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Recently it has been argued that near-horizon modifications of the standard (classical) black hole
spacetime could lead to observable alterations of the gravitational waveform generated by a binary
black hole coalescence. Such modifications can be inspired by quantum gravity considerations,
resulting in speculative horizonless exotic compact objects (ECOs) with no singularities, which may
be an alternative to the classical black hole solution. A largely model-independent description of
these objects proposed in the literature relies on the introduction of a partially reflective wall at
some small distance away from the “would-be” horizon. The inspiral-merger-ringdown of a pair
of such objects would be subject to possibly detectable deviations from the black hole case due
to matter effects. In particular, the ringdown phase would be modified by the late emergence of
so-called “echoes” in the waveform, but most studies so far have considered spherically symmetric
backgrounds. We use an in-falling scalar charge as an initial perturbation to simulate the excitation
of the echoes of a rotating ECO and we explore both the co-rotating and counter-rotating cases,
which provide distinct signals. In particular, rotation breaks the symmetry between positive and
negative frequencies and introduces a subdominant frequency contribution in each echo, which we
examine here for the first time. Our results follow consistently from the solution of the Teukolsky
equation using the MST method developed by Mano, Suzuki and Takasugi, and the construction of
the complex Green’s function integrated over different particle geodesics.

I. INTRODUCTION

The existence of black holes is supported by a large
number of astrophysical observations of compact ob-
jects with about ten solar masses in binary systems,
mostly in our galaxy, as well as supermassive compact
objects in the center of galaxies, ranging typically from
106 − 109M�. More recently, the strongest evidence for
the existence of black holes comes from the detections
of gravitational waves by the LIGO-Virgo collaboration
[1–7], supplemented by the results of the Event Horizon
Telescope collaboration [8–11].

However, there is still room for alternative theories and
models despite the increasingly more stringent tests and
repeated successes of the predictions of general relativ-
ity. Moreover, from the point of view of a future theory
of quantum gravity it is quite possible that the classi-
cal black hole picture must be replaced by a different
solution. The most particular and distinguishable fea-
ture of a black hole in general relativity is the presence
of an event horizon, but finding irrefutable proof of its
existence might be a nearly impossible task [12].

Different alternative models have been suggested in the
literature as “black hole mimickers”, that is, horizonless
compact objects that could in principle reproduce the ob-
served black hole phenomenology without having a hori-
zon or a singularity. Examples include gravastars [13, 14],
boson stars [15], 2-2 holes [16], firewalls and fuzzballs [17].
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The characteristics and possible observational signa-
tures of such “black hole alternatives”, also called exotic
compact objects (ECOs), have been extensively studied
(see [18] for a review). In compact binary coalescences,
which are usually described in terms of inspiral, merger
and ringdown, the inspiral gravitational waveform is in-
sensitive to the character of the compact objects to lead-
ing order1, although it has been recently argued that con-
straints from tidal heating could be obtained in extreme
mass ratio inspirals [20].

The ECO merger waveform would have to be deter-
mined through numerical relativity simulations, which
would need either a concrete realization of an ECO model
or substantial adaptations of the boundary conditions
close to but still outside the black holes’ horizons.

During the ringdown after the merger, the linear per-
turbation regime is recovered and the waveform can
be described in terms of characteristic exponentially
damped oscillations, the quasinormal modes (QNMs) of
the spacetime [21, 22]. Therefore the ECO spacetime will
have different QNMs from a black hole spacetime (see for
example [23–25]), and the detection of unexpected fre-
quencies in a gravitational wave signal would be a clear
indication of a deviation from the black hole metric. In
[26] it was shown that the quasinormal modes of a real-
ization of the gravastar model fail to match the observed
fundamental ringdown frequency and damping time in

1 But finite size effects come in at the 5PN, which yielded inter-
esting constraints on the neutron star equation of state from the
event GW170817 [19]. ECOs will also have an equation of state!
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GW150914.
But the structure of the ringdown signal can become

more complex for increasingly more compact objects,
with a series of subsequent exponentially damped oscilla-
tions which were first calculated for uniform density stars
in [27] and later called “echoes” by [28] in the context of
ECOs. This behavior comes from the repeated scatter-
ing of the waves in the effective potential well formed
by the peak of the potential at the photon ring and the
centrifugal barrier near the center of the star, as shown
schematically in Figure 1.

