Eq. (2.17). The first ansatz
comes from the classical background Friedmann con-
straint, which gives the same Ω2

± by Eq. (2.32) but
with background evolution given by effective dynamics
of mLQC-I model. As in LQC, Ω2

+ and Ω2
− do not co-

incide at the bounce which is depicted in the first panel
of Fig. 5. Therefore, an extension Ω2 is required to con-
nect Ω2

+ with Ω2
− smoothly at the bounce. Following our

strategy in LQC and using the form of effective Hamilto-
nian constraint in mLQC-I, we find this extension takes
the following form for mLQC-I:

Ω2 = a2
(
V,φφ + 2Θ̃(b)fV,φ + f2V

)
, (3.11)

where Θ̃(b) =
(
1− 2(γ2 + 1) sin2 (λb)

)
is a monotonous

function of b during the evolution of the background.
As already discussed in the last subsection, sin(λb) →√

1/(1 + γ2) when t→ −∞ and sin (λb) =
√

1/(2 + 2γ2)

right at the bounce. Therefore, Θ̃(b) monotonously in-
creases from negative unity to zero in the contracting
phase. On the other hand, at t → ∞, b → 0. This indi-
cates Θ̃(b) monotonously increases from zero to positive
unity in the expanding phase. As b changes abruptly
near the bounce and almost acts like a constant in the
other regimes, Θ̃ behaves like a step function across the
bounce as depicted in the first panel of Fig. 5.
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FIG. 6. In mLQC-I, with the value of the scalar field at the
bounce set to 1.27 mPl, the initial states of the perturbations
are imposed at t/tPl = −2. The averaged scalar power spec-
trum is explicitly shown for Ω2 (blue triangles) and Ω2

eff (red
circles). The relative difference between them is given in the
second subfigure. In this figure, k∗ = 5.57. Two curves in the
top panel are actually giving different power spectra in the IR
regime. For example, at k/k∗ = 5×10−6, the power spectrum
from Ω2

eff is 0.017 while the power spectrum from Ω2 turns out
to be 0.019, there is indeed a 10% relative difference.

The second ansatz for Ω2 comes from the effective
Hamiltonian constraint in Eq. (3.1). In mLQC-I, the
transition from the classical Hamiltonian constraint to
the effective Hamiltonian constraint is achieved by mak-
ing use of the substitution

1

π2
a

→ 64π2G2λ2γ2

9a4
[

(1 + γ2) sin2 (2λb)− 4γ2 sin2 (λb)
] . (3.12)

The same substitution can now be used in Eq. (2.17), in
the same spirit as the procedure in the hybrid approach
for LQC [29, 30]. The only subtlety which arises is from
the fact that the right hand side of Eq. (3.12) does not

equal zero at the bounce. However, with the help of Θ̃(b)
function introduced in Ω2, a proper smooth extension of
1/πa across the bounce can be easily found as

1

πa
→ − 8πGλγΘ̃(b)

3a2

√
(1 + γ2) sin2 (2λb)− 4γ2 sin2 (λb)

. (3.13)

With the replacements Eqs. (3.12)-(3.13), we obtain the
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second ansatz of the potential term, that is, Ω2
eff . In

the last two subfigures of Fig. 5, we compare the relative
magnitude of Ω2, Ω2

eff and the curvature term a′′/a in the
regimes where our simulations of the power spectrum are
performed. The middle panel of Fig. 5 tells that in the
contracting phase when t/tPl ∈ (−8, 0), the curvature
term is overwhelming over the potential terms Ω2 and
Ω2

eff . More specifically, right at the bounce, the curvature
term determines a characteristic wavenumber in mLQC-
I, which is

kI =

√
a′′

a

∣∣∣∣∣
t=tB

≈ 1.60, (3.14)

as compared with Ω2 = 1.75 × 10−10 and Ω2
eff = 0.006

at the bounce. Therefore, the difference between Ω2 and
Ω2

eff near the bounce are diluted by the background just
like in LQC. The last subfigure compares the same three
quantities in the interval t/tPl ∈ (0, 2 × 104). In the ex-
panding phase, all these quantities behave in a similar
way as in Fig. 2. Ω2 and Ω2

