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Large scale density modes are difficult to measure because they are sensitive to systematic observa-
tional errors in galaxy surveys, but we can study them indirectly by observing their impact on small
scale perturbations. Cosmological perturbation theory predicts that second-order density inhomo-
geneities are a convolution of a short- and a long-wavelength mode. This arises physically because
small scale structures grow at different rates depending on the large scale environment in which they
reside. This induces an off-diagonal term in the two-point statistics in Fourier space that we use
as the basis for a quadratic estimator for the large scale field. We demonstrate that this quadratic
estimator works well on an N-body simulation of size (2.5 h−1 Gpc)3. In particular, the quadratic
estimator successfully reconstructs the long-wavelength modes using only small-scale information.
This opens up novel opportunities to study structure on the largest observable scales.

I. INTRODUCTION

Measuring the distribution of matter on large scales is
one of the goals of cosmological surveys [1][2]. The infor-
mation contained on large scales may provide informa-
tion about issues ranging from the turnover in the power
spectrum (and therefore the total matter density) to the
accelerated universe to anomalies observed in the cosmic
microwave background to primordial nongaussianity. In
[3], a method of using delensing with intensity mapping
has been proposed to directly measure large scale modes.
But generally speaking, direct measurements are diffi-
cult because of observational systematic effects, so indi-
rect approaches have been considered. As pointed out
by [4], 21cm intensity mapping is one area where due
to foregrounds, large-scale (line of sight) modes will be
impossible to measure directly.

Small scale structure grows differently in the pres-
ence of an large-scale overdensity: it is as if the
mean background density is larger than on av-
erage. This relation between long- and short-
wavelength modes has been discussed in recent years
[5][6][7][8][9][10][11][12][13][14][15][16]. The method of
using the small scale position-dependent power spectrum
to compute the squeezed-limit bispectrum also indicates
that small scale perturbations can be used to infer large
scale information [17][18]. In order to fully achieve this
goal, here we construct a quadratic estimator to measure
long-wavelength modes indirectly.

Standard perturbation theory (SPT) [19][20][21] iden-
tifies the second-order contribution to a short-wavelength
mode as a convolution of a short- and a long-wavelength
mode. Abstractly, this is similar to cosmic microwave
background (CMB) lensing [22][23], where the CMB tem-
perature field has a second-order correction due to the
gravitational field along the line of sight. Similarly in
our case the short-wavelength mode’s nonlinear terms
are related to its large scale environment. The construc-
tion of a CMB lensing quadratic estimator makes use of
the fact that small scale two-point correlations of CMB

temperature modes have off-diagonal terms due to large
scale perturbations caused by gravitational lensing. The
same statistical feature shows up in our case as well – the
off-diagonal terms of the small scale correlations are no
longer zero, due to the effect of large scale modes. Thus
we can create a quadratic estimator for long-wavelength
modes using exactly the same formalism.

We begin with a brief review of SPT up to second-
order, build the quadratic estimator, and then assess its
detectability. We then apply the estimator to data from a
large N-body simulation and demonstrate that it success-
fully extracts the large scale modes. We use a flat ΛCDM
model with Planck Collaboration XVI (2014) [24] cosmo-
logical parameters in this work (to match the parameters
of the N-body simulation).

II. STANDARD PERTURBATION THEORY

Starting from a perfect pressureless fluid, the nonrel-
ativistic cosmological fluid equations are the continuity,
Euler and Poisson equations:

∂δ(~x, τ)

∂τ
+ ~∇ · [(1 + δ(~x, τ))~v(~x, τ)] = 0 (1)

[

∂

∂τ
+ ~v(~x, τ)· ~∇

]

~v(~x, τ) = −
da

dτ

~v(~x, τ)

a
− ~∇Φ (2)

∇2Φ = 4πGa2ρ̄mδ(~x, τ). (3)

Here a is the cosmological scale factor, Φ is the 3D gravi-
tational potential and ρ̄m(a) is the mean matter density.
These equations fully determine the time evolution of the
local density contrast δ and the peculiar velocity field
~v = d~x/dτ . We can solve these equations perturbatively
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in Fourier space [25]:

