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The dynamical mass of galaxies and the Newtonian acceleration generated from the baryons have been found
to be strongly correlated. This correlation is known as ‘Mass-Discrepancy Acceleration Relation’ (MDAR).
Further investigations have revealed a tighter relation - ‘Radial Acceleration Relation’ (RAR) - between the
observed total acceleration and the (Newtonian) acceleration produced by the baryons. So far modified gravity
theories have remained more successful than ΛCDM to explain these relations. However, a recent investigation
has pointed out that, when RAR is expressed as a difference between the observed acceleration and the expected
Newtonian acceleration due to baryons (which has been called the ‘Halo acceleration relation or HAR’), it
provides a stronger test for modified gravity theories and dark matter hypothesis. Extending our previous work
[1], we present a case study of modified gravity theories, in particular Weyl conformal gravity and Modified
Newtonian Dynamics (MOND), using recent inferred acceleration data for the Milky Way. We investigate how
well these theories of gravity and the RAR scaling law can explain the current observation.

I. INTRODUCTION

In Newtonian gravity, i.e. the weak-field limit of the general
relativity, the discrepancy between the mass estimated from
the observed dynamics of galaxies (Mdyn) and the observed
baryonic mass (Mbar) has been found to be correlated with
the observed acceleration (aobs) in the galaxy, showing a
monotonous decline with increasing radial distances (or
decreasing observed acceleration). The observed relation
between Mdyn/Mbar and aobs is known as Mass-Discrepancy-
Acceleration Relation (MDAR) [2].

Analyzing the high precision data from 153 spiral galaxies
in SPARC (Spitzer Photometry and Accurate Rotation Curves)
database, McGaugh, Lelli and Schombert (MLS) [3] have
found a even tighter correlation between the radial accelera-
tion, aobs, inferred from the rotation curves and that expected
Newtonian (centripetal) acceleration generated by the baryons
in galaxies. The emperical relation, known as Radial Accelera-
tion Relation (RAR), is quite similar to the acceleration law of
Modified Newtonian Dynamics (MOND) [4, 5] and is given
by:

aMLS =
abar

new

1 − exp(−( abar
new
a† )1/2)

, (1.1)

where abar
new is the Newtonian acceleration produced by

the baryonic mass only and a† = 1.2 × 10−10 ms−2 is the
acceleration scale. Lelli et al. [6] have further established
that similar relation holds for other types of galaxies such as
ellipticals, lenticulars, and dwarf spheroidals. The universality
of RAR across different types of galaxies along with its small
scatter provides an unique test for dark matter models and
modified gravity theories at galactic scale. Even though
semi-analytical dark matter models can account for the RAR,
the intrinsic scatter produced by these models is always
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significantly larger than the one observed [7, 8]. Furthermore,
within the context of ΛCDM where dark matter dominates
the baryonic mass, it is not immediately clear why the
observed acceleration should be strongly correlated to the
baryonic matter. It is thus natural to investigate whether the
existence of such scaling could be a hint for modification
of gravity at the galactic scales. Modified gravity theories
such as Modified Newtonian Dynamics (MOND) [4, 5],
Weyl Conformal gravity [9, 10] and Scalar-Tensor-Vector
Gravity (STVG)/Modified Gravity (MOG) [11] have been
shown to be in excellent agreement with RAR ([12] for
MOND; [1, 13] for Weyl gravity; [14] for MOG). However,
[15] found Emergent gravity [16] to be inconsistent with RAR.

Tian and Ko [17], on the other hand, found that express-
ing RAR in terms of the difference between the observed
acceleration and the expected Newtonian acceleration due to
baryons (which they call as ‘halo acceleration’) provides more
interesting features:

ah = aobs − abar
new. (1.2)

They claim that the halo acceleration (ah), when plot-
ted as function of the expected Newtonian acceleration
due to baryons, shows a prominent maxima. They fur-
ther observed that HAR provides a much stringent test
for different astrophysical dark matter profiles and differ-
ent versions of MOND (with different interpolating functions).