eff coincide exactly after
t/tPl = 1000. While the potential term becomes of sim-
ilar magnitude with the curvature term near the onset
of the inflation, the curvature term quickly exceeds the
potential term again during the slow-roll. The behavior
of each term in the slow-roll phase is still the same as in
the top right panel of Fig. 2, and hence we do not show
them explicitly in mLQC-I. From Fig. 5, we can conclude
that the difference between Ω2 and Ω2

eff lies in the region
near the bounce. However, as the curvature term plays
a dominant role in this region, one may expect that the
impact of the different ansatz of Ω2 may be undetectable
or rather small in the power spectrum. However, in our
simulations, we still find around 10% difference in the
magnitude of the power spectrum in the IR and oscillat-
ing regimes. Now let us proceed with some details of the
scalar power spectrum.

The scalar power spectrum in mLQC-I in Fig. 6 for
both Ω2 (blue triangles) and Ω2

eff (red circles) is in agree-
ment with earlier work [54]. Although the profile of the
power spectrum is similar to that in LQC, the magnitude
in the IR and oscillating regimes are amplified in great
amount as compared with Fig. 3. The magnitude of the
power spectrum in the IR regime is actually the result
of the de Sitter phase in the contracting phase. In Fig.
7, we plot the comoving Hubble horizon near the bounce
which shows that in the de Sitter phase, the horizon is
shrinking rapidly backwards in time. As a result, if the
initial conditions are imposed in the contracting phase,
the IR modes are outside the horizon and their magnitude
is frozen. In the de Sitter space, the power spectrum of
the superhorizon modes can be simply evaluated by the
formula [2]

PS =
1

4π2

H4

φ̇2
, (3.15)

which, with H ≈ −0.42 and φ̇ ≈ 0.03 (both of them
are in the Planck units) in the contracting phase, gives

PS ≈ 0.88 ≈ 1. Therefore, the large amplitude of the
power spectrum in the IR regime in Fig. 6 reflects the
existence of a de Sitter phase with a Planck-scale cosmo-
logical constant. Whereas, the relatively small magni-
tude of the power spectrum in the UV regime is actually
determined in the slow-roll phase. Using the same ex-
pression of PS in Eq. (3.15) but plugging in the right

values of the Hubble rate and φ̇ at the horizon exit in
the slow roll, i.e. H ≈ 7.83×10−6 and φ̇ ≈ 2×10−7, one
immediately obtains PS ≈ 2.38× 10−9.

Finally we discuss the difference between Ω2 and Ω2
eff .

The quantitative difference lies near the bounce where
the curvature term plays the dominant role. There is still
at least a 10% difference in the IR and oscillating regimes
of the power spectrum. Near the bounce, the magnitude
of Ω2

eff near the bounce is just one thousandth of that
of the curvature term. This difference is actually not as
small as expected. In addition to t/tPl = −2, we also
impose the initial conditions at different times in the de
Sitter phase. The resulting power spectrum is just the
same as those in Fig. 6. As discussed above, the IR
regime is determined in the contracting phase where its
magnitude is frozen outside the horizon and thus insen-
sitive to the time when the initial conditions are chosen.

In summary, in this section, the power spectrum in
mLQC-I with the potential terms from the classical and
effective constraints was compared with the power spec-
trum in LQC. The magnitude of the power spectrum in
the IR regime is of the order of the Planck scale due
to the emergent de Sitter contracting phase. Moreover,
different choices of Ω2 give rise to about 10% relative
difference in the IR and oscillating regime which is sur-
prisingly not small, considering the magnitudes of the
potential terms Ω2, Ω2

eff are less than one thousandth of
the curvature term a′′/a near the bounce. Moreover, we
also compare the power spectrum from Ω2 and Ω2

+/Ω2
− in

the appendix. Unlike LQC, the discontinuity in Ω2
+/Ω2

−
does make a substantial difference even in the UV regime
of the power spectrum essentially ruling out mLQC-I un-
less the discontinuity is cured as discussed previously.