δ(~k, τ) =

∞
∑

n=1

δ(n)(~k, τ) =

∞
∑

n=1

Dn
1 (τ)δn(

~k) (4)

θ(~k, τ) =
∞
∑

n=1

θ(n)(~k, τ)

= −
d lnD1(τ)

dτ

∞
∑

n=1

Dn
1 (τ)θn(

~k) (5)

whereD1 is the linear growth factor. The first order term
δ(1) corresponds to linear evolution. The linear power
spectrum is given by this first order term via averaging
over modes in Fourier space:

〈δ(1)(~k, τ)δ(1)(~k′, τ)〉 = (2π)3δD(~k + ~k′)Plin(k, τ) (6)

Here δD is the Dirac delta function. Substituting the
perturbative series Eq. (4) and Eq. (5) into the Fourier
transformed fluid equations Eq. (1)-Eq. (3) leads to an
expression for the second-order density contrast:

δ(2)(~k, τ) =

∫

d3~k1
(2π)3

F2(~k1, ~k−~k1)δ
(1)(~k1, τ)δ

(1)(~k−~k1, τ)

(7)
with

F2(~k1, ~k2) =
5

7
+

2

7

(~k1 · ~k2)
2

k21k
2
2

+
~k1 · ~k2
2k1k2

[

k1
k2

+
k2
k1

]

. (8)

Note that Eq. (4), Eq. (5) and Eq. (8) are completely ac-
curate only in an Einstein-de Sitter universe and also as-
suming the case of a pressureless perfect fluid. Nonethe-
less for related calculations in a ΛCDM universe, the dif-
ference is found to be negligible [26], and thus we use
the expressions from Eq. (4) and Eq. (8) throughout this
work. Using this expression for δ(2), we can calculate the

two-point correlation of two short-wavelength modes ~ks
and ~k′s, in the squeezed limit ~kl = ~ks+~k

′

s with
~ks, ~k

′

s ≫
~kl.

Here ~kl corresponds to a long-wavelength mode, and we
suppress the time dependence. To second order,

〈δ(~ks)δ(~k
′

s)〉|~ks+~k′

s
=~kl

= 〈δ(1)(~ks)δ
(2)(~k′s)〉

+ 〈δ(2)(~ks)δ
(1)(~k′s)〉. (9)

Substituting Eq. (7) into the first bracket we get:

〈δ(1)(~ks)δ
(2)(~k′s)〉 =

∫

d3~k

(2π)3
F2(~k,~k

′

s −
~k)

×〈δ(1)(~ks)δ
(1)(~k′s −

~k)δ(1)(~k)〉 (10)

When one of the wavenumbers in the 3-point function in
Eq. (10) is very small, that mode can be considered as a
background mode. The small scale modes evolve in the
presence of whatever long wavelength modes happen to
be present. Therefore, we can take the long-wavelength
mode out of the bracket:

〈δ(1)(~ks)δ
(1)(~k′s −

~k)δ(1)(~k)〉 = 〈δ(1)(~ks)δ
(1)(~k′s −

~k)〉δ(1)(~k)

+ 〈δ(1)(~ks)δ
(1)(~k)〉δ(1)(~k′s −

~k).

(11)

Delete: The first term on the right occurs when ~k is

FIG. 1. Eq. (11) occurs when ~k ≪ ~ks,~k
′

s or ~k′

s − ~k ≪ ~ks,~k
′

s,
which corresponds to the two terms shown in this figure.

small and the second when ~k′s−
~k is small. Using Eq. (6),

Eq. (10) then becomes:
∫

d3~k

(2π)3
F2(~k,~k

′

s −
~k)〈δ(1)(~ks)δ

(1)(~k′s −
~k)δ(1)(~k)〉

=

∫

d3~kF2(~k,~k
′

s −
~k)δD(~ks + ~k′s −

~k)Plin(ks)δ
(1)(~k)

+

∫

d3~kF2(~k,~k
′

s −
~k)δD(~ks + ~k)Plin(ks)δ

(1)(~k′s −
~k)

= 2F2(−~ks, ~ks + ~k′s)Plin(ks)δ
(1)(~ks + ~k′s) (12)

where we take advantage of the fact that F2 is a sym-
metric function. Finally we have:

〈δ(~ks)δ(~k
′

s)〉 = f(~ks, ~k
′

s)δ
(1)(~kl) (13)

with

f(~ks, ~k
′

s) = 2F2(−~ks, ~ks + ~k′s)Plin(ks)

+ 2F2(−~k
′

s,
~ks + ~k′s)Plin(k

′

s) (14)

This suggests that we can estimate long-wavelength
modes using short-wavelengthmodes. Since the left-hand
side of Eq. (13) has only short modes while the right-hand
side of it is sensitive to long modes.