This led to the proposal in [28] that the early ringdown
of an ECO merger would result from the scattering on
the peak and be indistinguishable from the black hole
quasinormal mode signature if the surface of the ECO
is infinitesimally close to the event horizon of a black
hole with the same mass. In this scenario, it would be
possible to distinguish an ECO from a black hole only
during the later part of the ringdown, when there would
have been enough time for the characteristic frequencies
of the ECO to emerge in the echoes. The existence of
such pulses in gravitational wave detections would imply
an enormous shift in our current understanding of black
holes and general relativity.

Consequently, a lot of recent effort has been put into
the modeling of these signals using different approaches.
Initially only nonrotating configurations were considered,
as in [28]. In [29] scalar echoes were studied on a non-
rotating ECO background using an infalling particle as
an initial excitation. Gravitational echoes from the head-
on collision of two boson stars were examined in [30].

Adding rotation to horizonless compact objects is a
nontrivial issue due to the ergoregion instability [31]. In
[32, 33] the ergoregion instability of rotating gravastars
was considered for scalar perturbations, showing the lim-
itations in the allowed parameter space of the solutions to
prevent the occurrence of the instability. Later, [34, 35]
showed that the instability can be effectively suppressed
if the ECO has a small absorption rate. Scalar echoes
from rotating wormholes were calculated in [36].

Different works presented proposals for echo templates
that could be used in the search for echoes in gravita-
tional wave data (see for example [37–39]). Some pre-
liminary searches reported evidence for echoes with low
significance < 2.5σ [40, 41], which were not confirmed by
other studies [42–44].

Here we use an infalling scalar point charge to excite
the scalar echoes of a rotating ECO. We follow the semi-
analytical method developed by Mano, Suzuki, and Taka-
sugi (the MST method) [45, 46] to solve the Teukolsky
equation and obtain the time-dependent waveform. We
find that rotation breaks the symmetry between positive
and negative frequency contributions, making the echo
signature dependent on the orbital motion followed by
the infalling particle, and also introducing a subdomi-
nant frequency contribution in each echo.

The structure of this paper is as follows: in Section
II we present the mathematical formulation used in our
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FIG. 1. Schematic representation of the effective scattering
potential for a black hole and for a very compact star, or
an ECO. In the ECO case, an incoming wave can be par-
tially trapped in the potential well and repeated reflections
will generate the echoes in the waveform seen by a far away
observer. The tortoise coordinate r∗ is defined in eq. (2).

work and we show some intermediate results necessary for
the construction of the echoes. In Section III we present
the echo waveforms for rotating ECOs and discuss how
they can be affected by different geodesic motions of the
infalling particle. Finally, in Section IV we state our
conclusions. We use c = G = 1 units throughout this
work.

II. CONSTRUCTING ECHOES FROM
ROTATING ECO’S

A. ECO Model

We are interested here in objects that are almost as
compact as black holes, such that the exterior spacetime
geometry can be well approximated by the Kerr metric,
given in Boyer-Lindquist coordinates as

ds2 = −∆

Σ
(dt− a sin(θ)dφ)2+

+
sin2(θ)

Σ

(
(r2 + a2)dφ− adt

)2
+

Σ

∆
dr2 + Σdθ2, (1)

where ∆ ≡ r2 − 2Mr + a2, Σ = r2 + a2 cos2(θ), a and
M are the spin and mass of the black hole, respectively.
This metric possesses two horizons, an event horizon at
r = r+ ≡ M +

√
M2 − a2 and a Cauchy horizon at r =

r− ≡M −
√
M2 − a2.

Although there is no equivalent of Birkhoffs theorem
for axially symmetric spacetimes, some recent works have
shown that the normalized moment of inertia and the
mass quadrupole moment of a slowly rotating compact
star approach the corresponding values for the Kerr met-
ric, see for example [47]. Therefore we will describe the
spacetime exterior to the ECO by the standard Kerr met-
ric (1).

In order to model this horizonless spacetime, we will
follow a prescription initially suggested in [29] and sup-
pose the existence of a reflective wall, which will encode
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the characteristics of the surface and interior of the ECO.
This wall is placed on the surface of the object at a ra-
dial coordinate r0 just above the expected position for
the event horizon r+, that is, r0 = r+ + δ, where δ �M .
It is useful to define the position of the wall in terms of
the tortoise coordinate r∗, given as usual by

dr∗
dr

=
r2 + a2

∆
, (2)

and we choose the integration constant to have

r∗ = r +
2Mr+
r+ − r−

ln

(
r − r+

2M

)
− 2Mr−
r+ − r−

ln

(
r − r−

2M

)
.