IV. PRIMORDIAL POWER SPECTRUM IN
mLQC-II

Similar to mLQC-I, the mLQC-II model was first pro-
posed as an alternative quantization of the Hamiltonian
in LQC [45]. Later, the effective dynamics in this model
was studied in detail in [48]. It was found that the infla-
tionary phase is still an attractor in the expanding phase
when a single scalar field minimally coupled to gravity is
introduced. In [4], both numeric and analytic results of
the background dynamics were presented in detail. In
this section, we first review the effective dynamics in
mLQC-II and then present the results of the primordial
power spectrum in the dressed metric approach.
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FIG. 7. In mLQC-I, the shape of the comoving Hubble hori-
zon defined by λH =

√
a/a′′ is depicted in the contracting

phase and near the bounce in the expanding phase. This fig-
ure basically indicates if the initial conditions are set in the
contracting phase with Planck scale emergent cosmological
constant, the modes with comoving wavelength larger than
unity are actually outside the horizon.

A. Review of the effective dynamics in mLQC-II

For the spatially-flat FLRW background, the effective
Hamiltonian constraint in mLQC-II is given by [45]

HII = − 3v

2πGλ2γ2
sin2

(
λb

2

){
1 + γ2 sin2

(
λb

2

)}
+
p2
φ

2v
+ vV (φ) ≈ 0. (4.1)

As discussed in Sec. II, the dressed metric approach can
be extended to this model in a straightforward way as
long as we focus on the background states which are
highly peaked on classical trajectories at late times. This
is to say, for mQLC-II, the background quantities in Eq.
(2.26) are replaced by those from the effective Hamilton’s
equations given by

v̇ =
3v sin(λb)

γλ

{
1 + γ2 − γ2 cos (λb)

}
,

(4.2)

ḃ = −
6 sin2

(
λb
2

)
γλ2

{
1 + γ2 sin2

(
λb

2

)}
− 4πGγ

(
p2
φ

2v2
− V

)
. (4.3)

The equations of motion of the scalar field and its con-
jugate momentum are the same as those in LQC given
by Eq. (2.31). From the Hamilton’s equations, it can
be easily shown that the modified Friedmann equation
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FIG. 8. In mLQC-II, we compare Ω2
+, Ω2

− and Ω2 across the
bounce in the first figure. Ω2 smoothly connects Ω2

+ in the
expanding phase with Ω2

− in the contracting phase. In the
second and the third panels, the difference between Ω2 and
Ω2

eff is explicitly shown in both contracting and expanding
phases. In this figure, φB = 1.04 mPl at the bounce.

in mLQC-II takes the form [4]

H2 =
16πGρ

3

(
1− ρ

ρII
c

)
×(

1 + 4γ2(γ2 + 1)ρ/ρII
c

1 + 2γ2ρ/ρII
c +

√
1 + 4γ2(1 + γ2)ρ/ρII

c

)
. (4.4)

In this model, the momentum b monotonously evolves
from 2π/λ in the distant past to zero in the future. At
the bounce, b = π/λ. Similar to LQC, resulting dynamics
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FIG. 9. Setting φB = 1.04 mPl at the bounce in mLQC-II.
The initial states of the perturbations are chosen to be the 4th
order adiabatic states given in Eq. (2.45). The power spectra
from Ω2 (black circles) and Ω2

eff (red triangles) are compared
in the first panel. In the second panel, the relative difference
between two power spectra is given. Although two curves in
the top panel are located very close to each other, the relative
difference in the IR regime turns out to be larger than that
in LQC. To be more specific, we find that at k = 5 × 10−6,
the power spectrum from Ω2

eff is 1.07× 10−8 while the power
spectrum from Ω2 is 8.10× 10−9, so the relative difference is
up to 28%.

also describes a bouncing universe in which the bounce
takes place when the energy density of the scalar field
reaches its maximum value at

ρII

c ≡ 4(γ2 + 1)ρc. (4.5)

The evolution of the universe is symmetric about the
bounce point as in LQC.

