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We write down and apply the linearized fluid and gravitational equations consistent with pseudo-
Newtonian simulations, whereby Newtonian hydrodynamics is used with a pseudo-Newtonian
monopole and standard Newtonian gravity for higher multipoles. We thereby eliminate the need
to use mode function matching to identify the active non-radial modes in pseudo-Newtonian core-
collapse supernova simulations, in favor of the less complex and less costly mode frequency matching
method. In doing so, we are able to measure appropriate boundary conditions for a mode calculation.

I. INTRODUCTION

There is increasing attention to gravitational wave
asteroseismology of core-collapse supernovae (CCSNe)
from a theoretical perspective (eg. [1–13]). One challenge
is identifying which hydrodynamical modes of the system
are producing gravitational wave (GW) emission in sim-
ulations. This requires modeling in post-process. One
strategy is to use simulation snapshots as background
solutions for a perturbative mode calculation. Once the
perturbative mode spectrum is obtained, a matching pro-
cedure is necessary to determine which modes are actu-
ally active in the simulation. A mode frequency matching
procedure has been used frequently [5–7], whereby the
evolution of perturbative mode frequencies are overlaid
on simulation gravitational wave spectrograms, and then
matching is judged by frequency coincidence over time.

However, some mode classes (particularly p-modes)
tend to have frequencies which are roughly constant mul-
tiples of each other over time, with neighboring modes
having frequencies being ∼ 5 -10% away. Frequency mis-
matches between simulations and perturbative calcula-
tions can arise due to the use of different equations of
motion in the simulations versus those used in the per-
turbative calculation. For example, in [5, 7] the gen-
eral relativistic hydrodynamic equations were used in the
perturbative calculation, with either no metric perturba-
tions [5] or a subset of possible metric perturbations [7].
Their simulations correspondingly use general relativis-
tic hydrodynamics and a spatially-conformally flat met-
ric approximation for spacetime. As another example, [6]
uses for their perturbative equations general relativistic
hydrodynamics with either no metric perturbations or
only lapse perturbations, supplemented with a Poisson
equation to solve for the lapse perturbation. Their simu-
lations on the other hand use Newtonian hydrodynamics
and pseudo-Newtonian gravity. The ensuing frequency
mismatches generated by the use of different equations
may result in mode misidentification during a mode fre-
quency matching procedure, particularly due the absence
of the lapse function in the hydrodynamic fluxes in the
simulations.
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In [8, 12] a mode function matching procedure was
followed instead. This entails comparing the mode func-
tions computed perturbatively with the velocity data in
the simulation. As in [6], the simulations were pseudo-
Newtonian, whereas the perturbative calculation used
the general relativistic hydrodynamic equations in the
Cowling approxmation (no metric perturbations), with
the lapse function being the only non-zero metric compo-
nent. The mode function matching procedure produced
convincing mode identification despite the use of pertur-
bative equations that are not consistent with the simu-
lation, because neighboring mode functions have distinct
enough morphology that the best-fitting mode function is
clearly superior to the next-best-fitting one (provided the
mode’s excitation is large enough with respect to stochas-
tic or nonlinear motions). A frequency mismatch between
the best-fitting mode functions and the simulation fre-
quencies of order ∼ 15% was observed in [8, 12], which is
large enough to have caused a mode misidentification via
mode frequency matching. During targeted modeling of
the next galactic core-collapse supernova, this would have
produced incorrect inferences about the source. Further-
more, mode misidentification in simulations can misin-
form analytic or semi-analytic modeling efforts of these
systems.

However, mode function matching is considerably more
complex and expensive than mode frequency matching.
It is more complex because frequency masks have to be
determined in order to apply appropriate spectral filter-
ing on the velocity data from the simulation. It is more
expensive because the entire fluid data in the system
must be saved with sufficient temporal cadence such that
the spectral resolution allows a clean Fourier extraction of
individual mode activity. In [8, 12] axisymmetric simula-
tions were performed, which alleviates the storage issue,
but one wishes to identify modes in fully 3D simulations
as well. Large searches of the CCSN progenitor param-
eter space would be hampered by the need to perform
mode function matching. It would therefore be desirable
to use the perturbative equations that are consistent with
simulations, which, removing the need for the expensive
mode function matching procedure.

In this work, we write down and apply the consistent
linearized equations appropriate for pseudo-Newtonian
codes such as PROMETHEUS/VERTEX [2, 14–17], FLASH [18,
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19], FORNAX [20], CHIMERA [21]. As long as one does
not solve for radial modes, these equations are simply
the standard Newtonian ones. During testing we iden-
tify and correct a mistreatment of the boundary con-
ditions [6, 8, 12] for the gravitational potential per-
turbation. We are able to reproduce the quadrupolar
mode frequencies of an equilibrium star evolved using
FLASH. When applied to a CCSN simulation, we find the
best-fitting mode functions have the correct frequency
(i.e. agreeing with the simulation) at the 2% or sub-
1% level, depending on the boundary conditions used.
We also perform a residual test with the spherically-
symmetric Euler equation, showing that the state of hy-
drostatic equilibrium (assumed in the perturbative cal-
culation) is satisfied only at the ∼ 5% level, whereas
the terms coming from a time-dependent or non-steady
(v 6= 0) background solution are negligible. This serves
as a cautionary note for future applications of this per-
turbative modeling, but also suggests that including a
time-dependent or non-steady background would not af-
fect the calculation significantly. We find that the outer
boundary condition on the fluid variables yielding the
most precise matching with simulations (sub-1% level)
is that of [5], where the radial displacement is taken to
vanish at the shockwave location. The agreement is so
striking that we are tempted to conclude that this is the
physically correct boundary condition in the early post-
bounce regime we are considering.