We denote the position of the wall as r0∗ ≡ r∗(r0). The
reflective properties of the wall are parametrized by its
reflectivity R, which accounts for the percentage of en-
ergy that is reflected back from the wall.

B. Green’s function formulation

Our starting point is the time-independent radial
Teukolsky equation [48–50], which is used for evolving
field perturbations of spin s around a Kerr black hole
and is given by(

K2 − 2is(r −M)K

∆
+ 4isωr − sλlmc

)
sRlmω(r)+

+ ∆−s
d

dr

(
∆s+1 dsRlmω(r)

dr

)
= 0, (3)

where c ≡ aω, K ≡ (r2 + a2)ω − am and sλlmc is
the eigenvalue of the (l,m) spin-weighted spheroidal har-
monic sSlmω [51]. Therefore sRlmω(r) is the radial part
of a spin s perturbation for a given (l,m) in the frequency
ω domain.

We now drop the index s and consider only the scalar
case (s = 0). As usual, we need two independent solu-
tions of the homogeneous equation (3), which we choose
as the in- and up-going solutions (see Figure 2). Their
asymptotic behavior reads:

Rin
lmω ∼

 Btrans
lmω e

−ikr∗ , for r → r+

Bref
lmω

eiωr∗

r
+Binc

lmω

e−iωr∗

r
, for r →∞

(4)

Rup
lmω ∼

 Cref
lmωe

−ikr∗ + C inc
lmωe

ikr∗ , for r → r+

Ctrans
lmω

eiωr∗

r
, for r →∞

(5)

where k ≡ ω − mΩH and ΩH ≡ a/(2Mr+). In

equations (4) and (5) the coefficients B
inc/ref/trans
lmω and

C
inc/ref/trans
lmω are the asymptotic amplitudes of the inci-

dent/reflected/transmitted parts of the ingoing and out-
going waves respectively and they are functions of the
mode numbers (l,m) and of the frequency ω.

FIG. 2. Penrose diagrams with schematic representation of
the in and up-mode solutions of the radial Teukolsky equation,
given by eqs. (4) and (5), respectively.

The Green’s function of the radial Teukolsky equation
(3) can be written in terms of the homogeneous solutions
(4) and (5) as:

GBH
lmω(r|r′) =

Rup
lmω(r)Rin

lmω(r′)

Wlmω
Θ(r − r′)+

+
Rup
lmω(r′)Rin

lmω(r)

Wlmω
Θ(r′ − r), (6)

where Wlmω = 2iωCtrans
lmω B

inc
lmω is the Wronskian of the

two homogeneous solutions and Θ is the Heaviside func-
tion.

In order to study the evolution of the perturbation and
the development of echoes in an ECO spacetime, we fol-
low [29] and modify the Green’s function to account for
the new boundary condition in the ECO case. This mod-
ification results from the presence of the wall of reflectiv-
ity R at a position r0∗ and it is equivalent to replacing
Rin
lmω(r) in (6) by RECO

lmω (r) given as

RECO
lmω (r) = Rin

lmω(r) +KlmωR
up
lmω(r), (7)

where Klmω is the transfer function defined as

Klmω =
Btrans
lmω

Ctrans
lmω

K̄lmω , where

K̄lmω ≡
Ctrans
lmω

C inc
lmω

Re−2ikr
0
∗

1− (Cref
lmω/C

inc
lmω)Re−2ikr

0
∗
, (8)

and we denote K̄lmω as the scaled transfer function. The
expression for Klmω (8) is computed by requiring that
the asymptotic behavior near the wall

RECO
lmω (r) ∼ Ain

lmωe
−ikr∗ +Aout

lmωe
ikr∗ , (9)

has Aout
lmω = Ain

lmωRe
−2ikr0∗ , where A

in/out
lmω are the ingo-

ing/outgoing amplitudes of the wave as r → r+.
Defined in this way, the new Green’s function can be

separated in two parts:

GECO = GBH +Gecho, (10)

with Gecho = Klmω
Rup
lmω(r)Rup

lmω(r′)

Wlmω
, (11)
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where the first part reproduces the usual black hole re-
sponse given by (6), that is, the black hole ringdown
in QNMs. The second part generates the subsequent
echoes. This implies that, if the reflectivity R → 0, one
should expect no deviations from the black hole wave-
form.