III. QUADRATIC ESTIMATOR

We can now construct the quadratic estimator for long-
wavelength modes starting from Eq. (13) and summing
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over as many pairs as possible with weights that maxi-
mize the signal-to-noise. As with the case of CMB lens-
ing, we can write the general form of the estimator by
averaging over pairs of short-wavelength modes:

δ̂(1)(~kl) = A(~kl)

∫

d3~ks
(2π)3

g(~ks, ~k
′

s)δ(
~ks)δ(~k

′

s), (15)

with g being a weighting function, ~k′s = ~kl − ~ks and A
is the normalization prefactor defined by requiring that

〈δ̂(1)(~kl)〉 = δ(1)(~kl):

A(~kl) =

[
∫

d3~ks
(2π)3

g(~ks, ~k
′

s)f(
~ks, ~k

′

s)

]

−1

(16)

In the absence of shot noise the Gaussian noise is given
by:

〈δ̂(1)(~kl)δ̂
(1)∗(~k′l)〉 = (2π)3δD(~kl − ~k′l)[Plin(kl) +N(~kl)]

(17)
with

N(~kl) = 2A2(~kl)

×

∫

d3~ks
(2π)3

g2(~ks, ~kl − ~ks)Pnl(ks)Pnl(|~kl − ~ks|) (18)

where Pnl is the nonlinear power spectrum. Minimizing
the noise term we can fix the form of g to be:

g(~ks, ~k
′

s) =
f(~ks, ~k

′

s)

2Pnl(ks)Pnl(k′s)

=
F2(−~ks, ~ks + ~k′s)Plin(ks) + F2(−~k

′

s,
~ks + ~k′s)Plin(k

′

s)

Pnl(ks)Pnl(k′s)

(19)

The noise term reduces simply to N(~kl) = A(~kl). We
find by testing that the value of N is very insensitive to
the choice of the lower limit of the integration Eq. (16),
since most of the contribution comes from large ks.
Assuming Gaussian noise, the projected detectability

of a P (kl) measurement using the quadratic estimator
can be expressed as:

1

σ2(kl)
=

V k2l ∆k

(2π)2

[

Plin(kl)

Plin(kl) +N(kl)

]2

, (20)

where V is the volume of a survey and we compute the
detectability for a set of narrow kl-bins each separated
by width ∆k. In Fig. 2, we show the projected errors on
the long-wavelength power spectrum using this quadratic
estimator in a large survey. The current largest scale
published measurement of the three dimensional power
spectrum is for scale 0.02 hMpc−1, from [27]. And our
Fig. 2 shows that it should be possible to make mea-
surements using our method on scales of 0.002 hMpc−1,

which are ∼10 times larger. The upper limit of the ~ks
integration in Eq. (16) is set to be 0.22 hMpc−1. We
will see that this choice of the upper limit is reasonable
for our current construction at z = 0. Also notice that
Plin(kl) dominates over N(kl) in Eq. (20) for this upper
limit, thus the projected error bars are only slightly wider
than the cosmic variance error bars (N = 0).

FIG. 2. Long-wavelength power spectrum and its error from
Eq. (20) which can be expressed as P (kl)σ(kl). We assume a
toy survey of boxsize L = 2.5 h−1 Gpc, thus volume V = L3

and width ∆k = 2π/L. Moreover, we set the integration

range for ~ks from 0.03 hMpc−1 to 0.22 hMpc−1.

