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We explore the suitability of deep learning to capture the physics of subgrid-scale ideal magnetohydrody-
namics turbulence of 2-D simulations of the magnetized Kelvin-Helmholtz instability. We produce simulations
at different resolutions to systematically quantify the performance of neural network models to reproduce the
physics of these complex simulations. We compare the performance of our neural networks with gradient mod-
els, which are extensively used in the extensively in the magnetohydrodynamic literature. Our findings indicate
that neural networks significantly outperform gradient models in accurately computing the subgrid-scale ten-
sors that encode the effects of magnetohydrodynamics turbulence. To the best of our knowledge, this is the
first exploratory study on the use of deep learning to learn and reproduce the physics of magnetohydrodynamics
turbulence.

I. INTRODUCTION

In astrophysical simulations of magnetohydrodynamics (MHD) such as magnetized binary neutron star (BNS) mergers, we
confront turbulent phenomena in the limit of infinite Reynolds number Re [1]. While these turbulent effects are often ignored,
ultra-high resolution simulations of magnetized BNS mergers have demonstrated that MHD turbulence can amplify the magnetic
field by several orders of magnitude, and occur only at resolutions that are too computationally expensive to run in bulk [2, 3].
This amplification is due to the magnetized Kelvin-Helmholtz Instability (KHI), which occurs when two fluids flow past each
other in opposite directions. In order to help resolve turbulence originating from the KHI, we examine the methods employed in
more traditional hydrodynamical turbulence.

To resolve turbulent effects, the computational fluid dynamics (CFD) community uses several classes of simulations that
provide varying degrees of accuracy. Direct numerical simulations (DNS) provide the most accurate results by capturing all
the effects at all scales relevant to the problem being studies. To resolve the turbulent effects these simulations, DNS require
extremely high resolutions that scale as the cube of Re . This resolution require renders DNS feasible only for a small number
of simulations. Moreover, our problems of interest has extremely high Re , resulting in DNS becoming too computationally
expensive for our work.

The other prominent techniques, Reynolds-averaged Navier-Stokes (RANS), and large eddy simulations (LES), employ
subgrid-scale (SGS) models to reproduce the most important effects of DNS such as the energy transfer rate at much lower
resolutions. RANS is the most widely used, but is best suited for steady state phenomena. For an instability such as the KHI,
LES serve as the preferred approach. The goal behind LES is to evolve the equations with sufficient resolution to resolve the
largest eddies and rely on the SGS model to compute the contribution of the smaller eddies.

Recent work has sought to develop SGS models of MHD turbulence using traditional LES models [4–15]. However, MHD
turbulence presents some unique challenges not observed in standard hydrodynamical turbulence. Although the boundary condi-
tions for problems of interest are typically much simpler, the equations are more complex. These complexities include a dynamo
mechanism for the conversion between kinetic and magnetic energy as well as anisotropies arising from the magnetic field
[15–17]. Moreover, there exists a much weaker understanding of MHD turbulence compared to the hydrodynamical variety.

To resolve these complexities without exerting significant efforts studying the intricacies of MHD turbulence, we explore the
use of artificial neural networks (ANN) to act as SGS models. Significant work has been done in examining and evaluating ANN
models of hydrodynamical turbulence for both RANS and LES in recent years [18–26]. These studies indicate that ANNs may
outperform traditional approaches used to model turbulence.

In this article we develop a proof-of-concept neural network model to quantify the performance of deep learning algorithms
to reproduce the true dynamics of turbulent magnetic field amplification at manageable resolutions of MHD simulations of the
KHI in the LES formalism. We use as a driver for this study 2-D MHD simulations, and compare the performance of our neural
networks to traditional models, such as the a priori study introduced in [13]. For reference, a priori study involves evaluating
the performance of the models in how closely they reproduce the SGS effects compared to the filtered DNS data. In contrast, a
posteriori study would implement these models in an actual simulation to observe how the SGS models compare to the higher
resolution DNS simulations. We leave the more computationally expensive 3-D case as well as the implementation of these
neural network models, and subsequent a posteriori comparison of the models, to future work. Herein, we will perform a more
in-depth analysis of the conditions each model performs best in our a priori study to gain as much insight as possible before
moving to the more complicated tests.

This article is organized as follows: Section II provides an overview of the LES formalism and its application to the MHD
equations. In Section III we describe the SGS models used in this work, including our proposed ANN model and the traditional
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gradient model. Section IV describes the simulations used to train and evaluate our SGS models. We describe the methods
in which those simulations were employed to train the ANN model in Section V. In Section VI we define the metrics used to
evaluate the SGS models. We provide the results of our a priori study of the ANN SGS turbulence model and compare its
performance with that of the gradient model. Section VIII summarizes our findings and outline future directions of work.

II. LES FORMALISM

In this section we introduce the mathematical formalisms that we will use throughout the article. We describe the LES
formalism, and briefly describe the compressible MHD equations, which will be used as the science driver of our analysis.

A. Filtering

In the LES formalism, one views the grid resolution as a spatial filter applied to a continuous variable. In this approach, the
size of the grid ∆ corresponds to the size of the filter. Typically, we start with very high resolution data taken from DNS or
experimental results and apply a filter with a cutoff size ∆f , where ∆f > ∆ is the lower resolution grid on which we want to
perform our simulation on. We apply the kernel G to a field f as

f(x, t) =

∫ ∞
−∞

G (x− x′) f (x′, t) dx′. (1)

For implicit LES simulations which are employed in this work, the filtering operator of size ∆f is applied to the high resolution
simulation of grid size ∆ when calibrating SGS models. In turn, this filtering provides insight into the effect of moving to a
lower to a lower grid resolution. The choice of filter depends on the numerical method employed. For finite volume schemes
like those used in this work, a box or top-hat filter is used to simulate the spatial averaging that occurs during such schemes.
This filter kernel is given in real space for D spatial dimensions as

G (|x− x′|) =

D∏
i=1

Gi (|xi − x′i|) , (2)

where

Gi (|xi − x′i|) =

{
1/∆f if |xi − x′i| ≤ ∆f/2 .
0 otherwise (3)

Filtering operators commute with linear terms. However, nonlinearities in the MHD equations fail to commute with the filtering
operator. This results in a residual term known as the SGS tensor. We will provide examples of these SGS tensors in the next
section.