We use as the initial excitation of the ECO waveform
an infalling particle with scalar charge q and energy den-
sity

ρ(x) = q

∫
dτ
δ4(x− xp(τ))√

−g
, (12)

where xp(τ) = (tp, rp, θp, φp)(τ) is the particle’s trajec-
tory as a function of its proper time τ . We decompose
ρ(x) as

ρ =
1

Σ

∑
lm

∫
dωρlmωsSlm(θ)eimφe−iωt, (13)

to select the appropriate (l,m) mode and we find that
the final echo response will be given by

Φlmω(r) =

∫
Gechoρlmωdr

′ ≡ K̄lmω
eiωr∗

r
ZBH,H
lmω , (14)

where ZBH,H
lmω is defined as the wave that would be enter-

ing the horizon in the black hole case, and is now being
reflected back away from the horizon due to the presence
of the wall. We can explicitly write this quantity as

ZBH,H
lmω ∝ q Btrans

lmω

2iωBinc
lmωC

trans
lmω

×

×
∫ ∞
−∞

dτRup
lmω(rp)0S

∗
lmc(θp)e

−imφpeiωtp , (15)

where we use the MST expression for Rup
lmω given in

eq. (A2) of Appendix A, switching to its asymptotic ex-
pansion for r close to r+.

C. Orbits

It has long been known that an infalling particle excites
the QNMs of a black hole [52] (see [53] for a modern re-
view). In [29] it was argued that it is a reasonable choice
to use a particle plunging from the innermost stable cir-
cular orbit (ISCO) as the source in the Teukolsky eq. (3)
to study the response of an ECO: in many cases binary
systems will be quickly circularized due to the emission
of gravitational waves [54–56] and the ISCO is unique in
the case of a non-spinning black hole.

However, this is no longer the case when the central
object is spinning. Assuming in-plane motion, in the
spinning case there are two different ISCOs, one corating
and one conterrotating with respect to the central object.
In the nonrotating limit a → 0 both of them will be
located at r = 6M , while in the extremal case a → M

-1.5 -1.0 -0.5 0.5 1.0 1.5
r cos(ϕ)/2M

-1.5
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-0.5
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1.0

1.5

r sin(ϕ)/2M

-4 -2 2 4
r cos(ϕ)/2M

-4

-2

2

4

r sin(ϕ)/2M

FIG. 3. Top: Corotating orbital trajectory of an in-
falling particle used for the evolution of the echo waveforms.
The“would-be” horizon, the ergoregion and the ISCO radius
are shown with black, green and red solid lines, respectively.
The ISCO-plunge is shown with blue dashed lines, obtained
from the integration of the geodesic equations of motion on
the equatorial plane of a central object with spin parameter
a = 0.67M and with initial position r = 0.99 rISCO, orbital
energy E = EISCO and angular momentum L = LISCO. Bot-
tom: Same as the upper plot, but for a counterrotating orbital
trajectory, which starts further away from the central object,
spins down due to frame dragging and reverts its movement
before it reaches the ergoregion.

the counterrotating ISCO goes to r = 9M , whereas the
corotating ISCO approaches r = r+ →M .

In Figure 3 we show two realizations of the geodesic
motion that our test particle follows during the geodesic
ISCO-plunge. Both orbits are in the equatorial plane
(θ = π/2) and the spin parameter of the central body is
a = 0.67M . The corotating orbit starts its motion closer
to the central body than the counterrotating case. This
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could suggest that the perturbations from the corotating
case would be stronger. However, as we discuss below in
Section II D, the transfer function is asymmetric in the
rotating case, making it easier to excite counterrotating
modes, and therefore the echoes excited in the counterro-
tating motion will have typically larger amplitudes (see
Section III B).

D. Transfer function

It is convenient to rewrite the scaled transfer function
K̄lmω (8) using the transmission and reflection coeffi-
cients defined respectively as TBH

lmω ≡ C inc
lmω/C

inc
lmω and

RBH
lmω ≡ Ctrans

lmω /C
inc
lmω, which measure how much energy

is transmitted to infinity and how much is reflected back
to the black hole horizon in the up-going solution. More-
over, conservation of energy implies [50]

ω

k

1

2Mr+
|TBH
lmω|2 + |RBH

lmω|2 = 1. (16)

In terms of the transmission and reflection coefficients,
K̄lmω takes the more simplified form

K̄lmω =
TBH
lmωRe

−2ikr0∗

1−RBH
lmωRe

−2ikr0∗
. (17)

In Figure 4 we show a numerical check of our method.
The asymptotic solutions obtained with the MST expres-
sions given in the Appendix A satisfy the conservation
relation (16) to very good precision.