We note that RAR have been obtained by fitting the
cumulative (inferred) acceleration data of hundreds of
galaxies [3]. However, the obtained relation has also been
tested individually for the galaxies in the SPARC catalog
[18]. The reported relation has been found in all types of
galaxies irrespective of whether the corresponding data fall
in the low acceleration regime (10−10 m/s2 - 10−12 m/s2) or
in the high end (10−8 m/s2 - 10−10 m/s2). HAR, on the other
end, have not been fitted to individual galaxies so far. In
this paper, we present an interesting case study of RAR and
HAR in the Milky Way through the lens of modified gravity
theories, namely Weyl conformal gravity and MOND. The
Milky Way is one of the very few individual galaxies for
which the rotation curve data allows one to probe both the
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high and low acceleration domain (from 10−8 m/s2 to 10−12

m/s2). Several groups [Sofue (YS12) [19]; Bhattacharjee et al
(BCK14) [20]; Huang et al (YH16) [21]] have constructed
highly resolved rotation curve for the Milky Way extending
up-to a large galactocentric distance beyond ∼ 100 kpc using
kinematical data of different types tracer objects, without
assuming any particular model for the galaxy mass profile.

In our previous work [1] (DI18), we have complied the
rotation curve data of YS12, BCK14 and YH16 and showed
that both Weyl conformal gravity and MOND can reasonably
fit the data. Extending the analysis done in KT18, we now
use the inferred centripetal acceleration data to address the
following questions: (1) Do the rotation curve data of the
Milky Way follow MDAR, RAR and HAR? (2) If yes, how
well Weyl conformal gravity and MOND can explain these two
phenomenological relations in the Milky Way? (3) Which of
these three relations gives a stronger test for modified gravity
theories ? Our paper is organized in the following way. We
first present the mass model of the Milky Way in Section II;
then provide a brief description of the Weyl Conformal gravity
and MOND in Section III; discuss our results in Section IV;
and finally pen down the summary in Section V.

II. MILKY WAY MASS PROFILE

Following [22], we model the Milky Way (MW) galaxy
with five distinct structural components: a spherical central
bulge, thin and thick stellar disks, and HI and molecular gas
disks. The central bulge is assumed to follow an exponential
surface brightness profile [23] which is translated into the
following three dimensional mass density

ρ(r) =
Mbulge

2π2t3 K0(r/t), (2.1)

where Mbulge = 2.0 ± 0.3 × 1010M� is the total mass of the
bulge [24], t is the extent of the bulge and K0 denotes modified
Bessel function. The exact value of t remains uncertain in
literature (ranging from 0.6 kpc to 2.0 kpc). Here, we use an
average value of t = 1 kpc. For the disk components, we use
usual exponential surface mass density profiles of the form

Σ(r) = Σ0e−r/R, (2.2)

where Σ, Σ0 and R are the surface mass density, maximum
surface density (at the center) and the scale length of the disk
respectively. For different disk components (thin stellar disk/

thick stellar disk/ HI disk / H2 molecular gas disk), Σ, Σ0

and R would take different values (Table I). Apart from these,
we include a central super-massive black hole with a mass
Mbh = 4.0 ± 0.3 × 106M� in the mass model.

TABLE I: Parameters for the Milky Way mass model [22]

Σ0 R
Thin Stellar Disk 886.7 ± 116.2 M�pc−2 2.6 ± 0.52 kpc
Thick Stellar Disk 156.7 ± 58.9 M�pc−2 3.6 ± 0.72 kpc

HI Disk 1.1 × 1010 M� 7.0 kpc
H2 Disk 1.2 × 109 M� 1.5 kpc

III. MODIFIED GRAVITY THEORIES

A. Weyl Conformal Gravity

Weyl conformal gravity [9, 10] employs the principle of
local conformal invariance of the space-time in which the
action remains invariant under conformal transformation i.e.
gµν(x)→ Ω2(x)gµν(x), where gµν is the metric tensor and Ω(x)
is a smooth positive function. It also obeys the general coordi-
nate invariance and the equivalence principle. These require-
ments lead to a unique action Iw = −αg

∫
d4x
√
−gCλµνκCλµνκ

where αg is a dimensionless coupling constant and Cλµνκ is
the Weyl tensor [25]. The action then yields a fourth order
field equation. Mannheim and Kazanas have reported an exact
vacuum solution for static, spherically symmetric geometry
[10].