Note that the consistent perturbative modeling of
pseudo-Newtonian simulations that we present here does
not answer the question of whether such simulations yield
the correct mode excitation. Previously in [8, 12], it was
shown that, if the perturbative modeling does not use
the linearization of the equations being simulated, then
mode function matching is necessary to correctly identify
the active modes in a simulation. In this work, we sim-
ply use the consistent linearization to show that correct
identification of active modes in a simulation is possi-
ble with mode frequency matching alone, and interest-
ing physics can then be extracted (such as the physically
correct boundary conditions for the perturbations). The
question of whether the mode excitation itself is correct
in pseudo-Newtonian simulations is left for future work.
Previous studies indicate that mode frequencies are sys-
tematically shifted with respect to general relativity (see
e.g. [22]), and overestimated in particular [8, 12, 22], but
one cannot know for sure without directly identifying
the excited modes in each case (e.g. by mode function
matching). The pitfalls found in [8, 12] in using pseudo-
Newtonian simulations to study mode frequencies were
anticipated clearly in [22].

We give a brief summary of the results of [8, 12] in
Sec. II. We described our methods in Secs. III & Ap-
pendix A, and discuss our results in Sec. IV. Tests are pre-
sented in Appendix B. We use geometric units G = c = 1
throughout, unless units appear explicitly.

II. SIMULATIONS AND BACKGROUND
INFORMATION

We analyze the non-rotating 20M� zero-age main
sequence mass CCSN progenitor presented previously
in [8, 12]. It was simulated in axisymmetry using
FLASH [18, 19] until ∼ 100 ms post-bounce. Mild excita-
tion of hydrodynamic modes are excited at bounce, the
amplitude of which is expected to be artificially enhanced
due to asymmetries introduced during collapse by the
cylindrical computational grid. However, the strength of
excitation does not concern us here – we simply seek to
demonstrate mode identification. We defer to [12] for a
more detailed description of the simulation details. We
also defer details regarding the mode function match-
ing method to [8], where they are described in the most
depth. The method involves using spectrogram filter ker-
nels to extract mode motions from the velocity data in
the simulations, followed by vector spherical harmonic
decompositions to extract the angular harmonic compo-
nents. The resulting fields are then normalized before
their overlaps with perturbative mode functions are com-
puted.

Our main purpose here is to apply a consistent linear
perturbative scheme to a snapshot from the simulation at
t ∼ 40 ms post-bounce, which was previously analyzed [8,
12], to study multiple quadrupolar modes (l = 2, m = 0)
of the system which are excited weakly at bounce. The
first mode has a peak frequency of 515 Hz1. This mode
was found in [8, 12] to have a radial order n = 4, and we
make the same conclusion here. The second quadrupolar
mode we study has a less well-defined peak frequency (we
estimate 1241 Hz from the GW spectrum), and was not
reported in [8, 12]. Note that due to an analysis error,
perturbative mode frequencies in [8] should be corrected
by multiplying them by ∼ 1.5.

III. PERTURBATIVE SCHEME

We begin with the Newtonian perfect fluid and gravity
equations,

∂tρ+∇i
(
ρvi
)

= 0 (3.1)

∂t (ρvi) +∇j
(
ρvjvi

)
+ ∂iP = −ρ∂iΦ (3.2)

∇2Φ = 4πρ. (3.3)

We linearize these equations with respect to a spherically
symmetric equilibrium background solution, ρ = ρ(r),
vi(r) = (vr(r), 0, 0), P = P (r), Φ = Φ(r), ∂rP/ρ =
−∂rΦ. Denote Eulerian perturbations with δ and La-
grangian ones with ∆, and substitute eg. ρ → ρ + δρ

1 Note that the mode is described in [12] as having a frequency of
483 Hz, which is the middle value of the spectrogram filter kernel
used to extract it. However, 515 Hz is the location of the peak
Fourier amplitude in the GW signal.



3

into Eqs. (3.1)-(3.3). Also use the condition of adiabatic
perturbations coming from the energy equation,

∆P

∆ρ
= c2s (3.4)

where c2s = PΓ1/ρ is the sound speed squared, Γ1 is
the adiabatic index for the perturbations, and eg. ∆P =
δP + ξi∇iP where ξi is the perturbative Eulerian fluid
element displacement vector. The displacement vector ξi
is related to the velocity perturbation via δvi = ∂tξ

i +
vj∇jξi− ξj∇jvi, which simplifies to δvi = ∂tξ

i when the
background velocity is zero.

