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Abstract

We study the imprints of new ultralight particles on the gravitational-wave signals emitted by

binary black holes. Superradiant instabilities may create large clouds of scalar or vector fields

around rotating black holes. The presence of a binary companion then induces transitions be-

tween different states of the cloud, which become resonantly enhanced when the orbital frequency

matches the energy gap between the states. We find that the time dependence of the orbit sig-

nificantly impacts the cloud’s dynamics during a transition. Following an analogy with particle

colliders, we introduce an S-matrix formalism to describe the evolution through multiple reso-

nances. We show that the state of the cloud, as it approaches the merger, carries vital information

about its spectrum via time-dependent finite-size effects. Moreover, due to the transfer of energy

and angular momentum between the cloud and the orbit, a dephasing of the gravitational-wave

signal can occur which is correlated with the positions of the resonances. Notably, for intermedi-

ate and extreme mass ratio inspirals, long-lived floating orbits are possible, as well as kicks that

yield large eccentricities. Observing these effects, through the precise reconstruction of wave-

forms, has the potential to unravel the internal structure of the boson clouds, ultimately probing

the masses and spins of new particles.



1 Introduction

The search for fundamental particles has played a key role in the history of particle physics.

In high-energy scattering processes, new particles produced during the collision may either be

long-lived and observed directly, or detected indirectly as resonances. The position of the reso-

nance determines the mass of the new particle, while the angular dependence of the decay products

encodes its spin. While particle colliders have helped to uncover the fundamental building blocks

of nature [1, 2], this way of probing new physics relies on having appreciable interactions with the

Standard Model particles involved in the collision. Traditional collider experiments are therefore

blind to “dark sectors” which couple very weakly to ordinary matter, even if the associated new

particles are very light [3] (see Fig. 1). In that case, we must find creative new ways to probe

these particles. As we will show, the detection of gravitational waves [4, 5, 6, 7, 8] has not only

initiated a new era for multi-messenger astronomy [9, 10], but also provides a new opportunity to

explore this weak-coupling frontier [11, 12, 13, 14, 15, 16]. In particular, the gravitational waves

emitted by binary black holes may carry the fingerprints of the masses and spins of hypothetical

new particles, making these systems effectively “gravitational colliders.”

Although the new particles may couple to the Standard Model only through gravity, they can

still be copiously produced in astrophysical environments, such as around spinning black holes.

Specifically, if the Compton wavelength of an ultralight bosonic field is larger than the black

hole’s gravitational radius, a large condensate, or “boson cloud,” can form through a superradiant

instability [17, 18, 19]. The energy eigenstates of this cloud are similar to those of the hydrogen

atom, which is why the system is often called a “gravitational atom” [20, 21]. In isolation, these

boson clouds are difficult to observe, as we must rely on their feeble continuous gravitational-wave

emission; see e.g. [21, 22]. However, as it was demonstrated in [23], when gravitational atoms

are part of binary systems, they leave characteristic imprints in the gravitational waves emitted

during the inspiral. The presence of the binary companion can induce transitions between the

different states of the boson cloud, which are resonantly enhanced when the orbital frequency

matches the energy gap between the states. These signals are much louder than those from the

cloud itself [21, 22], making them interesting new targets for gravitational-wave searches.

In this paper, we extend our previous work [23] in a number of important directions. First,

we take into account more precisely the time dependence of the orbital frequency during the

binary inspiral. We find that this time dependence, however small, has an important effect on

the dynamics of the cloud near a resonance, leading to an analog of the Landau-Zener transition

in quantum mechanics [31, 32]. Second, we study the backreaction of the cloud on the binary’s

orbital motion and discuss the associated gravitational-wave signatures, which includes the de-

phasings produced by “floating” or “sinking” orbits. Finally, we study the dynamics of both

ultralight scalar and vector clouds, thus allowing for the new particles to carry spin.1 For vector

fields, the intrinsic spin leads to additional, nearly degenerate states in the spectrum [35], which

will play a key role in distinguishing the phenomenology of scalar and vector clouds.

1String compactifications typically generate hundreds of four-dimensional p-form fields, some of which are

plausibly ultralight [33]. Since massive two- and three-forms can be dualized into massive one-forms and scalars [34],

we cover a wide range of fields, with large theoretical prior, by considering scalars and vectors.
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Figure 1: Particle colliders are blind to new particles that are either too heavy or too weakly-

coupled to be produced in sufficient numbers. Very massive particles (up to 1014 GeV) can be

created in the “cosmological collider” that was active during inflation [24, 25, 26, 27, 28, 29,

30]. In this paper, we explore instead the weak-coupling frontier, through searches of ultralight

particles with precision gravitational-wave observations. These bosons, with masses in the range

[10−20, 10−10] eV, can be produced around astrophysical black holes, leaving distinct imprints in

the gravitational waves emitted by black hole binaries. Like in ordinary colliders, the signals in

“gravitational colliders” are sensitive to both the masses and spins of the bosonic fields.

As first highlighted in [23], resonant transitions are a key feature of the evolution of boson

clouds in binary systems. For scalar clouds and quasi-circular orbits, the relevant mixings are

predominantly between two states. In this case, the dynamics near the resonance are rather simple

and can be studied in detail. However, qualitatively new features appear when multiple, nearly

degenerate states are involved in the transition, which is the case for vector clouds. As we will

see, when the binary moves slowly through the resonance band, a complete transfer of population

from the initial state to a linear combination of allowed states may occur, a process known as

a Landau-Zener transition (or “adiabatic following”) [31, 32]. While the transition populates

only a single state for scalars, a vector cloud can evolve into a superposition of states. This can

result in neutrino-like oscillations between different shapes, with characteristic frequencies set

by the energy splitting between the states. These oscillations persist after the resonance, and

are therefore a key characteristic of clouds carrying intrinsic spin. Because the transitions are

localized in time (or frequency), they can also be treated as “scattering events” and described

individually by an S-matrix. This approach will be particularly useful when we consider multiple,

sequential resonances (see below).

As we elaborate in this paper, the dynamics of the boson clouds can have a significant impact

on the binary’s orbital motion and associated gravitational-wave signals. For instance, any change
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Figure 2: Illustration of the gravitational atom in a binary system. During the inspiral, the com-

panion induces level mixings between different states of the cloud. This mixing is strongest when

the orbital frequency Ω(t), which slowly increases due to gravitational-wave emission, matches

the energy gap between the coupled states. During these resonant transitions, the change in the

state of the cloud produces a backreaction on the binary’s orbital dynamics. These effects ei-

ther induce floating or sinking orbits across these resonance bands, thus leaving distinct imprints

in the gravitational waves emitted by the binary. Moreover, minute time-dependent finite-size

effects can further distinguish the nature of the boson cloud, including its intrinsic spin.

in the cloud’s angular momentum (which is most prominent during a resonance) must be balanced

by a change in the orbital angular momentum of the binary, so that the total angular momentum

is conserved. Depending on the orientation of the orbit and the nature of the transition, the

binary can either absorb angular momentum from the cloud or release it. The induced changes

in the orbital motion can produce a significant dephasing in the gravitational waves emitted by

the binary, relative to the evolution without a cloud (see Fig. 2).2 This dephasing is correlated

with the positions of the resonances and therefore probes the spectral properties of the cloud.

Even though the backreaction on the orbit is a smoking gun for the existence of boson clouds,

many degeneracies between the scalar and vector case still remain, since the transfer of angular

momentum is not very sensitive to the internal structure of the clouds. To break these degen-

eracies, we need to probe the clouds during the later stages of the inspiral and towards merger.

2For intermediate and extreme mass ratio inspirals, with the cloud carried by the larger black hole, the back-

reaction on the orbit can be a dramatic effect. If angular momentum is transfered from the cloud to the binary,

long-lived floating orbits are naturally induced, creating a new source of continuous monochromatic gravitational

waves. In contrast, when the binary transfers angular momentum to the cloud, it can experience a sudden kick

instead. This greatly enriches the dynamics of the binary system, for instance by producing eccentric orbits. While

these kicks are difficult to model quantitatively, they are distinctive qualitative signatures of the existence of a

gravitational atom in a binary system.
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This is where the S-matrix formalism we develop in this paper becomes a useful tool, as it allows

us to follow the state of the cloud through a sequence of resonances. As we shall see, given an

initial state |i〉, the final state after N resonances can be written as

|f〉 =

N∏

n=1

Sn |i〉 ,

where Sn is a unitary operator that evolves the state across the n-th resonance. Given the

differences in the interaction Hamiltonian and eigenstates, the state of the cloud after multiple

resonances will be different for scalar and vector clouds. In particular, as was anticipated in [23],

time-dependent finite-size effects develop which, due to the extended nature of the cloud, may be

observed in the early phase of the binary inspiral. Moreover, strong mixing with decaying modes

may also rapidly deplete the cloud as it approaches merger. The evolving shape of the cloud thus

creates a distinct fingerprint in the binary’s gravitational-wave signal.

As in ordinary collider physics, signals from the gravitational collider are sensitive to the

masses and spins of the new particles. In particular, the positions of the resonant transitions

depend on the mass of the bosonic field, while its spin can be inferred by linking the dephasing

during these transitions with the oscillations in the shape of the cloud, as measured through

time-dependent finite-size effects in the waveform. Although these effects are difficult to model

in detail, they are correlated with the position of the resonances, and therefore represent robust

qualitative signatures of the existence of gravitational atoms in binary systems. Our findings

motivate revisiting current waveform models in order to target the unique signatures of ultralight

particles in binary gravitational-wave searches.

Outline The plan of the paper is as follows: In Section 2, we review the spectra of bound

states of scalar and vector fields around rotating black holes. We also describe the mixing between

different states in the presence of a binary companion. In Section 3, we study the dynamics of this

level mixing. We show that resonant transitions can be described as scattering events and derive

the transition “probabilities” between coupled states. We explain that this S-matrix approach

is particularly well suited to chain together a sequence of multiple resonances. In Section 4, we

study the backreaction of time-dependent boson clouds on the orbital motion. In Section 5, we

explore the observational consequences of boson clouds in binary systems, and study the effects

that can help us ultimately unravel their atomic structure. Our conclusions and outlook are

presented in Section 6.

A number of appendices contain additional details: In Appendix A, we elaborate on the

gravitational perturbations induced by the binary companion. In Appendix B, we review the

analytic solution for the two-level Landau-Zener transition. We also introduce Floquet theory to

deal with more general orbital configurations. Finally, in Appendix C, we provide further details

on the angular momentum transfer between the cloud and the orbit.

Notation and conventions Our metric signature will be (−,+,+,+) and, unless stated oth-

erwise, we will work in natural units with G = ~ = c = 1. Greek letters will stand for spacetime

indices. The gravitational radius of a black hole is rg ≡ GM/c2. Quantities associated to the
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boson clouds will be denoted by the subscript c. For example, the mass and angular momentum

of the clouds are Mc and Sc, respectively. The gravitational fine-structure constant is α ≡ rg/λc,
where λc ≡ ~/(µc) is the (reduced) Compton wavelength of a boson field with mass µ.

The Kerr metric in Boyer-Lindquist coordinates is

ds2 = −∆

ρ2

(
dt− a sin2 θ dφ

)2
+
ρ2

∆
dr2 + ρ2 dθ2 +

sin2 θ

ρ2

(
adt− (r2 + a2) dφ

)2
, (1.1)

where ∆ ≡ r2 − 2Mr + a2 and ρ2 ≡ r2 + a2 cos2 θ. The roots of ∆ determine the inner and

outer horizons, located at r± = M ±
√
M2 − a2, and the angular velocity of the black hole at the

outer horizon is ΩH ≡ a/2Mr+. Dimensionless quantities, defined with respect to the black hole

mass M , are labeled by tildes. For example, the dimensionless spin of the black hole is ã ≡ a/M .

The scalar and vector eigenstates are denoted by |n`m〉 and |n`jm〉, with the integers

{n, `, j,m} corresponding to the principal, orbital angular momentum, total angular momentum,

and azimuthal angular momentum numbers, respectively.

2 Gravitational Atoms in Binaries

The key parameter underlying the superradiance phenomenon is the ratio of the gravitational

radius of the rotating black hole, rg, to the (reduced) Compton wavelength of the field, λc. This

is often called the gravitational fine-structure constant, whose typical values are of order

α ' 0.04

(
M

60M�

)( µ

10−13 eV

)
. (2.1)

Superradiant growth can only occur when the parameter α is smaller than order unity. At

the same time, α also determines the energy spectrum of the quasi-bound states of a bosonic

field around the black hole, playing a similar role to the fine-structure constant in quantum

electrodynamics.

We start, in §2.1, by reviewing the bound-state spectra of gravitational atoms for both scalar

and vector fields. We then describe, in §2.2, how gravitational perturbations associated with the

binary companion can induce transitions between different energy eigenstates. The time depen-

dence of these perturbations and the conditions for exciting resonant transitions are discussed

in §2.3.

2.1 Scalar and Vector Clouds

There is an extensive literature on superradiance with scalar [36, 37, 21, 38, 39, 40, 22, 23, 41,

42, 43, 44, 45] and vector fields [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 35, 56]. We will briefly

review the key features that will be relevant for the analysis in this paper.

Scalar clouds

The Klein-Gordon equation for a scalar field of mass µ in a curved spacetime is
(
gαβ∇α∇β − µ2

)
Φ(t, r) = 0 . (2.2)
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Remarkably, the bound-state solutions of (2.2) in the Kerr background (1.1) are similar to the

states of the hydrogen atom in quantum mechanics. To make this manifest, it is useful to consider

the ansatz

Φ(t, r) =
1√
2µ

[
ψ(t, r) e−iµt + ψ∗(t, r)e+iµt

]
, (2.3)

where ψ is a complex scalar field which varies on a timescale that is longer than µ−1. Substituting

this ansatz into (2.2) and expanding in powers of α, we find

i
∂

∂t
ψ(t, r) =

(
− 1

2µ
∇2 − α

r
+ ∆V

)
ψ(t, r) , (2.4)

where ∆V represents higher-order corrections in α. At leading order, this is identical to the

Schrödinger equation for the hydrogen atom, whose eigenfunctions are labeled by the principal

“quantum” number n, the orbital angular momentum number `, and the azimuthal angular

momentum number m. These quantum numbers satisfy n ≥ ` + 1, ` ≥ 0, and ` ≥ |m|. The

bound-state solutions of the scalar cloud at leading order are thus given by

ψn`m(t, r) = Rn`(r)Y`m(θ, φ) e−i(ωn`m−µ)t , (2.5)

where Y`m are the scalar spherical harmonics and Rn` are the hydrogenic radial functions. For no-

tational simplicity, we will denote the normalized eigenstates (2.5) by |n`m〉, with 〈n`m|n′`′m′〉 =

δnn′δ``′δmm′ . The overall amplitude of (2.5), determined by the total mass of the cloud, will be

restored when necessary. Notice that for small values of α, following the analogy with the hy-

drogen atom, the radial profile peaks at the “Bohr radius” rc ≡ (µα)−1. The cloud is thus

concentrated at a distance which is larger than both the gravitational radius of the black hole

and the Compton wavelength of the field.