For compressible fluids, we use a specific type of filtering called Favre or density weighted to simplify our problem by
eliminating the SGS tensor in the continuity equation. For some quantity f weighted by some density ρ, we define the Favre
filtered quantity f̃ as

f̃ =
ρf

ρ
. (4)

This also gives us the identity ρf = ρf̃ .

B. Compressible MHD Equations

1. Unfiltered MHD Equations

For the evolution of our system, we used the conservative form of the ideal compressible Newtonian MHD equations. Each
equation continuity, momentum, induction, and energy evolution respectively represents the local evolution of a globally con-
served quantity. The equations are given by

∂tρ+ ∂i
[
ρvi
]

= 0 , (5)
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∂t
(
ρvj
)

+ ∂i

[
ρvivj −BiBj + δij

(
p+

B2

2

)]
= 0 , (6)

∂tB
j + ∂i

[
viBj − vjBi

]
= 0 , (7)

∂tu+ ∂i
[(
u+ p+B2

)
vi −

(
vjB

j
)
Bi
]

= 0 , (8)

where the total energy density u is defined as

u = e+
ρv2

2
+
B2

2
. (9)

Here, the indices are spacial components assuming Einstein summation convention, δij is the Kronecker delta, ρ is the mass
density, p is the pressure, e is the internal energy density, vi is the velocity, and Bi is the magnetic field. The units of this
expression are such that the speed of light c and the magnetic permeability µ0 are c = µ0 = 1. For this system, we used an ideal
gas equation of state (EOS) to define p as

p = (γ − 1) e , (10)

where γ is the adiabatic index set to γ = 4/3 for a relativistic gas in this work. We note that we intentionally did not exploit
any simplifications made using the fact that we have an ideal gas EOS to ensure that our ANN turbulence model can be used for
any generic EOS. This is done to ensure that the model can be easily employed by BNS simulations where the EOS is a variable
parameter.

2. Filtered MHD Equations

To derive the filtered equations, we apply Equation (2) to Equations (5) to (8) [13]. We find these equations become

∂tρ+ ∂i
[
ρṽi
]

= 0 , (11)

∂t
(
ρṽj
)

+ ∂i

[
ρṽiṽj −BiBj + δij

(
p̃+

B
2

2

)]
= −∂iτ ijmom , (12)

∂tB
j

+ ∂i

[
ṽiB

j − ṽjBi
]

= −∂iτ ijind , (13)

∂tu+ ∂i

[(
u+ p̃+B

2
)
ṽi −

(
ṽjB

j
)
B
i
]

= −∂iτ ieng + Σeng , (14)

where the merged SGS tensor terms are given by

τ ijmom = ρτ ijkin − τ
ij
mag + δij

(
1

2
δklτ

kl
mag + (p− p̃)

)
, (15)

τ ieng = τ ienth + τ ijmomṽj + τ ijindBj , (16)

and the scalar SGS tensor terms denoted by Σ are given by

Σeng = Σpres + Σmom + Σind , (17)

Σpres = vi∂ip− ṽi∂ip̃ , (18)

Σmom =
1

2
(∂iṽj + ∂j ṽi) τ

ij
mom , (19)

Σind =
1

2

(
∂iBj − ∂jBi

)
τ ijind . (20)

In the above expressions, we have defined

ẽ = u− ρṽ2

2
− B

2

2
, (21)

p̃ = (γ − 1)ẽ , (22)

and will define the enthalpy h and its filtered version h̃ as

h = ρ+ e+ p , (23)
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h̃ = ρ+ ẽ+ p̃. (24)

For modeling the SGS terms in Equations (11) to (14), we only care about τkin describing turbulent motion, τmag describing
the contribution of the turbulent magnetic field to the motion, τind describing the turbulent amplification of the magnetic field,
and τenth describing the effect of turbulence on the energy transfer. We neglect the terms (p− p̃) and Σpres as we expect their
contributions to be small and EOS dependent, which reduces the robustness of our models. The rest of the terms in Equations (11)
to (14) are combinations of the aforementioned terms. The four SGS tensors we want to model are defined formally as

τ ijkin = ṽivj − ṽiṽj , (25)

τ ijmag = BiBj −BiBj , (26)

τ ijind =
(
viBj − vjBi

)
−
(
ṽiB

j − ṽjBi
)
, (27)

τ ienth = hvi − h̃ṽi . (28)

The astute reader may notice that τ ienth is actually a vector, but we will refer to it as an SGS tensor throughout this work for the
sake of conciseness.

III. MODELING SGS TENSORS

In this section we introduce the gradient model, which currently represents the state-of-the-art in the LES MHD literature, and
our deep learning algorithm. In what follows, we will present direct comparisons between these two methodologies to highlight
their key differences, and to furnish evidence that deep learning outperforms the gradient approach.