Linearization of Eqs. (3.1)-(3.3) assuming axisymmet-
ric perturbations ξi = (ξr, ξθ, 0) yields

0 = δρ+ ρξi∂i ln
√
γ + ρ∂iξ

i + ξr∂rρ (3.5)

0 = ∂2
t ξ
r +

1

ρ
∂rδP + ∂rδΦ−

δρ

ρ2
∂rP (3.6)

0 = r2∂2
t ξ
θ +

1

ρ
∂θδP + ∂θδΦ (3.7)

0 = ∇2δΦ− 4πδρ (3.8)

where √γ = r2 sin θ is the square root of the flat 3-
metric determinant in spherical coordinates. In deriv-
ing Eq. (3.5) we integrated in time, setting the integra-
tion constant to zero [23]. In Eq. (3.7) note the ap-
pearance of the factor r2 in front of the time deriva-
tive, which comes from raising the index using the met-
ric via ∂2

t ξθ = γiθ∂
2
t ξ
i = γθθ∂

2
t ξ
θ = r2∂2

t ξ
θ. Using the

axisymmetric spherical harmonics Yl (m = 0) and har-
monic time dependence, we insert a separation of vari-
ables ansatz

δρ = δρ̂(r)Yle
−iσt

δP = δP̂ (r)Yle
−iσt

δΦ = δΦ̂(r)Yle
−iσt

ξr = ηr(r)Yle
−iσt

ξθ =
η⊥(r)

r2
∂θYle

−iσt. (3.9)

We will assume l 6= 0. The angular frequency is
σ = 2πf . Note that we are using the coordinate basis
{(∂r)i, (∂θ)i, (∂φ)i} rather than the normalized coordi-
nate basis {r̂, θ̂, φ̂}, which explains the last ansatz hav-
ing η⊥/r2 rather than η⊥/r. Plugging these ansatz into
Eq. (3.7) gives us a relation to eliminate δP̂ via

δP̂ = ρ
(
σ2η⊥ − δΦ̂

)
. (3.10)

The adiabatic condition then yields a relation which can
be used to eliminate δρ̂ via

δρ̂ = ρ

(
σ2

c2s
η⊥ −

δΦ̂

c2s
− Bηr

)
, (3.11)

where we have defined B ≡ ∂r ln ρ − (1/Γ1)∂r lnP as
the Schwarzschild discriminant. In what follows, we also

define G̃ ≡ ∂rP/ρ = −∂rΦ, and the Brunt-Väisälä fre-
quency squared is N2 = G̃B. The linearization of the
remaining Eqs. (3.5) & (3.6) & (3.8) yields

0 = ∂rηr +

[
2

r
+
∂rP

Γ1P

]
ηr

+

[
σ2

c2s
− l(l + 1)

r2

]
η⊥ −

1

c2s
δΦ̂ (3.12)

0 = ∂rη⊥ −
[
1− N2

σ2

]
ηr + Bη⊥ −

B
σ2
δΦ̂ (3.13)

0 = ∂rδΦ̂− F (3.14)

0 = ∂rF +
2

r
F + 4πρBηr − 4πρ

σ2

c2s
η⊥

+

[
4πρ

c2s
− l(l + 1)

r2

]
δΦ̂, (3.15)

where we defined F ≡ ∂rδΦ̂ to reduce the system to first
order. In obtaining these equations we used the identity
∂2
θYl + cot θ∂θYl = −l(l + 1)Yl. Note these perturbative

equations are the same equations as in [24] Eqs. (31-33),
after changing the definitions δΦ̂ ↔ −Φ′, ξh ↔ η⊥/r.
The latter identification comes both from different def-
initions of η⊥ vs ξh as well as the use of different ba-
sis vectors – {(∂r)a, (∂θ)a, (∂φ)a} in our case vs {r̂, θ̂, φ̂}
in [24].

To solve these equations, we integrate from a small
non-zero radius r0 (typically dr/5 where dr is the grid
resolution), where we impose regularity conditions (see
Appendix A) in the form (assuming l 6= 0)

ηr = A0r
l−1, η⊥ =

A0

l
rl

δΦ̂ = C0r
l , ∂rδΦ̂ = lC0r

l−1, (3.16)

where A0 is specified as a small number (10−5 in our case)
which encodes the overall amplitude of the perturbation,
and C0 is searched for via a root-finding algorithm such
that an outer boundary condition on δΦ̂ is satisfied –
see Appendix A for a detailed description. This outer
boundary condition on δΦ̂ was not imposed in [6], where
instead δΦ̂|r0= 0 = ∂rδΦ̂|r0 was used. This error was
repeated in subsequent work, including [8, 12, 25], but
does not affect any of the results obtained in the Cowling
approximation.

We validate our current Newtonian perturbative
scheme on a Newtonian polytropic star in Appendix B,
and demonstrate that the effect of ignoring the outer
boundary condition on δΦ̂ is large mode frequency er-
rors for modes of low radial order.