There is, however, an important difference between the hydrogen atom and the gravitational

atom. While the former has wavefunctions that are regular at r = 0, the latter must satisfy

purely ingoing boundary conditions at the black hole’s outer horizon. As a consequence, the

eigenstates of a boson cloud have eigenfrequencies which are generally complex,

ω = E + iΓ , (2.6)

where E and Γ denote the energies and instability rates, respectively. At small values of α, one

has [23, 35, 36]

En`m = µ

(
1− α2

2n2
− α4

8n4
− (3n− 2`− 1)α4

n4 (`+ 1/2)
+

2ãm α5

n3`(`+ 1/2)(`+ 1)
+O(α6)

)
, (2.7)

Γn`m = 2r̃+Cn` g`m(ã, α, ω) (mΩH − ωn`m)α4`+5 , (2.8)

where the numerical coefficients Cn` and g`m can be found in [35]. Continuing the analogy with

the hydrogen atom, we refer to the energy splittings as Bohr (∆n 6= 0), fine (∆` 6= 0), and

hyperfine (∆m 6= 0), respectively. Notice that the dominant growing mode is |n`m〉 = |211〉,
with Γ211 ∝ µα8.
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Figure 3: Schematic illustration of the energy spectrum of a massive scalar field. Each state

is denoted by |n`m〉. The solid blue lines are growing modes, while the dashed red lines are

decaying modes. The dominant scalar mode is |211〉.

Vector clouds

A massive vector field obeys the Proca equation

(
gαβ∇α∇β − µ2

)
Aµ = 0 , (2.9)

subject to the Lorenz condition ∇µAµ = 0. The Lorenz condition completely determines A0,

and so we may focus entirely on the spatial components Ai. Just like in the scalar case, it is

convenient to introduce the analog of the ansatz (2.3) for Ai, where the slowly-varying field is

now denoted by ψi. The Proca equation then leads to

i
∂

∂t
ψi(t, r) =

[
− δ

il

2µ
∇2 − δil α

r
+ ∆V il

]
ψl(t, r) , (2.10)

where the terms in (2.10) share the same interpretation as their scalar analogs in (2.4). Spherical

symmetry is restored far from the black hole and, to leading order in α, it is straightforward to

find the eigenfunctions,

ψin`jm(t, r) = Rn`(r)Y
i
`,jm(θ, φ) e−i(ωn`jm−µ)t , (2.11)

where the radial function Rn` is again hydrogenic and the angular functions Y i
`,jm are vector

spherical harmonics [53, 57, 35]. While the analogy between the hydrogen and gravitational atoms

still holds, the vector cloud has more elaborate angular structure. The eigenstates of massive

vector fields are now labeled by four “quantum numbers” {n, `, j,m}, where n and ` have the

same interpretation as in the scalar case, and j = `± 1, ` is the total angular momentum with m

its azimuthal component. Since (2.11) acquires a factor of (−1)`+1 under a parity transformation,

the j = `± 1 states are called electric-type modes, while the j = ` states are magnetic-type. For

notational simplicity, we will denote the normalized states (2.11) by |n`jm〉.
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Figure 4: Schematic illustration of the energy spectrum of a massive vector field. Each state is

denoted by |n`jm〉. The dominant vector mode is |1011〉.

The energy eigenvalues and instability rates of the vector quasi-bound states are [35]

En`jm = µ

(
1− α2

2n2
− α4

8n4
+
fn`j
n3

α4 +
hn`j
n3

ãm α5

)
, (2.12)

Γn`jm = 2r̃+Cn`j gjm(ã, α, ω) (mΩH − ωn`jm)α2`+2j+5 , (2.13)

where

fn`j =
2

n
− 4(2 + 3`+ 3j(2`+ 1))

(j + `)(j + `+ 1)(j + `+ 2)
, (2.14)

are the fine-structure splittings, which will be relevant later. The expressions for the coefficients

hn`j , Cn`j and gjm can be found in [35]. Crucially, the scaling of (2.13) with α depends on both

` and j. The dominant growing mode for the vector field is |1011〉, which has Γ1011 ∝ µα6. This

is enhanced, by two powers of α, with respect to the dominant growing mode for the scalar field.

The spectrum of the vector cloud is illustrated in Fig. 4.

2.2 Gravitational Level Mixings

Next, we describe how the presence of a binary companion modifies the evolution of the boson

cloud. After a brief outline of the geometry of the problem, we describe how the gravitational

perturbation enables the mixing between different states of the spectra. As we shall see, the

associated selection rules are different for scalar and vector transitions.

To investigate the dynamics of a boson cloud in a binary system, we must work in the cloud’s

Fermi co-moving frame [23]. The relative motion of the companion is most conveniently described

by the coordinates R∗ ≡ {R∗, ι∗, ϕ∗}, where R∗ is the separation between the members of the

binary, ι∗ is the inclination angle between the orbital plane and the cloud’s equatorial plane,

and ϕ∗ is the true anomaly, which represents the angle between the binary separation and the
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Figure 5: Illustration of the coordinates used to describe the binary system. The Cartesian bases

{x, y, z} and {x∗, y∗, z∗} are adapted to the cloud’s equatorial plane and the binary’s orbital plane,

respectively. The equatorial plane (gray) intersects the orbital plane at an inclination angle ι∗,
and we have chosen the pericenter to be located on the x∗-axis, such that ϕ∗ denotes the true

anomaly of the binary.

pericenter of the orbit (see Fig. 5). These angles are related to the usual angular spherical

coordinates of the binary companion, {Θ∗,Φ∗}, via

cos Θ∗ = sin ι∗ cosϕ∗ ,

tan Φ∗ = sec ι∗ tanϕ∗ .
(2.15)

Since 0 ≤ Θ∗ ≤ π, we can choose −π/2 ≤ ι∗ ≤ π/2, such that the spin of the cloud, Sc, projected

on the z∗-axis of the orbital frame, satisfies z∗ · Sc ≥ 0. While ϕ∗ increases in magnitude during

the orbital evolution, the sign of ϕ∗ determines the orientation of the orbit. Orbits with ϕ∗ > 0

are co-rotating, while those with ϕ∗ < 0 are counter-rotating.

Metric perturbations

The gravitational perturbation due to the binary companion can be encoded by additional poten-

tial terms in the Schrödinger equations, (2.4) or (2.10), for scalar and vector fields, respectively.

At leading order, these terms are

V∗ = −1

4
µh̄00 (scalar) , (2.16)

V il
∗ = −1

4
µh̄00δil (vector) , (2.17)

9



where h̄00 is the Newtonian trace-reversed metric perturbation. Denoting the spatial coordinates

of the cloud in the Fermi frame by r ≡ {r, θ, φ},3 we can write the metric perturbation as

h̄00 = 4M∗
∑

`∗ 6=1

∑

|m∗|≤`∗
E`∗m∗(ι∗, ϕ∗)Y`∗m∗(θ, φ)

(
r`∗

R`∗+1
∗

Θ(R∗ − r) +
R`∗∗
r`∗+1
∗

Θ(r −R∗)
)
, (2.18)

where M∗ is the mass of the binary companion, Θ is the Heaviside step-function and E`∗m∗ are

the tidal moments, whose explicit forms depend on the geometry of the binary (see §A.1 for a

detailed discussion). Crucially, the dipole moment `∗ = 1 is absent in the Fermi frame of the

cloud [23]. We will concentrate on the cloud’s dynamics when the binary companion is located

outside of the cloud (R∗ > rc), where the metric perturbation is dominated by the first term in

(2.18). However, when the binary separation approaches the Bohr radius of the cloud, R∗ ∼ rc,

the second term in (2.18) can provide non-negligible support to the perturbation.

In this paper, we will focus only on the dynamics of the boson cloud perturbed by the leading-

order potentials. In principle, we could also include couplings in (2.16) and (2.17) that are higher

order in α, such as those arising from interaction terms with spatial and temporal gradients

acting on the non-relativistic fields, or from the post-Newtonian (PN) corrections to the metric

perturbation.4 These subleading potential terms are given explicitly in §A.2, and we defer a

detailed study of their impact on the evolution of the cloud to future work.

Selection rules

The perturbation (2.18) induces level mixings between different states of the gravitational atom.

However, not all levels couple to one another as certain selection rules must be obeyed. To deduce

the allowed transitions for both scalar and vector clouds, we must compute the overlap [23]

〈a′|V∗(t)|a〉 = −M∗ µ
∑

`∗ 6=1

∑

m∗≤|`∗|
E`∗m∗× Ir × IΩ , (2.19)

where V∗ schematically represents both (2.16) and (2.17), and the states |a〉 and |a′〉 can denote

either the scalar |n`m〉 or vector |n`jm〉 eigenstates. The radial integral in both cases is

Ir ≡
∫ R∗

0
dr r2

(
r`∗

R`∗+1
∗

)
Rn′`′Rn`,+

∫ ∞

R∗

dr r2

(
R`∗∗
r`∗+1

)
Rn′`′Rn` , (2.20)

where Rn` are the radial functions described in §2.1. However, the angular integrals IΩ are

different for the scalar and vector:

IΩ ≡
∫

dΩ Y ∗`′m′(θ, φ)Y`∗m∗(θ, φ)Y`m(θ, φ) (scalar) , (2.21)

IΩ ≡
∫

dΩ Y`∗m∗(θ, φ)Y∗`′,j′m′(θ, φ) ·Y`,jm(θ, φ) (vector) . (2.22)

3Since the center-of-mass of the cloud is the same as that of the isolated central black hole, the Fermi coordinates

coincide with the Boyer-Lindquist coordinates {t, r, θ, φ} at leading order in the post-Newtonian expansion.
4Notice that gradients acting on the non-relativistic field are α-suppressed, ∂iψ ∼ µαψ and ∂0ψ ∼ µα2ψ.

Similarly, the virial theorem demands that the companion’s velocity is roughly v ∼
√

(M +M∗)/R∗, so that

velocity-dependent PN corrections are also α-suppressed whenever R∗ & rc [23].
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The first integral (2.21) is only non-vanishing when the following selection rules are satisfied [23]

(S1) −m′ +m∗ +m = 0 ,

(S2) `+ `∗ + `′ = 2p , for p ∈ Z ,
(S3) |`− `′| ≤ `∗ ≤ `+ `′ .

(2.23)

This implies that the dominant scalar mode |211〉 can only couple to states with `′ = 1 and

`′ = 3, if we assume mixing through the `∗ = 2 quadrupole perturbation. Similarly, the integral

(2.22) implies the following selection rules for the vector cloud:

(V1) −m′ +m∗ +m = 0 ,

(V2) `+ `∗ + `′ = 2p , for p ∈ Z ,
(V3) |`− `′| ≤ `∗ ≤ `+ `′ ,

(V4) |j − j′| ≤ `∗ ≤ j + j′ .

(2.24)

While (V1) – (V3) are similar to (S1) – (S3), there is a new rule (V4) for the vector, which

reduces to (S3) when j = `.5 The rule (V3) implies that the dominant state |1011〉 of the vector

cloud can only transition to modes with `′ ≥ 2. We describe the phenomenological consequences

of the different selection rules for scalar and vector clouds in Section 5.

2.3 Dynamical Perturbation

We now discuss how the binary’s orbital motion forces the gravitational perturbation on the

cloud to evolve in time, which leads to novel dynamical effects.

Shrinking orbits

As the coordinates of the binary R∗(t) = {R∗(t), ι∗(t), ϕ∗(t)} evolve, so does the metric pertur-

bation (2.18). For general orbit, the overlap in (2.19) is (see §A.1 for details)

〈a|V∗(t) |b〉 ≡
∑

mϕ∈Z
η

(mϕ)
ab (R∗(t), ι∗(t)) e−imϕϕ∗(t) , (2.25)

where η
(mϕ)
ab characterizes the strength of the perturbation, and the oscillatory factors e−imϕϕ∗(t)

arise from the tidal moments E`∗m∗ .6 Crucially, the presence of these oscillatory terms means

that the perturbation acts like a periodic driving force, which greatly enriches the dynamics of

the boson cloud. In principle, the couplings η
(mϕ)
ab receive contributions from all multipoles in

the expansion (2.18). However, we will concentrate on the `∗ = 2 quadrupole coupling, which

dominates the perturbation.

5There are special cases where IΩ = 0 even when the selection rules (V1) – (V4) are naively satisfied. These

occur when the inner product between the vector spherical harmonics in the integrand (2.22) vanishes, i.e. when

` = `′,m = m′ = 0, and the inner product is taken between an electric j = ` ± 1 and a magnetic j′ = `′ vector

spherical harmonic.
6As we will illustrate in §A.1, the sum over mϕ can be understood as a sum over polarizations. Depending on

the inclination ι∗ of the orbit, different polarizations may contribute.
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It is therefore necessary to understand the behavior of ϕ∗(t), including the effects induced

by the shrinking of the orbit due to gravitational-wave emission. In terms of the instantaneous

orbital frequency, Ω(t) > 0, we have [23]

ϕ∗(t) = ±
∫ t

0
dt′Ω(t′) , (2.26)

where t ≡ 0 is an initial reference time and the upper (lower) sign denotes co-rotating (counter-

rotating) orbits. In general, ϕ∗(t) and Ω(t) evolve in a complicated manner. However, for

quasi-circular equatorial orbits, the orbital frequency is determined by [58]

dΩ

dt
= γ

(
Ω

Ω0

)11/3

, (2.27)

where Ω0 is a reference orbital frequency and γ is the rate of change due to the gravitational-wave

emission,

γ ≡ 96

5

q

(1 + q)1/3
(MΩ0)5/3Ω2

0 , (2.28)

with q ≡M∗/M the mass ratio of the black holes.

When the orbital frequency does not change appreciably near Ω0, the solution of (2.27) can

be approximated by

Ω(t) = Ω0 + γt , (2.29)

where we have dropped nonlinearities that become important on the timescale t ∼ Ω0/γ. The

effects of a time-periodic perturbation on the gravitational atom, with fixed frequency Ω0, were

studied in [23], where Rabi oscillations were found. The oscillations are enhanced when Ω0

matches the difference between two energy levels of the clouds, such that resonances are excited.

However, as we discuss in Section 3, the presence of a new timescale associated to the shrinking

of the orbit introduces additional coherent effects that qualitatively change the behavior of the

cloud during the resonant transition.

Resonances

As we will elaborate in Section 3, resonant transitions can be excited when the orbital frequency,

or its overtones, matches the energy difference ∆Eab ≡ Ea − Eb between two states |a〉 and |b〉
connected by the gravitational perturbation,

ϕ̇∗(t) = ±Ω(t) =
∆Eab
mϕ

. (2.30)

The weak gravitational perturbation is resonantly enhanced at these frequencies, and can force

the cloud to evolve into an entirely different configuration. In most of this paper, we will focus on

quasi-circular equatorial orbits for which mϕ = ∆mab.
7 This restriction is convenient, because

fewer transitions are allowed by the selection rules, and transitions between a pair of states

7In §A.1, we show that, for equatorial orbits, the summation over mϕ in (2.25) reduces to a single term with

mϕ = m∗. The selection rules (S1) and (V1) then imply that mϕ = ∆mab ≡ ma −mb.
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may only occur at a single frequency. The resonance condition (2.30) then simply becomes

ϕ̇∗ = ∆Eab/∆mab.