It has been shown that, in Weyl gravity, the potential within
a galaxy is decided by both the local mass distribution in the
galaxy as well as the mass exterior to it [10]. The global
contribution to the potential has two different origins: the ho-
mogeneous cosmological background, contributing a linear
potential, and the inhomogeneities in the form of galaxies,
clusters and filaments, contributing a negative quadratic poten-
tial.

In Weyl gravity, each star generates a potential V∗star(r >
r0) = −

β∗c2

r +
γ∗c2r

2 . Therefore, the potential in a disk com-
ponent would be the summation of potentials generated by
all such stars in the disk. The total contribution to rotational
velocities of stars from the luminous mass within the disk
following a exponential surface mass density profile (Eq. (2.2)
is then found to be [10]

v2
disk(r)

=
Nβ∗c2r2

2R3
0

[
I0

(
r

2R0

)
K0

(
r

2R0

)
− I1

(
r

2R0

)
K1

(
r

2R0

) ]
+

Nγ∗c2r2

2R0
I1

(
r

2R0

)
K1

(
r

2R0

)
,

(3.1)

where I0, I1, K0 and K1 are modified Bessel functions and
N = 2πΣ0R2

0 is the total number of stars [10]. We note that the
first term in Eq. (3.1) is the contribution from the Newtonian
term (or in GR; weak gravity limit), the second term originates
from the linear potential. On the other hand, spherical bulge
with mass profile similar to the one in Eq. (2.1) yield circular
velocities of the form [10]

v2
bulge(r)

=
2Nβ∗c2

πr

∫ r/t

0
dz z2K0(z) +

Nγ∗c2r
π

∫ r/t

0
dz z2K0(z)

−
Nγ∗c2t2

3πr

∫ r/t

0
dz z4K0(z) +

2Nγ∗c2r3

3πt2 K1(r/t).

(3.2)

The first term denotes the contribution from the Newtonian
potential whereas the second term is the Weyl gravity correc-
tion from the linear term. The rotational velocity for the Milky
Way galaxy due to the local mass distribution is thus obtained
as

v2
loc(r) =v2

bulge(r) + v2
disk,thin(r) + v2

disk,thick(r)

+ v2
disk,HI(r) + v2

disk,H2(r).

(3.3)
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FIG. 1: Upper Left: Observed centripetal acceleration (inferred from YH12, YS17 and BCK14) as a function of radial distances
from the galactic center in log-log scale. Upper Right: loglog plot of observed centripetal acceleration as a function of Newtonian
expectation due to baryons. Predicted profiles in GR (without dark matter), Weyl gravity, MOND and RAR scaling given in Eq. 1.1
by McGaugh, Lelli and Schombert (MLS) [3] are then superimposed in both panels. Binned data has been plotted in pink circles.
Lower Left: Residuals [for GR (without dark matter), Weyl gravity, MOND and RAR scaling] as a function of radial distances from
the galactic center in log-log scale. Lower Right: Residuals as a function of Newtonian expectation due to baryons. Color codes are
given in the legend. Details are in the texts.

Finally, we include the global effects and write down the net
rotational velocity in Weyl gravity [10]:

v2
tot(r) = v2

loc(r) +
γ0c2r

2
− κc2r2. (3.4)

The corresponding centripetal acceleration is thus : v2
tot(r)

r .
The values of the four universal Weyl gravity parameters
are fixed by previous fits to the rotation curves of ∼ 100
galaxies [26–28]: β∗ = 1.48 × 105 cm; γ∗ = 5.42 × 10−41

cm−1; γ0 = 3.06 × 10−30 cm−1 and κ = 9.54 × 10−54 cm−2.
These values have also been used in our previous study [1] of
Weyl conformal gravity at galactic and extra-galactic scales.
To maintain consistency, same choices have been made for the
parameter values in this work.