We also demonstrate in Appendix B that our cur-
rent Newtonian perturbative scheme recovers the non-
radial modes of equilibrium stars evolved in a pseudo-
Newtonian system using FLASH. This system has a phe-
nomenologically modified monopole gravitational poten-
tial designed to mimic relativistic stars ([26] Case A).
This demonstrates that we can solve for non-radial modes
even though we do not have an equation of motion for
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FIG. 1. Normalized GW spectrum averaged over t ∈ [30, 50]
ms post-bounce, computed using a Bohman window with 35
ms width. Two frequencies of the best-fit mode functions are
indicated at 507 Hz and 1238 Hz, corresponding to weakly ex-
cited quadrupolar modes. These compare well with the peaks
in the GW spectrum at 515 and 1241 Hz. The shaded ar-
eas indicate the frequency extent of the spectral filter used
in [8, 12] to extract the velocity data, against which pertur-
bative mode functions are matched.

the monopole potential. Such an equation never appears
in our derivation above, because we assumed l 6= 0.

Having the consistent perturbative scheme for such
pseudo-Newtonian simulations allows us to investigate
how well other aspects of the approximation (the assump-
tion of equilibrium background, zero background velocity,
and spherical averaging) actually affect the mode identi-
fication.

The other outer boundary condition concerning the
fluid variables is considerably more uncertain. In [6]
it was taken to be ∆P |r=R= 0 for some outer bound-
ary R representing the proto-neutron star (PNS) surface,
and in [5] was taken to be ηr|shockwave= 0. With the
consistent perturbative equations, we can instead simply
plug in the frequency observed in the simulation and see
whether the resulting mode function matches the sim-
ulated velocity data well. We can also try to infer an
appropriate outer boundary condition on the fluid vari-
ables in this way. Thus, we can turn the problem around
and attempt to measure the appropriate boundary condi-
tion. Theoretically, the boundary condition must account
for the Rankine-Hugoniot jump conditions across the ac-
cretion shock, which in turn depend upon the state of
the supersonically accreting material upstream from the
shockwave (see e.g. [27, 28]).

IV. RESULTS

We show the GW spectrum in Fig. 1, which is com-
puted using a Bohman window with 35 ms width, and
averaged over times t ∈ [30, 50] ms. The grey shaded
intervals indicate the frequency extent of the spectral fil-
ters used to extract the velocity data from the simula-

tion. A snapshot of that data near t = 40 ms is then
matched with perturbative solutions, with the frequency
as the free parameter in the perturbative solutions. The
perturbative solutions whose modefunction matches the
velocity data best have frequencies of 507 and 1238 Hz,
which compares well with the peaks in Fig. 1.

Our first finding is that plugging in the simulation fre-
quency f ∼ 515 Hz (disregarding any outer boundary
condition on the fluid variables) yields a perturbative so-
lution that fits the simulation data well – see Fig. 2. In
the top two panels we show the 515 Hz perturbative solu-
tion (weighted by ρ1/4) for various boundary conditions
on δΦ̂, namely the vacuum one (Eq. (A10)) imposed at
various radii, as well as the in-matter one (Eq. (A12))
which does not depend on the outer boundary location.
Note we plot on an arbitrary linear vertical scale. The
result obtained using the vacuum boundary condition ap-
proaches the in-matter one rapidly as the outer boundary
moves out, because the density perturbation δρ̂ becomes
negligible for r & 60 km (see bottom panel). For the rest
of our results we use the in-matter boundary condition
Eq. (A12).

Next we do a search over frequency (again disregard-
ing outer boundary conditions for the fluid variables) to
find the best-fitting perturbative solution to the simula-
tion data. The fit quality is computed by normalizing the√
ρ-weighted velocities and computing a Frobenius norm

of their difference (see [12]). The result is shown in Fig. 3.
Despite not smoothing the simulated data, the agreement
is nonetheless striking. We again weight the velocity by
ρ1/4 to allow easier visual inspection (compared to a √ρ-
weighting). We stress that this is an unforgiving way of
displaying the agreement. The radial nodes of the best-
fit perturbative solution are consistent with those found
in [8, 12], i.e. n = 4 when counted within the shockwave
(which is located at r ∼ 125 km at this snapshot). Note
that since our background is not actually in equilibrium,
we have an ambiguity in how we apply the perturbative
scheme. Namely, we can set G̃ = ∂rP/ρ or G̃ = −∂rΦ2.
We show both cases in Fig. 3, which yield best-fit solu-
tions with frequencies of 507 Hz and 523 Hz, respectively.
Both choices are equally accurate for this mode, but un-
less otherwise specified we will use G̃ = ∂rP/ρ.

In Fig. 4 we show the analogous plot for the 1241
Hz frequency mode, showing a similar level of agree-
ment. The best-fitting perturbative solutions have fre-
quencies of 1238 and 1245 Hz for the cases G̃ = ∂rP/ρ

and G̃ = −∂rΦ, respectively. This is 0.24% and 0.32%
disagreement, respectively.