The transfer function depends on the properties of the
ECO. In Figure 5 we show our results for K̄lmω for two
different reflectivities (R = 0.5, 1) and two different wall
positions (r0∗ = −3M,−50M). We note that lower reflec-
tivities result in lower amplitudes of the observed wave-
form, as expected, and the resonances indicate the QNMs
of the ECO.

The number of visible resonances in K̄lmω increases as
r0∗ → −∞, i.e, for more compact objects. Therefore we
find it numerically convenient to work with the following
expansions:

K̄lmω =



∞∑
n=0

TBH
lmω

(RBH
lmω)−(n−1)

Rne−2nikr
0
∗ ,

if |RRBH
lmω| < 1,

∞∑
n=0

− TBH
lmω

(RBH
lmω)n

R(−n+1)e2i(n−1)kr
0
∗ ,

if |RRBH
lmω| > 1.

(18a)

(18b)

The expansion (18a) shows that each n-th term will gen-
erate the n-th echo in the signal, because the negative
complex phases are responsible for shifting the signal to
later times. We will not consider here cases when the
expansion (18b) is applicable, that is, when the ergore-
gion instability is active and the resulting waveform is

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2Mω

|T22
BH|

|R22
BH|

0.0 0.2 0.4 0.6 0.8 1.0

0.99996

0.99998

1.00000

1.00002

1.00004

2Mω

|T22
BH|

|R22
BH|

FIG. 4. Top: Absolute values of the transmission and reflec-
tion coefficients |TBH

lm | and |RBH
lm | as functions of the frequency

ω for l = m = 2. The horizontal black line represents the
energy conservation relation (16). The vertical dashed line
marks the superradiant frequency 2MωSR ∼ 0.769 for a Kerr
black hole with a = 0.67. Bottom: Same as the upper plot,
but zooming in on the superradiant frequencies. We will limit
our choice of reflectivity R to avoid the ergoregion instability
in the ECO case.

exponentially growing. Therefore, we take R such that
|RRBH

lmω| < 1 for all frequencies.2

Figure 6 presents an example of expansion (18a), which
converges rapidly as shown. The peaks come from the
constructive interference of the complex phases for each
term. Additionally, a small superradiant excess can be
seen in all terms. This excess would be larger for the
gravitational case and/or for a central object with higher
spin (see for instance [57], and [58] for a review).

III. RESULTS FOR THE WAVEFORMS

A. Horizon waveforms

The first step to obtain the waveform excited by a par-
ticle falling into the ECO (following the orbits described

in Section II C) is to construct the wave ZBH,H
lmω that would

2 Though expansion (18b) is formally correct for the superradi-
ant frequencies, it would be wrong to conclude that its positive
complex phase indicates that the subsequent echoes appear ear-
lier in time. In this case, the ergoregion instability is active
and the waveform is not square-integrable; hence the analysis in
frequency space is not valid.
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FIG. 5. Top: Absolute value of the scaled transfer function
K̄lmω as a function of the frequency ω for l = m = 2, for
an ECO with a = 0.67, a reflective wall at r0∗ = −3M and
two values of the reflectivity R. Bottom: Same as the upper
plot, but for r0∗ = −50M . The resonance peaks are more
pronounced for more compact ECOs with stronger reflectivity,
and their frequencies correspond to the QNMs of the ECO.

reach the horizon, defined in eq. (15).3

Figure 7 shows our results for the corotating and
counterrotating orbits presented in Figure 3. In Fig-
ure 7 the peaks marked in the upper and lower plots
with dashed lines correspond exactly to the corotating
(l,m) = (2, 2) and counterrotating (l,m) = (2,−2) black
hole QNM frequencies, respectively, which dominate the
time-dependent waveform after the particle reaches the
event horizon. At earlier times the waveforms are dom-
inated by the contribution from the inspiral, with in-
creasing frequency ω = 2ωorbital starting close to twice
the orbital frequency of the ISCO.

B. Echo waveforms

Now that we have the scaled transfer function K̄lmω

(Section II D) and the horizon waveform ZBH,H
lmω (Section

III A), we can construct the echoes as prescribed by equa-
tion (14). We calculate each of the first echoes separately,
using expansion (18a), summing them together in order
to obtain the full echo waveform [29].

