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Gravitational waves from the explosive merger of distant black holes are encoded with details
regarding the complex extreme-gravity spacetime present at their source. Famously described by
the Kerr spacetime metric for rotating black holes in general relativity, what if effects beyond this
theory are present? One way to efficiently test this hypothesis is to first obtain a metric which
parametrically deviates from the Kerr metric in a model-independent way. Given such a metric,
one can then predict the ensuing corrections to both the inspiral and ringdown portions of the
gravitational waveform for black holes present in the new spacetime. With these tools in hand,
one can then test gravitational wave signals for such effects by two different methods, (i) inspiral-
merger-ringdown consistency test, and (ii) parameterized test. In this paper, we demonstrate the
exact recipe one needs to do just this. We first derive parameterized corrections to the waveform
inspiral, ringdown, and remnant properties for a generic non-Kerr spacetime and apply this to
two example beyond-Kerr spacetimes each parameterized by a single non-Kerr parameter. We
then predict the beyond-Kerr parameter magnitudes required in an observed gravitational wave
signal to be statistically inconsistent with the Kerr case in general relativity. We find that the two
methods give very similar bounds. The constraints found with existing gravitational-wave events
are comparable to those from x-ray observations, while future gravitational-wave observations using
Cosmic Explorer (Laser Interferometer Space Antenna) can improve such bounds by two (three)
orders of magnitude.

I. INTRODUCTION

The famous observation of gravitational waves (GWs)
from the distant coalescence of two black holes (BHs) has
opened the window for a new probe of the extreme gravity
spacetimes [1–3] present around such objects. Observed
by the Laser Interferometer Gravitational-wave Observa-
tory [4] (LIGO) on September 14, 2015, the impressive
observation of GW150914 [5] was only the first of eleven
GW events detected [6]. Encoded within the GWs ema-
nating from such extreme events across the universe is a
treasure-trove of information regarding the local space-
time present around the BHs. This incredible opportu-
nity allows us for the first time to test the theory of grav-
ity describing these extreme-gravity environments, where
the fields are highly strong, non-linear, and dynamical.

The currently accepted model of gravity is described
by the theory of general relativity (GR) prescribed by
Einstein over a century ago. Just as previously, Newto-
nian’s prescription of gravity was relentlessly tested, we
now must put GR to the test. Since then, GR has been
subject to observations in a variety of different spacetime
environments, including within the solar system where
gravity is weak and static [7], in strong and static-field
binary pulsar systems [8, 9], in large-scale cosmological
observations [10–14], and finally in the extreme-gravity
observations of GWs [1–3, 15–18]. In every scenario, all
such tests of GR have been found to agree remarkably
with Einstein’s theory. With several future GW detector
improvements [19] and third-generation detectors [19–24]
planned, there is a hope that, if indeed small deviations
beyond GR are present in nature, enhanced detector sen-
sitivities will allow us to observe them.

Why must we continue to test GR, even with its un-
precedented successes in the last century? While GR can
accurately explain many of our observations of the uni-
verse, there remain several open questions still debated
upon today. Prominent among the possible solutions are
new, alternative theories of gravity that go beyond GR.
In fact, the scenario in which a modified theory of gravity
is activated in extreme-gravity spacetimes, while reduc-
ing to GR in the weak-gravity environments where a ma-
jority of our tests have been performed in, is a possibility.
In particular, several alternative theories of gravity have
been introduced which explain some of these open ques-
tions, such as: the theory of inflation in the early uni-
verse [25–28]; “dark energy’s” impact on the universe’s
accelerated expansion [25, 28–30]; the universe’s present
matter/anti-matter asymmetry [26, 27]; the unification
of quantum mechanics with GR [25–29, 31]; and finally
“dark matter’s” influence on the inconsistent rotation
curves of galaxies throughout the universe [25–27, 31, 32].
In order to put answers to these questions, we must con-
tinue to test GR in the most exotic spacetimes possible,
with the final hope of detecting possible deviations.

To test the current theory of gravity, one needs to first
develop a new spacetime metric as a solution to mod-
ified field equations. In GR, this spacetime metric is
described by the Kerr result gK

αβ for rotating BHs. In
order to perform the tests in an efficient, theory-agnostic
way in beyond GR, one would presumably introduce pa-
rameterized deviations from the Kerr metric which, when
vanishing, reproduces the Kerr result again. In this sce-
nario, one or more non-GR deviation parameters could be
observationally constrained in a model-independent way
that requires no prior theoretical knowledge. One could
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then map such bounds to those on theoretical parameters
in specific non-GR theories. To date, several such met-
rics have been developed [33–39], each of which are sta-
tionary, axisymmetric, asymptotically flat, and contain
one or more parameters deviating from the Kerr met-
ric. For example, Johannsen developed a more general
parameterized metric with separable geodesic equations
in [40], followed up by an even more general metric pre-
serving the same symmetries found in [41, 42]. Several of
the above parameterized metrics can then be mapped to
many known BH solutions found in the literature [41, 43–
58], with popular transformations for the latter two met-
rics tabulated in [42, 59].

In this paper, we focus our attentions on two pa-
rameterized metrics and see how well one can probe
such spacetimes with current and future GW observa-
tions. The first one was derived by Johannsen and Psaltis
(JP) [37], which has a single deviation parameter ε3. This
spacetime is an example of the more general metric found
in [40]. The second one is motivated by Johannsen in [40],
where a new deviation parameter β1 was introduced into
the more general metric in [40]. Here, we remove all
non-Kerr deviation parameters with the exception of β to
form the singly-parameterized “modified-∆” (mod.-∆, or
“MD” in superscripts/subscripts) metric. Because these
single-parameter spacetimes have been obtained from the
more general beyond-GR metrics which can be mapped
to several known BH solutions, they make ideal candi-
dates for testing GR in a simple way.

With a model-independent beyond-GR metric in hand,
one next needs to find the modifications to the gravi-
tational waveform imparted under the new spacetime.
As accomplished in similar works by the same au-
thors [60, 61] in the Einstein-dilaton Gauss-Bonnet the-
ory of gravity [48, 49, 62, 63], one can obtain analytic
expressions for various corrections to the gravitational
waveform in an alternative theory of gravity. In this pa-
per, given an arbitrary spacetime metric gX

αβ , we show
how one can obtain corrections to the GW inspiral,
ringdown quasinormal modes (QNMs), and the remnant
BH’s mass and spin. When inserted into the standard GR
gravitational waveform, these singly-parameterized cor-
rections can be used to test future incoming signals for
deviations from GR. See also Ref. [64] where it was
detailed how one can test beyond-GR theories of
gravity, even for Kerr BHs [65] if one considers
their perturbations.

With a generalized beyond-GR metric and its result-
ing corrections to the gravitational waveform template,
one needs to test the observed GW signals for devia-
tions present within. Specifically, we focus our attention
on the so-called inspiral-merger-ringdown (IMR) consis-
tency tests of GR [1, 16, 66, 67]. In this application, one

1 β is introduced in ∆ = r2−2Mr+a2 as ∆→ ∆̄ = ∆ +β, where
M and a characterize the mass and spin of a BH while r is the
radial coordinate.

tests the consistency between the inspiral and merger-
ringdown GW signals to predict the possibility of emer-
gent non-Kerr effects present in the observed signal. In
particular, we estimate (with a Fisher analaysis [68–70])
the final BH’s mass and spin individually from the inspi-
ral signal, and then from the merger-ringdown signal. If
both predictions show significant disagreement from each
other, one can conclude with evidence of non-Kerr effects
present in the observed signal (provided systematic errors
are under control).

In addition to the IMR consistency tests, we also test
the gravitational waveform in a parameterized way. In-
dicated as the parameterized tests of GR throughout the
following paper, we begin by introducing corrections to
the waveform inspiral, merger-ringdown, and to the rem-
nant BH properties. All such corrections are parame-
terized by the single JP or mod.-∆ parameters ε3 and
β which allows for a convenient test. We assume the
waveform is described by GR (ε3 = 0 or β = 0 ) and
estimate the resulting root-mean-square uncertainties on
the non-GR parameters. Such variations then describe
the “wiggle room” such non-GR parameters have to still
remain consistent within the GW detector’s noise, and
can be taken as an upper-bound constraint.