A. Gradient Model

The gradient model is extensively used in the LES MHD literature [13, 15]. The prevalence of this model in other LES MHD
turbulence studies promotes it as a good baseline to test the performance of our neural network model. The gradient model is
derived using the Taylor expansion of the SGS stress tensor under a particular filtering operator. Here we use the leading order
expansion of our box filtering operator which is also valid for a Gaussian filter [15] to obtain

fg ' fg +
∆2
f

12
∂if∂ig , (29)

f̃g ' f̃ g̃ +
∆2
f

12
∂if̃∂ig̃ , (30)

fg ' f̃g +
∆2
f

12
∂if̃

(
∂ig −

∂iρ

ρ
g

)
, (31)

for regular filtered terms, Favre filtered terms, and mixed filtered terms, respectively [13]. This results in the following expres-
sions for the SGS tensors [13]

τ ijkin =Cijkin
∆2
f

12
∂kṽ

i∂kṽj , (32)

τ ijmag =Cijmag
∆2
f

12
∂kB

i
∂kB

j
, (33)

τ ijind =Cijind
∆2
f

12

[
∂kṽ

i

(
∂kB

j − ∂kρ

ρ
B
j
)

− ∂kṽj
(
∂kB

i − ∂kρ

ρ
B
i
)]

, (34)

τ ienth =Cienth
∆2
f

12

γ

γ − 1

[
∂j p̃− p̃

∂jρ

ρ

]
∂j ṽi . (35)
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FIG. 1. Schematic illustration of a neural network. A multilayer perceptron with two hidden layers is presented. Circles represent neurons,
whereas arrows correspond to weights.

The coefficient Cij is determined by the best fit of the data to a time slice of filtered DNS data for each component of τ ijgrad
independently. The fitting is determined by

Cij =

∑
xf

(
τ ijDNS (xf ) τ ijgrad (xf )

)
∑
xf

τ ijgrad (xf )
, (36)

where τ ijgrad is the SGS tensor calculated by the gradient model in Equations (32) to (35), τ ijDNS is the true SGS tensor computed
directly from the DNS data, xf represents the filtered grid, and Einstein summation notation is not used. When employing this
model in an a posteriori test, one would estimate Cij with a secondary filter [22, 27]. In the LES literature, this is known as a
dynamical model. However, we do not use a secondary filter for our a priori study and instead filter the DNS data directly. We
acknowledge that this may overestimate the performance of the gradient model compared to an a posteriori study.

B. Neural network model

Artificial neural networks (ANN) are the building blocks of deep neural networks (DNN). The basic units of calculation
in ANNs are called neurons, which are connected via weighted inputs that resemble synapses. These biologically inspired
models have the proven capability of learning from data, which has accelerated the data-driven discovery revolution over the last
decade [28–32].

As shown in Figure 1, a neural network creates a relationship between the inputs and outputs. This relation uses multiple
layers of neurons connected through a series of linear or nonlinear functions. The input layer takes the input data and applies
these operations to calculate its outputs X1

i for each input i. Then, each of the ANN’s subsequent layers l takes the outputs of
the previous layer X l−1

j of layer l − 1 and applied this same calculations to calculate the outputs X l
i of each of is neurons. The

calculation is performed as

X l
i = g

(
sli + bli

)
, (37)

sli =
∑
j

W l
ijX

l−1
j , (38)

where g is a nonlinear function known as an activation function, and the parameters to be tuned during training are the weights,
W l
ij , and biases, bli. The values of W l

ij and bli are continually adjusted during the training stage until training data with the same
labels consistently yield similar results in the output layer XL

i . In our case, the output of the neural network model corresponds
to the SGS tensor components. For the activation function of the hidden layers, we selected the rectified linear unit (ReLU),
which is common in machine learning for its fast training speed. The ReLU is defined as g(x) = max(0, x). For the output
layer, we used a linear activation function, defined simply as g(x) = x.
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Most ANN models of turbulence use a multilayer perception (MLP) network [19, 21, 22] or some slight variation of an
MLP [18, 20]. In this work, we also employ an MLP network to implement our model. The network acts on individual grid
cells. The network configuration used in this work had an input layer with NI inputs, a hidden layer with 64 neurons followed
by another hidden layer with 32 neurons, and finally output layer with NO outputs.

There is some variation in the literature in selecting the input features for ANN models of hydrodynamical turbulence [18–
23, 25]. The inputs for ANN model τANN were all quantities defined for the SGS tensors in Equations (25) to (28), the first
and second derivatives of those quantities, and the value of all aforementioned terms in cells adjacent to the cell of interest. All
derivatives were computed using 4th order centered finite differencing. For the mixed filtered quantities τind and τenth, we add
the mass density ρ to our collection of variables that we include in the inputs in the same manner described above. The inputs to
each ANN are explicitly given in Appendix A.

In our case, the outputs are all unique components of the desired SGS tensor which vary depending on the tensor of interest.
Thus, we have NO = 3 for τkin and τmag , NO = 1 for τind, and NO = 2 for τenth This differs from most of the literature
where a different ANN is used to find each individual component of the SGS tensor [19, 21–23]. By computing all components
of the SGS tensor, we hope to incorporate physical symmetries and constraints into future models of τANN such as Galilean
invariance, though we do not attempt to do so in this work.

For reference, we have chosen mean-squared error (MSE) as the loss function to optimize the performance of our neural
network model. We describe in detail the high resolution simulations of the magnetized KHI used to train and test our models
in Section IV. The hyperparameters of our neural network model are presented in Section V.

FIG. 2. Plots of the mass density distribution ρ time slices at t = 1.5, 5, 10 of our magnetized KHI simulations with a resolution ofN = 20482.
On the left, we have the t = 1.5 time slice in which we can observe vortexes begin to form between the two fluids. The number and size of
these vortexes are controlled by an initial sinusoidal perturbation of the fluid velocity in the y-direction. The center plot at t = 5 occurs after
many of the aforementioned vortexes have merged together at which point the flow has become unsteady. This unsteady flow manifests itself
in the high density fluid beginning to break apart. The rightmost plot at t = 10 depicts the fluids in a turbulent mixing process with two low
density vortexes helping to drive this mixing.