IV. DEMONSTRATION WITH AN N-BODY

SIMULATION

We test the power of the quadratic estimator using
data from a cosmological N-body simulation. We use
the z = 0 snapshot from BigMPDL, one of the Multi-
Dark cosmological simulations [28]. The cubical box side
length of BigMDPL is 2.5 h−1Gpc. We use the dark
matter particle data to compute the matter density field,
leaving the effect of using galaxies or halos to trace the
field [29] to future work.
We use the code nbodykit [30] to measure the Fourier

density modes, and Eq. (15) to estimate the long
wavelength modes from the measured short wavelength
modes. How well the estimator works can be seen from
Fig. 3, where we show histograms of the ratio of the es-

timated mode amplitudes δ̂(~kl) to their true amplitudes

δ(~kl) for different values of ~kl. The two panels show the
differences between a short wavelength mode cutoff of
ks = 0.22 hMpc−1 and ks = 0.37 hMpc−1. Notice that
second-order SPT becomes less accurate as shorter wave-
lengths are used and will produce a bias of our quadratic
estimator. The figure shows that individual mode am-
plitudes are unbiased when ks,max = 0.22 hMpc−1, while
for ks,max = 0.37 hMpc−1, the results are biased (the
center of the ratio is ∼ 20% too high, and the histogram

of the polar angle of δ̂(~kl)/δ(~kl) is less peaked at 0.).
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FIG. 3. Comparison of measured and predicted Fourier mode

amplitudes: histograms of number counts of |δ̂(~kl)/δ(~kl)| for
two different ks integration ranges, x-axis shows the magni-

tude of |δ̂(~kl)/δ(~kl)|.

Another way of examining the success of the quadratic
estimator is to transform the estimated density field back

to real space to form δ̂(~x) and then compare with the
actual large scale density field δ(~x) in the simulation.
The 7 panels in the top two rows of Fig. 4 compare these
two fields; each panel is a slice of the full simulations. The
bottom panel shows the difference between the estimated
and true density fields. It is apparent that the differences
are much smaller than the overdensities; equivalently the
estimator does an excellent job of extracting the large
scale density field.

V. CONCLUSION

In this paper, we have proposed a new and po-
tentially powerful method to measure long-wavelength
modes without having to actually measure large scale
structure directly. Similarly to this construction, kSZ
velocities [31] might also be a good tracer of large-scale

modes. We can take the advantage of it’s small scale in-
formation and potentially get a better constraint of large-
scale modes. We will leave this part to future work.

The estimator works well on an N-Body simulation,
so applying this estimator to survey data is the logical
next step. Among the issues that must be faced when
dealing with a spectroscopic galaxy survey are: galaxy
bias, redshift space distortions [32], and light-cone effects.
We do not expect any of these to be show-stoppers, so it
is tempting to speculate about the possibilities that will
open up with this estimate of the large scale density field.

First, we can hope to measure 3D clustering on
scales larger than the scale entering the horizon at
matter-radiation equality without worrying about large-
scale systematic effects. General relativistic effects are
strongest on large scales (e.g., [33]), and these could be
detected. There is evidence of large scale anomalies, in
the CMB, that could be confronted with maps of large
scale structure obtained with this estimator. One physi-
cal mechanism that has been proposed as a possible ex-
planation for the deficit in the large-angle CMB temper-
ature correlations is a suppression of primordial power
on ∼ Gpc scales [34]. It would be very useful to ver-
ify if this new physics is also present in other probes of
large-scale structure. Primordial non-Gaussianity gener-
ated by inflation leaves an imprint on the largest scales.
There is even the possibility of cross-correlating the large-
scale matter field with the CMB itself to extract informa-
tion about the longest wavelength modes in the universe.
Since the current epoch of acceleration is a large-scale,
late-time effect, there is the possibility of learning about
the mechanism responsible for acceleration. Although,
as mentioned above, challenges remain, there is also the
possibility of using even smaller wavelength modes in our
estimator by going to higher order in perturbation the-
ory.
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FIG. 4. Comparison of the true density field in the BigMPDL
simulation (δ(~x) computed using the directly measured large-
scale modes, top row) and the density field from the quadratic

estimator (δ̂(~x), middle row). The bottom row shows their dif-
ference. Each panel represents a slice through the simulation
volume, 2.5 h−1 Gpc wide, and one cell (0.36 h−1 Gpc) thick.

The upper limit of ~ks is 0.22 hMpc−1.
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