We refer readers to related works on testing beyond-
Kerr spacetimes with GWs. References [72, 73] construct
an approximate, multipolar gravitational waveform suit-
able for extreme-mass-ratio-inspirals (EMRIs) detectable
by space-based detector LISA for inspiral using the ana-
lytic kludge method from a beyond-Kerr “bumpy” space-
time, which can be use to test GR with GW signals
by placing constraints on the deviations, as was consid-
ered for future LISA observations. Reference [74] consid-
ered similar EMRI analytic kludge waveforms and per-
formed a Bayesian model selection analysis for distin-
guishing Kerr and beyond-Kerr models. Additionally,
Refs. [34, 75] considered quadrupole corrections to the
GR Kerr analytic kludge waveforms for EMRIs in a
bumpy spacetime to consider the accuracy with which
LISA could constrain such deformations. Reference [76]
considered the JP metric considered in this paper to build
a parameterized EMRI waveform and test it with future
space-based observations. Even more recently Ref. [77]
considered a singly-parameterized beyond-Schwarzschild
(non-spinning BHs) metric and derive corrections to the
inspiral waveform to place constraints on previous
LVC detections. See also Ref. [78] where similar cor-
rections to the QNMs were made, and constraints with
future observations of multiple GW events were quanti-
fied.

The analysis presented here differs from above at least
in a few ways. For example, we not only consider dif-
ferent beyond-Kerr spacetimes than the ones considered
above (except for [76]), but we additionally find correc-
tions to the ringdown waveform and also to the remnant
BH properties, all up to quadratic order in BH rotation.
Additionally, while all of the above analyses focus on
waveforms suitable for EMRIs detectable by LISA, in our



3

ε3 (JP [37]) β (mod.-∆ [40, 59])

IMR Param. IMR Param.

O2 [4]
GW150914 [5] (7)∗ (5)∗ (2)∗ (1)∗

GW170729 [71] (10)∗ (14)∗ (14)∗ (11)∗

CE [19]
GW150914 [5] 0.05 0.05 0.05 0.02

GW170729 [71] 0.6 0.5 0.06 0.07

CE+LISA [19, 21]
GW150914 [5] 0.02 0.03 5 × 10−3 4 × 10−3

GW170729 [71] 0.05 0.09 0.05 0.03

LISA [21]
EMRI (2 × 10−3)† 10−3 (2 × 10−4)† 10−4

SMBHB 0.02 0.01 10−3 10−3

TABLE I. Summary of results obtained in our analysis for both the Johannsen-Psaltis and modified-∆ metrics. Here we compare
constraints on the deviation parameters ε3 and β obtained via the inspiral-merger-ringdown consistency tests of GR (IMR),
and the parameterized tests of GR (Param.) for each gravitational-wave event and detector considered. In particular, bounds
are presented for GW150914-like events (m1 = 36 M�, m2 = 29 M�), GW170729-like events (m1 = 50.6 M�, m2 = 34.4 M�),
EMRIs (m1 = 106 M�, m2 = 10 M�), and super-massive black hole binaries (SMBHBs, m1 = 106 M�, m2 = 5 × 104 M�).
Observe that the bounds with the two methods are comparable in all cases presented here.
∗ Constraints with the aLIGO O2 detector are not as reliable because they fall beyond the small-deviation approximation made when deriving
ppE parameters.
† Constraints from EMRIs with IMR consistency tests may not be accurate since the IMRPhenomD waveforms were calibrated to numerical
relativity simulations with mass ratios only up to 1:18. In the parameterized test, all such numerical relativity (NR) fits have been removed, and
integrations stopped before the merger to avoid such inaccuracies.

analysis, we find corrections to the commonly-used IM-
RPhenomD gravitational waveform which is more suited
to comparable-mass systems (this waveform has been cal-
ibrated for mass-ratios up to 1 : 18, significantly smaller
than that for EMRIs of ∼ 1 : 105).

In this paper, we present for the first time a recipe for
one to quickly estimate corrections to the inspiral, ring-
down, and remnant BH properties given only an arbitrary
spacetime metric gX

αβ . We exemplify this for both the JP
and mod.-∆ spacetime metrics gJP

αβ and gMD

αβ , which are
parameterized by the single parameters ε3 and β, deviat-
ing from the Kerr metric gK

αβ . We follow this up with a
demonstration of the power of these corrections by per-
forming the IMR consistency test to predict the magni-
tudes of ε3 and β required for one to observe statistically
significant deviations from the Kerr result.

Let us now briefly convey our primary findings. Ta-
ble I presents a summary of the main results found in
the following analysis. Here we compare constraints on
the JP and mod.-∆ deviation parameters ε3 and β for
each GW event and detector considered in this paper.
In particular, constraints are obtained using two differ-
ent methods: (i) using the inspiral merger-ringdown con-
sistency tests of GR in which one compares the inspi-
ral and merger-ringdown signal’s predictive power of the
remnant BH mass and spin; and (ii) using the param-
eterized tests of GR, in which the Fisher analysis pa-
rameter estimation method is used to estimate the sta-
tistical uncertainties on template waveform parameters.
We find each method to agree very well with each other,
and see that future detectors have the ability to con-
strain both ε3 and β very stringently. With current-
generation GW detectors, we find comparable constraints

on the JP deviation parameter ε3 to those from x-ray ob-
servations of BH accretion disks [79, 80], found to be
loosely ε3 / 5. With future space-based and ground-
based GW observatories, we find constraints a few or-
ders of magnitude stronger. We find that such results
from the IMR consistency tests are mostly comparable
to those from the parameterized tests. In particular, we
find that the extreme-mass-ratio-inspirals observable by
future space-based detector LISA [21] can probe such ef-
fects by three orders-of-magnitude stronger than the cur-
rent constraints found in the literature.

Here we present the outline of this paper. We present
in Sec. II how to find various corrections to the gravita-
tional waveform in a generic way. We follow this up in
Sec. III with a review of the JP and mod.-∆ spacetime
metrics considered in this analysis, along with corrections
to the gravitational waveform. In Sec. IV we lay out the
gravitational waveform used in our analysis, as well as
the Fisher analysis technique of parameter estimation,
followed by an overview of the IMR consistency tests of
GR and the parameterized tests. Section V presents our
main results from these tests, and we finally offer con-
cluding remarks and a discussion in Sec. VI. Throughout
this paper, we have adopted geometric units such that
G = 1 = c. In addition, we utilize the convention that
Ḟ ≡ dF

dt and F ′ ≡ dF
dr , where additional dots and primes

indicate additional consecutive derivatives.



4

II. CORRECTIONS TO GRAVITATIONAL
WAVEFORMS

In this section, we describe how modified BH solu-
tions affect the gravitational waveform. In particular, we
consider corrections to the inspiral, ringdown (through
QNMs) and the final mass and spin of the remnant BH.

A. Inspiral

Among the many corrections to the gravitational wave-
form described in Sec. III, we consider the parameterized
post-Einsteinian (ppE) formalism [81] for corrections to
the inspiral phase and amplitude. In this framework, the
inspiral waveform in frequency domain h̃ can be described
as

h̃ppE = AGR(f)(1 + αppEu
appE)ei[ΨGR(f)+βppE ubppE ], (1)

where ΨGR is the GR phase and u = (πMf)1/3 is the ef-
fective relative velocity of the compact objects with GW
frequency f . M ≡ Mtη

3/5 is the chirp mass with the
total mass Mt = m1 + m2 and the symmetric mass ra-
tio η ≡ m1m2/M

2
t , and mA being the mass of the Ath

body. The ppE parameters αppE (βppE) determine the
magnitude of the amplitude (phase) modifications to the
waveform entering at appE (bppE) powers of u 2.