IV. SIMULATION

To train and evaluate the model, we ran 2-D magnetized KHI simulations. As described above, the KHI instability occurs
when two fluids are moving in opposite direction. When magnetic fields are included, the instability accelerates and the magnetic
fields are amplified throughout the process. The KHI was selected because BNS mergers, the targeted application of this work,
experience a KHI-like process during the merger phase.

The simulations were run using the open-source Simflowny code [33, 34]. For these simulations, the grid was a Cartesian
square with x, y ∈ [−L/2, L/2], with length L = 1. These simulations were performed at three grid sizes with the number
of points N = 5122, N = 10242, and N = 20482 for the low, medium, and high resolutions, respectively. The boundary
conditions were chosen to be periodic in all directions. We evolved the equations for 10 units of time. Using a RK4 time
integration scheme, we evolved the MHD equations in Equations (5) to (8) with timestep of ∆t = 0.25√

N
. We show density plots

of these simulations in Figures 2 and 3.
To assist in triggering the instability, we add velocity perturbations to the system in both coordinate directions. The specific

setup for the initial conditions for the grid functions in this simulation is given by
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ρ = ρ0 + sgn(y)

[
δρ tanh

(
|y| − yl
al

)]
, (39)

vx = sgn(y)

[
vx0 tanh

(
|y| − yl
al

)]
+ δvx sin(2πnxy) (40)

vy = sgn(y)

{
δvy sin(2πnyx) exp

[
−
(
|y| − yl
σ

)2
]}

, (41)

Bx = Bx0 , (42)
By = By0 , (43)
p = p0 . (44)

In the above expressions, ρ0 = 1.5 and δρ = −0.5 are the average and difference of the low density region ρ1 = 1 and high
density region ρ2 = 2 respectively. yl = 0.25 is the y-coordinate where the transition from ρ1 to ρ2 occurs. al = 0.01 is the
characteristic size of this transition region, providing a smooth transition that mitigates some of the numerical instabilities of the
transition between the different density regions. vx0 = 0.5 is the initial velocity of the fluid in the x direction. δvx = 0.01 is a
sinusoidal perturbation of vx0 with nx = 4 periods going along the y direction. δvy = 0.2 is a sinusoidal perturbation of the y
component of the velocity with ny = 7 periods along the x direction. σ = 0.1 is the characteristic Gaussian falloff of δvy away
from yl. We note that for |y| > 0.45, δvy is set to 0. Bx0 = 0.001, By0 = 0, and p0 = 1 are the initial x-component of the
magnetic field, initial y-component of the magnetic field, and initial pressure respectively.

Like [13], we desired to evolve with similar numerical methods to those used in numerical relativity simulations of BNS
mergers. We employed the Method of Lines (MoL) to discretize our system of equations. We used a finite volume scheme with
MP5 reconstruction and Local Lax Friedrichs (LLF) flux splitting for the evolution of our system, which provides numerical
stability even in the presence of shocks. This scheme views the ideal MHD equations in Equations (5) to (8) as

∂tU + ∂iF
i = S , (45)

where U =
{
ρ, ρvj , Bj , u

}
are our conserved quantities, F are the fluxes for those conserved fields, and S = {0, 0, 0, 0} are the

source terms. The source term is set to zero in our case, but is nonzero in general if say an external force like gravity is applied
to the fluid. F is allowed to depend on the conserved variables, but not on their derivatives. The SGS tensors, which depend on
derivatives of the conserved variables, would be placed in S rather than F when implementing one of the aforementioned SGS
models in a simulation.

To preserve the divergence free condition on the magnetic field, we used a hyperbolic divergence cleaning [35]. This diver-
gence cleaning adds another evolution equation to our system for φ to ensure the magnetic field divergence decays to 0 and is
defined as

∂tφ+ c2h∂iB
i = −ch

cr
φ (46)

where ch = 1 and cr = 0.18.

V. TRAINING

The KHI simulation data was filtered using a box filter with filter sizes f = 2, 4, 8, 16 where f is defined as f =
∆f

∆ . For each
of the filter sizes and resolutions, SGS tensors and inputs to the ANNs were calculated after t = 1 every∼ 0.1 time units until the
simulation ended at t = 101. The test data evaluated these same quantities at t ≈ 9.25. This approach ensures that even models
that are trained with low resolution simulations are exposed to data with sufficient size and variety. We found that this approach
prevents overfitting. In 3D, we expect to use fewer time slices as each time slice contains significantly more samples than in
2D. Another observation is that we experimented with data augmentation methods, as those described in [19] which consist of
augmenting the data by providing multiple copies of each time-slice, but choosing a different point after filtering [19]. However,
we found that this approach does not generalize well during testing. To address that problem, we chose multiple time-slices
during training.

1 Due to memory consumption issues, we used less data to train the N = 10242 f = 2 and N = 20482 f = 2, 4 models. Specifically, the N = 10242

f = 2 and N = 20482 f = 4 models sampled training data every ∼ 0.5 time units. The N = 20482 f = 2 model sampled training data every ∼ 1 time
units.
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FIG. 3. Plots of the density distribution ρ of the test dataset at time slices t = 9.25 for resolutionsN = 5122, 10482, 20482 in the left, middle,
and right image respectively. All three datasets appear to be undergoing a turbulent mixing process at t = 9.25. We observe that while the
N = 10242 and N = 20482 runs appear to share many of the same general characteristics, the N = 5122 run fails to reproduce these same
feature. This failure implies that N = 5122 is not enough to capture the turbulent effects of the magnetized KHI without a SGS model. We
note that the testing time slice is of particular importance because it was used to evaluate the SGS models.