3 Similarly to [29], we need to multiply the scalar charge in eq. (15)
by an “activation function” to avoid the sudden appearance of
the scalar particle near the ISCO.

n=1 n=2 n=3 n=4 n=5

n=6 n=7 n=1+2+3 Full
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2Mω
|K

(n
) (
ω
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(2
M

R
n
)|

FIG. 6. Top: Absolute value of the first terms of expansion
(18a) for the scaled transfer function K̄lmω in the case of a
rotating ECO with a = 0.67 and a wall with R = 0.5 at
r0∗ = −50M . The sum of the first three terms (in orange)
is already very close to the full expression, shown in dotted
black. Bottom: Same as the upper plot, but zooming in on
the superradiant region (0 < 2Mω < 2MωSR ∼ 0.769).

We present our results for an ECO with representative
values of spin a = 0.67M , reflectivity R = 0.5 and po-
sition of the reflective wall r0∗ = −50M . For this choice
of parameters a and R, the ergoregion instability is sup-
pressed (as it satisfies the condition |RRBHlmω| < 1, see
also [34]), and this position of the wall results in non-
overlapping consecutive echoes. Our results are shown
in Figure 8 for two cases, in which the infalling particle
followed a trajectory from the corotating ISCO plunge
(upper plot) or from the counterrotating ISCO plunge
(lower plot). It is important to note that higher (con-
stant) values of the reflectivity imply slower decay rates
for subsequent echoes, without altering their frequencies,
see eq. (18a).

In Figure 9 we show separately from left to right the
first, second and third echoes of the waveforms presented
in Figure 8. We can see that the period of the oscilla-
tions is shorter in the echoes resulting from the plunge
of the corotating particle (shown in the upper plots) and
longer in the counterrotating case (lower plots). This
result can be partially understood noting that the coro-
tating particle is spun up by frame dragging, while the
counterrotating particle spins down until it reverses its
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FIG. 7. Top: Absolute value of the horizon waveforms in the
frequency domain for the corotating case. The black verti-
cal dashed line marks the s = 0, l = m = 2, n = 2 QNM
of the black hole. Bottom: Same as the upper plot, but for
the counterrotating case. The black vertical dashed line rep-
resents the s = 0, l = 2,m = −2, n = 0 QNM of the black
hole. In both plots the blue vertical dashed line represents
the orbital frequency at the ISCO.

movement (see Figures 3 and 7). The amplitudes of the
corresponding echoes are similar, but the counterrotating
case has higher amplitudes due to the asymmetry of the
scaled transfer function K̄ (see Figure 5).4

It is also interesting to note that each echo has a sub-
dominant frequency contribution, which can be seen in
the beating of the waveform that becomes more pro-
nounced for later echoes. We present in Figure 10 the
explicit example of the 8th echo for both the corotating
(top row) and the counterrotating (bottom row) cases.
We have isolated the positive and negative frequency con-
tributions in the left and center plots, respectively, and
the full echo showing the beating is in the right plots.
This effect is also caused by the rotation of the ECO,
which breaks the symmetry between positive and nega-
tive frequencies in the non-rotating case.5

4 However, it would be possible to fine tune the transfer function to
select the same frequencies for both orbits, as in the nonrotating
case [29]. A simple example of such a transfer function would be
a sum of two gaussians centered at ±ω0

5 An unrelated modulation of the waveform was reported in [37],
where it was noticed that rotation can mix the + and × polar-
izations in the gravitational case.
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FIG. 8. Top: Real (orange) and imaginary (purple) parts of
the echo waveform, excited by an infalling particle that was
initially corotating with the ECO. The ECO is described by
a reflective wall at r∗0 = 50 with reflectivity R = 0.5, and
the waveform was extracted at 150M . Bottom: Same as the
upper plot, but for the counterrotating case. The vertical axis
has units of q/M and the time axis was shifted to set the peak
of the echo waveform at t = 0.

A preliminary analysis at a higher spin a = 0.9 indi-
cated, as expected, that the asymmetry between positive
and negative frequencies increases with the ECO spin.
However, energy conservation (given by eq. (16)) limits
the amplitude of each frequency contribution. There-
fore, a higher spin results in more easily resolvable neg-
ative and positive frequency contributions, but not in a
stronger contribution from the secondary frequency.

Consequently, the resulting waveform can be approx-
imately described by the superposition of two gaussian
pulses with distinct frequencies. Therefore it is natural
to propose an extension of the parametrization of the
echo waveform as one gaussian pulse proposed in [38], in
order to also account for the subdominant second pulse
described here.