Since ∆Eab/∆mab can be either positive or negative, the orientation of the orbit determines

which resonances are excited. Specifically, co-rotating orbits can only excite resonances for which

∆Eab and ∆mab have the same sign, while counter-rotating orbits require the signs to be opposite.

Resonances do not occur if either ∆Eab = 0 or ∆mab = 0, since energy and angular momentum

must be transferred in the process. These constraints, in addition to the selection rules, dictate

whether or not a transition is allowed. We will denote the resonance frequencies by

Ωab =

∣∣∣∣
∆Eab
∆mab

∣∣∣∣ , (2.31)

though we stress that not all transitions between states are accessible during a particular inspiral.

In order to understand the dynamics of the cloud near the resonances, we will thus set our

reference frequency to be Ω0 ≡ Ωab, such that (2.29) becomes

Ω(t) = Ωab + γab t , (2.32)

where γab is (2.28) evaluated at Ω0 = Ωab. The linear approximation (2.32) is justified if the

fractional change in the orbital frequency is small throughout the transition. We find that this

is indeed the case for virtually all transitions, for both the scalar and vector clouds. When there

is no risk of confusion, we will often label a general resonance frequency as Ωr.

Before moving on, it will be useful to understand the order of magnitudes and scalings of the

relevant quantities involved in these transitions. For concreteness, let us consider Bohr transitions

between states with different principal quantum numbers na and nb. Compared to the resonance

frequency Ωab, the typical values of ηab and γab are

γab
Ω2
ab

' 3.2× 10−6 q

(1 + q)1/3

( α

0.07

)5
(

2

|∆mab|

)5/3 ∣∣∣∣
1

n2
a

− 1

n2
b

∣∣∣∣
5/3

, (2.33)

ηab
Ωab
' 0.3

(
Rab
0.3

)
q

1 + q
, (2.34)

where we have assumed that the transition is mediated by the quadrupole, `∗ = 2, and introduced

Rab, a dimensionless coefficient that characterizes the overlap between different states in the

spectrum. For the relevant states, we typically have Rab . 0.3.8

Because the transitions do not happen instantaneously, an initial state can, in principle, res-

onate with several states at the same time. This will occur if both the selection rules allow it and

the couplings ηab are strong enough to excite states that are slightly off-resonance. In practice,

the resonance between states a and b has a bandwidth set by the coupling ηab.
9 Whenever the

8We assumed that the binary separation is much larger than the Bohr radius of the cloud, such that the first

term in (2.20) dominates the q-scaling. The general dependence on q is actually more complicated, and is properly

taken into account in the numeric results of Section 5.
9This implies that the timescale of the transition is ∆t ∼ ηab/γab. The linear approximation (2.32) is therefore

justified during the transition as long as ηab/Ωab � 1, which in light of (2.34) is always the case.
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resonance frequency of a different state c falls within this bandwidth, it may also participate in

the transition.

Remarkably, Bohr transitions for the scalar atom typically involve only two states, whereas

boson clouds with vector fields can access multiple states. To illustrate this point, it is instructive

to consider transitions mediated by the quadrupole in counter-rotating orbits. Since perturbations

have m∗ = ±2 (see §A.1), we are thus restricted to transitions with ∆Eab > 0, which must satisfy

∆mab = −2. Due to the selection rule (2.23), the scalar |211〉 state only couples to the |31 −1〉
state. In contrast, the vector |2122〉 state simultaneously resonates with all three |31j0〉 modes

with the same azimuthal quantum number, since their energy differences, of order µα4, are small

compared to the size of the bandwidth ∼ µα2. While we have illustrated this difference with

a specific example, we find that virtually all relevant scalar and vector transitions follow this

behavior.

As we shall see momentarily, there are qualitative differences for transitions involving more

than two states. We study next how these differences manifest themselves in the dynamics of the

cloud during the resonance, and how we can encode it into an S-matrix formalism. We return

to this point in Section 5, where we discuss in more detail how the different evolution trees for

scalar and vector clouds can help us measure the spin of the ultralight particles.

3 The Gravitational Collider

The goal of this section is to characterize the dynamics of the cloud under a perturbation whose

frequency gradually increases with time, as in the binary system. We will find that a type of

“collision event” (or resonance) occurs when the orbital frequency matches the energy difference

between two or more states of the cloud. As we will show, the dynamics of the cloud through

this event can be captured by an S-matrix, which describes how a state defined far before the

resonance evolves long after it has passed it. The evolution throughout the entire inspiral can

then be described as a series of scattering events, with the S-matrix formulation providing a

convenient and simple description of a generally complicated process.

A general bound state can be written as |ψ(t)〉 =
∑

a ca(t)|a〉, where a ranges over all states

in the spectrum. In this eigenstate basis, the Schrödinger equations (2.4) and (2.10) reduce to

i
dca
dt

=
∑

a

Hab(t) cb , (3.1)

where the Hamiltonian Hab = Eaδab + Vab(t) splits into a constant, diagonal matrix of eigenstate

energies, (2.7) and (2.12), and a time-varying off-diagonal piece encoding the gravitational mixings

induced by the companion, (2.19). Conservation of the total occupation density demands that∑
a |ca(t)|2 = 1. We describe the qualitative behavior of (3.1) in this section.

We begin, in §3.1, with the simple case of a two-state system. We show that the dynamics is

characterized by the Landau-Zener (LZ) transition, as it occurs in quantum mechanics. In §3.2,

we generalize the formalism to a multi-state system. We work out in detail the case of a three-state

system, which captures all qualitative features of the generic case. Finally, in §3.3, we discuss
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how the same evolution can also be described by an S-matrix, which provides a convenient way

to describe a sequence of LZ transitions.

3.1 Two-State Transitions

To illustrate the main features of the cloud’s dynamics, it is convenient to first study a simple

two-level system. This is more than just a pedagogical device, since the transitions in scalar

atoms typically involve only two states (see §2.3).

To avoid unnecessary complications, we will truncate the level mixing (2.25) to a single

quadrupolar interaction term. This is equivalent to assuming that the companion travels on

a large, equatorial, quasi-circular orbit, so that the dominant gravitational perturbation connect-

ing the different energy eigenstates oscillates with a definite phase. Specifically, if the states |1〉
and |2〉 have azimuthal angular momenta m1 and m2, with ∆m21 ≡ m2 −m1, the gravitational

mixing (2.25) takes the form

V12(t) ≡ 〈1|V∗(t)|2〉 = η12(t) ei∆m21ϕ∗(t) , (3.2)

where the strength of the interaction η12(t) varies slowly in time. As discussed in §2.3, the true

anomaly ϕ∗(t) for quasi-circular orbits near the resonances can be approximated as10

ϕ∗(t) = ±
∫ t

0
dt′Ω(t′) = ±

(
Ωt+

γ

2
t2
)
, (3.3)

where the sign depends on the orientation of the orbit. It will be instructive to first consider the

simplest case, where (3.1) describes two states separated by an energy gap ∆E ≡ E2 − E1 > 0,

with ∆m21 ≡ ∆m and constant η12 ≡ η. The Hamiltonian in the “Schrödinger frame” then

reduces to

H =

(
−∆E/2 ηei∆mϕ∗(t)

ηe−i∆mϕ∗(t) ∆E/2

)
. (3.4)

While the off-diagonal terms oscillate rapidly, they do so at a slowly increasing frequency, and it

will be useful to work in a dressed frame that isolates this slow behavior. Said differently, while

the companion’s motion in a fixed frame is complicated, its motion simplifies drastically if we

rotate along with it. We thus define a time-dependent unitary transformation

U(t) =

(
ei∆mϕ∗/2 0

0 e−i∆mϕ∗/2

)
, (3.5)

so that the Schrödinger frame coefficients can be written as ca(t) = Uab(t)db(t). Assuming a co-

rotating orbit, such that ϕ̇∗(t) = Ω(t), the dressed frame coefficients da(t) then evolve according

to the following Hamiltonian,

HD(t) = U†HU − iU†dU
dt

=

(
(∆mΩ(t)−∆E)/2 η

η −(∆mΩ(t)−∆E)/2

)
. (3.6)

10To avoid clutter, we have dropped the subscripts on Ωab and γab.
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t = 0
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t

|1〉|2〉

|1〉 |2〉

2η

|E+(t)〉

|E−(t)〉

Figure 6: Instantaneous energy eigenvalues of the dressed frame Hamiltonian (3.6) as a function

of time. If η = 0, these energies cross when the frequency of the perturbation matches the energy

difference between the two states, Ω(t) = ∆E. For non-vanishing η, these levels avoid each other.

Note the useful fact that the structure of the transformation (3.5) implies that the magnitudes

of the coefficients in the Schrödinger and dressed frames are equal, |ca(t)|2 = |da(t)|2. For this

reason, we will abuse notation and use |a〉 to denote the energy eigenstates in both the Schrödinger

and dressed frames. Since our main interest will be in the overall population of the states |a〉, we

only need to work with dressed frame quantities.

It is clear from (3.6) that there is a “collision” or “resonance” time tr ≡ 0 when the frequency

of the companion matches the energy difference between these two states,

Ω(tr) =
∆E

∆m
, (3.7)

and the diagonal entries of the dressed frame Hamiltonian vanish. Note that, since Ω(t) is always

positive, a resonance in a co-rotating orbit can only happen if ∆E has the same sign as ∆m (see

§2.3 for more discussion). To reduce clutter, we will set ∆m = 1 in what follows.11 With these

simplifications, the dressed frame Hamiltonian is

HD(t) =
γt

2

(
1 0

0 −1

)
+ η

(
0 1

1 0

)
, (3.8)

whose instantaneous energy eigenvalues E±(t) = ±
√

(γt/2)2 + η2 we depict in Fig. 6. The

asymptotic states shown in the figure are |1〉 ≡ (1, 0) and |2〉 ≡ (0, 1).

We can use this figure to understand qualitatively how the instantaneous energy eigenstates

evolve in time. In the far past, t→ −∞, the first term in (3.8) dominates and the instantaneous

11Restoring factors of ∆m will simply mean replacing γ → |∆m| γ.
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Figure 7: Adiabatic (left) and non-adiabatic (right) behavior of the Schrödinger frame coefficients

for transitions with Landau-Zener parameters z = 25 and z = 1/2, respectively.

eigenstates are simply

|E+(−∞)〉 =

(
0

1

)
, |E−(−∞)〉 = −

(
1

0

)
. (3.9)

As we then move toward the collision, t→ 0, these states become nearly degenerate, the second

term dominates, and the eigenvalues E±(t) are forced to repel. In the far future, t → +∞, the

first term in (3.8) again dominates, and so the eigenstates take the same form. However, this

repulsion event forces the states to have permuted their identities, so that in the far future

|E+(+∞)〉 = −|E−(−∞)〉 , |E−(+∞)〉 = |E+(−∞)〉 . (3.10)

This can also be seen explicitly from the exact form of the time-dependent eigenstates,

|E±(t)〉 = N−1
±
(
γt/2±

√
(γt/2)2 + η2 , η

)
, (3.11)

where N±(t) is the appropriate normalization.

As long as the evolution is adiabatic—meaning that the dressed frame Hamiltonian HD(t)

evolves slow enough—the system tracks its instantaneous eigenstates. If the system begins its

life in the dressed frame’s |1〉 state, this implies that there is a complete transfer of population

into the |2〉 state after the resonance, cf. Fig. 6. This is a key characteristic of the LZ transition

for a two-level system.

The model described by (3.8) has the advantage that it can be solved exactly, even away from

the adiabatic regime. As detailed in §B.1, assuming that the state initially fully occupies the

lowest energy eigenstate |ψ(−∞)〉 ∝ |E−(−∞)〉, the population contained in the other eigenstate

long after the transition is

|〈E+(∞)|ψ(∞)〉|2 = exp (−2πz) , (3.12)

where we have defined the (dimensionless) Landau-Zener parameter [31, 32, 59]

z ≡ η2

γ
, (3.13)
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which measures how (non-)adiabatic a given transition is.

In an adiabatic transition, with z � 1, the dressed frame Hamiltonian evolves slowly enough

that we can ignore the other instantaneous eigenstate entirely. Intuitively, the system has enough

time (as measured by η) to respond to a change in the dressed frame Hamiltonian, so that any

fluctuations in the state’s energy can decay. As shown in the left panel of Fig. 7, an adiabatic

transition causes the system to completely transfer its population from one state to another,

a process known as adiabatic following. Since the system tracks an instantaneous eigenstate,

the magnitudes of the Schrödinger frame coefficients change smoothly, and from the explicit

expression (3.11) we see that this transition happens on a timescale set by

∆t ∼ 2η

γ
. (3.14)

Intuitively, there is a finite “resonance band” of width ∆Ω ∼ 2η in which this transition is active,

and (3.14) is the time spent moving through it.

A non-adiabatic transition, with z . 1, is qualitatively different (see the right panel of Fig. 7).

Before passing through the resonance (i.e. before the “scattering event”), the system remains in

an instantaneous eigenstate and the Schrödinger frame coefficients change smoothly. During the

transition, however, the system will partly evolve into the other instantaneous eigenstate, not

dissimilar from particle production via high-energy scattering. After this event, the system exists

in a linear combination of eigenstates and they oscillate among one another at a frequency set

by the energy difference E+ −E− ∼ γt. These oscillations eventually decay away on a timescale

again set by (3.14), so that the Schrödinger (dressed) frame coefficients have a well-defined limit

as t → ∞. Finally, if the transition is extremely non-adiabatic, z � 1, the system has no time

to respond to the changing Hamiltonian, and so its state is unaffected by the transition.

3.2 Multi-State Transitions

A qualitatively new feature appears when multiple, nearly degenerate states are involved in a

transition. To illustrate this, we study a three-state extension of (3.8), described by the following

dressed frame Hamiltonian

HD(t) =
γt

2




1 0 0

0 −1 0

0 0 −1


+




0 η12 η13

η12 0 η23

η13 η23 0


 . (3.15)

As we described in §2.3, this type of multi-state transition will be relevant for vector clouds,

as they tend to have multiple states that are nearly degenerate in energy and connected via

the gravitational perturbation. Indeed, (3.15) describes any transition which involves a single

state interacting with two other states that have the same azimuthal angular momentum and

unperturbed energy. However, our focus on the three-state system is primarily pedagogical, as

vector cloud transitions tend to involve four or more states. Fortunately, we will find that the

main features of these more complicated multi-state transitions can be explained using the simpler

three-state model.
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Figure 8: Evolution of the instantaneous eigenstates of a coupled three-state system.