After calculating the SGS tensors and the necessary inputs to the ANN models, we exported the data to train the model in
TensorFlow [36]. The data was normalized to have zero mean and unit standard deviation. We used 10% of the simulated
data for validation purposes. For the training of the neural network model, we used an ADAM optimizer with early stopping
[37]. The maximum number of epochs was 100. A batch size of 1000 was used during training.

VI. METHODOLOGY

In this section we describe quantities that we will use to test our neural network model, and metrics to assess its ability to
correctly reproduce true features and properties of the testing data set.

A. Spectra Calculation

The energy spectrum E(k) represents the spatial scale at which the energy is distributed in a given process. For low wave
number k, we see the large scale features of the energy spectrum. On the other hand, high k values give the small scale features
of the spectrum. The ultimate goal of the large eddy simulation is to reproduce the energy spectrum of the DNS simulations as
closely as possible. Appendix B describes how to compute these quantities.

In MHD turbulence, we are concerned about the energy spectra of the kinematic motion Ekin(k) and the magnetic field
Emag(k). We note that these energy spectra have a different expected distribution. The kinetic energy spectrum falls of as
Ekin(k) ∝ k−5/3 at high wave numbers. However, the magnetic energy spectrum rises as Emag(k) ∝ k3/2 at large k values
[13]. Thus, we expect the small scale behavior will be especially significant in the overall magnetic energy contribution and
must be modeled carefully.

Moreover, we are interested in the total energy obtained by integrating over all the spectra. By examining how the total energy
changes over time, we can extract useful information about characteristics of the simulation. In particular we would like to
measure how the the kinetic energy Ekin and magnetic energy Emag change through the effect of the KHI.
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FIG. 4. Plots of the energy spectra E(k) at various time steps throughout the simulation for each resolution. The kinetic energy spectra Ekin(k)
is given by the solid lines, while the magnetic energy spectra Emag(k) is denoted by the dashed lines. The resolutionsN = 5122, 10242, 20482

are given by the blue, red, and green lines respectively. The top left, top right, and bottom left images are taken at approximately t = 1.5, 5, 10
respectively and correspond to the timesteps displayed of the density distribution plots in Figure 2. The bottom right plot provides the spectra
of the test dataset used for evaluating the models whose density distribution is featured in Figure 3.

B. Model Performance Criteria

To quantify the performance of our models, we will use several common turbulence statistics. The first of these statistics is
the correlation coefficient C which shows how well the data and the model follow one another. We define C as

C =
〈(τDNS − 〈τDNS〉) (τmodel − 〈τmodel〉)〉√〈
(τDNS − 〈τDNS〉)2

〉〈
(τmodel − 〈τmodel〉)2

〉 , (47)

where τDNS is the SGS tensor computed from filtering the high resolution data, τmodel is the SGS tensor computed from the
SGS model we are testing, and 〈x〉 is the volumetric average of the quantity x. C can range from −1 to 1 with values near to −1
being anti-correlated, values near to 0 being uncorrelated, and values near to 1 being well correlated. Simply put, the closer C
is to 1, the better the model. We use C as our primary measure of performance for our models. We will also look at the relative
error between the model and the simulation denoted by E. E is defined as

E =

√〈
(τDNS − τmodel)2

〉
√
〈τ2
DNS〉

, (48)
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FIG. 5. Time evolution of the total kinetic energy, Ekin, (left panel) and total magnetic energy, Emag , (right panel). The kinetic energy
decreases over time as it is being converted into magnetic energy. This energy conversion can be seen in the right panel where Emag increases
over time. We notice that Ekin decreases more rapidly for the high resolution runs while Emag increases more rapidly. This would indicate
that this conversion from Ekin to Emag occurs most efficiently at small scales that high resolutions simulations can best resolve.

with all quantities defined in the same manner Equation (47). We note that the lower the value of E is for a model, the better
the model. The root-mean-square (RMS) of the model tells us the degree to which the model deviates from the average. The
RMS of a quantity x is given by

RMS(x) =
√
〈(x− 〈x〉)2〉 . (49)

Here, we will calculate the RMS for τmodel and τDNS . The goal here is for the RMS of τmodel is to be as close to RMS of
τDNS as possible. In addition, we would like to use the absolute value of RMS of τDNS to tell us more about the features of τ
for the various models, resolutions, and filter sizes.

VII. RESULTS

In this section we present results of several tests we conducted to assess the reliability of our neural network model to
accurately capture the physics of our testing data sets.

A. Spectra

We will begin the discussion of the results by analyzing the spectra of the simulations. The first three images in Fig. 4
illustrates the spectra at the time slices of the simulation that were featured in the density plots of Fig. 2 with all simulation
resolutions included. These selected time slices occur at approximately t = 1.5, 5, 10. The last plot of Fig. 4 depicts the
spectrum of the test dataset whose density distribution can be seen in Fig. 3.

Fig. 5 includes both Ekin and Emag . We observe that the Ekin of the plots is fairly similar at low k values. The obvious
exception to this is the t = 1.5 plot where the low k spectrum appears to still be settling down for both energy types, though
this effect does not appear to be resolution dependent. We also notice that the 20482 resolution simulation has reduced values
of Ekin at low k compared to the other simulations at later times, likely due to the kinetic energy being converted into magnetic
energy more efficiently at high resolutions. At high k values, we observe a faster Ekin falloff at low resolution. This drop off is
likely due to the effect of the finite grid resolution on the small scale features.