However, it is important to note that such a modi-
fication would necessarily need 14 independent parame-
ters, nearly doubling the initial 8 parameters of the single
guassian model (see eq. (2) in [38]). This indicates the
increasingly complex nature of the echoes in the rotating
case, which should also make the ECO parameter estima-
tion [59] harder to perform. It has also been alternatively
suggested [60] that a search for the characteristic reso-
nance peaks (see for example Figure 5) could be a more
promising way to obtain information on the parameters
of the ECO.
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FIG. 9. Same as Figure 8, but showing the first echoes separately in linear scale. From left to right we have the first, second
and third echoes. On the top (bottom) row, the echoes for the corotating (counterotating) case. The echoes in the corotating
case have amplitudes approximately 30% smaller and frequencies approximately 40% larger than the counterrotating case.
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FIG. 10. Same as Figure 9, but for 8th echo, showing the positive and negative frequency contributions separately in the
left and center plots, respectively. The complete echo is shown on the right plots. In the corotating case (top row), the
subdominant contribution comes from the negative frequency contribution. The situation is reversed for the counterrotating
case (bottom row). The black curve indicates the amplitude of the complex waveform and shows how the superposition of the
two approximately gaussian pulses on the left and center results in the beating of the full waveform on the right.

IV. CONCLUSIONS

The detections of gravitational waves from compact
binary coalescences allow us to test general relativity and
the very existence of black holes, probing gravity in the
strong field regime close to compact objects. If classical
black holes are not formed in nature, for instance due
to quantum corrections that could prevent the formation
of an event horizon, the gravitational wave signal from

these events could present non-trivial modifications.

We have extended the method first developed in [29] to
study scalar perturbations around a rotating ECO. The
extension to the rotating case is crucial for obtaining re-
sults that can be compared with observational data. We
used the MST method for obtaining the homogeneous
solutions of the Teukolsky equation and a Green’s func-
tion formulation to calculate the echoes with an infalling
particle as the source. Our source was allowed to follow
two different paths: a corotating and a counterrotating
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ISCO plunge. The resulting echoes show different char-
acteristics; the corotating case has an amplitude about
30% smaller and the the frequencies are approximately
40% larger than the counterrotating case.

The rotation of the ECO also introduces a subdomi-
nant frequency contribution, which is responsible for the
beating of the waveform observed more easily in later
echoes. Here we were able to find a simple way to de-
scribe this modulation as a sum of two independent gaus-
sian wave packets.

We are currently working on the generalization of our
numerical setup to the gravitational case, in which we
expect that the main features observed in the scalar case
will be preserved. Therefore we propose a simple modifi-
cation of the single gaussian template given in [38], which
we expect will enhance the chances of detection, perhaps
by stacking the data from different events [61, 62].
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Appendix A: MST Method

We solve the radial Teukolsky equation with the MST
method, developed in 1996 by Mano, Suzuki and Taka-
sugi [45, 46], which allows us to analytically calculate
solutions for the homogeneous radial Teukolsky equation
and their asymptotic amplitudes. Here we present the
main results and some useful formulas from the MST
method used in our work.

Solutions of the Teukolsky equation must satisfy the
relation Rlmω = R̄l,−m,−ω, where the bar denotes com-
plex conjugation. Due to this property we can assume
ω > 0 to obtain the following equations and use this
symmetry relation for ω < 0.

With the MST method we obtain the two linearly inde-
pendent solutions of the Teukolsky equation as an infinite
sum of hypergeometric functions and irregular confluent
hypergeometric functions. The solutions in which we are
interested are given by:

Rin
lmω = eiεκy(−y)−s−i(ε+τ)/2(1− y)i(ε−τ)/2

∞∑
n=−∞

an2F1(n+ ν + 1− iτ,−n− ν − iτ ; 1− s− iε− iτ ; y), (A1)

Rref
lmω = 2νe−πεe−iπ(ν+1+s)eiẑ ẑν+iε+(ẑ − εκ)−s−iε+

×
∞∑

n=−∞
in

(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

an(2ẑ)nU(n+ ν + 1 + s− iε, 2n+ 2ν + 2;−2iẑ), (A2)

where ε ≡ 2Mω, q ≡ a/M , κ ≡
√

1− q2, τ ≡ (ε−mq)/κ,
y ≡ ω(r+−r)/(εκ), ẑ ≡ εκ(1−y), ε+ ≡ (ε+ τ)/2, (y)n is
the Pochhammer symbol and ν is a function of (l,m, ω)
[46].