It is again helpful to plot the instantaneous energy eigenvalues as a function of time, shown

in Fig. 8. At late times, we see that there are two instantaneous energy eigenstates, |E1(t)〉
and |E2(t)〉, whose energy difference approaches a constant as t → +∞. This is significant

because, if the motion is non-adiabatic enough to excite the system into a combination of these

two instantaneous eigenstates, there can be large, coherent oscillations with a fixed frequency set

by the interaction strength η23. Such oscillations are indeed seen in the right panel of Fig. 9. This

is impossible in a two-state transition (3.8), as the difference in energies necessarily diverges as

t→ +∞, and any oscillatory behavior induced by non-adiabaticity rapidly increases in frequency

and decays away, as seen in the right panel of Fig. 7.

Let us understand this transition more quantitatively. At very early times, the first term in

(3.15) again dominates. However, there is now a degenerate subspace that is only lifted by η23

and we cannot ignore it. It will thus be convenient to explicitly diagonalize this subspace. We

therefore introduce a new basis of states |ã〉, which is related to the dressed frame basis |a〉 by

|1̃〉 = |1〉 , |2̃〉 =
1√
2

(−|2〉+ |3〉) , and |3̃〉 =
1√
2

(|2〉+ |3〉) . (3.16)

In this basis, the dressed frame Hamiltonian becomes

H̃D =



γt η̃12 η̃13

η̃12 −γt− η23 0

η̃13 0 −γt+ η23


 , (3.17)

where we have defined the effective couplings

η̃12 =
1√
2

(η12 − η13) and η̃13 =
1√
2

(η12 + η13) . (3.18)

We see that the role of the coupling η23 is to break the degeneracy between |2̃〉 and |3̃〉, and

force |1̃〉 to become nearly degenerate with |2̃〉 at a different time than it becomes degenerate
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Figure 9: Adiabatic (left) and non-adiabatic (right) evolution of the three-state system. Specifi-

cally, the adiabatic and non-adiabatic evolution are simulated with (η12, η13, η23) = (2.5, 1.5, 0.25)

and (η12, η13, η23) = (4.75, 0.75, 3.5), respectively, in units of
√
γ. The final state in the right panel

oscillates with a frequency of about 2η23.

with |3̃〉. As we will argue in §3.3, we can thus treat this three-state transition as a combination

of two-state transitions.

In the asymptotic past, the instantaneous energy eigenstates are then

|E1(−∞)〉 =




1

0

0


 , |E2(−∞)〉 =

1√
2




0

−1

1


 , and |E3(−∞)〉 =

1√
2




0

1

1


 , (3.19)

and from Fig. 8 we see that they permute in the asymptotic future,

|E1(+∞)〉 ∝ |E2(−∞)〉 , |E2(+∞)〉 ∝ |E3(−∞)〉 , and |E3(+∞)〉 ∝ |E1(−∞)〉 . (3.20)

Such a cyclic permutation is present in any transition which involves one state going into many

degenerate states, as is visually apparent from Fig. 8.

Where do the large, coherent oscillations in Fig. 9 come from? Let us focus on the transition

mediated by η̃12, with associated LZ parameter z̃12 ≡ η̃2
12/γ. Note that, even if all of the original

LZ parameters are very large, zab = η2
ab/γ � 1, the transition may still be non-adiabatic if there

is a cancellation between η12 and η13 in (3.18), such that z̃12 . 1. We assume that the transition

is fast enough (z̃12 ∼ 1) to excite |E2(t)〉, but slow enough (z̃13 � 1) that we can ignore |E3(t)〉.
If the initial state is |ψ(−∞)〉 ∝ |E1(−∞)〉, then at late times it becomes

|ψ(t)〉 t→∞−−−−→ e−iγt
2/2−iη23t

√
1− e−πz̃12 |E1(∞)〉+ e−iγt

2/2+iη23t+iδe−πz̃12/2 |E2(∞)〉 , (3.21)

where the phase difference δ depends on γ and ηab. We thus see that, in the asymptotic future,

there are oscillations in the Schrödinger frame populations with frequency 2η23. For example, we

have

|c2(t)|2 =
1

2
−A12 cos(2η23t+ δ) , (3.22)
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where A12 = e−πz̃12/2
√

1− e−πz̃12 . This amplitude achieves its maximum A12 = 1
2 when z̃12 =

1
π log 2, and we see that these oscillations disappear both when the transition is either very

adiabatic, so that the state |E2(t)〉 is never excited, or very non-adiabatic, so that the state

|E1(t)〉 does not survive.

These slow oscillations will persist even if the state |E3(t)〉 is excited by the transition, i.e.

when z̃12 ∼ z̃13 ∼ 1. In this case, there will then be transient oscillations, like those seen in the

two-state system and in the right panel of Fig. 7, which will eventually decay and leave only these

fixed frequency oscillations. However, if the transition is extremely non-adiabatic, such that both

z̃12 and z̃13 � 1, the system will always almost entirely occupy the state |E3(+∞)〉 = |E1(−∞)〉
and the system will evolve very little in time.

The adiabatic and (mildly) non-adiabatic evolution of this three-state system are shown in

the left and right panels of Fig. 9, respectively. The slow oscillations created by a somewhat non-

adiabatic transition are seen on the right. On the left, the completely adiabatic transition creates

a final state that is a linear superposition of Schrödinger frame states, i.e. energy eigenstates.

It is a special feature of this three-state system that the relative final state populations are

independent of the coupling η23. Indeed, if four or more states are involved in the transition, the

final state populations do depend on the couplings ηab, since the asymptotic energy eigenstates

clearly depend on how the dressed frame Hamiltonian’s degenerate subspace is lifted.

We find that multi-state transitions generically yield final states that are superpositions of the

dressed basis states (and thus the energy eigenstates). Almost all of the transitions that we will

analyze in Section 5 will be adiabatic, so this superposition can be easily approximated by an

eigenvector of the coupling matrix ηab, restricted to the degenerate subspace. As we mentioned at

the outset of this section, these multi-state transitions qualitatively distinguish scalar and vector

clouds, and we will exploit this to infer the spin of the boson from gravitational-wave observations

in §4.2 and §5.3.

3.3 An S-Matrix Approach

In §3.1, we found that a two-state system initially occupying the lowest instantaneous energy

eigenstate |ψ(−∞)〉 ∝ |E−(−∞)〉 could transition into the other instantaneous eigenstate with an

occupation “probability” (3.12) with a well-defined asymptotic limit. Given the system’s causal

structure—the nature of the transition provides a well-defined notion of both asymptotic past

and asymptotic future—it is tempting to interpret (3.12) as defining the element of a scattering

matrix,

|〈E+(+∞)|E−(−∞)〉|2 = |S+−|2 = e−2πz . (3.23)

However, a rigorous definition of the scattering matrix must be more subtle, as the three-state

system does not necessarily have a well-defined, static final state. For instance, what is the

scattering matrix describing the coherent oscillations in the right panel of Fig. 9?

The goal of this section is three-fold. We first generalize our discussion of the LZ transition be-

yond the simplified toy models like (3.8) and toward a description of the boson cloud throughout

the entire binary inspiral. We will then introduce an “interaction picture,” leading to an inter-

action Hamiltonian that is well-localized in time. This is crucial for constructing a well-defined
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S-matrix. We will leverage this localization to argue that different resonances during the inspiral

decouple from one another, allowing us to ignore all but the finite number of states involved in

a particular resonance. The behavior of the boson cloud during the full inspiral can thus be

described as a series of localized “scattering events,” each of which can be analyzed individually.

Adiabatic decoupling

Let us first consider the simplest inspiral configurations: large, equatorial, quasi-circular orbits

for which the Hamiltonian (3.1) takes the form

Hab = Eaδab + ηab(t)e
−i∆mabϕ∗(t) , (3.24)

where ∆mab = ma−mb is the difference in azimuthal angular momentum between the states |a〉
and |b〉 and ηab(t) is the matrix of cross-couplings. The latter evolves slowly in time. Unlike in

the previous sections, we will not truncate (3.24) to a finite set of states {|a〉}, but instead argue

that such a truncation is possible. The indices in this equation should thus be understood to run

over all states in the atomic spectrum.

As before, we may define a time-dependent unitary transformation

Uab(t) = e−imaϕ∗(t)δab , (3.25)

that moves our system into a frame that rotates along with the binary companion. This isolates

the “slow” motion responsible for LZ transitions and discards the perturbation’s distracting fast

motion. In this dressed frame, the Hamiltonian is given by

(HD)ab = δab (Ea −maϕ̇∗) + ηab . (3.26)

This is analogous to (3.6), though here we have not shifted by an overall reference energy.

Because the gravitational perturbations ηab are always small compared to the energy eigen-

values Ea, the instantaneous eigenstates |Ei(t)〉 are almost always12 well-approximated by the

gravitational atom’s energy eigenstates—that is, |Ei(t)〉 ≈ |a〉 for some dressed state a. We will

denote the state of the cloud by |ψ(t)〉. If the system evolves adiabatically, its population in each

instantaneous eigenstate, |〈Ei(t)|ψ(t)〉|2, remains unchanged. Since these instantaneous eigen-

states are well-approximated by the dressed states |a〉, the cloud’s population in each dressed

state, |〈a|ψ(t)〉|2, similarly remains unchanged. This means that, unless the system already has

an appreciable population in a particular dressed state, we can simply ignore it.13

This will always be the case unless there is a point in time when a subspace becomes nearly

degenerate with the subspace the system occupies, in which case the approximation |Ei(t)〉 ≈ |a〉
12This argument fails for states that form a nearly-degenerate subspace that is predominantly lifted by the

gravitational perturbation ηab, as in the three-state toy model in §3.2. As we saw there, the perturbation cannot

be ignored and the instantaneous eigenstates far away from the transition do not asymptote to a single dressed

basis state. However, the following discussion also applies to these degenerate subspaces—as long as the system is

not excited into a subspace, it decouples from the dynamics.
13Strictly speaking, this is only true at leading order, and this state does have a small effect on the states we do

not ignore. However, this small effect can be incorporated using standard perturbative techniques.
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fails. Because of the assumed hierarchy between the energies Ea and the couplings ηab, this can

only happen when the instantaneous frequency Ω(t) is such that the diagonal elements for two

or more states are approximately equal,

ϕ̇∗ ≡ ±Ω(t) ≈ Ea − Eb
ma −mb

. (3.27)

To determine which states we need to keep track of in a given frequency range, we therefore

simply need to find for which states this resonance condition is met and include them with the

states that the system already occupies.

Critically, the width of the resonance defined by (3.27) is roughly set by |∆Ω| ∼ ηab. Once these

states go through a resonance, they very quickly decouple and the magnitudes of their coefficients

become non-dynamical. Hence, if the resonances are widely separated, we may consider them as

a sequence of events and analyze them individually. Associated to each event is thus an S-matrix,

which describes how the system evolves through the resonance.

This logic can be extended to more general orbital configurations. As we discuss in §B.2,

each pair of states is generically connected by a perturbation that oscillates at multiple frequen-

cies. The dressed frame transformation (3.25) must then be generalized beyond a simple unitary

transformation in order to find a slowly varying dressed frame Hamiltonian like (3.26). This

can be done, but since it requires a technology that would distract from our main story, we do

not describe it here. Instead, we relegate this generalization to §B.2. Fortunately, the above

discussion also applies there, mutatis mutandis. To avoid getting bogged down by unnecessary

technical details, we thus continue with the simplified setup described by (3.24).

Interaction picture

We must define a scattering matrix with respect to a set of states which do not evolve in the

asymptotic past or future. Since the dressed frame’s instantaneous eigenstates are stationary (up

to a phase) under adiabatic motion, it is natural to define an interaction frame by expanding the

general state |ψ(t)〉 as

|ψ(t)〉 =
∑

i

ei(t) e
−i

∫ tdt′ Ei(t′)|Ei(t)〉 , (3.28)

where the sum runs over all instantaneous eigenstates. From our previous discussion, we know

that this expansion is approximately the same as the expansion in terms of dressed states

|ψ(t)〉 =
∑

a

ca(t) e
−i

∫ tdt′ (Ea−maϕ̇∗(t′))|a〉 , (3.29)

at least far from any resonance. We can think of (3.29) as the analog of the interaction picture

in textbook quantum field theory in which one works with free particle states, while (3.28) is the

analog of the renormalized state basis. While either can be used, our focus will be on (3.28) since

the dynamics are clearer in that basis.

The Schrödinger equation simplifies in the instantaneous eigenstate basis (3.28) to

i
dei
dt

= Hint
ij (t) ej(t) , (3.30)
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Figure 10: Interaction Hamiltonian for the two-state system as a function of time. We see that

the interaction is localized over a width 4η/γ near the resonance at Ω(t) = ∆E.

where we have defined the interaction Hamiltonian14

Hint
ij =





i〈Ei(t)|ḢD(t)|Ej(t)〉
Ei(t)− Ej(t)

exp

(
i

∫ t

dt′ (Ei(t′)− Ej(t′))
)

i 6= j ,

0 i = j .

(3.31)

Clearly, this term is relevant only when two or more energy levels become nearly degenerate.

Furthermore, since eigenvalues repel, this interaction is only relevant for a short amount of

time. This can be seen quantitatively for the two-state system from §3.1, where the interaction

Hamiltonian is explicitly

Hint
+−(t) = − iγ

4η

(τ +
√

1 + τ2)2iη2/γ

1 + τ2
e(2iη2/γ)τ

√
1+τ2

, with τ =
γt

2η
. (3.32)

As pictured in Fig. 10, this interaction is well localized in time about the resonance and becomes

irrelevant on a timescale ∆t ∼ 2η/γ, cf. (3.14).

The fact that this interaction quickly turns off allows us to define a notion of stationary

asymptotic states—the instantaneous eigenstates with their dynamical phases extracted—and

thus a scattering matrix

S = U int(∞,−∞) , (3.33)

where U int(t, t0) is the time-evolution operator associated to the interaction Hamiltonian Hint.

In fact, since the interaction is negligible between resonances, we can define a scattering matrix

associated to each resonance,

Si = U int(ti + ∆tw, ti −∆tw) , (3.34)

where ti is the time at which the i-th resonance occurs and ∆tw is some multiple of the character-

istic interaction timescale (3.14). For virtually all resonant transitions, this interaction timescale

14In general, we should also include the adiabatic phase factor eiδ in (3.31), with δ = i
∫ t

dt′ 〈Ei(t′)|∂t′Ei(t′)〉.
However, we can normalize the instantaneous eigenstates |Ei(t′)〉 to be real and set δ = 0.
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Figure 11: The orbit of a quasi-circular inspiral slowly scans through orbital frequencies Ω(t).

The behavior of the cloud during the inspiral can be decomposed into a set of resonances at

frequencies Ωi. Each resonance is characterized by an S-matrix, Si, which describes the evolution

of the system through that event. The S-matrix that describes the entire inspiral is simply the

product of all individual S-matrices, Stot =
∏
i Si.

is much shorter than the time it takes for the binary to move to the next resonance. To good

approximation, we may then think of the scattering matrix Si as evolving the cloud from the

asymptotic past of the i-th resonance to its asymptotic future. As a result, each scattering event

is effectively isolated from its neighboring resonances and the cloud’s evolution throughout the

inspiral is well described by combining the S-matrices for all previous resonances (see Fig. 11),15

U int(t,−∞) ≈
k∏

i=1

Si , tk+1 > t > tk , (3.35)

for any time t between the k-th and (k + 1)-th resonance.