We now describe how to compute the ppE parame-
ters for a given metric, following and slightly modify-
ing App. A of [82]. The calculation below is similar to
that in [77], but has been extended for a more generic
correction in the metric. In particular, for the two ex-
ample metrics that we consider in this paper, the dom-
inant modifications to the binary evolution comes from
the correction to the (t, t) component of the metric, i.e.
the Newtonian potential. First, we make an assumption
that such a metric component is given by

gtt = −1 +
2M

r

(
1 +A

Mp

rp

)
+O

(
M2

r2

)
, (2)

where M is the mass of a BH and the parameters
(A,p) characterize the leading correction to the poten-
tial. Then, the reduced effective potential of a binary
becomes

Veff = −Mt

r

(
1 +A

Mp
t

rp

)
+

L2
z

2µ2r2
, (3)

where µ is the reduced mass while Lz is the z-component
of the orbital angular momentum. Taking the radial

2 The parameters appE, bppE can be related to the post-Newtonian
(PN) order n by appE = 2n and bppE = 2n − 5. Terms entering
the waveform at nPN order are proportional to (u/c)2n relative
to the leading-order term.

derivative of Veff with respect to r, equating it with 0
and setting Lz = µr2Ω with the orbital angular velocity
Ω, one finds the modified Kepler’s law as

Ω2 =
Mt

r3

[
1 + (p+ 1)A

Mp
t

rp

]
. (4)

This equation can be inverted to yield

r =

(
Mt

Ω2

)1/3(
1 +

p+ 1

3
A v2p

)
, (5)

where v = (MtΩ)1/3 is the relative velocity and we only
keep to leading correction in A. We substitute this back
into Eq. (3) and find the binding energy as

Eb = −1

2
Mu2

[
1− 2(2p− 1)

3
A v2p

]
. (6)

Next, we look at corrections to the GW luminosity. To
take into account such dissipative corrections, one needs
a specific theory. Thus, we neglect such effects in this
paper and assume that the the GW luminosity is given
by the one in GR [77]:

LGW =
32

5
π6µ2r4f6. (7)

This luminosity acquires a conservative correction from
that in Kepler’s law as

LGW =
32

5
η2v10

[
1 +

4(p+ 1)

3
A v2p

]
. (8)

Having these ingredients at hand, we are now ready
to compute the ppE parameters. We first look at the
frequency evolution of the binary, given by

ḟ =
df

dEb

dEb
dt

= − df

dEb
LGW

=
96

5πM2
u11

(
1 + γḟu

2p
)
, (9)

where f = Ω/π and

γḟ =
2

3

(p+ 1)(2p+ 1)

η2p/5
A. (10)

Equation (20) of [82] gives one the ppE parameters in
the phase as3

βppE = − 15

16(2p− 8)(2p− 5)
γḟ

= − 5(p+ 1)(2p+ 1)

8(2p− 8)(2p− 5)

A

η2p/5
, (11)

3 When we substitute A = −4a1 and p = 2 where a1 is the non-
Kerr parameter used in [77, 83], one finds βppE in agreement
with that in [77] modulo a minus sign that originates from the
different convention used for the phase Ψ.
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bppE = 2p− 5. (12)

On the other hand, the amplitude correction can be ob-
tained from Eqs. (5) and (9) and the fact that the am-

plitude is proportional to r2/

√
ḟ :

αppE = −1

3
(p+ 1)(2p− 1)

A

η2p/5
, (13)

appE = 2p. (14)

Notice that αppE and βppE are related to each other as

αppE =
16(p− 4)(2p− 5)(2p− 1)

15(2p+ 1)
βppE. (15)

Both corrections enter at pth PN order relative to the
leading contribution in GR (or Kerr). These expressions
are generic and can be applied to any beyond-Kerr met-
rics, as long as the dominant correction to the metric
comes from the correction to the Newtonian potential.

B. Ringdown

We next explain how to derive modifications to the
ringdown portion of the waveform. Following in the foot-
steps of the post-Kerr formalism developed in Refs. [84–
86], we estimate the QNM ringdown and damping fre-
quencies ωR and ωI in the eikonal limit. In this limit, ωR

and ωI are associated with the light ring’s angular fre-
quency Ω0 and the Lyapunov exponent γ0 (correspond-
ing to the divergence rate of photon orbits grazing the
light ring) at the light ring’s radius r0 as

ωR = 2Ω0 = 2(ΩK + δΩ0), (16)

ωI = −1

2
|γ0| = −

1

2
|γK + δγ0|. (17)

Here

ΩK = ± M1/2

r
3/2
K ± aM1/2

(18)

is the angular frequency of the Kerr light ring4 at

rK = 2M

{
1 + cos

[
2

3
cos−1

(
∓ a

M

)]}
, (19)

while

δΩ0 =∓
(
M

rK

)1/2 [
hϕϕ ±

( rK
M

)1/2

(rK + 3M)htϕ

+
(
3r2

K + a2
)
htt
]
/
[
(rK −M)

(
3r2

K + a2
)]

(20)

4 The upper (lower) sign corresponds to prograde (retrograde) or-
bit.

is the correction to ΩK with hµν representing the metric
deviation away from Kerr. On the other hand,

γK = 2
√

3M
∆KΩK

r
3/2
K (rK −M)

(21)

is the Lyapunov exponent for Kerr with ∆K = r2
K −

2MrK + a2, while δγ0 is the non-Kerr correction given
in Eq. (18) of [85]. See Refs. [87, 88] where a general for-
malism to map ringdown corrections similar to the ones
explained above directly to specific theories of gravity
was developed.

C. Final Mass and Spin

Finally, we discuss modifications to the remnant BH’s
mass and spin, Mf and χf . In GR, one can approxi-
mately estimate such parameters from the initial masses
and spins via the specific energy Ẽ and specific orbital
angular momentum L̃orb [40]

Ẽ = −
gtt + gtφΩ√

−gtt − 2gtφΩ − gφφΩ2
(22)

L̃orb = ±
gtφ + gφφΩ√

−gtt − 2gtφΩ − gφφΩ2
(23)

of a particle of mass µ = m1m2/Mt orbiting the remnant
BH at the inner-most-stable-circular-orbit (ISCO). This
corresponds to solving the equations [89, 90]

µ[1− Ẽ(Mf , χf , rISCO)] = Mt −Mf ,

µL̃orb(Mf , χf , rISCO) = Mt(Mfχf − as − δmaa),
(24)

where δm ≡ (m1 −m2)/Mt is the weighted mass differ-
ence, as,a ≡ 1

2 (m1χ1 ±m2χ2), and rISCO is the location

of ISCO of the final BH. Since Ẽ(Mf , χf , rISCO) is di-
mensionless in the geometric units, the Mf dependence
cancels and it only depends on χf . Given the difference
between Mt and Mf is small, we approximate Mf ≈Mt

in the second equation [89]. We estimate corrections to
Mf and χf in the beyond-Kerr metrics assuming this
picture still holds. The specific orbital energy and an-
gular momentum are obtained such that the expressions
V̄eff = 0 and V̄ ′eff = 0 are simultaneously satisfied for
effective potential V̄eff given as [40]

V̄eff = −
µ2

2

(
gttE2 − 2gtφẼL̃orb + gφφL̃2

orb + 1
)
.

(25)
Corrections to the ISCO radius are further obtained by
solving the expression Ẽ′(rISCO) = 0 where Ẽ is given
by Eq. (22) [40]. Combining these, one can find expres-
sions for the corrections to the remnant black hole’s mass
(δMf ) and spin (δχf ) as

Mf = MK

f + δMf , χf = χK

f + δχf , (26)
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where MK

f and χK

f are the results for Kerr, which we

take to be the ones in [91]. See App. A for the general
expressions for δMf and δχf in an arbitrary spacetime
with metric gX

αβ = gK

αβ + ζhX

αβ .

III. BEYOND KERR SPACETIMES

In this section we discuss the two beyond Kerr space-
times considered in this analysis: the Johannsen-Psaltis
metric introduced in Ref. [37] and a modified version
of Johannsen’s metric in Refs. [40, 59], denoted as the
modified-∆ metric. Both of these are based on the Kerr
metric whose components in Boyer-Lindquist coordinates
are given by

gK

tt = −
(

1− 2Mr

Σ

)
= −∆− a2 sin2 θ

Σ
,

gK

rr =
Σ

∆
,

gK

θθ = Σ,

gK

φφ =

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2 θ

=
[(r2 + a2)2 − a2∆ sin2 θ] sin2 θ

Σ
,

gK

tφ = −2Mar sin2 θ

Σ
= −a(r2 + a2 −∆) sin2 θ

Σ
, (27)

with

Σ ≡ r2 + a2 cos2 θ,

∆ ≡ r2 − 2Mr + a2, (28)

where (r, θ) are the radial and polar coordinates, and M ,
a are the BH’s mass and spin.