Both series (A1) and (A2) have the same coefficients
an, which satisfy the three term recurrence relation:

ανnan+1 + βνnan + γνnan−1 = 0, for n ∈ Z, (A3)

with the following recurrence coefficients

ανn =
iεκ(n+ ν + 1 + s+ iε)(n+ ν + 1 + s− iε)
(n+ ν + 1)(2n+ 2ν + 3)(n+ ν + 1 + iτ)−1

,

(A4)

βνn = −sλlmc − s(s+ 1) + (n+ ν)(n+ ν + 1)

+ ε2 + ε(ε−mq) +
ε(ε−mq)(s2 + ε2)

(n+ ν)(n+ ν + 1)
, (A5)

γνn = − iεκ(n+ ν − s+ iε)(n+ ν − s− iε)(n+ ν − iτ)

(n+ ν)(2n+ 2ν − 1)
.

(A6)
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The parameter ν is such that an is the minimal solution
of the three-term recurrence relation both for n → −∞
and n→∞ (for a more comprehensive discussion we di-
rect the reader to a review of the method in [46]). In
our work ν was calculated following the prescription de-
scribed in [63] and available on [64]. The computation of
the angular eigenvalues sλlmc and eigenfunctions sSlmω
used the toolkit available in [65].

In this construction of the homogeneous solutions we
implicitly choose a particular normalization. In our
choice the in-mode coefficients are given by:

Btrans
lmω =

(εκ
ω

)2s
eiκε+(1+2 log κ/(1+κ))

∞∑
n=−∞

an, (A7)

Binc
lmω =ω−1

(
Kν − ie−iπν sinπ(ν−s+iε)

sinπ(ν+s−iε)K−ν−1

)
×

×Aν+e−i(ε ln ε−
1−κ
2 ε), (A8)

Bref
lmω = ω−1−2s

(
Kν + ieiπνK−ν−1

)
Aν−e

i(ε ln ε− 1−κ
2 ε).

(A9)

One of the up-going coefficients is given by:

Ctrans
lmω = ω−1−2sAν−e

i(ε log ε− 1−κ
2 ε), (A10)

and the remaining coefficients Cref
lmω and C inc

lmω can be
found with Wronskian relations [66]. In order to find
C inc
lmω we use the conservation of the Wronskian W1 de-

fined as:

W1 = ∆s+1

(
Rup
lmω

dRup
lmω

dr
−Rup

lmω

dRin
lmω

dr

)
, (A11)

from which we find the relation:

C inc
lmω =

iω

M
(2ikr+ + sκ)

−1 Binc
lmω

Btrans
lmω

Ctrans
lmω . (A12)

Similarly for finding Cref
lmω we use the conservation of the

Wronskian W2 given by:

W2 = ∆s+1

(
Rin
s,lmω

d(∆−sR̄up
−s,lmω)

dr
−

−∆−sR̄up
−s,lmω

dRin
s,lmω

dr

)
, (A13)

from where we can find the last coefficient to be given as:

Cref
s,lmω =

iω

M
(−2ikr+ − sκ)

−1 B̄
ref
−s,lmω

B̄trans
−s,lmω

Ctrans
s,lmω. (A14)

Finally, the quantities Aν+, Aν− and Kν in eqs. (A8), (A9)
and (A10) are defined as [46]:

Aν+ ≡ e−
π
2 εe

π
2 i(ν+1−s)2−1+s−iε

Γ(ν + 1− s+ iε)

Γ(ν + 1 + s− iε)

+∞∑
n=−∞

an, (A15)

Aν− ≡ 2−1−s+iεe−
π
2 i(ν+1+s)e−

π
2 ε ×

+∞∑
n=−∞

(−1)n
(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

an, (A16)

and

Kν ≡
eiεκ(2εκ)s−ν−η2−siηΓ(1− s− 2iε+)Γ(η + 2ν + 2)

Γ(η + ν + 1− s+ iε)Γ(η + ν + 1 + iτ)Γ(η + ν + 1 + s+ iε)
×

(
η∑

n=−∞

(−1)n

(η − n)!(η + 2ν + 2)n

(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

an

)−1

×

( ∞∑
n=η

(−1)n
Γ(n+ η + 2ν + 1)

(n− η)!

Γ(n+ ν + 1 + s+ iε)

Γ(n+ ν + 1− s− iε)

Γ(n+ ν + 1 + iτ)

Γ(n+ ν + 1− iτ)
an

)
,

(A17)

where η is an arbitrary integer which we set to zero in our code without loss of generality. These expressions allow
us to calculate the asymptotic amplitudes directly.
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