There is one more simplifying approximation we can make. Note that the instantaneous

eigenstates asymptote to dressed frame states far from the resonance, cf. (3.28) and (3.29).

This implies that, unless the system occupies multiple instantaneous eigenstates which oscillate

among one another at some fixed frequency as in §3.2, the magnitudes of the S-matrix elements

in the dressed frame basis will have well-defined limits far from the resonance. In fact, their

magnitudes will equal those of the instantaneous eigenstate basis. This is useful, since it then is

15We must note that this separation into isolated events discards potentially crucial phase information, especially

if we only consider the S-matrix magnitudes in anything other than the interaction picture. This phase information

would be needed to characterize possible coherence effects. Fortunately, if the resonances are widely separated, it

is very unlikely that any type of coherence can be achieved and it is thus a useful approximation to simply drop

this information. However, since such coherent behavior is more likely for nearby resonances, it may be necessary

to consider these resonances as a single event.
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not necessary to compute the interaction Hamiltonian (3.31) at all if we are only interested in the

relative populations of the states that the cloud occupies after a resonance. We can instead work

entirely in the dressed frame basis, in which the Hamiltonian takes a simple form, and analyze

the resonance there.

General S-Matrix

Since we will only need to consider the orbit shortly before and after a resonance, we may take

the orbital frequency Ω(t) to be roughly linear in time (3.3). This relies on the assumption that

the resonance bandwidth, ∆Ω ∼ η, is much smaller than the orbital frequency itself, cf. (2.27),

which we argued in §2.3 is true for all the transitions we consider. Similarly, we may also assume

that the level mixings ηab(t) are time-independent.

Using (3.3), the dressed frame Hamiltonian (3.26) can be written as

(HD)ab = Aab + Baδabt , (3.36)

where we have defined
Aab ≡ δab (Ea ∓maΩ0) + ηab ,

Ba ≡ ∓maγ .
(3.37)

This is known as the generalized Landau-Zener problem [60]. We will be specifically interested

in the magnitudes of the S-matrix in this basis, defined by

|Sab| = lim
t→∞
|Uab(t,−t)| , (3.38)

where Uab is the time-evolution operator associated with (3.36). Unfortunately, analytic solutions

for this problem are only known in special cases. However, a small amount of progress can be made

by noting that the Schrödinger equation for this system is invariant under a collection of symmetry

transformations [60], and thus so are the S-matrix elements. The invariant combinations of

parameters made from Aab and Ba are the generalized Landau-Zener parameters

zab ≡
|Aab|2
|Ba − Bb|

=
η2
ab

γ|∆mab|
, (3.39)

which extends the original definition (3.13) to the general, multi-state system. The S-matrix

elements must then be functions of these parameters and their combinations.
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4 Backreaction on the Orbit

In the previous section, we saw that Landau-Zener transitions can significantly redistribute energy

and angular momentum between different states of the cloud. The mass and spin of the cloud in

a general superposition of states, at small α, are given by

Mc(t) = Mc,0

(
|c1|2 + |c2|2 + · · ·+ |cN |2

)
,

Sc(t) = Sc,0
(
m1|c1|2 +m2|c2|2 + · · ·+mN |cN |2

)
ẑ ,

(4.1)

where Sc,0 ≡Mc,0/µ and ẑ is a unit vector along the spin-axis of the black hole, cf. Fig. 5, and the

ci account for the population of the different states. We have ignored the x̂ and ŷ components of

the spin, as they decouple for equatorial orbits. Any change in the energy and angular momentum

of the cloud must be balanced by an associated change of the binding energy and orbital angular

momentum of the binary’s orbit. As we will see, this greatly enriches the dynamics of the system

and the gravitational-wave signals emitted from the binary. In order to separate the different

phenomena, we will split the discussion into the effects occurring during (§4.1) and after (§4.2)

the resonant transitions.

4.1 Floating, Sinking, and Kicked Orbits

To analyze the effect an LZ transition has on the binary orbit, it is most convenient to consider

the transfer of angular momentum between the cloud and the binary. Ignoring the intrinsic spins

of the black holes, conservation of angular momentum implies

d

dt
(L + Sc) = Tgw , (4.2)

where L is the orbital angular momentum and Tgw is the torque due to gravitational-wave

emission from the binary. Since (4.2) is a vectorial equation, the dynamics associated to angular

momentum transfer can in general be very complicated, and depend on the relative orientations

of the different angular momenta. For simplicity, we will only consider equatorial orbits and

ignore precession [11]. Hence, the magnitudes of the vectors in (4.2) obey the relation

d

dt
(L± Sc) = Tgw , (4.3)

where, as usual, the upper (lower) sign denotes co-rotating (counter-rotating) orbits. Specializing

further to quasi-circular orbits, we find that the orbital frequency evolves as (see Appendix C for

a derivation)

dΩ

dt
= γ

(
Ω

Ωr

)11/3

± 3RJ Ωr

(
Ω

Ωr

)4/3 d

dt

[
m1|c1|2 +m2|c2|2 + · · ·+mN |cN |2

]
, (4.4)

where γ was defined in (2.28), and RJ is the ratio of the spin of the cloud to the orbital angular

momentum of the binary at the resonance frequency,

RJ ≡
(
Sc,0
M2

)
(1 + q)1/3

q
(MΩr)

1/3 . (4.5)
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Figure 12: Evolution of the orbital frequencies (left) and the occupation densities (right) of an

unbackreacted orbit (dashed lines) and a floating orbit (solid lines). Shown is a transition near

the resonance frequency Ωr = 5µα2/144 with α = 0.07 and q = 0.1. We also assumed that the

parent black hole spun maximally, Sc,0/M
2 = 1, before it grew the cloud. The transition begins

when the binary enters the resonance band, denoted by the thin gray band about Ω = Ωr.

Far from the transition, the occupation densities in (4.4) are constant and the instantaneous

frequency during the inspiral is well-approximated by the standard quadrupole formula, cf. (2.27).

During the transition, on the other hand, the angular momentum transfer between states

with different m exerts an additional torque on the binary. Crucially, the direction of the torque

depends on various factors, including the orientation of the orbit, the signs of the azimuthal

quantum numbers, and whether the occupation densities are growing or decaying in time. For

simplicity, we set m2 = m3 = · · · = mN ,16 such that near the resonance (4.4) simplifies to

dΩ

dt
' γ ∓ 3∆mRJ Ωr

d|c1(t)|2
dt

, (4.6)

where we have defined ∆m ≡ m2 −m1 and used conservation of the occupation densities during

the transitions.

By choosing the initial condition |c1(−∞)|2 = 1, the time-derivative of |c1(t)|2 must decrease

during the transition. When ∆m < 0, the cloud loses angular momentum to the orbit, forcing

a co-rotating inspiral to stall and counter-rotating inspiral to shrink faster. These phenonema

are reversed between co-rotating and counter-rotating orbits when ∆m > 0. To investigate the

detailed dynamics of these backreaction effects, we must solve (4.6) numerically. The solution in

Figs. 12 and 13 display the floating and sinking orbits, whose properties we describe below.

16This turns out to be the case for any transition induced by the gravitational quadrupole `∗ = 2.
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Floating orbits

When the torque acts against the shrinking of the orbit, we find that LZ transitions naturally

induce floating orbits [61].17 This is shown in Fig. 12 for a two-state transition, where the orbital

frequency increases more slowly in the resonance band. More precisely, the rate of change in the

frequency of gravitational waves emitted by the binary, fgw, during the transition satisfies (cf.

Appendix C) (
dfgw

dt

)

float

=
1

1 + 3RJ |∆m∆E|/(4η)

(γ
π

)
, (4.7)

which is clearly smaller than the unperturbed rate, γ/π. Interestingly, in the large backreaction

limit, (4.7) asymptotes to zero and never turns negative.18 This means that the orbit can at most

float, but never grows during a transition. Furthermore, the frequency of the gravitational waves

emitted during the floating phase, ffloat, is directly related to the resonance frequency

ffloat =
Ωr

π
=

1

π

∣∣∣∣
∆E

∆m

∣∣∣∣ . (4.8)

A measurement of this approximately monochromatic gravitational-wave signal thus provides a

direct probe of the spectral properties of the boson cloud. In Section 5, we will describe the

phenomenological consequences of these floating orbits in more detail. In particular, we will

discuss how the duration of the floating depends on the parameters of the system.

The description above remains qualitatively unchanged for multi-level transitions, as they

typically satisfy m2 = · · · = mN . Moreover, since multi-level transitions necessarily involve

nearly degenerate excited states, E2 ≈ · · · ≈ EN , the expression (4.8) remains an excellent

approximation to the gravitational wave frequency emitted by the corresponding floating orbits.

The only quantitative difference is that η must be replaced by an effective coupling ηeff that

characterizes the multi-state transition, which is well-approximated by the Pythagorean sum of

the diagonalized couplings η̃1a, cf. (3.17). We discuss its precise definition in Appendix C.

Another key feature of these floating orbits is that the adiabaticity of the transition is enhanced.

In analogy to the LZ parameter (3.13), the degree of adiabaticity of the evolution can now be

quantified by the parameter z′ ≡ η2/Ω̇. Floating orbits, with Ω̇ < γ, thus enhance the adiabaticity

of the transition, z′ > z. The predictions made by adiabatically following the instantaneous

eigenstates of the system, such as the final-state occupation densities, are therefore robust.

Sinking and kicked orbits

The transition can also exert a torque that increases the orbital frequency of the binary, and

therefore temporarily accelerates the shrinking of the orbit. If the effect is weak, we call it a

17This floating mechanism is distinct from the one studied in [62], which assumes γ = 0. It is also different from

the analysis in [63], which relies on modifications of general relativity.
18While the chirp rate (4.7) was derived assuming perfect adiabaticity, this observation remains true even in

numerical simulations. However, if the system is tuned to be nearly non-adiabatic, there may be small oscillations

in the instantaneous frequency. The parameters for which these oscillations occur are not physically realizable and

so we do not pursue them further.
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Figure 13: Sinking (left) and kicked (right) orbits, with their corresponding occupation densities

below. As in Figure 12, this transition is near the resonance Ωr = 5µα2/144 with α = 0.07.

However, we flip the sign of (4.6) so that backreaction causes the orbit to either sink (q = 1) or

kick (q = 0.1).

sinking orbit (see the left panel in Fig. 13). As long as the adiabaticity of the transition is

preserved, the chirp rate of the emitted gravitational waves is19

(
dfgw

dt

)

sink

=
1

1− 3RJ |∆m∆E|/(4η)

(γ
π

)
, (4.9)

which differs from (4.7) by an important sign. Compared to the unperturbed orbits, these sinking

orbits spend a much shorter amount of time in the region where the LZ transition is efficient.

A sufficiently strong “kick,” on the other hand, can destroy any initial adiabaticity. Using

Ω̇ . η2 as a diagnostic, we estimate that adiabaticity is preserved whenever

RJ .
4η
(
1− γ/η2

)

3 |∆m∆E| '
4η

3 |∆m∆E| , (4.10)

where the second relation assumes an initial adiabatic transition, γ � η2. As we discussed

in Section 3, the resulting non-adiabatic transition yields drastically different final states, most

prominently through the presence of oscillations in the occupation densities of final state. These

19While (4.9) naively admits solutions that are divergent and negative, this simply indicates the breakdown of

the adiabatic approximation in those corresponding regions of parameter space, cf. (4.10).
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oscillations transfer angular momentum between different states of the cloud, even after the

transition. As shown in bottom panel of Fig. 13, this effect also modulates the quasi-circular mo-

tion of the binary, leaving dramatic oscillatory features in the binary’s gravitational-wave signal.

Having said that, we caution that (4.6) assumes that the binary motion is always well-described

by a quasi-circular orbit. This need not be the case—strong non-adiabatic transitions in which

Ω̇ & Ω2 can induce significant eccentricity (or even unbind the orbit). The full phenomenology

of the kicked orbits can therefore be much richer than what was described above, and deserves

a more detailed investigation. We will focus thus primarily on sinking orbits, where this back-

reaction is weak enough to preserve both adiabaticity and the quasi-circularity of the initial

orbit.

4.2 Time-Dependent Finite-Size Effects

As discussed in [23], finite-size effects can be large for boson clouds and feature time-dependent

behavior, such as rapid depletion. After a brief recap of these finite-size effects, we sketch how

LZ transitions produce additional time-dependent signatures.

We denote the intrinsic quadrupole moment of the cloud by Qc and introduce the dimensionless

parameter,

κc ≡ −
QcM

J2
, (4.11)

where M and J are the total mass and angular momentum of the combined black hole-cloud

system. For comparison, isolated Kerr black holes have κ = 1. Parametrically, the quadrupole

moment scales with the mass and the Bohr radius of the cloud as Qc ∼ Mc r
2
c . The tidal force

exerted by the binary companion can also deform the cloud. The linear response to tidal fields is

δQc,ij ≡ Λc r
5
c Eij , (4.12)

where δQc,ij is the correction to the quadrupole moments and Eij is the tidal tensor. The

parameter Λc is the “tidal Love number,” and we have made it dimensionless by extracting

factors of the Bohr radius. Since rc/rg � 1 for small α, these finite-size effects may be very

large for extended boson clouds [23]. This can compensate for the fact that κc and Λc affect the

dynamics at 2PN and 5PN orders, respectively [11, 64, 65, 66, 67, 68, 69], and so these enhanced

finite-size effects may impact the waveforms even during the early inspiral phase.

Superpositions and oscillations

A resonant transition will force the cloud’s spatial profile to change dramatically in time. This

profile can be characterized by a set of time-dependent mass multipole moments,

Q`m(t) ≡
√

4π

2`+ 1

∫
d3r

[
−T 0

0(t)
]
r` Y`m(θ, φ) , (4.13)

where Tµν is the cloud’s energy-momentum tensor. The goal of this section is to relate the

occupation densities |ca(t)|2 to these multipole moments, and to discuss their time dependences.

Let us consider a cloud that occupies a single eigenstate. Its mass quadrupole moments

then experience α-suppressed oscillations with frequency µ, which are responsible for the cloud’s
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well-studied decay via gravitational-wave emission [21, 22]. For example, the axisymmetric and

non-axisymmetric quadrupole moments of the scalar |211〉 state are

Qc ≡ Q20 = −6Mcr
2
c and Q2,±2 ∼ α2Qce

±2iµt . (4.14)

Since µ� Ω(t), these oscillations average out over an orbital period and therefore do not affect

the dynamics of the binary significantly. This is the generic behavior of all clouds occupying

a single eigenstate—finite-size effects in these cases are dominated by their time-independent

component.