The magnetic field spectra at low k is significantly smaller than its kinetic energy counterpart. As k increases, the magnetic
field spectra increases, it may eventually surpass the kinetic energy spectra before decaying. It appears that much of this decay
is an effect of the finite grid resolution. At later times, all Emag spectra increase considerably. The high resolution simulations
have noticeably greater Emag than those at lower resolutions. This effect is likely caused by the conversion of kinetic energy to
magnetic energy being more efficient at high resolutions.
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FIG. 6. Predictions vs target values of SGS tensors for theN = 20482 resolution test dataset with filter size f = 8 for each of our SGS models.
The small transparent green circles represent values of the gradient model and are overlaid on top of the small transparent blue circles which
represent the values of the ANN model. The black dashed line depicts a perfect one to one matching between the targets and the predictions.
The first row displays the xx, xy, and yy components of τkin from left to right respectively. The middle row shows the same information for
the components of τmag SGS tensor. The bottom row shows the xy component of τind on the left, the x component of τenth in the middle,
and the y component of τenth on the right. We observe that the blue circles of the ANN model appear much closer to the dashed black line for
high SGS tensor values than the green circles of the gradient model especially in the τmag and τind SGS tensors.
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FIG. 7. Histogram of the normalized probability distribution of the values of SGS tensors for the N = 20482 resolution test dataset with filter
size f = 8 for each of our SGS models. The black dot-dashed line represents the distribution of the DNS data, the solid blue line represents
the distribution of the ANN model predictions, and the green dashed line represents the distribution of the gradient model predictions. The
first row displays the xx, xy, and yy components of τkin from left to right respectively. The middle row shows the same information for the
components of τmag SGS tensor. The bottom row shows the xy component of τind on the left, the x component of τenth in the middle, and
the y component of τenth on the right. We observe that the ANN model predictions more closely resemble the distribution of the DNS values
than those of the gradient model.

The last plot of Fig. 4 presents the spectra of our testing dataset. We observe that this plot shares simulate characteristics to
the t = 10 spectra plot. However, we note that the high k region of the N = 10242 simulation’s Emag spectra is weaker relative
to the N = 2048 simulation’s Emag spectra than in the t = 10 spectra plot.

Fig. 5 shows the integrated energy spectrum or total energy vs time starting at t = 1 for both the kinetic energy Ekin and
the magnetic energy Emag in the first and second plots respectively. We notice that Ekin starts the same for all simulations,
but decreases over time. The higher resolution simulations decreased in Ekin faster than those at lower resolutions. This may
indicate that Ekin is being converting into Emag . On the other hand, Emag started fairly similar in magnitude for all resolution
with deviations of order unity. We then see an increase in the magnetic energy with the higher resolution simulations increasing
much faster than their lower resolution counterpart. At t ∼ 7, the N = 10242 simulation is observed to rise faster than the
N = 20482 simulation, which results in both simulations having nearly equal energy by the end of the simulation at t = 10.
Emag still appears to be increasing at t = 10, which may indicate that the process of magnetic amplification may still be ongoing.

B. Model Performance

For all subgrid filter sizes f and at all resolutions N , our findings indicate that our neural network model outperforms the
gradient model when evaluated on the test data. To show this, let us first take a look at the results of models with N = 20482 at
f = 8, a case where the differences can be clearly observed between the two SGS models.

Fig. 6 presents targets vs predictions of the SGS models for the test data atN = 20482 and f = 8. We notice that both models
show good performance when the magnitude of the SGS tensor is low. However, at high SGS tensor magnitudes, the gradient
model significantly underestimates the SGS quantities. Compared to the gradient model, the ANN models predict more accurate
values for those high magnitude targets, in particular for the components of τmag and τind tensors. We note that one reason for
the poor performance of the gradient model for high SGS tensors may be due to it being a first order model and could potentially
be improved using higher order corrections.

In Figure 7, we show a histogram the normalized distribution of the SGS tensors of the N = 20482, f = 8 test data as well as
those predicted by the ANN and gradient models for this same dataset. We find that overall, the ANN model’s predictions more
closely resemble the distribution calculated from the DNS dataset compared to those of the gradient model. This improvement
is especially noticeable for the τmag tensor components. We also notice that the ANN model predicts some negative values
for the diagonal components of the SGS tensors τkin and τmag . However, these predictions are unphysical as they violate the
realizability constraint which requires τii ≥ 0 [38, 39]. Such unphysical behavior can be resolved in ANN models by embedding
the physical constraint in the loss function, which will be a subject of future work.

To understand exactly how models behave for a single time slice of data, Figure 8 shows the values of the components of the
SGS tensor τmag for the actual DNS data τDNS , the ANN model τANN , and the gradient model τgrad. From these plots we
observe that τANN performs noticeable better in regions with significant small scale structure in τDNS compared to τgrad. This
effect is most prevalent in τmag in Figure 8, though is visible for most of the other tensors. The plots depicting the values of the
other SGS tensors can be seen in Figures 12 to 14 in Appendix C.

Having examined a specific SGS tensor qualitatively, we will now move towards a more general quantitative discussion of
the behavior of the SGS tensors at different resolution and filter sizes for the models. For this we will start by looking at the
correlation coefficient C presented in Fig. 9.

In Figure 9, we show the plots of correlation coefficient C vs the filter size f for all resolutions simulated in this study. Our
findings show that all ANN models performed better than their gradient model counterparts for every SGS tensor component at
the same N and f . The degree to which this improvement occurred was dependent primarily on the the filter size and the SGS
tensor being analyzed. The effect of the resolution is not entirely clear, but both models appear to follow similar trajectories on
lines at the same resolution. In general, the value of C decreased as f increased. This was particularly prevalent in the τmag
and τind tensors. This decrease in C for at high f was much more significant in τgrad than in τANN . This indicates that τANN
performs better at higher filter sizes, implying that we would be able get accurate results from employing the ANN models at
lower resolutions than we could from the gradient model.