We begin with an introduction to each spacetime, fol-
lowed by the theoretical framework developed in the cur-
rent analysis used to calculate the various non-Kerr cor-
rections to the binary system present in each spacetime
following Sec. II.

A. Johannsen-Psaltis metric

We begin our discussion on the JP metric, introduced
by Johannsen and Psaltis in Ref. [37]. In this article, the
authors begin with the Kerr metric gK

µν in Eq. (27) and
introduced a generalized parametric deviation h(r, θ) of
the form

h(r, θ) =

∞∑
k=0

(
ε2k + ε2k+1

Mr

Σ

)(
M2

Σ

)k
(29)

for some non-Kerr deviation parameters εk into each
metric element. By further applying the constraint of
asymptotically flat spacetime at radial infinity, as well

as observational constraints on the parameterized post-
Newtonian framework [92], the deviation function h(r, θ)
was reduced to a single non-Kerr parameter ε3

h(r, θ) = ε3
M3r

Σ2
. (30)

Assuming that deviations from Kerr are small and keep-
ing only up to linear order in ε3, the resulting JP metric
gJP
µν can be written as [85]

gJP

tt = −
(

1− 2Mr

Σ

)
− ε3

M3(r − 2M)

r4
,

gJP

rr =
Σ

∆
+ ε3

M3(r − 2M)

∆2
,

gJP

θθ = Σ,

gJP

φφ =

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2 θ + ε3

a2M3(r + 2M)

r4
,

gJP

tφ = −2Mar sin2 θ

Σ
− ε3

2aM4

r4
. (31)

With this choice of h(r, θ), the JP metric now allows
one to probe strong-field gravity to any order of spin
in a parameterized way. Observe how in the limit of
ε3 → 0, we recover the original Kerr metric for a spinning
BH. See Refs. [79, 80] for constraints on the JP deviation
parameter ε3 from BH accretion disk thermal spectra,
found to be loosely ε3 / 5.

We next identify the dominant contribution to the bi-
nary evolution. For a particle orbiting around a BH, the
angular velocity Ω is determined from the radial deriva-
tive of gtt, gtφ and gφφ [40] as

Ω =
−∂r ±

√
(∂rgtφ)2 − ∂rgtt∂rgφφ

∂rgφφ
. (32)

When we expand the JP metric components about
r = ∞, one finds that the leading correction to ∂rgtt,
∂rgtφ and ∂rgφφ enters at O(M2/r2), O(M3/r3) and
O(M5/r5) relative to the leading Kerr contribution re-
spectively. Thus, the dominant correction comes from gtt
and we find

AJP = −ε3
2
, pJP = 2. (33)

Now let us lay the groundwork for the JP modifica-
tions to the gravitational waveform by applying the re-
sults presented in Sec. II. First, the ppE parameters are
given by

βJP

ppE =
75ε3

64η4/5
, bJPppE = −1,

αppE
JP =

3ε3
2η4/5

, aJP

ppE = 4, (34)

and the corrections enter at 2PN order. This is of the
same order as the correction for the beyond-Kerr metric
proposed in Ref. [83], as found in Ref. [77]. Next, the
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QNM corrections in a JP spacetime to first order in JP
deviation parameter, and quadratic in spin are given by

ωJP

R = ωK

R + ε3

(
1

81
√

3M
+

10

729M
χ+

47

1458
√

3M
χ2

)
,

ωJP

I = ωK

I − ε3
(

1

486M
χ+

16

2187
√

3M
χ2

)
, (35)

for unitless spin parameter χ ≡ a/M , and Kerr QNM
frequencies ωK

R,I. It is interesting to note that ωI does not
acquire corrections if the BH is non-spinning. Finally,
corrections to the final mass and spin are given by

δM JP

f = −ε3
µ

139968

[
864δχJP

f

(
5
√

2χK

f + 3
√

3
)

+ 545
√

2
(
χK

f

)2
+ 324

√
3χK

f + 216
√

2
]
, (36)

δχJP

f = −ε3
1

384
√

3κµ

[
420µMtχaδm + 420µχaλ− 152

√
2κµ+ 2416

√
3µ2 + 420µδmλχs

+ 945
√

3M2
t − 315κMt + 1086

√
6µMt + 420µMtχs

]
, (37)

which is valid to linear order in ε3 and to quadratic order in the final spin, and

κ ≡
√

8
√

3µχa (Mtδm + λ) + 8
√

3µχs (δmλ+Mt) + 3
(

40µ2 + 9M2
t + 12

√
2µMt

)
, (38)

λ ≡
√
Mt(Mt − 4µ). (39)

This is derived from rISCO, which, to linear order in JP
deviation and quadratic in BH spin, is given by

rJP

ISCO = rK

ISCO

[
1− ε3

(
1

27
+

37

324
√

6
χ+

1229

23328
χ2

)]
,

(40)
with Kerr result rK

ISCO [93].

B. modified-∆ metric

Now let us discuss the newly constructed mod.-∆ met-
ric, following in the footsteps of Johannsen in Refs. [40,
59]. We begin in Ref. [40], in which 4 free functions A1(r),
A2(r), A5(r), and f(r) are introduced to the Kerr space-
time, parameterically describing deviations from GR,
as shown in Eq. (51) of [40]. Such a metric is found
to be stationary, axisymmetric, asymptotically flat, ad-
mits freely-rotating BHs, reduces to the Kerr metric for
A1(r) = A2(r) = A5(r) = 1, and f(r) = 0, and possess
a third constant of motion, a Carter-like constant [94].
This symmetry, as in the Kerr metric, gives rise to sepa-
rable, non-chaotic geodesic equations for particle motion.

Following this, in Ref. [59], Johannsen further modi-
fied the obtained spacetime metric by introducing a pure-
deviation β from the Kerr metric, by substituting

∆→ ∆̄ ≡ ∆ + βM2 (41)

into the metric found in Eq. (51) of Ref. [40]. We fur-
ther equate all other free functions to their Kerr values,
A1(r) = A2(r) = A5(r) = 1, and f(r) = 0, resulting in

the modified-∆ metric gMD
µν with elements given by5

gMD

tt = −
(

1− 2Mr

Σ

)
− βM

2

Σ
,

gMD

rr =
Σ

∆
− βM

2Σ

∆2
,

gMD

θθ = Σ,

gMD

φφ =

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2 θ

− β a
2M2 sin4 θ

Σ
,

gMD

tφ = −2Mar sin2 θ

Σ
+ β

aM2 sin2 θ

Σ
, (42)

where we assume that the deviation from Kerr is small
and we keep only to linear order in β. This spacetime
is entirely parameterized by the single, pure-deviation
parameter β, reduces to the Kerr metric for β = 0, and
is useful as it can be mapped to BH solutions other than
Kerr. Such metrics include the Kerr-Newman metric for
charged BHs [95], the RS-II braneworld BHs [44], and
those in the modified gravity (MOG) [96].

Now let us consider the various corrections to the gravi-
tational waveform present in the mod.-∆ spacetime. Just
like in the case of the JP metric, the leading correction
comes from gMD

tt and

AMD = −β
2
, pMD = 1, (43)

5 This metric can also be obtained by applying the replacement in
Eq. (41) to Eq. (27).
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which means that the correction enters at 1PN order6

First, the ppE parameters entering in the inspiral wave-
form are given by

βMD

ppE =
5β

48η2/5
, bMD

ppE = −3,

αMD

ppE = − β

3η2/5
, aMD

ppE = 2. (44)

Next, the ringdown frequencies are modified as

ωMD

R = ωK

R + β

(
1

9
√

3M
+

2

27M
χ+

61

486
√

3M
χ2

)
,

ωMD

I = ωK

I + β

(
1

108
√

3M
− 1

243M
χ− 11

729
√

3M
χ2

)
.