For scalar clouds, a typical adiabatic transition forces an initial state to fully transfer its

population to another state with a different shape. As a result, the effective parameters (4.11)

and (4.12) evolve in time. Interesting multipolar time dependences are possible if the cloud

occupies multiple eigenstates, which is typical for vector clouds. In a general time-dependent

superposition, the axisymmetric quadrupole moment is approximately

Qc(t) =
∑

a

|ca(t)|2Qc,a +
∑

a6=b
δma,mb |ca(t)cb(t)|Qab cos(∆Eab t) , (4.15)

where we have discarded terms that are either subleading in α or rapidly oscillating. The first

term represents the weighted sum of the individual axisymmetric moments Qc,a of each state |a〉,
while the second represents additional contributions that arise from interference effects, which

occur between different states with the same azimuthal angular momenta. Crucially, the Qab’s

are not α-suppressed and may lead to large oscillations in Qc(t) at frequencies set by the energy

differences ∆Eab. Furthermore, there can be similar interference effects in the non-axisymmetric

moments if the superposition involves states with different azimuthal quantum numbers, as may

happen after a kick-induced non-adiabatic transition.

There are, in fact, two sources of oscillatory behavior in (4.15). As we discussed in §3.2, a

mildly non-adiabatic multi-state transition can excite long-lived oscillations in the occupation

densities |ca(t)|, with frequencies set by the gravitational perturbation ηab. It is clear from (4.15)

that the multipole moment will inherit these oscillations. On the other hand, even if the |ca(t)| are

constant, there are still oscillations in the multipole moment since the system occupies multiple,

non-degenerate energy eigenstates, each with their own spatial profile. These are similar to

neutrino oscillations,20 and are present in the final states of both adiabatic and non-adiabatic

multi-state transitions. Notice that their frequencies depend only on the energy differences ∆Eab,

which have been calculated [35].

In summary, whenever the cloud occupies a superposition of energy eigenstates, the mass

multipole moments oscillate with unsuppressed amplitude at frequencies that are slow compared

to the orbital frequency.21 A detailed study of the impact that these dynamical finite-size effects

20The oscillations are neutrino-like in the following sense: after the resonance, the system occupies an instanta-

neous eigenstate (like a “flavor eigenstate” for neutrinos) which, away from the interaction, becomes a superposition

of energy eigenstates (like “mass eigenstates” for neutrinos).
21In principle, these oscillating quadrupoles are also new sources of gravitational waves emitted by the cloud.

While we leave the study of their emission rates to future work, we note that their frequencies are typically very

small and so we do not expect that this is an efficient decay channel for the cloud.
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have on the orbit, and ultimately on the waveform, is beyond the scope of this work. Yet, it is

clear that they serve as important relics that can help us decode the nature of an LZ transition

that occurred in the past. As we will discuss in §5.3, correlating these oscillatory finite-size effects

with the dephasing induced by floating and sinking orbits will serve as a powerful probe of the

mass and spin of the ultralight particles.

Cloud depletion

Since a transition can populate decaying states, the energy and angular momentum of the cloud

can also be reabsorbed by the central black hole over the typical decay timescales of these modes.

The mass of the cloud approximately evolves as [23]

Mc(t) = Mc,0 exp

(∑

a

2 Γa

∫ t

0
dt′ |ca(t′)|2

)
. (4.16)

Since the quadrupole moment depends on the mass of the cloud, Qc ∼ Mcr
2
c , this decay can

introduce additional time dependence in the various effects discussed above, which in turn also

affect the waveforms. As we have seen in §2.1, the depletion is generally slower than the oscil-

lation timescale of the effective quadrupole. During the transition, they may therefore appear

as modulations of the dominant finite-size effects. However, unlike the resonant depletions that

were considered in [23], those induced by LZ transitions persist even after the cloud has passed

the resonance.22 This depletion can then be observed even away from resonances and is another

unique signature of boson clouds.

5 Unraveling the Atomic Structure

So far, we have studied simplified models for the evolution of boson clouds in black hole binaries.

This allowed us to identify a number of interesting dynamical effects that, in principle, can have

important observational consequences. In this section, we investigate under which conditions

these effects are accessible to current and future gravitational-wave observations. Although a

comprehensive study of the rich phenomenology is beyond the scope of this paper, we will identify

a few robust observational signatures that are worth exploring further.

We will begin, in §5.1, with a discussion of the most likely state of the cloud before it experiences

any resonances. This initial state is prepared via superradiance and is sufficiently long-lived to be

subsequently observed with ground-based and space-based observatories. We will entertain the

possibility that all of the interesting physics of the resonances and the associated backreaction

on the orbit occurs within the sensitivity of gravitational-wave experiments. In §5.2, we start

by determining the regions in parameter space for which resonant transitions can occur within

the frequency bands of present and future detectors. For this range of parameters, we will then

determine which effects can be observed due to the existence of one or several resonant transitions.

22The total amount of depletion during a resonance was estimated in [23] and [70], assuming a constant resonance

frequency. As we show in this paper, LZ transitions lead to a much longer depletion time which overwhelms the

results in [23, 70] in almost all scenarios.
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m = 1 m = 2 m = 3 · · ·
Scalar: |n`m〉 |211〉 |322〉 |433〉 · · ·
Vector: |n`jm〉 |1011〉 |2122〉 |3233〉 · · ·
Mc,0/M α− 4α2 α2 2α2/9 · · ·
Sc,0/M

2 1− 4α α 2α/9 · · ·

Table 1: List of the dominant growing modes for scalar and vector fields. Shown also are the

mass Mc,0 and angular momentum Sc,0 extracted by each mode in the limit α � 1. For the

m = 1 modes, we assumed that the black hole was initially maximally spinning.

In §5.3, we discuss the states of the boson cloud after each resonance transition and explain how

they can be probed during the inspiral.

5.1 Initial States of the Cloud

Superradiant growth occurs when the angular velocity of the black hole is larger than the angular

phase velocity of a quasi-bound state,

ΩH >
ω

m
. (5.1)

The resulting boson cloud will first populate the dominant growing mode, with m = 1, until the

superradiance condition saturates at ΩH = ω/m ≈ µ. This mode remains stable for a long time,

as it only decays via gravitational-wave emission on a much longer timescale. After that, the

fastest growing m = 2 mode will continue to superradiantly drain mass and angular momentum

from the black hole, until it too becomes stable when ΩH = ω/2. While this process can, in

principle, continue towards larger values of m, each subsequent growth occurs over timescales

that are much longer than the previous one, cf. (2.8) and (2.13), so that only the first few m

modes can be produced on astrophysical timescales.

Both the mass Mc,0 and the angular momentum Sc ≡ mSc,0 contained in each growing mode

increase during superradiance, until ΩH = ω/m. The spin of the black hole at saturation is

a

M
=

4m(Mω)

m2 + 4(Mω)2
=

4α

m
+O(α3) . (5.2)

Using angular momentum conservation and the relation Mc,0 = ωSc,0 [71], we can estimate the

final mass and angular momentum stored in each mode. The results are summarized in Table 1.

These estimates are rather conservative, as they ignore the re-absorption of the lower m modes,

which could spin up the black hole and further enhance the amplitude of the cloud. Within this

approximation, we find that Mc,0 and Sc,0 are suppressed by a power of α for modes with m > 1.

In the following, we will refer to the m = 1 modes as “ground states,” and call the m > 1 modes

“excited states.” However, we stress that this terminology is only meant to distinguish between

the growing modes, and that the ground state is not the lowest frequency mode of the cloud (see

Figs. 3 and 4).
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Figure 14: Relevant timescales for the ground states and first excited states of the scalar (left)

and vector (right), as functions of α and for fixed M = 60M�. Note that both the growth time

and the lifetime scale linearly with M . We have indicated the timescales that are shorter than

typical merger times (∼ 106 years) and general astrophysical processes (∼ 108 years), as well as

the age of the universe (∼ 1010 years).

Ground states

It is natural to first consider the fastest growing modes, with m = 1. These are the states |211〉
and |1011〉 for the scalar and vector clouds, respectively. In the limit α� 1, the typical growth

timescales of these states are

Γ−1
211 '

106 yrs

ã

(
M

60M�

)(
0.019

α

)9

(scalar) ,

Γ−1
1011 '

106 yrs

ã

(
M

60M�

)(
0.0033

α

)7

(vector) ,

(5.3)

where ã ≡ a/M ≤ 1 is the dimensionless spin of the black hole. We see that for α & 0.019 (scalar)

and α & 0.0033 (vector) the clouds grow quickly on the timescale that is shorter than the typical

merger time (∼ 106 yrs). Since these clouds emit continuous, monochromatic gravitational waves,

they gradually deplete over timescales of order [21, 23, 22, 53, 51, 52]

T211 ' 108 yrs

(
M

60M�

)(
0.07

α

)15

(scalar) ,

T1011 ' 108 yrs

(
M

60M�

)(
0.01

α

)11

(vector) ,

(5.4)

where we have assumed that Mc ' αM . Requiring these modes to be stable on astrophysical

timescales, T & 108 years, puts upper bounds on the values of α. For stellar-mass black holes,

M ∼ 60M�, we impose α . 0.07 (scalar) and α . 0.01 (vector), while for supermassive black

holes, M ∼ 106M�, the range can increase to α . 0.18 (scalar) and α . 0.04 (vector).
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Excited states

To probe larger values of α, we must instead consider excited states with m ≥ 2, which are much

longer lived. These excited states also take much longer to form than the ground states. For

example, the typical growth timescales for the scalar |322〉 and vector |2122〉 modes are

Γ−1
322 '

106 yrs

ã

(
M

60M�

)(
0.11

α

)13

(scalar) ,

Γ−1
2122 '

106 yrs

ã

(
M

60M�

)(
0.046

α

)11

(vector) .

(5.5)

At the same time, these excited states are also much more stable than the ground states, depleting

via gravitational-wave emission over the timescales23

T322 ' 108 yrs

(
M

60M�

)(
0.22

α

)20

(scalar) ,

T2122 ' 108 yrs

(
M

60M�

)(
0.08

α

)16

(vector) .

(5.6)

Demanding the cloud to be stable on astrophysical timescales, T & 108 years, leads to α . 0.22

(scalar) and α . 0.08 (vector) for M ∼ 60M�, and α . 0.44 (scalar) and α . 0.19 (vector) for

M ∼ 106M�. Beyond these limits, we must consider excited states with larger m. However, we

do not expect these higher excited states to be qualitatively different, and so we will only focus

on the phenomenology of the m = 1 and m = 2 states.

The cloud’s history is summarized in Figure 14. The black hole will first grow the ground state

(blue, solid). We require that this process takes place on a short enough timescale (. 106 yrs) to

be observable, which sets a lower bound on α. This ground state will then decay via gravitational-

wave emission (blue, dashed). We find an upper bound on α by demanding that this state is

suitably long-lived (& 108 yrs). For larger α, we are more likely to observe the cloud in an excited

state, which grows (yellow, solid) and decays (yellow, dashed) via the same mechanisms, but on

longer timescales.

5.2 Resonant Transitions

The states presented above can live long enough to be accessible to gravitational-wave obser-

vatories. Resonant transitions can then occur in band during the binary’s inspiral phase. As

a consequence, there will be a series of distinct signatures which can reveal the nature of the

gravitational atom. We will first describe the observational characteristics of a single transition,

and then discuss how observing multiple, sequential transitions can be used to further elucidate

the properties of the boson clouds.

23While the gravitational-wave emission rate of the scalar |322〉 mode is known [22], the analogous rate for the

vector |2122〉 mode is not. Nevertheless, since the emission rate for the ` = 0 modes of both the scalar and vector

states share the same α-scaling, we assume that a similar relation also applies for the scalar and vector excited

states. In other words, we assume that |2122〉 decays at the same rate as |211〉. The only difference between the

lifetimes T211 and T2122 in (5.4) and (5.6) is then that we take the initial mass of the cloud to be Mc,0 = αM in

the former and Mc,0 = α2M in the latter.
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Figure 15: Resonance frequency of the Bohr transition |211〉 → |31−1〉, as a function of M and α.

This is representative for all Bohr transitions, since the frequency (5.7) is relatively insensitive

to the choice of transition, under which fres → εBfres. Depending on the values of M and α, the

resonance may fall in the band of pulsar timing arrays (PTA), the LISA observatory, proposed

deciHertz experiments, or currently operating ground-based LIGO/Virgo detectors.

Single transition

Consider a transition between states with principal quantum numbers na and nb. The orbital

frequency at the resonance, Ωr, implies the following frequency of the emitted gravitational waves

fres =
Ωr

π
= 1.3× 10−2 Hz

(
60M�
M

)( α

0.07

)3
εB , (5.7)

where we have introduced the transition-dependent quantity

εB ≡
36

5

2

|∆m|

∣∣∣∣
1

n2
a

− 1

n2
b

∣∣∣∣ , (5.8)

and chosen the normalization such that εB ≡ 1 for the first Bohr transition of the scalar ground

state, |211〉 → |31−1〉. The resonance frequency for this specific transition, as a function of M

and α, is shown in Fig. 15. Indicated are the ranges for which the signal falls into the frequency

bands of current and future gravitational-wave observations.

An important additional characteristic is the time spent within the resonance band. Given

the resonance bandwidth of ∆Ω ∼ 2η, and using (4.7) and (4.9), we can estimate this as

∆ttot ' ∆t±∆tc , (5.9)

where +/− represents floating/sinking orbits, respectively. Here, ∆t is the time it takes the inspi-

ral to move through the resonance in the absence of backreaction, whereas ∆tc is the additional
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Figure 16: Total time ∆ttot spent in the sinking Bohr transition |211〉 → |31−1〉. On the left, we

plot this as function of α and q, for fixed mass M = 60M�. On the right, we instead fix α = 0.07

and plot the total time as a function of M and q. For both, we provide the corresponding

resonance frequency fres on the top axis. We plot constant contours of the ratio |∆tc/∆t| as

dashed light blue lines. The cloud’s backreaction on the orbit becomes stronger as q decreases,

shortening the time it takes for the binary to move through the transition. In blue, we indicate the

region in parameter space where the adiabatic condition (4.10) is violated and the backreaction

is strong enough that we lose predictive control and the estimation (5.9) is inapplicable.
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contribution from the presence of the cloud,

∆t ' 2η

γ
' 4 yrs

(
M

60M�

)
1

(1 + q)2/3

(
0.07

α

)8(Rab
0.3

)
ε
−8/3
B , (5.10)

∆tc '
3RJ |∆m∆E|

2γ
' 1 yr

(
M

60M�

)
(1 + q)2/3

q2

(
Sc,0
M2

)(
0.07

α

)7( |∆m|
2

)2

ε
−7/3
B . (5.11)

In (5.10), we used (2.34) to extract the value of ηab as a function of Rab. To assess the strength

of the backreaction, it is useful to take the ratio between these two timescales,

∆tc
∆t
' 1

4

(1 + q)4/3

q2

( α

0.07

)(Sc,0
M2

)
. (5.12)

In all cases, we find that the backreaction crucially depends on the angular momentum stored

in the cloud, Sc,0, as well as the mass ratio, q. Notice that, for excited states, Sc,0 is suppressed

by a power of α, and the backreaction is typically weaker. Alternatively, we can also estimate

the size of the backreaction through the difference in the number of orbital cycles spent in the

resonance band with and without the cloud

∆Nc = fres∆tc ' 105 (1 + q)2/3

q2

(
Sc,0
M2

)(
0.07

α

)4( |∆m|
2

)
ε
−4/3
B . (5.13)

Since binary searches are sensitive to & O(1) difference in the number of orbital cycles between

signal and template waveforms, the estimate (5.13) suggests that backreaction on the orbit can

dramatically alter the gravitational-wave signal, introducing a substantial dephasing with respect

to the waveform model without the cloud. The effect is especially prominent for q � 1, yielding a

significant dephasing for intermediate (IMRIs) and extreme mass ratio inspirals (EMRIs), where

a small black hole perturbs a larger cloud.24

The dephasing due to the backreaction on the orbit is a robust signature of boson clouds in

binary systems. However, whether the orbit floats or sinks depends on its orientation (co-rotating

or counter-rotating with respect to the black hole’s spin), and the nature of the transition; see the

discussion below (4.6). For example, for the transition |211〉 → |31−1〉, which occurs for counter-

rotating orbits, the cloud absorbs angular momentum from the orbit, which therefore shrinks

faster, thus reducing the time it takes for the binary to move through the transition. We plot the

total time it takes for the inspiral to cross this resonance in Fig. 16. Notice that backreaction

dominates for q � 1, when the cloud contains a large fraction of the total angular momentum.