We now reinstate outer boundary conditions for the
fluid variables. Our purpose is to “measure" the bound-
ary conditions which will yield a mode function spec-
trum such that the best-fit mode function has a fre-

2 This is not the only ambiguity. Wherever a pressure gradient or
gravitational potential gradient appears, one could switch it out
with the other using ∂rP = −ρ∂rΦ.
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FIG. 2. Upper two panels: Normalized perturbative solu-
tions plotted on a linear vertical scale, with frequency cor-
responding to the simulation, f = 515 Hz, for varying outer
boundary condition on the Newtonian potential perturbation.
The vacuum boundary condition Eq. (A10) is imposed at
rbc = {15, 30, 100} km, and is seen to approach the in-matter
boundary condition case (A11) as the boundary is placed far-
ther out. The perturbative solutions are a poor representa-
tion of the simulation beyond ∼ 10 km. Bottom panel: The
density ρ and density perturbation |δρ̂| are displayed for ref-
erence. The density perturbation becomes negligible beyond
∼ 60 km. The shockwave is located at r ∼ 125 km at this
time 40 ms post-bounce.

quency which is (at least similar to) the simulation. If
such a boundary condition existed, then one could safely
identify modes in pseudo-Newtonian simulations by do-
ing frequency matching alone, removing the need for the
complicated and expensive mode function matching pro-
cedure described in [8, 12].

In Fig. 5 we plot the absolute value of the Lagrangian
pressure perturbation corresponding to the best-fitting
perturbative solutions for the 515 Hz mode in Fig. 3 on
an arbitrary logarithmic scale. The analogous plot for
the 1241 Hz mode is displayed in Fig. 6. The Lagrangian
pressure perturbation is overlaid on the background den-
sity profile, which is plotted on a faithful logarithmic
scale. We indicate the location of the zero-crossings of
∆P with dotted lines, and also indicate the correspond-
ing density value there. Zero-crossings for the 515 Hz case
occur near {6×1013, 1012, 1011, 1010} g cm−3. A common
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FIG. 3. The best-fit perturbative solutions for two different
choices G̃ = ∂rP/ρ and G̃ = −∂rΦ, which in a true spherically
symmetric equilibrium would yield the same result. These
choices yield frequencies of 507 Hz and 523 Hz, respectively.
This is a mistmatch with the simulation frequency 515 Hz by
±1.6%. These perturbative solutions have radial order n = 4
if counted up to the shockwave location r = 125 km.
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FIG. 4. Same as Fig. 3 but for the ∼ 1240 Hz peak.
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FIG. 5. Lagrangian pressure perturbation |∆P | correspond-
ing to the best-fit perturbative solutions in Fig. 3 displayed
on an arbitrary logarithmic scale. The rest mass density of
the spherically-averaged background is also displayed on an
accurate logarithmic scale. Zeros of the Lagrangian pressure
perturbation are indicated, which suggest appropriate values
of ρ at which ∆P = 0 should be enforced during a mode
search.

Bdy. condition fbest [Hz], diff nbest fnext [Hz], diff nnext

∆P |ρ∼1012= 0 504, -2.1% 4 381, -26% 4
∆P |ρ∼1011= 0 504, -2.1% 4 436, -15% 5
∆P |ρ∼1010= 0 503, -2.3% 4 463, -10% 5
ηr|shockwave= 0 513, -0.4% 4 491, -4.7% 5

TABLE I. Modes with nearest (fbest) and next-nearest (fnext)
frequencies to the simulation value of 515 Hz, for varying
boundary conditions. We use G̃ = ∂rP/ρ. The subscripts
on ∆P (eg. ∆P |ρ∼1012) indicate density in units of g cm−3.
The nearest modes are highlighted in bold.

definition for the PNS surface is e.g. ρ = 1011 g cm−3, and
a zero-crossing at that location also occurs for the 1241
Hz mode in Fig. 6. These zero-crossings are not enforced,
and if they are not mere coincidences then they could be
physically meaningful if they work for different modes.

In Tables I & II, for various outer boundary conditions
on the fluid variables we show the mode properties with
nearest and next-nearest frequencies to the simulation
(subscripts best and next, respectively). All choices listed,
aside from ∆P |ρ=1012= 0 which fails to reproduce the
1241 Hz mode, yield a clear relative distinction between
the best-fit and the next-best one, and could therefore be
regarded as safe to use during a mode frequency match-
ing procedure. However, the boundary condition of [5],
ηr|shockwave= 0, yields remarkable sub-1% agreement for
both modes, suggesting it is the physically correct one in
this regime.
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FIG. 6. Same as Fig. 5 but for the ∼ 1240 Hz mode. The
zeros of ∆P occuring near ρ = 1012, 1011 g cm−3 are shown.

Bdy. condition fbest [Hz], diff nbest fnext [Hz], diff nnext

∆P |ρ∼1012= 0 1101, -11% 8 1532, +23% 12
∆P |ρ∼1011= 0 1239, -0.2% 9 1073, -14% 8
∆P |ρ∼1010= 0 1235, -0.5% 9 1357, +9.3% 10
ηr|shockwave= 0 1248, -0.6% 9 1137, -8.4% 8

TABLE II. Same as Table I but for the ∼ 1240 Hz mode.
Nodes are counted up to the shockwave at r = 125 km.