B. The primordial power spectrum

As the qualitative behavior of the background dynam-
ics in mLQC-II is quite similar to that in LQC, we follow
the same procedure to analyze the power spectrum in
mLQC-II. First, the initial conditions of the background
in mLQC-II are chosen to be φB = 1.04 mPl and φ̇B > 0
at the bounce. As a result, the number of e-folds from
the bounce to the onset of inflation is 4.46 and the num-
ber of inflationary e-folds is 72.8 which is the same as

in LQC when φLQC
B = 1.15 mPl. The pivot mode com-

puted from k∗ = a∗H∗ at the horizon exit turns out to
be k∗ = 9.54. Meanwhile, the initial states of the pertur-
bations are chosen to be the 4th order adiabatic states
in Eq. (2.40) at the moment t/tPl = −1.1 × 105. The
only complications come from the Ω2 term in the mass
squared term s in Eq. (2.44). Two different candidates
are studied in the following: Ω2 coming from the classi-
cal background Hamiltonian constraint and Ω2

eff from the
effective Hamiltonian constraint. Ω2 is given by

Ω2 = a2
(
V,φφ + 2Θ(b)fV,φ + f2V

)
, (4.6)

here Θ(b) = cos(λb/2) behaves like a step function across
the bounce and picks up the right sign in both contract-
ing and expanding phases. Eq. (4.6) is thus a smooth
extension of Eq. (2.32) into the contracting phase in
mQLC-II. On the other hand, Ω2

eff is given by compar-
ing the classical background Hamiltonian constraint in
Eq. (2.7) with the effective Hamiltonian constraint Eq.
(4.1), which leads to the following replacements of 1/π2

a

and 1/πa:

1

π2
a

→ 4π2γ2λ2

9a4 sin2 (λb/2)
(
1 + γ2 sin2 (λb/2)

) , (4.7)

1

πa
→ −2πγλ cos (λb/2)

3a2 sin (λb/2)
√(

1 + γ2 sin2 (λb/2)
) . (4.8)

In Fig. 8, we first compare Ω2
+, Ω2

− with their smooth
extension Ω2 near the bounce. As can been seen from
this figure, Ω2 quickly tends to Ω2

+/Ω2
− in the expand-

ing/contracting phase within 0.5 Planck second. This
is because the momentum b changes dramatically from
its maximum to the minimum near the bounce due to
which Θ(b) = cos(λb/2) acts like a step function across
the bounce. In the second and third panels of Fig. 8,
we compare Ω2, Ω2

eff with the curvature term in the re-
gion where our simulations are performed. The curvature
term keeps its dominant role near the bounce. To be
more specific, right at the bounce, Ω2 = 1.59 × 10−10,
Ω2

eff = 0.265, which are in contrast with the curva-
ture term a′′/a = 46.8. In mLQC-II, the characteristic
wavenumber at the bounce is

kII =

√
a′′

a

∣∣∣∣∣
t=tB

≈ 6.84. (4.9)

In the contracting(expanding) phase, Ω2 and Ω2
eff

tend to the same limit before t/tPl = −104(after
t/tPl = 1000) which is again about 3 e-foldings away
from the bounce. At t/tPl ≈ −105 and the onset of
inflation, the potential terms become comparable to the
curvature term. All these properties are quite similar
to those of LQC discussed in Sec. II. In Fig. 9, we
compare the power spectrum from Ω2 and Ω2

eff in the
region k ∈ (5 × 10−6, 50). We find that the relative
difference in the magnitude of the power spectrum is
around 30% in the IR regime and less than 10% in the
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FIG. 10. The scalar power spectra from the classical back-
ground Hamiltonian constraint in LQC (black circles) and
mLQC-II (red triangles) are compared, the relative difference
in the second panel shows the difference of the power spec-
trum in these two models mainly lies in the IR and oscillating
regimes.