Especially in this limit, there is a danger that the system moves through the transition too quickly,

violating the condition (4.10) and hence destroying the validity of (5.9). In that case, the binary’s

orbit can receive a significant kick from the cloud (cf. Fig. 13), potentially making the orbit highly

eccentric. As discussed in Section 4, the cloud’s dynamics then becomes highly non-adiabatic and

depends sensitively on the backreacted dynamics of the orbit. A precise characterization of this

interesting region in parameter space thus requires either different analytic techniques or direct

numerical simulations.

24Requiring these resonant transitions to be adiabatic, cf. (A.8), weakly constrains the mass ratio q & α5.
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Figure 17: Total time ∆ttot spent in the floating Bohr transition |322〉 → |200〉, for a parent black

hole of mass M = 60M�, as a function of α, fres, and q. Increasing the fiducial mass M reduces

the resonance frequency and enhances the floating time, according to fres → (60M�/M)fres and

∆ttot → (M/60M�)∆ttot, for fixed α. We plot constant contours of the ratio ∆tc/∆t as dashed

light blue lines, indicating where the inspiral spends an additional 1%, 10%, and 100% amount

of time in the transition.
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For excited states, on the other hand, Bohr transitions can also occur for co-rotating orbits.

For example, during the transition |322〉 → |200〉,25 the cloud loses angular momentum, thereby

producing a floating orbit. Fig. 17 illustrates the total time it takes for the binary inspiral to

move through this transition. As a reference we choose the fiducial value M = 60M�, but the

plot can be easily scaled to any value of M . The thick dashed line (labeled 100%) denotes

parameters for which the presence of the cloud doubles the time spent in the resonance region.

During this transition, the inspiral floats and the orbital frequency Ω(t) remains roughly constant

at the resonance value (4.8). The backreaction time again dominates for q � 1 but, unlike for

the sinking orbits, this regime is still under analytic control. As before, this effect is particularly

relevant for IMRIs and EMRIs, in which case the float can be extremely long-lived—much longer

than the typical timescale of gravitational-wave observatories (∼ 10 years). They may thus serve

as another source of continuous monochromatic gravitational waves.

As we have demonstrated, for favorable values of M and M∗, the cloud provides large cor-

rections to the inspiral at a frequency that falls within the bands of future gravitational-wave

observatories. A measurement of this resonance frequency, together with a measurement of q

and M , would then provide a strong constraint on the allowed values of α, and thus the boson’s

mass µ. However, it is important to note that the determination of a single resonance frequency

does not uniquely fix the boson mass, since additional information is needed to identify which

specific transition occurred. This degeneracy is broken if we observe multiple transitions.

Multiple transitions

As seen in Figs. 16 and 17, the binary passes through the transition relatively quickly for moderate

values of α and q. Since subsequent resonance frequencies may be nearby, this region of parameter

space suggests that we may observe multiple resonant transitions in a given observational window.

In Fig. 18, we show two representative examples for the evolution of the scalar cloud, starting

from the ground state |211〉 and first excited state |322〉, respectively. Notice that, because

the gravitational atom has a finite ionization energy, cf. (2.7) and (2.12), there is a maximum

frequency at which resonant transitions can occur,

fmax ' 0.2 Hz

(
60M�
M

)( α

0.07

)3
. (5.14)

Together with the selection rules discussed in §2.2, this explains why the transition trees26 pic-

tured in Figs. 18 and 19 terminate at a particular end state.27 A more detailed numerical analysis

25Since we only focus on Bohr transitions, we will assume that the initial frequency of this binary is higher than

the resonance frequencies of the hyperfine |322〉 → |320〉 and fine |322〉 → |300〉 transitions, such that they were

missed by the binary inspiral.
26The dominant `∗ = 2 perturbation mediates all of the resonances displayed in these transition trees, except

for the |31 −1〉 → |62 −2〉 and |3100〉 → |62j −1〉 resonances, which are instead induced by the weaker `∗ = 3

perturbation. This is because, after experiencing an earlier resonance in these cases, the binary has an orbital

frequency that already exceeds all resonance frequencies that can be excited from the newly prepared |n = 3, ` = 1〉
states by `∗ = 2. A further transition is nevertheless still possible through `∗ = 3, which supports perturbations

with |∆m| = 1 (see §A.1) and hence induces transitions at higher frequencies, cf. (5.8).
27In principle, there is also a continuum of states above this ionization energy where the cloud becomes unbound

from the black hole. However, since the gravitational perturbation is very weak, it is unlikely these states can be

41



fres (10
−2 Hz)
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Figure 18: Evolution of the |211〉 (top) and |322〉 (bottom) states, during a counter-rotating and

co-rotating inspiral, respectively (for α = 0.07, q = 1 and M = 60M�). Each history contains

a series of floating ( ) and sinking ( ) orbits, separated by periods of “normal” inspiral

evolution ( ), with only weak perturbative mixing. As we discuss in the main text, the |200〉
state has a large decay width. Unless the binary moves quickly to the next transition, which

occurs only for q � 1, this forces the cloud to deplete before experiencing the next resonance.

We indicate this by the reduced opacity of the states after |200〉.

may then be needed to fully incorporate all of the relevant physics.

As a rough guide as to whether or not multiple transitions can be observed, we estimate the

time it takes the inspiral to move from one resonance frequency f
(i)
res to another f

(j)
res . Assuming

quasi-circular adiabatic evolution, we find

∆Ti→j = 2.5 yrs

(
M

60M�

)
(1 + q)1/3

q

(
0.07

α

)8 (
ε
−8/3
B,(i) − ε

−8/3
B,(j)

)
, (5.15)

where εB,(i) represents the parameter (5.8) associated to the i-th transition. For example, we have

εB,(1) = 1 and εB,(2) = 6/5 for the transitions |211〉 → |31 −1〉 and |31 −1〉 → |62 −2〉, respectively.

Comparing (5.15) with (5.10), we find that, as long as the binary moves through a single Bohr

transition in a reasonable amount of time (say 1 year), we should expect to observe a second

Bohr transition on a similar timescale. Furthermore, since the rate at which the binary sweeps

through the frequency accelerates, we should generically expect to observe several transitions.

Observing the dephasing of sequential Bohr transitions allows us to break degeneracies among

the different parameters. For instance, consider successive Bohr transitions, labeled i and i+ 1,

between states with principal quantum numbers na, nb, and nc. The azimuthal angular momen-

tum differences between the states are ∆mab and ∆mbc. The ratio of the resonance frequencies

then is
f

(i+1)
res

f
(i)
res

=
εB,(i+1)

εB,(i)
=

∣∣∣∣
∆mab

∆mbc

∣∣∣∣
(
na
nc

)2 ∣∣∣∣
n2
c − n2

b

n2
b − n2

a

∣∣∣∣ , (5.16)

which crucially depends only on integer quantities.28 An observed sequence of these ratios then

provides a fingerprint with which a particular transition history can be identified. For instance,

the sequence of successive frequency ratios {1.2, 1.33, 1.03, 4.27, 1.005} of the counter-rotating

appreciably occupied by the sort of resonant transitions we described in §5.2.
28Note that the presence of fine or hyperfine corrections does not affect our conclusions.
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history in Fig. 18 is clearly different from that of the co-rotating history, {1.35, 5, 1.02}. Even

though some of the ratios in these two histories are nearly equal, they never appear in the same

order, and so we may use this sequence as a unique identifier for each history. This, combined

with a measurement of the black hole mass M , can then be used to infer the boson mass µ.

However, there is a caveat. As illustrated in Figs. 18 and 19, the cloud may deplete considerably

before reaching the next resonance. Fortunately, as we discuss next, this can also be used as a

unique signature of the boson cloud.

Cloud depletion

Throughout the above discussion, we have implicitly assumed that the cloud does not appreciably

evolve away from the resonant transitions. However, in the later stages of the evolution, the cloud

may occupy a rapidly decaying mode and is quickly reabsorbed back into the black hole, before

arriving at the next resonance. After that, the effects of the cloud on the gravitational-wave

signal become negligible.

Using (4.16), we can estimate the number of e-folds of decay between two successive transitions.

At leading-order in α, we find29

|Γ|∆Ti→j = C (1 + q)1/3

q
α2j+2`−2

(
ε
−8/3
B,(i) − ε

−8/3
B,(j)

)
, (5.17)

where Γ is the decay rate of the state that is occupied after the i-th transition. Typically, the

dimensionless coefficient C . O(0.1) for the states of interest, and can depend sensitively on the

state’s quantum numbers. Depletion is significant when the ratio in (5.17) is greater than 1.

For scalar fields, the fastest decaying modes have ` = 0, in which case the estimator in (5.17)

scales inversely with α. A cloud that populates these states will therefore almost always deplete

before it reaches the next resonance. The cloud only survives when q & α−3, namely when the

cloud is on the smaller black hole, in which case the system moves quickly enough to the next

transition. Similarly, for vector clouds, a fast decaying state with ` = 0 and j = 1 becomes

occupied along the transition tree in Fig. 19.30 Unless q � 1, it therefore suffers the same fate

as the scalar cloud. However, a vector cloud still experiences more resonances over a wider range

of mass ratios than a scalar cloud.

Although a rapid depletion of the cloud prevents us from exploring later resonant transitions,

it is a unique feature of gravitational atoms in binary systems [23] that helps to distinguish

them from other exotic compact objects like boson stars, e.g. [72]. Using (5.17), we see that, for

q � 1, a cloud that populates a fast-decaying state will typically deplete before it reaches the

next resonance. Nevertheless, these IMRIs and EMRIs are precisely the binaries for which we

only expect to see a single transition in a reasonable observational period (5.15). Furthermore,

they are also the binaries for which backreaction is most significant. This suggests that, to probe

29In order to obtain the α-scaling in (5.17) , we also used the fact that the central black hole is slowly spinning

after experiencing superradiance, cf. (5.2).
30Notice that, because we are assuming that the central black hole has a spin that saturates at the superradiance

condition, the state |2011〉 turns into a decaying mode, despite having m > 0.
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Figure 19: Evolution of the |1011〉 (top) and |2122〉 (bottom) states during a counter-rotating

inspiral (for α = 0.01 and α = 0.07, respectively). In both cases, q = 1 and M = 60M�. Notice

that the ground state of the vector cloud |1011〉 only experiences a single transition. The excited

state |2122〉, on the other hand, mimics the history of the scalar ground state |211〉. Yet, we see

that vector transitions involve superpositions of many states. The large decay width of the state

|2011〉 makes it unlikely for the cloud to survive after that point, unless q � 1. As in Fig. 18, we

indicate this by reducing the opacity of the states after the |2011〉 state.

these types of binary systems, we will typically need to hunt for long floats or strongly kicked

orbits, rather than multiple correlated transitions.

5.3 Post-Resonance Evolution

As argued above, observing multiple successive resonances provides a detailed mapping of the

spectral properties of the cloud, allowing us to extract the mass µ of the ultralight boson. How-

ever, since this fingerprint depends only on the energy differences between states, it can fail to

distinguish between scalar and vector clouds, which mainly differ by the number of states in-

volved in a transition. Fig. 19 shows transitions of the vector cloud, starting from the ground

state |1011〉 and the first excited state |2122〉, respectively. While the dynamics of the vector

ground state is rather unique (involving only a single transition), distinguishing between scalar

and vector clouds for other histories is more difficult. In particular, the vector state |2122〉 in

Fig. 19 has a similar transition history as the scalar state |211〉 in Fig. 18. It is thus non-trivial

to disentangle these two histories using only information about their resonance frequencies. As

we discuss here, studying finite-size effects can help us break this degeneracy.31

Finite-size effects

There is a major qualitative difference between the evolution of scalar and vector clouds that we

can exploit to distinguish them: vector transitions typically involve more than two states, while

scalar transitions do not. As discussed in §4.2, the result of these multi-state vector transitions

31In principle, this degeneracy can also be lifted through measurements of ∂tΩ and ∆ttot across a resonance, as

the mode |2122〉 carries less angular momentum than the mode |211〉 (for the same value of α), and this should

have a weaker effect on the orbit.
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is a superposition of states, each with their own shape and characteristic frequency. There are

then large oscillations in the shape of the vector cloud, at frequencies which depend on the energy

differences ∆Eab between the occupied states. Detecting these oscillatory finite-size effects is thus

a smoking gun of particles with spin.32

We can illustrate this effect quantitatively using the first Bohr transition of the vector excited

state, |2122〉 → |31j0〉. After the transition, the state evolves into a superposition with has

negligible population in the |3110〉 mode:33

|ψ(t)〉 ≈ 1√
2
e−iE3100t

(
|3100〉+ e−i∆E20t|3120〉

)
, (5.18)

where we have defined ∆E20 ≡ E3120 − E3100. The dominant energy difference is set by the

fine-structure splitting, cf. (2.12) and (2.14), and so the frequency of these oscillations is roughly

∆E20

2π
≈ 6× 10−5 Hz

(
60M�
M

)( α

0.07

)5
. (5.19)

At the same time, the cloud’s axisymmetric quadrupole moment inherits these oscillations, which

can be parameterized as

κc(t) = κ0

(
1− 2

√
2 cos(∆E20 t)

)
, (5.20)

with κc defined in (4.11) and we have ignored corrections that are suppressed by α. The κ0 value

represents the quadrupole moment of the state |3100〉+ i|3120〉. For α = 0.07 and M = 60M�,

the cloud’s mass distribution oscillates between bulging at the black hole’s spin axis and bulging

along its equatorial plane at a period of roughly 4.6 hours. Since it then takes 1.2 years to evolve

towards the next transition, cf. (5.15), we could potentially observe 2.2× 103 of these cycles. If,

in addition, we include the relatively fast depletion of the |3100〉 mode, these oscillations decay

on a timescale of about a month.