It is, however, important to point out that, in Weyl gravity,
each star generates a potential that consists of a Newtonian
term plus a linearly growing term. We fix the coefficients of
the Newtonian and linear terms to the values obtained from
previous study of ∼100 galaxy rotation curves [26–28] which
considered the coefficients as free parameters that can be fitted
to improve the model’s agreement with data. However, it can
be shown that if the matter source is a simple 3-dimensional
delta function, the coefficient of the Newtonian term is zero

and the entire potential is a linear term. The Newtonian term
only acquires a non-zero coefficient if the matter source has
a second derivative of a delta function. This yields results
which are wildly inconsistent with the data. Attempts should
be made to explore this direction further and find out ways to
reconcile with data.

B. Modified Newtonian Dynamcies (MOND)

In Modified Newtonian Dynamcies (MOND) [4, 5] scenar-
ios, net acceleration is obtained via modifying the Newtonian
acceleration due to baryons through an interpolating function
µ such that

µ

(
a
a0

)
a = aN , (3.5)

a0 denotes a critical value below which Newtonian gravity
breaks down. The interpolating function µ(x) ≈ x when x � 1
and µ(x) ≈ 1 when x � 1. Therefore, in MOND, Newtonian
behavior is recovered when the acceleration is high. In litera-
ture, different functional forms of the interpolating function
µ(x = a

a0
) is used. In this paper, we stick to the ‘standard’
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FIG. 2: Histogram of the residuals between the inferred cen-
tripetal accelerations and the predicted accelerations in GR
(without DM), Weyl gravity, MOND and RAR scaling. Color
codes are given in the legend. Details are in the texts.

form:

µ(x) =
x√

(1 + x2)
, (3.6)

with a0 = 1.21 × 10−10m/s2. Therefore, the MOND accelera-
tion can be written as [4]

aMOND =
aN
√

2

[
1 +

(
1 +

(
2a0

abar
new

)2 )1/2]1/2
, (3.7)

where abar
new is the Newtonian acceleration associated with the

baryonic mass.

IV. RESULTS

A. Radial Acceleration Relation (RAR) and Modified gravity

We first plot the inferred acceleration data for the Milky
Way [obtained from BCK14 (49 data points), YS12 (123 data
points) and YH16 (43 data points)] as a function of radial
distances from the galactic center in Figure 1 (upper left).
As mentioned before, the acceleration data covers both the
low acceleration regime (10−10 m/s2 - 10−12 m/s2) and high
acceleration regime (10−8 m/s2 - 10−10 m/s2). In particular,
we find no noticeable feature in the transition zone from
high to low acceleration regime. On top of the data, we
superimpose the acceleration profile predicted in GR (blue
dashed dotted), Weyl gravity (solid red line) and MOND
(black dashed line). Furthermore, we show the expected
profile when RAR scaling law ([3]; referred to as MLS) is
assumed to be valid (long dashed green line). No dark matter
is assumed. We find that Weyl gravity, MOND and RAR
(otherwise mentioned as MLS in the figure) overall match
with the data. However, the GR (without dark matter) profile
departs from the data beyond ∼ 10 kpc from the galactic

TABLE II: Reduced chi-square values as goodness-of-fits for dif-
ferent theories of gravity and RAR scaling law. No dark matter
is assumed. (Section IV A in text)

χ2/do f
General Relativity (GR) without dark matter 7.56

MOND (Standard Form) 5.90
Weyl Conformal Gravity 6.11

Radial Acceleration Relation / MLS 2016 5.71

center. Interestingly, at ∼ 10 kpc, the acceleration reaches the
value ∼ 10−10 m/s2 which corresponds to the acceleration
scale a0 in MOND.