(45)

Finally, the corrections to the final mass and spin are
given by

δMMD

f = −β µ

7776

[
48δχMD

f

(
5
√

2χK

f + 3
√

3
)

+ 119
√

2
(
χK

f

)2
+ 84
√

3χK

f + 72
√

2
]
, (46)

δχMD

f = −β 1

256
√

3κµ

[
876µMtχaδm + 876µχaλ− 286

√
2κµ+ 5288

√
3µ2 + 876µδmλχs

+ 1971
√

3M2
t − 657κMt + 2172

√
6µMt + 876µMtχs

]
, (47)

which are valid to linear order in β and quadratic order
in χK

f . We used the ISCO radius expression of

rMD

ISCO = rK

ISCO

[
1− β

(
1

4
+

1

2
√

6
χ+

77

432
χ2

)]
, (48)

which is valid to quadratic order in spin.

IV. PARAMETER-ESTIMATION TECHNIQUES

In this section we introduce the technical methods and
formalisms utilized in this analysis. In particular, we
discuss the gravitational waveform, the Fisher analysis
parameter estimation method, the IMR consistency tests
of GR, the parameterized tests of GR and finally the
detectors and GW events considered.

A. Gravitational waveform

Let us begin by discussing our gravitational waveform
template. We utilize the non-precessing, sky-averaged
IMRPhenomD GR waveform obtained via the NR fits of
Refs. [91, 97]. Typically, the IMRPhenomD waveform is
parameterized in terms of the (M, η, χa, χs) mass and

6 The β-correction enters at O(M2/r2) order higher than the lead-
ing in ∆, and indeed, the leading correction to gtt also enters at
O(M2/r2) order higher than the leading contribution. However,
such a leading term is a constant and the β-correction enters only
at O(M/r) order higher than the leading Newtonian potential.

spin parameters, where χs,a = (χ1 ± χ2)/2 is the sym-
metric and anti-symmetric dimensionless spins. How-
ever, in this analysis we instead re-parameterize it by
computing the expressions for M(Mf , η, χs, χf , ζ) and
χa(Mf , η, χs, χf , ζ), where Mf and χf are the remnant
BH’s mass and spin that include corrections from Kerr
computed in the following section. ζ = ε3 or β repre-
sents the deviation parameter from Kerr. By substituting
in the above expressions, we obtain the IMRPhenomD
waveform parameterized instead by the (Mf , η, χs, χf )
mass and spin parameters, allowing us to directly gener-
ate multi-dimensional posterior probability distributions
between the final mass and spin Mf and χf . The result-
ing template waveform consists of

θa = (lnAGR, φc, tc,Mf , η, χf , χs, ζ) , (49)

where AGR ≡ M5/6
z√

30π2/3DL
is a generalized, sky-averaged

amplitude in GR with redshifted chirp mass Mz ≡
M(1 + z) for redshift z, DL is the luminosity distance,
while φc and tc are the coalescence phase and time.

We then modify this IMRPhenomD waveform by in-
cluding corrections explained in Secs. II and III. Namely,
we first modify the inspiral portion by introducing the
ppE parameters. We next modify the ringdown and
damping frequencies. For the Kerr contribution to these
frequencies, we use those given in [91]. Finally, we endow
corrections to the final mass and spin.

B. Parameter estimation

Now let us discuss the parameter estimation method
utilized in this investigation. Similar to Refs. [60, 61, 98]
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by the same authors, we use a Fisher-based analysis to
estimate the final mass and spin posterior probability
distributions used in the IMR consistency test. Such an
analysis is not as robust as the comprehensive Bayesian
one used in e.g. [1, 16, 66, 67], though it is useful for
order-of-magnitude parameter estimations, without the
significant time constraint of a Bayesian analysis. This
topic was thoroughly investigated in Ref. [2] and addi-
tionally Refs. [99, 100] by the same authors, where it
was found that for loud enough events, the results well
approximate their Bayesian counterpart. At both 2PN
(for the JP metric) and 1PN (for the MD metric) or-
ders, the former reference found very strong agreement
between the two methods for a GW150914-like event with
a signal-to-noise-ratio (SNR) of 25.1, with such agree-
ments only strengthening considerably for the future de-
tectors with loud events considered in this analysis. As
we state in Sec. VI, there are several caveats in our analy-
sis. Accordingly, the goal of this paper is to find an order-
of-magnitude estimate on current and future bounds on
beyond-Kerr parameters. For this aim, Fisher results are
sufficient.

Here we briefly introduce the Fisher analysis method of
parameter estimation discussed thoroughly in Refs. [68–
70, 101]. The statistical uncertainties on template pa-
rameters θa can be shown to be approximately

∆θi =

√
Γ̃−1
ii , (50)

with effective Fisher matrix Γ̃ij = Γij + (σ
(0)
θi )−2δij .

σ
(0)
θi represent the root-mean-square uncertainties for the

prior probability distributions (assumed to be Gaus-
sian [68, 101]), and the Fisher information matrix is de-
fined as

Γij ≡

(
∂h

∂θi

∣∣∣∣∣ ∂h∂θj
)
. (51)

Here the inner product (a|b) is weighted by the detector
noise spectral density Sn(f) like so

(a|b) ≡ 2

∫ fhigh

flow

ã∗b̃+ b̃∗ã

Sn(f)
df, (52)

with fhigh,low representing the detector-dependent upper
and lower cutoff frequencies, as tabulated for each event
considered in this analysis in Table II. In particular, for
ground-based detectors the lower cutoff frequencies are
given by the detector-dependent values of 23 Hz and 1
Hz for aLIGO O2 and CE, while the upper cutoff frequen-
cies are chosen such that the GW spectrum is sufficiently
small compared to the detector sensitivity Sn(f). For
space-based detectors, the lower frequency is chosen to
be the frequency four years prior to merger f4yrs (corre-
sponding to LISA’s conservative mission lifetime) as can
be found e.g. in Ref. [69]. Finally, if one further desires
to combine the detections from multiple detectors with

Fisher matrices ΓA and ΓB, the effective Fisher matrix
can be shown to be

Γ̃tot
ij = ΓA

ij + ΓB
ij +

1

(σ
(0)
θi )2

δij . (53)

Reference [102] shows how one can estimate the “the-
oretical”, or systematic errors present in the extraction
of template parameters θa due to mismodeling present in
the template waveform. In particular, one can approx-
imate the systematic errors present in θa by assuming
use of GR template with Kerr BHs, while an alternative
spacetime is in fact the correct theory described by na-
ture. The resulting expression for systematic errors is
given by

∆thθ
a ≈

(
Γ−1

)ab (
[∆A+ iAGR∆Ψ] eiΨGR |∂bhGR

)
, (54)

where AGR, ΨGR, and hGR are the amplitude, phase, and
waveform for Kerr BH binaries, and ∆A ≡ AGR − Aζ
and ∆Ψ ≡ ΨGR − Ψζ are the differences in amplitudes
and phases between the Kerr and beyond-Kerr expres-
sions. In the following analysis, we steadily increase the
value of ζ in the JP or mod. ∆ spacetimes to increase the
systematic mismodeling uncertainties between it and the
one in a Kerr spacetime.

Next we present the prior template probability distri-
butions, and fiducial parameter values used in our anal-
ysis. We impose Gaussian prior distributions with root-

mean-square errors σ
(0)
θa given by |φc| ≤ π, |χs| ≤ 1, and

|χf | ≤ 1. We use fiducial template values such that η
and χs correspond to the initial parameters of the GW
event being considered, Mf and χf correspond to those
predicted by the expressions computed in the following
section, and φc = tc = 0.