intermediate regime except around the spike at the end
of the IR regime. Note that Ω2

eff is able to result in
a higher spike than Ω2 in the power spectrum. Near
the spike, the relative difference can exceed even 100%.
As the wavenumber becomes closer to k∗, the relative
difference decreases. In the UV regime, the relative
difference can be as small as 0.1% and even less. In Figs.
10-11, we compare the power spectrum with the same
Ω2 in LQC and mLQC-II. In these figures, the relative
difference between LQC and mQLC-II with the same
regularization of πa can be as large as 100% throughout
the IR and oscillating regimes. Note the horizontal axis
in these plots is the wavenumber not the ratio k/k∗,
because k∗ is different in two different models, if we keep
the same e-foldings of the inflationary phase. Basically,
from the analysis in LQC, the change of φB would
only affect the location of the observable window in the
power spectrum. Therefore, for other φB , one would
get the same results as plotted in Figs. 10-11. From
these figures, we learn that different quantizations of
the Lorentzian term in the effective Hamiltonian cause
in general more pronounced effects than the different
regularizations of πa in the dressed metric approach,
except the regime of spike in power spectrum between IR
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FIG. 11. The scalar power spectra from the effective con-
straint Ω2

eff in LQC (black circles) and mLQC-II (red trian-
gles) are compared.

and oscillatory regimes discussed above. In particular,
the former can cause a relative difference exceeding
100% even in the intermediate regime while the relative
difference caused by different Ω2 is generally less than
30% in the same regime.

So far we have discussed the scalar power spectrum in
different models. Finally, in Fig. 12, we compare the ten-
sor power spectra from three models when the initial con-
ditions of the background are set so that the e-foldings of
the inflationary phase is 72.8 in all three models. As can
be seen from the figure, the power spectrum in mLQC-I
again bears traits of the de Sitter phase in the contracting
branch with a large cosmological constant as the magni-
tude of the power spectrum in the IR regime is still of
the Planck scale. This is due to the Planck scale valued
Hubble rate in the contracting phase and also the fact
that the IR regime is frozen during the bouncing and the
expanding phases. On the other hand, the tensor power
spectrum in LQC and mLQC-II is qualitatively similar,
which is featured by a larger magnitude in the IR regime
as compared with the scalar power spectrum. The differ-
ence between LQC and mLQC-II in the oscillating regime
is also striking as the relative difference is more than
50%. All these differences are essentially caused by dif-
ferent background evolutions in these two models, which
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FIG. 12. Tensor power spectra from three models: LQC
(black circles), mLQC-I (red triangles), mLQC-II (blue
squares). The bottom panel shows the relative difference be-
tween LQC and mLQC-II.

again implies quantization ambiguity in the Hamiltonian
constraint is able to cause distinguishable effects in both
scalar and tensor power spectrum.

V. SUMMARY

In this paper, we have applied the dressed met-
ric approach to cosmological perturbations to compare
power spectrum in three loop cosmological models, LQC,
mLQC-I and mLQC-II. They result from different regu-
larizations of the Lorentzian term in the classical Hamil-
tonian constraint [45]. Our first goal was to understand
the way different regularizations of the Hamiltonian con-
straint affect primordial scalar and tensor power spec-
trum for the chaotic inflationary scenario in a spatially-
flat universe. Our second goal was to understand effects
of an ambiguity in the dressed metric approach related
to the way πa is treated in the effective potential given in
Eq (2.17). We used two different ways to regularize this
term: the first ansatz is the conventional treatment used
in dressed metric approach [28] which involves solving in
part the classical background Hamiltonian constraint for
πa. The second ansatz inspired by the hybrid approach
to cosmological perturbations in LQC [29, 30] is obtained

using the effective Hamiltonian constraint in each model.
While effects on primordial power spectrum for LQC as
well as mLQC-I were studied earlier, a detailed com-
parison of different regularizations, and effects of above
ambiguities have been explored for the first time. Fur-
ther, unlike majority of works so far in the dressed metric
approach, we consider initial conditions in the contract-
ing branch which requires addressing certain subtleties
in a discontinuity in the perturbation equations for the
dressed metric approach.