V. OUTLOOK AND CONCLUSIONS

In this work, we presented and tested perturbative
equations which are the consistent linear approxima-
tion of pseudo-Newtonian systems whereby one uses
Newtonian hydrodynamics, standard Newtonian grav-
ity for non-radial components of the potential, and
some non-standard monopole potential such as that
of [26] Case A. This system of equations allows one to
solve for non-radial modes, thereby allowing identifica-
tion of active modes in pseudo-Newtonian simulations
(eg. PROMETHEUS/VERTEX [2, 14–17], FLASH [18, 19], FOR-
NAX [20], CHIMERA [21]) using mode frequency matching.
This alleviates the need to perform the complex and ex-
pensive mode function matching procedure of [8, 12].

We found that the imposing vanishing radial displace-
ment as an outer boundary condition (as in [5]) yields re-
markable sub-1% agreement between perturbative mode
frequencies and the simulation, suggesting that this is the
physically correct choice. However, imposing a vanish-
ing Lagrangian pressure perturbation at the radii where
ρ = {1011, 1010} g cm−3 (the last value being used in [6])
should also prevent mode misidentification. These con-
clusions ought to be tested in other regimes, eg. later
times t > 100 ms and different progenitor stars.
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Appendix A: Boundary conditions

In this section we give details of how boundary condi-
tions are derived, for the purpose of being pedagogical.
We use the strategy of [33], except applied directly to our
equations (3.12)-(3.15).

We wish to determine the behavior of {ηr, η⊥, δΦ̂} in
a neighborhood of the origin r = 0. For this purpose, we
make the ansatz

ηr = ra
∞∑
n=0

Anr
n

η⊥ = rb
∞∑
n=0

Bnr
n

δΦ̂ = rc
∞∑
n=0

Cnr
n,

where An, Bn, Cn are constant coefficients nonzero when
n = 0 (do not confuse n in this context with the radial
order of modes), and a, b, c are constant exponents to be
determined. We require a, b, c ≥ 0 by regularity at the
origin. This ansatz is a generalization of the Frobenius
method to a system of equations. The derivatives we
need are

∂rδΦ̂ = rc
∞∑
n=0

(n+ c)Cnr
n−1 (A1)

∂2
rδΦ̂ = rc

∞∑
n=0

(n+ c)(n+ c− 1)Cnr
n−2, (A2)

and similar expressions for ∂rηr, ∂rη⊥.
Plugging these ansatz into our equations (3.12)-

(3.15) and collecting terms proportional to ra, rb, rc, we
schematically obtain

0 = Qar
a +Qbr

b +Qcr
c

0 = Rar
a +Rbr

b +Rcr
c (A3)

0 = Sar
a + Sbr

b + Scr
c,

where the coefficients are

Qa =

∞∑
n=0

nAnr
n−1 +

[
2 + a

r
+
∂rP

Γ1P

] ∞∑
n=0

Anr
n

Qb =

[
σ2

c2s
− l(l + 1)

r2

] ∞∑
n=0

Bnr
n

Qc = − 1

c2s

∞∑
n=0

Cnr
n

Ra = −
[
1− N2

σ2

] ∞∑
n=0

Anr
n

Rb =

∞∑
n=0

nBnr
n−1 +

[
b

r
+ B

] ∞∑
n=0

Bnr
n

Rc = − B
σ2

∞∑
n=0

Cnr
n

Sa = 4πρB
∞∑
n=0

Anr
n

Sb = −4πρ
σ2

c2s

∞∑
n=0

Bnr
n

Sc =

∞∑
n=0

n2Cnr
n−2 +

[
2c+ 1

r

] ∞∑
n=0

nCnr
n−1

+

[
c(c+ 1)− l(l + 1)

r2
+

4πρ

c2s

] ∞∑
n=0

Cnr
n. (A4)

Since Eqs. (A4) hold in a neighborhood of the origin,
the full coefficients in front of each power of r (once col-
lected) must vanish independently. We are interested in
the vanishing of the lowest order terms.

In the Frobenius method, only one equation is being
solved. This means only one unknown exponent (eg. a
above) appears in the equation once the ansatz is plugged
in. This makes identifying orders in r straightforward. In
our case, we have a system of equations and multiple un-
known exponents a, b, c appear in each equation. This
makes identifying orders in r more complicated, but we
can proceed by considering all possible cases and system-
atically eliminating them. This is what we do next.