Finally, we present the specific detectors and GW
events considered in this analysis. Specifically, we re-
gard current-generation ground-based detector aLIGO
O2 [4] (whose sensitivity is similar to that for the cur-
rent run O3), the future ground-based detector Cosmic
Explorer (CE) [19], and finally the future space-based de-
tector LISA [21], with detector sensitivities all displayed
in Ref. [99]. In particular, we focus our attentions on
the “golden” GW150914-like [5] events, more massive
GW170729-like [71] events, EMRIs7. and SMBHBs. For
the former two events, we also consider the multi-band

7 Such EMRIs are not valid in the NR fits presented in the IM-
RPhenomD waveform, which have been calibrated to NR sim-
ulations with mass ratios of only up to 1:18. To take this into
account in the parameterized tests, we remove all NR fits from
the gravitational waveform, and cut-off all frequency integrations
before the merger-ringdown, at fISCO. Namely, we use the Tay-
lorF2 waveform in GR up to 3.5PN order included in the phase
and introduce the ppE corrections to account for the inspiral
corrections. Thus, such estimates are more conservative than
the other ones presented in this paper, as we only consider the
inspiral portion of the waveform.
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Event m1 [M�] m2 [M�] χ1 χ2 DL [Mpc]
SNR flow [Hz] fhigh [Hz]

(O2, CE, CE+LISA) (O2, CE, LISA) (O2, CE, LISA)

GW150914 [5] 35.8 29.1 0.32 −0.44 410 (25.1, 1930, 1940) (23, 1, 0.02) (5 × 103, 5 × 103, 1)

GW170729 [71] 51.0 31.9 0.60 −0.57 2,850 (10.7, 405, 410) (23, 1, 0.01) (5 × 103, 5 × 103, 1)

EMRI 106 10 0.90 −0.50 3,000 18.7 10−3 1

SMBHB 106 5 × 104 0.90 −0.90 3,000 1830 6 × 10−5 1

TABLE II. List of GW events considered in the following analysis, along with their masses m1,2, dimensionless spins χ1,2, the
luminosity distance DL and SNR (for aLIGO O2, CE, CE+LISA), and finally the upper and lower cutoff frequencies flow,high.
For the latter quantity, we list the frequencies for the aLIGO O2, CE, and LISA detectors respectively. For the first two events,
we list the luminosity distance corresponding to the central values measured by the LIGO/Virgo Collaborations, though we
scaled them appropriately so that the SNRs become the ones listed here using the waveform and the noise curves described in
this paper. For the final two events EMRI and SMBHB, the SNR and frequency cutoffs are listed only for LISA.

detections combined with both CE and LISA to further
enhance the number of GW cycles observed. See Table II
for a comprehensive list of GW events considered in this
analysis, in addition to their source properties (masses,
spins, luminosity distances, SNRs, and detector cutoff
frequencies).

C. IMR consistency test

Finally, we introduce the IMR consistency tests of
GR [1, 16, 66, 67, 100] used to test our resolving power of
non-Kerr metrics. In accordance to the no-hair theorem
of GR, the remnant BH formed from the coalescence of
two BHs with masses and spins mA and χA can be de-
scribed entirely by only its final mass Mf (m1,m2, χ1, χ2)
and final spin χf (m1,m2, χ1, χ2). Each of these ex-
pressions can be computed using the NR fits found in
Ref. [91]. If GR was indeed the true theory of grav-
ity present in nature and BHs are Kerr, the final mass
and spin parameters can be independently and accu-
rately predicted using only the inspiral GW signal (I,
f < fISCO = (63/2πMt)

−1), but also from the merger-
ringdown signal (MR, f > fISCO). Alternatively, if an-
other metric described the spacetime we occupy (say JP
or mod.-∆), the Mf and χf obtained from each portion
of the GW signal would begin to disagree under the as-
sumption that the compact objects are Kerr BHs. In this
investigation, we predict the size of JP or mod.-∆ devi-
ations from GR necessary to become observable in the
IMR consistency test as above.

Let us briefly present the application of the IMR con-
sistency test, with a more thorough description left to
Refs. [60, 61, 99, 100] by the same authors. To begin,
the two-dimensional Gaussian probability distributions
PI,MR(Mf , χf ) between BH mass and spin parameters
are estimated using the Fisher analysis techniques in-
troduced in Sec. IV B, from each portion I and MR of
the gravitational waveform individually. For this step
of the IMR consistency test, we choose ζ = 0 corre-
sponding to a Kerr waveform. Further, systematic uncer-
tainty shifts in each remnant BH parameter ∆thXI,MR ≡
(δthMf ,∆thχf ) are introduced as described in Sec. IV B.

Such systematic uncertainties are calculated via the dif-
ference (i.e. the waveform mismodeling) between the
assumed Kerr waveform (ζ = 0), and the beyond-Kerr
waveform (ζ 6= 0). Finally, the I and MR probability
distributions for the final-state variables X ≡ {Mf , χf}
can be written as

PI,MR(X) ≡ 1

2π
√
|ΣI,MR|

× exp

[
−1

2
(X −XGR −∆thXI,MR)

T

×Σ−1
I,MR (X −XGR −∆thXI,MR)

]
, (55)

with covariance matrices ΣI,MR and the GR predictions
XGR for the final state variables. The resulting agree-
ment with the GR values of XGR, as computed by the
NR fits of [91] (simply speaking, comparing the statisti-
cal uncertainties to the systematic ones), as well as with
the ones between I and MR, indicates the degree with
which the acquired signal agrees with that predicted by
GR.

Such probability distributions contain both statisti-
cal uncertainties

√
Σ deterministic of their size, and

systematic uncertainties ∆thXI,MR indicating their off-
set from the GR values of remnant BH mass and spin.
In the following analysis, similar to that presented in
Refs. [60, 61, 99, 100] by the same authors, we intro-
duce each correction computed in the following section
to the gravitational waveform, and then slowly vary the
magnitudes of the JP and mod.-∆ deviation parameters
ζ. The deviation parameters are increased until the 90%
posterior probability distributions obtained in each por-
tion of the gravitational waveform begin to disagree with
each other. At this point, one could definitively approxi-
mate the magnitude of non-Kerr parameters required to
present themselves as evidence of being a viable beyond-
GR spacetime.

D. Parameterized tests

In this section we provide a brief overview of the pa-
rameterized tests of GR used to compare results from the
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IMR consistency test. The so-called parameterized test
of GR is a useful tool that allows one to obtain upper-
bounds on template parameters (e.g. ζ) that parameter-
ize the gravitational waveform beyond-Kerr in a simple
way. Typically, such tests rely only on inspiral correc-
tions to the inspiral waveform via the ppE formalism [81].
We extend this usual format by further including wave-
form corrections to the ringdown, and the remnant BH
properties as described in Sec. II. All such corrections are
entirely parameterized by the single non-Kerr parameter
ζ, providing for a simple test of the “non-Kerr” behav-
ior of a given signal. We then make use of the Fisher
analysis techniques described in Sec. IV B with a fiducial
value of ζ = 0 (Kerr). The corresponding root-mean-
square uncertainties on ζ effectively describe the amount
of “wiggle room” the parameter can vary within, while
still remaining consistent with the detector’s noise. We
can therefore take such variation as an upper bound on
the beyond-Kerr parameter ζ.

V. RESULTS

In this section we present the primary results obtained
in this analysis, first in the JP spacetime, followed by the
mod.-∆ spacetime. See Table I for a summary of all esti-
mated constraints in both the JP and mod.-∆ spacetimes
obtained from both (i) the IMR consistency tests of GR,
and (ii) the parameterized tests of GR for comparison.

A. JP spacetime

1. IMR consistency tests

Let us begin by performing the IMR consistency test
in the JP spacetime, to predict how well one can observe
deviations from GR. By following the procedure outlined
in Sec. IV C, we perform the IMR consistency test for sev-
eral consecutively increasing values of the JP deviation
parameter ε3 until the inspiral and merger-ringdown 90%
confidence interval probability distributions begin to dis-
agree. Only then can one provide evidence of non-Kerr
behaviors in the gravitational signal.