Moreover, the gradient model’s difficulty calculating τmag and τind at high filter sizes suggests that it is not able to reproduce
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FIG. 8. Plots of the components of the τmag SGS tensor of the test dataset for the N = 20482 resolution run with a filter size of f = 8. The
columns depict the SGS tensor values of the exact DNS calculation, the ANN model reconstruction, and the gradient model reconstruction
from left to right respectively. The top, middle, and bottom rows display the xx, xy, and yy components respectively. We observe that while
the ANN model appears to reproduce most of the visual features of the DNS calculation, the gradient model appears to struggle in regions with
more detailed structure.

the effects of turbulence on the magnetic fields at lower grid resolutions. In contrast, our results indicate that neural networks
can address these limitations in an a posteriori study. We observed that the purely hydrodynamical τkin SGS tensor was the
easiest to compute accurately for both the ANN and gradient models. Thus, the improvements in the ANN model’s calculation
of τkin should be considered less beneficial than those from τmag and τind.

The energy SGS tensor τenth also receives a noticeable improvement from the use of the ANN model over the gradient model.
This effect is again most prevalent at high f values, more than for τkin but not quite as significant as the τmag or τind terms. We
should note again that the gradient model is a leading order expansion of the filtering operator in grid spacing, which corresponds
to filter size f . If a higher order expansion of the filtering operator, we may see some improvement at high f .

Figure 10 shows the relative error E between the predictions of the gradient and ANN models compared to the DNS data.
The results mirror those discussed for the correlation coefficient C in terms of E increasing with f more quickly for the gradient
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FIG. 9. Here we plot the correlation coefficient C as a function of filter size f for all resolutions N , SGS tensor components τ , and SGS
models. The solid lines refer to the ANN model and the dashed lines refer to the gradient model. The resolutions are given by the color of the
line; blue represents the N = 5122 simulation, red represents the N = 10242 simulation, and green represents the N = 20482 simulation.
We observe that the ANN model has a higher correlation coefficient than the gradient model for all SGS tensor components at all resolutions.
We also note that C generally decreases with increasing f , but this decay affects the gradient model more significantly.

model compared to the ANN model.
In Figure 11, we show the RMS of τDNS , τANN , and τgrad for all SGS tensor components at all resolutions. For τkin we

observe that the two models perform similarly in term of their proximity to the RMS of τDNS and both slightly undershoot the
true value for this SGS tensor. We also notice that the value of the RMS increases with filter size f , while the performance
of both models decrease slightly for this metric at high f for τkin. This makes sense as one would expect more SGS behavior
at high f as the grid increases we have more SGS phenomena, resulting in the SGS tensors being more difficult to model. The
RMS of the low resolution data is greater than that of the high resolution simulations for τkin. Moreover, this rise in RMS
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FIG. 10. Here we plot the relative error E as a function of filter size f for all resolutions N , SGS tensor components τ , and SGS models. The
solid lines refer to the ANN model and the dashed lines refer to the gradient model. The resolutions are given by the color of the line; blue
represents the N = 5122 simulation, red represents the N = 10242 simulation, and green represents the N = 20482 simulation. We observe
that E is lower for the ANN model than for the gradient model for all SGS tensor components at all resolutions. We also note that E generally
increases with f , but is more severe for the gradient model than for the ANN model.

appears to be polynomial in f and occurs much more prevalently at lower resolutions. This would imply that there does not exist
a preferred scale for τkin as the RMS value appears the increase with the volume of the grid.

The RMS plots of τmag on the other hand demonstrate clear differences in the behavior of the models. For example, the
RMS of the ANN model is considerably higher than that of the gradient model for all components of τmag . In turn, the
RMS of τANN is much closer than τgrad to the RMS of τDNS , which is greater than either model. The difference between
the RMS of τmodel and the RMS of τDNS is greatest at high values of f for both the ANN and gradient models with the
difference between the RMS of τDNS and τgrad being much more severe. We also observe the N = 5122 resolution runs have
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FIG. 11. Here we plot theRMS value as a function of filter size f for all resolutionsN , SGS tensor components τ , and SGS models including
the DNS calculation. The solid lines refer to the ANN model, the dashed lines refer to the gradient model, and the dash-dotted lines refer to the
DNS calculation. The resolutions are given by the color of the line; blue represents the N = 5122 simulation, red represents the N = 10242

simulation, and green represents the N = 20482 simulation. We observe that the RMS values are fairly similar for the τkin SGS tensor
components (top row) for both SGS models and the DNS result. For the SGS tensors τmag (middle row), τind (bottom right), and τenth

(bottom middle and left), the ANN model has a much closer RMS value to the DNS result compared to the gradient model.

a significantly lower RMS value than the others, implying that this resolution was too low to capture much of the SGS behavior
of the magnetic field. Meanwhile, the RMS values of the N = 10242 and the N = 20482 simulations is fairly similar, which is
not surprising given that the value of Emag is fairly similar for the two resolutions at t = 9.25, the timeslice of the training data.
The RMS value increases with f for τmag , but this increase slows down at high f . In contrast, we recall the increase in RMS
of τkin accelerates at high values of f . This behavior when taken in conjunction with the significantly lower RMS value of the
lowest resolution run implies that τmag prefers to act on small scales.