Since we are interested in the lowest nontrivial or-
der, it suffices to truncate every sum after the first
nonzero term. We also need to consider the order carried
by the background quantities. In particular, since the
pressure and density are spherically-symmetric quanti-
ties with even parity, we have P ' P |0+P ′′r2/2 and
ρ ' ρ|0+ρ′′r2/2, where we use a double prime super-
script to denote a second radial derivative evaluated at
the origin, to avoid cumbersome notation. This means
∂rP = P ′′r = O(r) and ∂rρ = ρ′′r = O(r). Thus
B = ∂rρ/ρ − ∂rP/(Γ1P ) ' [ρ′′/ρ − P ′′/(Γ1P )]r = O(r).
Similarly, G̃ = ∂rP/ρ ' P ′′r/ρ = O(r), and so by exten-
sion N2 = G̃B = O(r2). Inserting these expansions into
Eqs. (A4) and keeping lowest-order terms for each of the
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ra, rb, rc terms separately, we obtain

0 = (2 + a)A0r
a−1 −B0l(l + 1)rb−2 − C0

c2s
rc (A5)

0 = −A0r
a +B0br

b−1 − C0

c2s

[
ρ′′

ρ
− P ′′

ΓrP

]
rc+1 (A6)

0 = 4πρ

[
ρ′′
ρ
− P ′′

Γ1P

]
A0r

a+1 − 4πρ
σ2

c2s
B0r

b

+ [c(c+ 1)− l(l + 1)]C0r
c−2. (A7)

At this stage we do not know whether we have kept
consistent orders in r, since we do not know the rela-
tionship between the exponents a, b, c. However, when
considering Eq. (A7), notice that the exponents will not
depend upon the background solution if and only if the
rc−2 term is the lowest order one. Independence from
the background solution is a property we desire3, thus
we demand that the rc−2 term must vanish, i.e. c = l.
This also implies c− 2 < a+ 1 and c− 2 < b.

The same consideration applied to Eq. (A5) means that
one or both of the ra−1 and rb−2 terms must be lowest or-
der. If the rb−2 term is lowest order by itself, that implies
l = 0. If we are not interested in radial modes (in this
work, we are not), then we can discard this possibility.
On the other hand, if the ra−1 term is lowest order by
itself, that implies a = −2 which would violate regularity
at the origin. Thus we must conclude that both terms
are lowest order, i.e. a = b−1 and (2+a)A0 = B0l(l+1).

Lastly, consider Eq. (A6). If the exponents are to be
independent of the background quantities, then one or
both of the ra and rb−1 terms must be lowest order. But
we already established that a = b−1, thus they are both
lowest order. This yields A0 = bB0. Combining this
relation with the one obtained previously from Eq. (A5)
and using a = b− 1, we finally find

a = l − 1, b = l, c = l. (A8)

Therefore, in a neighborhood of the origin,

ηr = A0r
l−1, η⊥ =

A0

l
rl

δΦ̂ = C0r
l , ∂rδΦ̂ = lC0r

l−1. (A9)

Beware that we are not using the normalized coordinate
basis. In the normalized basis, one instead has η⊥ =
(A0/l)r

l−1.
In the numerical integration, we begin a small distance

away from the origin (eg. dr/5, where dr is the grid res-
olution) and use Eqs. (A9) as initial conditions. This re-
quires specification of A0, C0 and the angular frequency
σ. The choice of A0 amounts to an arbitrary amplitude,
which we choose to be A0 = 10−5.

3 Although it would be interesting to know whether “special" per-
turbations of stars with exponents depending upon the back-
ground solution are ever relevant in practice.

For each value of angular frequency σ, we perform a
root-finding procedure to converge upon the value of C0

such that at the outer boundary r = R we have [24][
∂rδΦ̂ +

l + 1

r
δΦ̂

]
|r=R= 0. (A10)

This relation can be derived from the solution for the lth
spherical harmonic moment of the Poisson equation [23]

δΦ̂ = − 4π

2l + 1

1

Rl+1

∫ r

0

δρ̂(r̃)r̃l+2dr̃, (A11)

valid when δρ̂(r) = 0 for r > R. In the case of our
CCSN system, lth moment rest mass perturbations δρ̂
likely escape out through r = R, but to the extent that
it is of small amplitude and leaks into different harmonics
l′ 6= l, it can be ignored. If it cannot be ignored, then one
should instead integrate the perturbative system beyond
r = R and then impose[

∂rδΦ̂ +
l + 1

r
δΦ̂

]
|r=R= −4πRl−1

∫ ∞
R

δρ̂

rl−1
dr, (A12)

where the infinite upper limit of integration is understood
to be replaced by an appropriate outermost radius, eg.
the grid boundary or the CCSN shockwave. When using
Eq. (A12), one must integrate past R in order to obtain
δρ̂ over the domain of interest. The choice of R is irrele-
vant. Note that

δρ̂ = ρ

(
σ2

c2s
η⊥ −

δΦ̂

c2s
− Bηr

)
. (A13)

Also, it is advisable to enforce Eq. (A10) at the outer
boundary rather than Eq. (A11), in order to get control
of the first derivative ∂rδΦ̂.

The root-finding loop for C0 is nested inside a root-
finder for the angular frequency σ, which yields either
vanishing Lagrangian pressure perturbation at the outer
boundary

∆P |R= [ρσ2η⊥ − ρδΦ̂ + ηr∂rP ]|R= 0, (A14)

corresponding to a free surface, or vanishing radial dis-
placement

ηr|R= 0, (A15)

depending on one’s choice.