We start with an investigation into the GW events
already detected on the aLIGO O2 detector, namely
GW150914 and GW170729. We perform the IMR con-
sistency test for several values of ε3 injected into the
gravitational waveform with the aLIGO O2 GW detec-
tor. We find that for GW150914-like (GW170729-like)
events, when ε3 ≈ 7 (ε3 ≈ 10) the systematic uncer-
tainties begin to overtake the statistical errors, and the
I and MR contours begin to disagree. Such constraints
on ε3 are on the same order of magnitude as those from
x-ray observations presented in [79, 80]. However, they
fail to satisfy the small-deviation assumption made in
the derivation of ppE parameters, thus the resulting con-
straints are less valid than the following ones presented

for future GW detectors. As a result of this we do not
present the resulting contours in this paper, however the
constraints are still tabulated in Table I for reference.

We next focus our attention on future observations of
the same GW events GW150914 and GW170729. We
now consider such events as detected by the future CE
detector, as well as the increased observation from the
multiband observation between ground- and space-based
detectors CE and LISA. Figure 1 displays the results of
the IMR consistency test in such cases. For the CE case,
we find that when ε3 ≈ 0.05 and ε3 ≈ 0.6, we can be-
gin to distinguish the inspiral and merger-ringdown sig-
nals for GW150914- and GW170729-like events respec-
tively. Notice that the plot range is much smaller than
that in the top row for aLIGO. This means that the er-
ror ellipses are much smaller for the CE case than the
aLIGO case due to larger SNRs. For the multiband case,
we find that while the inspiral has significantly smaller
statistical uncertainties than the merger-ringdown (due
to the low-frequency space-based observations by LISA),
its systematic uncertainties are much larger. This al-
lows one to constrain deviation parameters to ε3 ≈ 0.02
and ε3 ≈ 0.05 for GW150914- and GW170729-like events
respectively. Such constraints are about two-orders-of-
magnitude stronger than the existing bounds presented
by [79, 80].

Finally, we consider the more extreme events de-
tectable in the low frequency bands by LISA: EMRIs
and SMBHBs. Figure 2 presents the resulting IMR con-
sistency test for such two events involving massive BHs.
When considering EMRI systems, we find that the inspi-
ral signal is very deterministic for the remnant BH prop-
erties, with such contours orders of magnitude smaller
than their merger-ringdown counterparts. With a ma-
jority of systematic uncertainties present in the inspi-
ral signal, we find that we can constrain ε3 ≈ 2 × 10−3

– a few orders-of-magnitude stronger than those found
in [79, 80]. These constraints are much stronger because
in high mass-ratio inspirals, the quadrupole radiation is
smaller, thus the orbit decays slower and the number of
GW cycles is greatly increased compared to equal-mass
systems, so the non-Kerr effect is significantly enhanced.
This can be seen by the factor of η−4/5 present in the ppE
phase parameter in Eq. (34), which is very large for large
mass-ratio systems (∼ 104 for EMRIs, and only ∼ 3 for
i.e. GW150914). However, as noted previously, we point
out that such results are not as reliable due to the IMR-
PhenomD NR fits only being calibrated up to mass ratios
of 1:18. Finally, we see that for SMBHB events detected
by LISA, we can constrain ε3 ≈ 0.02, much weaker than
those from EMRIs, and similar to those found by future
GW170729 and GW150914 observations.

2. Parameterized tests

For comparison we perform a parameterized test of GR
for the deviation parameter ε3. To do so, we include ε3
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FIG. 1. IMR consistency test for the the “golden event” GW150914 (left) and the massive event GW170729 (right) in the JP
spacetime using the CE detector (top), and through the multiband observation between CE and LISA (bottom). In particular,
in each panel we plot the 90% confidence regions in the (Mf , χf ) plane as observed from (i) only the inspiral (I) signal, and
(ii) only the merger-ringdown (MR) signal, for consecutively increasing values of the JP deviation parameter ε3. Only when
such probability distributions begin to disagree with each other can one decisively admit there may be evidence of beyond-Kerr
spacetimes present.

into the template waveform with fiducial value of 0, and
perform a Fisher analysis to estimate root-mean-square
uncertainties on ε3. Such results are displayed in Table I
in comparison to all of the constraints found via the IMR
consistency test as presented here. We find that they give
comparable bounds on ε3 for each case considered, even
for EMRIs. In this case, the IMRD consistency test is less
valid as mentioned above, while in the parameterized test
we used the TaylorF2 waveform with the ppE correction
and stopped all integrations before the merger-ringdown.

Let us now investigate the effects of including ringdown
and remnant BH corrections into the waveform. In other
words, how much does this change our results if only the
inspiral corrections were included as is commonly done
in parameterized tests?

We begin by performing parameterized tests in two
separate cases: (i) with only ppE inspiral corrections
present within the entire inspiral-merger-ringdown wave-
form, and (ii) with inspiral, ringdown, and remnant BH
property corrections present in the waveform, as was

Inspiral-corr. only all corrections

GW150914 (CE) 0.0586 0.0509

GW170729 (CE) 0.464 0.406

SMBH (LISA) 0.0101 0.0098

TABLE III. Comparison between constraints on JP param-
eter ε3 when (left) only inspiral corrections to the waveform
are included, and (right) when all of the inspiral, ringdown,
and remnant BH property corrections are included for pa-
rameterized tests as discussed in Sec. II. Constraints for the
GW150914- and GW170729-like events are assumed to be
made with the third-generation detector CE for demonstra-
tion purposes, while the SMBH ones are assumed to have
been observed with space-based detector LISA. Observe that
additional corrections do not give significant contribution on
bounding beyond-Kerr spacetimes with parameterized tests.

done in the main analysis. For demonstration purposes,
we choose the third-generation detector CE observing
GW150914-like events, GW170729-like events, and then



13

9.980×10
5

1.000×10
6

1.002×10
6

M
f
 [M

O.
 ]

0.898

0.9

0.902
χ

f

MR
I

GR

ε
3
 = 0

ε
3
 = 0.001

ε
3
 = 0.002

ε
3
 = 0.003

EMRI, LISA

1.080×10
6

1.100×10
6

1.120×10
6

1.140×10
6

M
f
 [M

O.
 ]

0.9

0.92

0.94

0.96

0.98

χ
f

MR
I

GR

ε
3
 = 0

ε
3
 = 0.009

ε
3
 = 0.02

ε
3
 = 0.05

SMBHB, LISA

FIG. 2. Similar to Fig. 1, but for the EMRI and SMBHB GW
events.

space-based detector LISA observing SMBHB events as
considered in the main analysis. See Table III for a sum-
mary of obtained results in each case. We see that for the
smaller-mass events GW150914 and GW170729, the two
cases differ by up to ∼ 15%. As expected, the large-mass
SMBH event observed by LISA only differs by ∼ 3% due
to the low-frequency window available to space-based de-
tectors, where the inspiral corrections make the largest
difference. We conclude that such additional corrections
to the ringdown and remnant BH properties in the wave-
form do not have significant contribution on constraining
beyond-Kerr spacetimes with parameterized tests.

In fact, a similar feature can be seen for the IMR con-
sistency tests. Since the systematic error in the merger-
ringdown portion is typically smaller than that of the
inspiral, even if we do not include corrections to the ring-
down and final BH’s mass and spin, we would still find
bounds that are comparable to those presented in Ta-
ble I. These findings give us supporting evidence that in
many cases, the dominant contribution comes from the
corrections to the inspiral, as considered e.g. in [2].

B. Modified-∆ spacetime

Now we repeat the analysis performed in Sec. V in
the mod.-∆ spacetime. Because the results here are very
similar to those found in the preceding section, we only
outline a brief overview here.

1. IMR consistency tests

We begin by performing the IMR consistency test on
GW150914-like and GW170729-like events observed on
both CE, as well as with the multi-band observation be-
tween CE and LISA. Figure 3 presents the resulting 90%
credible error ellipse in the (Mf , χf ) plane for each case.
Similar to above in the JP spacetime, we observe that
for O2, we can detect non-Kerr effects on GW150914-
like events for β ≈ 2, and significantly higher at β ≈ 14
for GW170729-like events, due to the large inspiral un-
certainty resulting from the large BH masses. Such re-
sults are still less reliable than the following ones due to
the large deviations, and we do not present the resulting
contours, however the constraints are still tabulated in
Tab. I. Following this, we see that when observed on fu-
ture detector CE, GW150914-like events can resolve non-
Kerr effects at a significantly smaller β ≈ 0.05, and a very
similar value of β ≈ 0.06 for GW170729-like events. Fi-
nally, we observe constraints of β ≈ 5×10−3 (GW150914-
like) and β ≈ 0.05 (GW170729-like) for the multiband
observations between CE and LISA. The former strong
constraint is a result of the small inspiral statistical un-
certainties and large systematic uncertainties.