In Fig 1 (upper right), we also plot the observed centripetal
acceleration as a function of the expected Newtonian accel-
eration from baryonic matter only. On top of that, we plot
the binned data for radial acceleration in pink circles. We
note the following points. First, phenomologically established
RAR can reasonably account for the observed data. This is
not a surprise as the relation have been tested for a number of
galaxies and is found to be quite robust. Though the overall
shape of the MOND and Weyl gravity profiles differ a bit, both
agrees to the data with comparable chi-square value (Table II).
However, one can see that MOND overshoots the data in the
extreme low end of the acceleration while both MOND and
Weyl gravity shows slight disagreement in the extreme high
end of the acceleration.
To understand the goodness-of-fit for different theories, we

have plotted the residuals between data and model in Fig 1
(lower panel) as a function of radial distances and expected
Newtonian acceleration in loglog scales. For convenience, we
use the following definition for residuals:

Residual = (Data − Model)2/Data2. (4.1)

We choose this particular definition of residual for two reasons.
First, the residuals are always positive and, thus, can easily
be plotted in log-scale. This is necessary as the centripetal
acceleration data span from 10−12 m/s2 to 10−8 m/s2. Second,
taking only absolute difference between the observed data and
predicted values can erroneously imply that a model having
smaller differences in the high-acceleration regime is better
than other models. To eliminate such possibility, we use a
relative residual. Smaller values of residual indicates a better
match between observed centripetal acceleration and the pre-
dicted accelerations in different theories of gravity. We find
that GR (without DM) produces systematically larger error
as distance increases (and acceleration decreases). However,
at the high-acceleration regime, residuals for GR (without
DM) is comparable to other theories in question. Finally, we
plot the histograms of residuals for different theories in Fig
2. Residual histogram for GR (without DM) peaks at a larger
value whereas MOND and Weyl gravity peaks overlap. The
latter two histograms also exhibit longer tails in the lower end
of residual values. RAR scaling produces residuals slightly
larger than MOND and Weyl gravity.
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FIG. 3: Upper Left: Inferred mass discrepancy as a function of radial distances from the galactic center in log-log scale. Upper Right:
loglog plot of inferred mass discrepancy as a function of Newtonian expectation due to baryons. Binned data has been plotted in pink
circles. Predicted profiles in GR (without dark matter), Weyl gravity, MOND and RAR scaling are then superimposed in both panels.
Lower Left: Residuals [for GR (without dark matter), Weyl gravity, MOND and RAR scaling] as a function of radial distances from
the galactic center in log-log scale. Lower Right: Residuals as a function of Newtonian expectation due to baryons. Color codes are
given in the legend. Details are in the texts.
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FIG. 4: Histogram of the residuals between the inferred mass dis-
crepancies and the predicted mass discrepancies in GR (without
DM), Weyl gravity, MOND and RAR scaling. Color codes are
given in the legend. Details are in the texts.

B. Mass Discrepancy-Radial Acceleration (MDRA) Relation
and Modified gravity

We now compute the (Newtonian) dynamical mass as
a function of the the radial distances from the galactic
center. The dynamical mass can directly be obtained as
Mdyn = aobsr2/G. Similarly, one can write the baryonic
mass in terms of the Newtonian acceleration due to baryons:
Mbar = abar

newr2/G. The ratio of the dynamical mass and
baryonic mass is therefore same as the ratio of the observed
acceleration and the expected Newtonian acceleration due to
baryons: Mdyn/Mbar = aobs/abar

new. This ratio is a measure of
the ‘mass discrepancy’ in a particular galaxy. In other words,
it quantifies the amount of ‘missing mass’ in a galaxy.