From the simulations of the power spectrum, we find
that in the UV regime, all three models as well as two
different ansatz of πa give essentially the same scale-
invariant power spectrum consistent with the CMB ob-
servations [58]. However, there can be significant differ-
ences in the IR and intermediate regimes. The magnitude
of the power spectrum in the IR regime is slightly higher
in LQC when compared to mLQC-II. But, the relative
difference between the amplitude of oscillations in these
two models can be as large as 50% throughout the IR
and intermediate regimes. In mLQC-I, we generalize the
results of [54] to understand the effect of ambiguities in
considering different πa in various regimes. The mag-
nitude of the power spectrum is of the order of Planck
scale in the IR regime and also in part of the oscillating
regime. This feature in mLQC-I is essentially a result of
the Planck scale cosmological constant in the pre-bounce
regime. We find that different ansatz of πa in each model
result in relative difference of amplitude of at least 10%
in the IR regime. And, this difference can be very large,
reaching even 100%, for a short range near the interface
of IR and oscillatory regime. Except in this short regime,
the relative difference between different models with the
same ansatz of πa is always larger than the relative dif-
ference between different ansatz of πa in the same model.
This is expected because the effective potential term is
at least three orders of magnitude smaller than the cur-
vature term near the bounce. Meanwhile, two ansatz of
πa tend to the same classical limits when they are still
much smaller as compared with the curvature term. As
a result, the effects of different ansatz of πa are relatively
suppressed in the power spectrum as compared with the
choice of different regularization leading to differences in
background dynamics except near the border of IR and
oscillatory regime. For the sub-horizon modes, differ-
ences between choices of πa turn out to be less than 1%.

In addition, the effects of the initial conditions on the
power spectrum in all three models are similar and can
be summarized as follows. For the kinetic dominated
bounce, the background dynamics in the bouncing phase
is not sensitive to φB at the bounce, and as a result, a
change of φB only affects the pre-inflationary e-folds from
the bounce to the horizon exit. This results in moving
the observable window to the left (decreasing φB) or the
right (increasing φB) in the profile of the power spectrum.
The effects of the choice of initial states of the perturba-
tions can be seen in the IR regime of the power spectrum
for LQC and mLQC-II. Generally, for the zeroth and
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second order adiabatic states, the power spectrum keeps
decreasing as the comoving wavenumber decreases, while
for the 4th-order adiabatic states, the power spectrum is
again scale-invariant in the IR regime when k/k∗ ≤ 10−5.
For mLQC-I, the power spectrum is scale-invariant in the
latter regime because of the de Sitter phase.

We investigated effects of a small discontinuity at the
bounce in the equations of motion captured by potentials
Ω+2 and Ω2

− in the expanding and contracting branches
respectively. Motivated by the procedure in the hybrid
approach, we performed a smooth interpolation to obtain
a potential Ω2. Effects of above discontinuity and robust-
ness of our approximation were investigated by compar-
ing the power spectrum resulting from Ω2

± and Ω2 (see
Appendix). The relative difference in the power spec-
trum produced by these two effective potentials, Ω2

± and
Ω2, are small in both LQC and mLQC-II. The relative
error is around 0.1% in the UV regime and almost negli-
gible in the IR and the oscillatory regimes. However, in
mLQC-I, the discontinuity in the equation of motion of
the perturbations at the bounce results in a discontinu-
ity in the power spectrum just before the mode k = k∗.
This discontinuity causes the power spectrum in the UV
regime to become extremely large which is excluded by
the CMB observations. This result shows that even a
seemingly small discontinuity resulting from mismatch
between Ω+2 and Ω2

− essentially rules out the model un-
less one uses the smooth potential Ω2. For the latter
choice, one obtains a scale-invariant spectrum with cor-
rect amplitude in the UV regime.

In summary, our analysis shows that although LQC,
mLQC-I and mLQC-II give the same power spectrum in
the UV regime, the relative differences in the IR and in-
termediate regimes are far from negligible. To be more
specific, the relative differences in the magnitude of the
power spectra in LQC and mLQC-II can be larger than
50% throughout the IR and intermediate regimes, while
the magnitude of the power spectrum in mLQC-I is of
the Planck scale. Furthermore, two regularizations of πa
can also cause at least 10% relative difference in mag-
nitude, in particular, the relative difference in mLQC-II
can exceed 20% in the IR regime. We expect that these
results are robust to changes in inflationary potential.
In future, it will be interesting to address how to differ-
entiate these models, as well as the choices of πa, from
observational perspective. Since all these differences are
related with the modes that are outside the current Hub-
ble horizon, effects of the amplified power spectrum in
the IR and oscillating regimes may only be indirectly ob-
served by studying the non-Gaussianity in these models.
Thus, CMB can serve as an important tool to distinguish
effects due to regularizations and quantization ambigui-
ties. The way these effects translate to phenomenological
differences for the modes in our observable universe, will
be explored in a future work.
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FIG. 13. In LQC, using the 4th-order adiabatic states and set-
ting φ = 1.15 mPl, the power spectra with smoothly extended
Ω2(black circles) and discontinuous one Ω2