Appendix B: Tests of perturbative scheme

In this section we demonstrate the accuracy of our
mode solver on both a Newtonian polytropic star and
a pseudo-Newtonian “TOV” star.
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FIG. 7. Comparison between axisymmetric l = 1 and l = 2
mode frequencies obtained in this work versus past work [34]
pg. 387, for a Γ = 5/3 polytrope. The frequencies are dis-
played in dimensionless form ω =

√
σ2/4πGρc where σ = 2πf

is the angular frequency and ρc is the central density. The
wrong boundary condition δΦ̂|r0= 0 = ∂rδΦ̂|r0 (green dots)
has a large error for the lower overtones. With the correct
boundary conditions (Eqs. (A9)), we obtain at worst ∼ 0.4%
residual for the fundamental n = 0 mode.

1. Newtonian polytropic star

Fig. 7 displays a comparison between l = 1 and
l = 2 mode frequencies we obtain for a Γ = 5/3 New-
tonian polytropic star. The polytropic constant κ, where
P = κρΓ is arbitrary, and we display the frequencies in
dimensionless form

ω ≡

√
σ2

4πGρc
, (B1)

where σ = 2πf is the angular frequency and ρc is the
central rest mass density. We impose a vanishing La-
grangian pressure perturbation at the surface, Eq. (A14).
We terminate the frequency search when the update be-
comes smaller than 0.5 Hz (we set the stellar mass to
M = 1.4M� and radius to R = 12 km, yielding mode
frequencies & 2 kHz). The frequencies compare favor-
ably with past work ([34] pg. 387 and references therein),
except when the outer boundary condition for the New-
tonian potential is disregarded (setting δΦ̂ = ∂rδΦ̂ = 0 at

2
4
6
8

10

f [
kH

z] l = 2

perturbative
evolutions

0 1 2 3
radial overtone number n

0.0

0.5

1.0

|%
 re

sid
ua

l|

FIG. 8. Comparison between axisymmetric l = 2 mode fre-
quencies obtained perturbatively in this work versus using full
nonlinear FLASH evolutions in past work [8, 12], for a Γ = 2
polytropic star with P = κρΓ, ρc = 1.28× 10−3, and κ = 100
in geometrized units.

the starting point of outward integration), as done in [6]
and repeated in subsequent work, including [8, 12, 25].

2. FLASH Tolman-Oppenheimer-Volkoff star

Fig. 8 displays a comparison between l = 2 modes com-
puted perturbatively in this work with those extracted
in [8, 12] from a fully nonlinear FLASH simulation of an
equilibrium Γ = 2 star with κ = 100 and ρc = 1.28×10−3

in geometrized units. We impose vanishing Lagrangian
pressure perturbation at the surface, Eq. (A14). The fre-
quency search terminates when the update is less than
0.5 Hz.

This test demonstrates that the non-radial modes of
pseudo-Newtonian systems, as simulated in eg. FLASH [18,
19], FORNAX [20], CHIMERA [21], are determined by a purely
Newtonian perturbative calculation. Radial perturba-
tions of the gravitational potential, which would require
knowledge of an equation of motion determining the “ef-
fectively GR” monopole ([26] Case A), do not arise any-
where when one solves for non-radial modes.

3. CCSN system

We know based on the previous tests that the perturba-
tive system is the consistent linearization of the equations
of motion being simulated. However, when applying it to
the CCSN system, we are dealing with a non-spherical
system which we subject to a spherical averaging before
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FIG. 9. A comparison between the magnitude of different
terms in the spherically-symmetric Euler equation, as applied
to the spherically-averaged snapshot of the CCSN system at
40 ms. The equilibrium condition ∂rP + ρ∂rΦ = 0 is only
satisfied at the ∼ 5% level, which is commensurate with the
frequency mismatch between the simulation and the best-fit
perturbative solution. The non-equilibrium terms ∂t(ρvr) and
r−2∂r(ρv

rvr) give a negligible contribution to the balance at
r < 50 km (sub-0.1%), and rises to ∼ 1% around r = 100 km.

performing the perturbative calculation, and it is not in

hydrostatic equilibrium. In Fig. 9 we compare the magni-
tude of different terms in the spherically-symmetric Euler
equation

0 = ∂t (ρvr) +
1

r2
∂r
(
r2ρvrvr

)
+ ∂rP + ρ∂rΦ, (B2)

as a percentage comparison to |∂rP |. The equilibrium
condition ∂rP +ρ∂rΦ is satisfied at the ∼ 5% level. Note
that neutrino pressure gradients should also have a con-
tribution to this balance, but their perturbations would
introduce additional equations of motion so we have de-
cided to neglect them. Furthermore, neutrino pressure
gradients should gradually decouple from the fluid as one
moves away from the PNS center, so introducing them
into the background solution requires care. The level of
violation of the hydrostatic equilibrium condition should
be taken as a cautionary note when applying this pertur-
bative calculation to dynamical systems such as CCSNe.

By comparison, the other terms which encode time-
dependence of the background solution (∂t(ρvr)) or its
non-steadiness (vr = constant 6= 0) are not large enough
to account for the degree of non-equilibrium (sub-0.1%
for r < 50 km rising to 1% around r = 100 km). This
suggests that generalizing the perturbative scheme to a
time-dependent or unsteady background would not yield
significant improvements in the perturbative calculations
presented in this work.
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