In Figure 3 (upper left), we plot the inferred ratio Mdyn/Mbar
(= aobs/abar

new) as a function of the radial distances from the
Milky Way center. We observe that the amount of missing
mass (or the ratio of the observed and expected Newtonian
acceleration due to baryons) increases as distance increases.
The dashed blue indicates the scenario where observed accel-
eration equals to the expected Newtonian acceleration from
baryons. We find that at larger distances MOND and RAR
exhibits similar features whereas Weyl gravity profile departs
from MOND/RAR profiles. These features become more
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FIG. 5: Upper Left: Observed halo acceleration as a function of radial distances from the galactic center. Violet star denotes the
constant acceleration γ0c2/2 in Weyl gravity. Upper Right: loglog plot of observed halo acceleration as a function of Newtonian expec-
tation due to baryons. Predicted profiles in GR (without dark matter), Weyl gravity, MOND and RAR scaling are then superimposed
in both panels. Binned data plotted in pink circles. Lower Left: Residuals [for GR (without dark matter), Weyl gravity, MOND
and RAR scaling] as a function of radial distances from the galactic center in log-log scale. Lower Right: Residuals as a function of
Newtonian expectation due to baryons. Color codes are given in the legend. Details are in the texts.

prominent in Figure 3 (upper left) where we plot the mass
discrepancy as a function of the Newtonian acceleration due
to baryons. We notice that, although MOND/RAR/Weyl grav-
ity mass discrepancy profiles become similar to each other in
the high acceleration regime (i.e. in interior of the galaxy),
there is a difference between these predicted profiles and in-
ferred mass-discrepancy data from YS12 [19]. We also plot
the binned data for radial acceleration in pink circles. We find
that Weyl gravity and MOND profile accounts for the binned
data better than RAR scaling. In the lower panel of Figure
3, we plot the residual as a function of radial distances and
expected Newtonian accelerations. It must be noted that the
residual (defined in Eq. 4.1) is same for RAR and MDRA.
Histograms of residuals for different theories are shown in Fig
4.

C. Halo Acceleration Relation (HAR) and Modified gravity

The ‘halo acceleration’ [17] is defined as the difference be-
tween the observed acceleration and the expected Newtonian
acceleration due to baryons:

ah = aobs − abar
new. (4.2)

We now plot the radial variation of the ‘halo acceleration’
in Figure 5 (upper left). We find a scatter in data around

zero in the interior of the galaxy (within ∼ 20 kpc from
the galactic center) beyond which the data becomes almost
independent of the radial distance. This feature is strikingly
similar to the findings of [13] who observed that, beyond
10 kpc, the difference between observed acceleration and
expected Newtonian acceleration (due to baryons) in the
cumulative sample of 207 galaxies is confined to very
narrow bracket which does not depend on radial distances
anymore. Furthermore, the ‘halo acceleration’ in this region
systematically exhibits positive values hinting an underlying
departure from Newtonian dynamics. We further find that
Weyl gravity, MOND and RAR successfully capture this
narrow band beyond 20 kpc. However, the inner region contin-
ues to be problematic for these theories/scaling to explain well.

It is important to point out that the asymptotic behavior
of RAR, MOND and Weyl gravity profile have some subtle
differences. In the low acceleration regime (i.e. for larger r),
RAR goes as: aMLS ∝ (abar

new)(1/2). Thus, the ‘halo acceleration’
ah,MLS ∝ (abar

new)(1/2) − abar
new. As, for larger r, abar

new → 0, ah,MLS
also goes to zero. Similarly, for the standard form of MOND,
both aMOND and the difference between aMOND and abar

new goes
to zero in the lower acceleration limit. However, for the Weyl
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gravity, the asymptote takes the following form:

aweyl =
γ0c2

2
− κc2r. (4.3)

Therefore, the acceleration becomes almost constant when
the quadratic term is negligible. For larger distances from the
galactic center, however, the negative quadratic term becomes
significant such that aweyl (and consequently halo acceleration
in Weyl gravity) approaches zero faster than MOND and
RAR (Figure 5; upper left and upper right). Such subtle
features can in principle be used in future tests of modified
gravity theory with RAR (or HAR). Eq. (4.3) further suggests
that aweyl (and halo acceleration in Weyl gravity) at larger
distances from galactic center will have a maximum value of
γ0c2

2 (denoted by a ‘star’ in Figure 5 upper left). Both observed
halo acceleration data and the predicted Weyl gravity profile
are found to comply with this upper bound.