± (red triangles) in-
troduced in Eq. (A.3) are compared. The relative difference
of the resulting power spectrum is almost negligible in the
IR and oscillating regimes while in the UV regime, there is
around 0.1% difference with these two ansatz.
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Appendix A: The power spectrum from the
discontinuous effective potential

This appendix deals with investigating effects of us-
ing a discontinuous effective potential constructed from
Ω2

+ and Ω2
− in the equations for perturbations for LQC,

mLQC-I and mLQC-II. Comparison is then made with
potential obtained by a smooth interpolation Ω2 intro-
duced earlier in different models.

As discussed in LQC, in the expanding phase, the ef-
fective potential term takes the form

Ω2
+ = a2

(
V,φφ + 2fV,φ + f2V

)
, (A.1)
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FIG. 14. In mLQC-I, the power spectra with discontinuous
Ω2
± (top panel) and smoothly extended Ω2 (bottom panel)

are presented. It is remarkable that the tiny discontinuity at
the bounce in Ω2

± gives rise to a huge discontinuity of the
power spectrum at around k = k∗ and also makes the power
spectrum divergent in the UV regime.

while in the contracting phase, as the momentum πa
changes its sign, the effective potential becomes

Ω2
− = a2

(
V,φφ − 2fV,φ + f2V

)
. (A.2)

The difference between Ω2
+ and Ω2

− at the bounce is just
around 10−10 in LQC and also in mLQC-I/II. Consid-
ering that the magnitude of the curvature term at the
bounce is always of the order of the Planck scale, one
may naively conclude that this small gap of 10−10 is al-
most negligible in all three models, and thus instead of
the smooth extension Ω2, the ansatz

Ω2
± = a2

(
V,φφ + 2 sgn(t)fV,φ + f2V

)
, (A.3)

can also be employed in the simulations of the power
spectrum. Here sgn(t) is a sign factor which takes unity
in the expanding phase, and equals negative one in the
contracting phase. The results with Ω2

± are compared
in Figs. 13-15 with the power spectrum obtained using
Ω2 introduced earlier for each model. As can be seen in
Fig. 13, in LQC, Ω2

± and Ω2 generate almost the same
power spectrum in the IR, oscillating and UV regimes.

The relative difference between these two ansatz is al-
most negligible in the IR regime, the largest error takes
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FIG. 15. In mLQC-II, using the 4th-order adiabatic state
and setting φ = 1.04 mPl, the power spectra with smoothly
extended Ω2(black circles) and discontinuous one Ω2

± (red tri-
angles) are compared. Similar to LQC, two ansatz of Ω2

± and
Ω2

eff do not make an essential difference in all three regimes
of the power spectrum.

place in the UV regime which is around 0.1%. This indi-
cates the discontinuity of the effective potential in LQC
at the bounce would not make a substantial difference
in the prediction of the power spectrum. One can use
either Ω2

± or Ω2 for the purpose of calculating the power
spectrum. However, this is not the case for mLQC-I. The
plots in Fig. 14 are the power spectrum in mLQC-I. In
the first subfigure, the power spectrum has a discontinu-
ity at around k = k∗ and then blows up in the UV regime
when the discontinuous potential Ω2

± is employed in the
simulations, while the second figure is for the power spec-
trum with the continuous extension Ω2. So it is striking
to see that a tiny discontinuity in the background can
cause such a huge difference in the UV regime of the
power spectrum. If one does not use a continuous po-
tential term in this case, the model would be ruled out
due to a tiny discontinuity. This discontinuity and re-
sulting effects in the power spectrum motivates one to
consider smoothly interpolated potential such as Ω2 for
all the models. The situation in mLQC-II is very similar
to LQC as can be seen from Fig. 15. As in LQC, in
this model the discontinuity in Ω2

± does not cause any
significant effect in the primordial power spectrum.
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