Following this, we repeat the IMR consistency test for
LISA observations of EMRIs and SMBHBs. Heeding the
warning discussed previously in Sec. V A about the valid-
ity of EMRIs in the IMRPhenomD waveform, we present
these results in Fig. 4. Once again, the inspiral statistical
uncertainty on EMRI observations is minuscule, resulting
in the strong constraint of β ≈ 2× 10−4. We observe in-
consistencies between the inspiral and merger-ringdown
signals in a SMBHB event at β ≈ 10−3. Finally, we note
that in the mod. ∆ spacetime, typically the direction of
systematic uncertainties in the (Mf , χf ) plane are oppo-
site to those in the JP spacetime. We found that this is
primarily due to the different PN orders at which each
spacetime alters the inspiral waveform at (2PN order in
JP, 1PN order in mod. ∆). This effect is dominant among
the corrections provided in this analysis, and serves to
shift the direction of systematic uncertainties present in
each spacetime.

2. Parameterized tests

In addition, we perform a set of parameterized tests of
GR for each case considered here for comparison to the
ones found with the IMR consistency test. As in the JP
case, we find that such bounds are comparable for each
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FIG. 3. Same as Fig. 1 but under the mod.-∆ spacetime instead, with β being the beyond-Kerr deviation parameter.

case discussed in this section. As discussed in Sec. V A,
the IMR consistency test is less valid due to the invalid
use of the IMRPhenomD waveform, while such pieces
were removed for the parameterized test. We refer the
reader to Table I for a comprehensive display of all results
found in this section.

VI. CONCLUSION AND DISCUSSION

Parameterized BH solutions to modified Einstein’s
field equations allow us to test the extreme-gravity
regime of GR in a model-independent way. One can ob-
tain such a spacetime metric by parametrically deviating
away from the famous Kerr spacetime metric with one or
more parameters. From here, parameterized corrections
to the gravitational waveform for inspiraling BHs can be
predicted. Once one has these tools in hand, future GW
signals can be tested against the beyond-Kerr metric by
(i) IMR consistency tests (comparing the consistency be-
tween the inspiral and merger-ringdown portions of the
signal) and (ii) parameterized tests.

In this paper, we presented the necessary recipe re-
quired to estimate corrections to the inspiral, ringdown,
and remnant BH properties of the gravitational wave-

form, and then test future GW signals against this tem-
plate with the above two tests. In particular, we extended
the work of Refs. [60, 61] by the same authors where this
was done for the specific example of the Einstein-dilaton
Gauss-Bonnet theory of gravity. We first derive correc-
tions in a generic way without specifying the beyond-
Kerr spacetime. As an application, we focused on the JP
metric introduced by Johannsen and Psaltis [37] and the
modified-∆ metric, modified from Johannsen’s metric in
Refs. [40, 59]. Each spacetime metric considered here
are singly-parameterized beyond the Kerr metric with
parameters ε3 and β respectively. Such spacetimes can
then be mapped to BH solutions other than Kerr found
in the literature.

With the arbitrary JP and mod.-∆ metrics in hand,
we next estimated corrections to the gravitational wave-
form for inspiraling BHs immersed in a JP or mod.-∆
spacetime. Specifically, we found corrections to the GW
amplitude and phase in the inspiral, the ringdown and
damping QNM frequencies, the orbital energy and angu-
lar momentum of a particle about the BH, and finally the
remnant BH’s mass and spin. Each of the above-listed
corrections are parameterized by the single parameters ε3
and β in the JP and mod.-∆ spacetimes respectively, and
can be accordingly added into the gravitational waveform
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FIG. 4. Same as Fig. 2 but within the mod.-∆ spacetime
with deviation parameter β.

template.

We next performed the IMR consistency test to predict
the magnitude of ε3 (β) required to differentiate between
Kerr and JP (mod.-∆) GW signals. Within this test,
we first computed statistical uncertainties on the rem-
nant BH mass and spin parameters from the inspiral and
merger-ringdown signals independently, using a Fisher
analysis. We next estimated the systematic uncertainties
in each measurement representing the waveform mismod-
eling uncertainty present by using a GR template with
Kerr BHs, and yet observing a GW signal with a given
magnitude of ε3 (β) present within. We then increased
the magnitude of ε3 (β) until the inspiral and merger-
ringdown estimates of remnant BH properties begin to
disagree to a statistically significant level. Only at this
point can we reliably claim the observed GW signal in-
deed has emergent JP (mod.-∆) effects present within.
We also computed bounds on ε3 (β) using the parame-
terized test and compared them with those from the IMR
consistency test.

We now discuss our findings. We performed the IMR
consistency test in each considered spacetime metric for
the current-generation aLIGO O2 detector, the third-
generation CE detector, the future space-based detector
LISA, and finally the multi-band observation between the

latter two. As summarized in Table I, we first found that
observations by the O2 detector can detect JP (mod.-
∆) deviations from the GR waveform for magnitudes of
ε3 (β) on the order of unity, in agreement with current
constraints. For future GW detectors CE and LISA, we
found that constraints about two orders-of-magnitude
stronger can be claimed. Finally, for the observation
of EMRIs by the space-based detector LISA, we found
that constraints three orders-of magnitude stronger can
be made. Such strong constraints occur because EMRI
BH systems radiate GWs less compared to comparable-
mass systems with the same total mass, thus increasing
the amount of time JP (mod.-∆) effects are observed for,
which results in a factor of η−4/5 ∼ 104 for EMRI systems
in the ppE correction to the inspiral waveform.

In this analysis, several assumptions were made that
somewhat weaken our results. In particular, we have
assumed the following caveats:

• We only included corrections to the ringdown phase
of the waveform, neglecting those to the merger.

• We only consider conservative corrections to the in-
spiral waveform, rather than dissipative ones. The
resulting presented bounds are therefore conserva-
tive in nature. Once dissipative effects are addition-
ally included, constraints may become stronger.

• We only included corrections to the leading-order
PN terms in the waveform, and also to quadratic
order in spin, and first order in beyond-Kerr pa-
rameters ζ.

• We assumed that the QNMs are isospectral be-
tween axial and polar modes, something that may
not be entirely true in beyond-Kerr spacetimes.

• We estimated the BH final mass and spin following
the result that holds for Kerr BH binary mergers in
GR, which may not be true in beyond-Kerr space-
times.

One needs to specify a theory of gravity to overcome
most of the points raised above, which goes beyond the
scope of probing beyond-Kerr spacetime in a generic,
model-independent way with GWs. We present this ar-
ticle as a new method to quickly and easily estimate
various corrections in the full waveform from an arbi-
trary beyond-Kerr metric, to obtain order-of-magnitude
parameter constraints. Future analyses could improve
upon this work for more valid, yet significantly slower and
computationally expensive results. Specifically, repeated
calculations with the more-robust Bayesian parameter-
estimation analysis could be performed. One could also
study higher PN order-corrections and higher spin cor-
rections beyond O(ε3, β, χ

2) to the gravitational wave-
form8. Another avenue for future work includes study-

8 Higher-order spin contributions are estimated in Einstein-dilaton
Gauss-Bonnet gravity and found to be negligible [60].
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ing beyond-Kerr spacetimes other than those considered
here.
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Appendix A: Arbitrary remnant BH mass and spin corrections

In this appendix, we display the lengthy corrections to the remnant BH mass and spin given in an arbitrary
spacetime metric gX

αβ = gK

αβ + ζhX

αβ for general deviation parameter ζ and perturbation metric hX

αβ . The perturbation

metric is further expanded up to quadratic order in BH spin as hX

αβ = hαβ,0 + hαβ,1χf + hαβ,2χ
2
f . In the following

expressions, all of the metric components are to be evaluated at r = 6M .
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