To investigate this region more carefully, we now plot
the halo acceleration data in log-log scale as a function of
the Newtonian acceleration expected from baryons. We do
not find any clear evidence for the existence of a maxima
in ah as claimed by [17] (Figure 5; upper right). Binned
halo acceleration data initially shows an uni-modal feature
only then to increase in the interior of the galaxy. However,
we find that casting the data into ah–abar

new plane helps to
discriminate between different theoretical models. For
example, the expected profiles in Weyl gravity, MOND
and RAR originating from the baryons in the Milky Way
looks very similar to each other when plotted in the abar

obs–r
plane or aobs–abar

new plane or ah–r plane. However, in the halo
acceleration vs Newtonian acceleration (due to baryons)
plane, they look strikingly different from each other. These
differences could be exploited further to discriminate between
different models. Interestingly, we find uni-modal feature in
both MOND and RAR profiles while Weyl gravity curve does
not show any such signature. Moreover, it is surprising to see

that the high acceleration regime proves to be more vital when
the question pops up: which model better explains the data?

Overall, we observe that Weyl gravity and MOND produces
smaller residuals than RAR scaling (Figure 6). At this point,
we note that the discrepancy between the data and expected
profiles in Weyl gravity, MOND and RAR is considerably
high in the high end of acceleration regime which, in general,
corresponds to the innermost region of the galaxy (Figure
5; lower panels). One particular possibility is that the mass
model, used to generate the expected modified gravity/RAR
profiles, is not adequate in this region. That could be the case
in the Milky Way as we ignore the effects of the presence of
‘holes’ in the inner region of the gas disks [22]. The effects of
the black hole are also taken naively. These issues should be
taken care of if one pursues a test of modified gravity theories
with halo acceleration relation.

We therefore conclude that RAR definitely gives a strong
test for modified gravity theories and dark matter models. It
would probably continue to be one of the zeroth order tests
any modified gravity theory must pass at the galactic scale.
However, HAR would enable us to formulate a precision test
which will require finer knowledge about the mass model of a
particular galaxy (the Milky Way for this work).

V. CONCLUDING REMARKS

In this work, we have used the inferred acceleration data
in the Milky Way obtained from different kinematic surveys
[19–21] to test RAR and two popular modified gravity
theories, MOND (standard form) and Weyl gravity. It must
be noted that the RAR scaling proposed by McGaugh, Lelli
and Schombert (MLS) [3] is in fact another form of MOND
with different interpolating function. In that sense, this work
tests Weyl gravity and two different versions of MOND. We
have found that both the modified gravity theories in question
as well as RAR can explain the radial acceleration data well.
We further investigated whether representing the data in the
form of halo acceleration (i.e. difference between observed
and expected Newtonian acceleration due to baryons) yields
anything extra. We have noticed that while the data in the
aobs–abar

new plane is unable to discriminate between different
models or gravity and scaling laws, ahalo–abar

new plane gives
a stronger test for them. We have further observed that,
in the ahalo–abar

new plane, both the high acceleration and low
acceleration regime becomes equally important for such
tests. In our case, we demonstrated that, though in the low
acceleration regime the predicted profiles in MOND, RAR
and Weyl gravity reasonably agree with each other, their
trajectory differs significantly in the high acceleration regime.
We also note that the current uncertainties and inadequacy
of mass models in the high acceleration regime (i.e. in the
innermost part of the Milky Way) does not allow us to reach
any strong conclusion. However, in future, as more accurate
mass model becomes available, one can formulate precision
tests for modified gravity theories (and dark matter models)
against acceleration data in the ahalo–abar

new plane.
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