The plots of the RMS values of τind share many of the same characteristics as those of τmag in terms of the superior
performance of the ANN model over the gradient model, the RMS of the lowest resolution run having the lowest value, and the
deceleration of the increase in RMS at high f value. However, we would like to emphasize that the RMS of the N = 10242
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run is clearly greater than the N = 20482 run unlike τmag where their values were fairly similar. This phenomenon likely
results from the quick acceleration of the increase of Emag of the test data slice at t = 9.25 that was observed in Figure 5 which
is evidenced in τind representing the turbulent amplification of the magnetic field. We also observe that the gradient model
performs particularly poorly for this SGS tensor at high f where the RMS of τgrad actually decreases despite the RMS of
τDNS actually increasing albeit at a slower rate.

The RMS plots of τenth show the lowest resolution having the highest RMS value, followed by the middle resolution, then
the high resolution as in the plots of τkin. However, we still observe a slower increase of RMS at high f like τmag and τind.
The ANN model clearly models the RMS of τenth more closely than the gradient model as well. As with all the previously
mentioned SGS tensor components, the performance of the models in computing RMS decreases at high f .

VIII. CONCLUSIONS

We performed a a priori study to evaluate the accuracy of ANN models of SGS ideal MHD turbulence with high resolution
2-D simulations of the magnetized KHI. This is the first such study of ANNs in MHD turbulence. We compared the performance
of the model to the gradient model that has been proposed in similar studies of modeling MHD turbulence in the LES framework.

In this study, we showed that the ANN performs significantly better than gradient model in reproducing the SGS tensors
compared to the gradient model. This improvement occurred at all resolutions, for all SGS tensors, and filter sizes. However,
the degree of improvement varied considerably with the SGS tensor and filter size.

In particular, τmag , representing the turbulent effect of the magnetic field on the motion of the field, and τind, representing
the turbulent amplification of the magnetic field, are modeled much more accurately than with the gradient model. This allows
ANNs to provide a better model of the turbulent effects of the magnetic field than any model in the MHD turbulence literature.

Moreover, we demonstrated that the gradient model’s performance falls off significantly at high filter sizes. However, the
ANN is able to maintain a much higher correlation coefficient at high filter sizes. This implies that ANNs may be able to
reproduce the effect of turbulence more accurately than gradient models.

Having established the potential of these ANN models of MHD turbulence in an a priori study, there are various pathways of
future study for the use of ANN models. The most obvious of which is a posteriori study, where we deploy these models in an
actual simulation, and quantify how well the SGS models reproduce the spectra. One may also consider evaluating these models
for more computationally intensive 3-D simulations, and eventually general relativistic MHD. This work will also require the
development of loss functions that incorporate physical constraints such as rotational invariance. These studies will be pursued
in the near future.
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Appendix A: ANN Model Inputs

Here we explicitly note the inputs to each SGS tensor of τANN for clarity.

Iτkin,net
=
{
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m,n
i , ∂p∂q ṽ
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m±1,n
i , ∂p∂q ṽ
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where the index i = 1, 2 are the components of the vector, the indices m and n correspond to the discrete spatial location on the
grid after filtering, and the indices p, q = 1, 2 represent the spatial indices along which we are taking derivatives. The (m,n±1)
index refers to the value of the quantities in the cells located at (m,n−1) andm,n+1, while (m±1, n) refers to cell designated
by (m− 1, n) and (m+ 1, n).

Appendix B: Spectra Calculation Details

The spectra of the simulation Ekin(k) and Emag(k) were computed in Fourier space with a 2D shifted Fast Fourier Transform
(FFT) such that the FFT is centered at k = 0 under the assumption of periodic boundary conditions that were used in the
simulation. We first calculated the 2D wavenumber k2D(kx, ky) =

√
k2
x + k2

y , where kx = 2πnx/Lx and ky = 2πny/Ly and

Lx = Ly = 1 is the length in the x and y directions respectively. Here nx ∈ [−Nx/2, Nx/2− 1], ny ∈ [−Ny/2, Ny/2− 1] are
integers and Nx, Ny are the number of grid points in the x and y directions respectively. We then calculated the energy spectra
associated with each of these wave numbers kx, ky for the 2D kinetic energy and magnetic energy as

Ekin,2D (kx, ky) =

√̂
ρvx
√̂
ρvx
∗

+
√̂
ρvy
√̂
ρvy
∗

N2
xN

2
y

(B1)

Emag,2D (kx, ky) =
B̂xB̂x

∗
+ B̂yB̂y

∗

N2
xN

2
y

(B2)

where x̂ is the 2D shifted FFT of x rendering it a function of kx, ky and x∗ is the complex conjugate of x.

k2D was then resampled over as k = n∆k where ∆k =
√

∆k2
x + ∆k2

y , ∆kx = π/Lx, ∆kx = π/Ly , and n ∈ [1, N ] is

an integer. To resample, we computed kdiff (k, kx, ky) = |k − k2D(kx, ky)| for every value of kx, ky looping over values of k.
Then, for each value of k we compute Ekin(k) and Emag(k) as

Ekin(k) =
∑
kx

∑
ky

{
Ekin,2D(kx, ky) |kdiff (k, kx, ky)| < ∆k

2 ,
0 otherwise (B3)

Emag(k) =
∑
kx

∑
ky

{
Emag,2D(kx, ky) |kdiff (k, kx, ky)| < ∆k

2 ,
0 otherwise (B4)

Appendix C: SGS Tensors

Here we present the plots of the SGS tensors τkin, τind, and τenth in Figures 12 to 14 respectively. Each figure provides the
value of τ computed from the DNS data τDNS , the ANN model τANN , and the gradient model τgrad.
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FIG. 12. Same as Figure 8 for the SGS tensor components of τkin.
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FIG. 13. Same as Figure 8 for the SGS tensor components of τind.

FIG. 14. Same as Figure 8 for the SGS tensor components of τenth.
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