Because the frequency of these oscillations is so heavily α-suppressed, observing them is a

challenge. For example, a single oscillation of the |32j −1〉 superposition produced by the vector

ground state can take decades for α = 0.01 and M = 60M�. This is far outside present observa-

tional timescales. Similarly, the binary might merge or encounter another resonance before the

cloud has a chance to complete a single cycle. This is typically the case for the end state of a

transition tree, like the |82j −1〉 superposition for the vector excited state in Fig. 19. Though

we can avoid these issues by considering supermassive black holes and/or higher excited states

where larger values of α are allowed, we are more likely to detect these oscillations for the earlier

Bohr transitions. For instance, while the superpositions |62j −1〉 and |72j −1〉 oscillate ∼40 times

slower than the |31j0〉 with frequency (5.19), they still execute hundreds of cycles, which may

be detected with high-precision templates.

Since finite-size effects enter at higher post-Newtonian orders, they are difficult to measure

during the early stages of the inspiral when the binary’s relative velocity is small [11]. However,

32We expect the same phenomena to apply also to higher-spin particles. Namely, for a given n, ` and m, there

will be a larger number of states, and the finite-size effects can oscillate at a larger number of frequencies.
33The gravitational perturbation only mediates degenerate subspace transitions between |3100〉 and |3120〉. As

a consequence, the final state is an equally weighted sum of these two states, independent of both q and α.
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boson clouds can have much larger multipole moments compared to black holes in isolation [23],

which can greatly enhance our chances of detecting them through gravitational-wave precision

measurements, even before the system achieves high velocities in the merger phase. As we argued

in §4.2, the axisymmetric moments of the cloud roughly scale as Qc ∼Mcr
2
c , where Mc and rc are

the mass and Bohr radius of the cloud, respectively. For an excited initial state, the dimensionless

quadrupole moment (4.11) is then of the order κc ∼ (Mc/M)ã−2α−4, which is much larger than

the corresponding moment for the pure Kerr black hole, κ = 1. The effects of these large, fluffy

clouds are amplified near the merger, and we might expect that we can infer detailed information

about the shape of the end states in a transition tree by accurately modeling the finite-size effects

in this phase.

Decaying shapes

In §4.2, we described how finite-size effects can receive further time-dependent changes when the

cloud occupies decaying states. While this depletion typically occurs over much longer timescales

than the orbital period, it can be significant when the decaying states have small angular momen-

tum. For examples, the decay times of the |200〉 and |2011〉 modes—the main depletion channels

for the histories depicted in Figs. 18 and 19—are

∣∣Γ−1
200

∣∣ ' 1 yr

(
M

60M�

)(
0.014

α

)6

(scalar) ,

∣∣Γ−1
2011

∣∣ ' 1 yr

(
M

60M�

)(
0.045

α

)8

(vector) .

(5.21)

We see that, even for moderate values of α, these depletion effects can be significant and are

observable within the typical lifetimes of gravitational-wave observatories. As pointed out in [23],

this change in the contribution from finite-size effects can also strongly indicate the presence of

a boson cloud.
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6 Conclusions and Outlook

The detection of gravitational waves [4, 5, 6, 7, 8] marked the beginning of a new era for

multi-messenger astronomy [9, 10]. It also raises the interesting question whether precision

gravitational-wave observations can become a new tool for fundamental physics [11, 12, 13, 14,

15, 16]. We often associate new physics with short-distance (or high-energy) modifications of the

Standard Model. The decoupling between physics at short and long distances then provides an

immediate challenge for using the long-wavelength gravitational waves produced by the dynamics

of macroscopic objects to probe physics at shorter distances [11].34 This, however, ignores the

possibility that new physics can be both very light and weakly coupled, which allows for coherent

effects on astrophysical length scales. As it was highlighted in [23], this is the case for ultralight

bosons in black hole binaries, whose Compton wavelengths are larger than the typical sizes of the

constituents. The extended nature of the associated boson clouds enhances the effects due to the

internal structure of the compact objects, mitigating the decoupling challenge. As a consequence,

the observation of gravitational waves from binary black holes has also opened a new window

into physics beyond the Standard Model at the weak-coupling frontier.

In this paper, we have studied how the presence of boson clouds leads to novel dynamical effects

when they are part of a binary system. During the inspiral, the clouds are strongly deformed

at characteristic resonance frequencies that depend sensitively on their spectral properties. The

transfer of angular momentum between the cloud and the orbit during each resonance can cause

large corrections to the gravitational-wave signal. Notably, there is a dephasing with respect

to the frequency evolution without a cloud, arising from transient floating and sinking orbits.

Furthermore, time-dependent finite-size effects provide additional information about the available

states in the gravitational atom which, due to the extended nature of the cloud, may be observed

during the early inspiral phase. Similarly, as was emphasized in [23], strong mixing with decaying

modes during the resonant transition can also deplete the cloud as it approaches merger.

In an ordinary collider, a particle’s mass is determined by the energy at which there is a

resonance, while its spin is measured via the angular dependence of the final state. Similarly,

in the gravitational collider, the resonance frequencies determine the boson’s mass and we must

observe the final state of a transition to distinguish particles of different spin. Fortunately, the

properties of this state are accessible through the imprint of finite-size effects on the waveform.

Hence, a precise reconstruction of a gravitational-wave signal can help us not only to detect new

ultralight bosons, but also determine their mass and intrinsic spin. The discovery potential of

gravitational-wave observations thus necessitates the development of sufficiently accurate tem-

plate waveforms, which include the characteristic features of boson clouds in binary systems that

we have uncovered.

The results of this paper also raise a number of interesting follow-up questions:

• For simplicity, we have mostly studied circular equatorial orbits. It would be interesting

to extend our analysis to general inclined and elliptical orbits, in which case the quasi-

periodic driving force provided by the companion has additional frequency components; see

34This is particularly challenging in gravity, since the equivalence principle implies that the inner structure of a

compact body manifests itself only at higher orders in the perturbative expansion [11, 12, 13].
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e.g. [73, 70], §A.1, and §B.2. This will affect the allowed transitions of the cloud during

the inspiral.

• To maintain maximal theoretical control, we have focused on the early inspiral phase of the

binary’s evolution. After a sequence of resonant transitions, the system evolves into a final

state with distinctive properties, which can be probed most sensitively during the late stages

of the inspiral. It is unclear to what degree this regime can still be describe analytically,

or if we have to resort to numerical simulations. For instance, additional effects such as

dynamical friction [73] can become important when the binary companion enters the cloud.

• Most of our quantitative analysis has been restricted to the regime of weak backreaction. In

these cases, the effects of the cloud on the orbital dynamics can be treated perturbatively

and the dephasing during resonances can be predicted analytically. This regime of weak

backreaction is most relevant for black holes of roughly equal masses. There is, however,

also great interest in the case of extreme mass ratio inspirals. If the cloud is around the

large black hole, the backreaction on the dynamics of the small companion will be very

large. The companion will either float for a very long time, or receive a very strong kick

that is likely to induce significant eccentricity of the orbit. While the floating behavior is

still under analytical control, our approximations break down for strong kicks. These very

interesting cases deserve a more dedicated analysis.

• We have ignored the backreaction of the cloud on the central black hole. This may become

important when quickly decaying states are populated, where the depletion of the cloud

may significantly change the black hole’s spin, triggering more superradiant growths or

depletions; see e.g. [74]. This can further enrich the time dependence of the finite-size

effects, and even alter the sequence of transitions if new growing modes are excited.

• We did not compute the explicit waveforms for the signals described in Section 5. This

will be important for actually detecting these effects, as they are not yet captured by the

available templates for standard binary black hole mergers. Because both the resonance

signals and the time-dependent finite-size effects are intrinsically correlated, one must incor-

porate all of the effects described here into a unified framework to obtain reliable template

waveforms.

• Neither did we estimate the event rates and strengths of these signals. This would require

astrophysical models for the merger rates of black holes that are rotating rapidly enough

to support the creation of boson clouds; see e.g. [42, 53, 45, 44]. It would also need more

accurate computations of the multipole moments associated with the clouds, and their

associated gravitational radiation rates.

• The ultralight bosons in our analysis only coupled via gravity. In principle, there can also

be self-interactions of the field, couplings to other ultralight bosons, or direct couplings to

ordinary matter. It would be interesting to explore what additional signatures can arise

from these extra interactions.

We hope to return to some of these issues in future work.
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A Gravitational Perturbations

In this appendix, we provide further details of the gravitational perturbations introduced in §2.2.

We generalize the tidal moments to inclined orbits (§A.1) and present the next-to-leading order

corrections to the gravitational potential (§A.2).

A.1 Tidal Moments of Inclined Orbits

We wish to describe the tidal moments E`∗m∗ in (2.18) for general orbits. In the usual angular

spherical coordinates {Θ∗,Φ∗} (see Fig. 5), they are

E`∗m∗(Θ∗,Φ∗) =
4π

2`∗ + 1
Y ∗`∗m∗(Θ∗,Φ∗) , (A.1)

where have suppress all explicit dependences on time t. Although (A.1) provides a closed-form

expression for the tidal moments for all `∗, these angular coordinates do not naturally adapt to

the orbital motion of the binary. Instead, it is more convenient to express the tidal moments in

terms of the inclination angle and the true anomaly {ι∗, ϕ∗} described in §2.2:

E`∗m∗(ι∗, ϕ∗) =

`∗∑

mϕ=−`∗
ε

(mϕ)
`∗m∗

(ι∗) e−imϕϕ∗ , (A.2)

where the reduced tidal moments, ε
(mϕ)
`∗m∗

, can be obtained by using the normalized binary separa-

tion vector36 n̂ = (cos ι∗ cosϕ∗, sinϕ∗, sin ι∗ cosϕ∗) in the symmetric-trace-free tensor representa-

tion of the gravitational perturbation (see e.g. [75, 57]). The sizes of these reduced moments affect

the magnitudes of the the overlap (2.25), while the oscillatory term e−imϕϕ∗ are shown explicitly

in (2.25). Interestingly, the true anomaly ϕ∗ only appears in the exponents of the oscillatory

terms. On the other hand, the inclination angle ι∗ determines the strength of the perturbation

and implicitly affects the summation over mϕ in (A.2). As we shall see, this means that ι∗ also

determines the polarization of the perturbation.

It is instructive to illustrate the effect of ι∗ on the tidal moments through an explicit example.

Let us therefore consider the quadrupole `∗ = 2, where the tidal moments are

E2∓2 =
1

2

√
6π

5
(cos ι∗ cosϕ∗ ± i sinϕ∗)

2 ,

E2∓1 = ±
√

6π

5
sin ι∗ cosϕ∗ (cos ι∗ cosϕ∗ ± i sinϕ∗) ,

E20 = −1

4

√
π

5

(
1− 3 cos 2ϕ∗ + 6 cos2 ϕ∗ cos 2ι∗

)
.

(A.3)

For equatorial orbits, ι∗ = 0, this become

E2m∗(ι∗ = 0) =
1

2

√
6π

5

{
e+2iϕ∗ , 0, −

√
2/3, 0, e−2iϕ∗

}
, (A.4)

36This expression for n̂ is obtained by applying the coordinate transformation (2.15) to its equivalent expression

in the usual spherical coordinates, n̂ = (sin Θ∗ cos Φ∗, sin Θ∗ sin Φ∗, cos Φ∗) .
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where the list runs from m∗ ∈ {−2, · · ·,+2}. Since the tidal moments vanish for m∗ = ±1, states

with ∆mab = ±1 decouple from each other—see the selection rules (S1) and (V1) in §2.2. On

the other hand, all of the non-vanishing components in (A.4) consists of a single oscillatory term

∝ e−im∗ϕ∗ , with mϕ = m∗. These properties generalize to all values of `∗. In particular, for

even (odd) values of `∗, the odd (even) m∗-th component vanishes, and each of the non-vanishing

component is a single oscillatory term with mϕ = m∗. For instance, for `∗ = 3, we find

E3m∗(ι∗ = 0) =
1

2

√
5π

7

{
e+3iϕ∗ , 0, −

√
3/5e+iϕ∗ , 0,

√
3/5e−iϕ∗ , 0, −e−3iϕ∗

}
, (A.5)

where states with ∆mab = ±1 are now connected through the weaker octupolar perturbation.

This property can be seen most transparently by setting ι∗ = 0 in (2.15), where Φ∗ = ϕ∗ and

the spherical harmonics in (A.1) obeys Y ∗`∗m∗ ∝ e−im∗Φ∗ ∝ e−im∗ϕ∗ . Since the tidal moments for

equatorial orbits induce perturbations with definite frequency m∗ϕ∗, these perturbations are said

to be circularly-polarized.

The properties described above no longer hold for general inclined orbits with ι∗ 6= 0. For

example, for ι∗ = π/3, (A.3) becomes

E2∓2(ι∗ = π/3) =
1

32

√
6π

5

(
9e±2iϕ∗ + e∓2iϕ∗ − 6

)
,

E2∓1(ι∗ = π/3) = ± 1

16

√
18π

5

(
3e±2iϕ∗ − e∓2iϕ∗ + 2

)
,

E20(ι∗ = π/3) =
1
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√
9π

5

(
9e+2iϕ∗ + 9e−2iϕ∗ + 2

)
.

(A.6)

Not only are all of the tidal components now non-vanishing, they are given by a superposition

of ∝ e±2iϕ∗ and constant terms. This feature can also be generalized to all `∗ in inclined orbits,

where the multipole moments consist of superpositions of oscillatory terms ∝ e−imϕϕ∗ , with mϕ

summed over all permissible odd (even) values for odd (even) values of `∗. In these cases, the off-

diagonal terms in the Schrödinger frame Hamiltonian, such as (3.4), consist of a summation over

different frequencies. Furthermore, unlike for equatorial orbits, these tidal moments now neces-

sarily contain oscillatory terms with opposite values of ±|mϕ|. This is because the motion of an

inclined orbit, projected onto the equatorial plane, can be represented by a superposition of co-

rotating and counter-rotating orbits. Since the amplitudes of these oscillatory terms are different

(except for m∗ = 0, which is azimuthal about the spin-axis of the cloud), the projected equa-

torial orbit still has definite orientation. Inclined orbits therefore generate elliptically-polarized

gravitational perturbations.

Finally, in the special limit ι∗ = π/2, (A.3) turns into

E2m∗(ι∗ = π/2) =
1

2

√
6π

5

{
− sin2 ϕ∗, i sin 2ϕ∗, (3 cos 2ϕ∗ + 1)/

√
6, i sin 2ϕ∗, − sin2 ϕ∗

}
. (A.7)

The amplitudes of both ±|mϕ| oscillatory terms now have the same magnitude. In this case, the

orbital motion projected onto the equatorial plane is just given by an oscillating perturbation

along a straight line. By having the same magnitudes, the projected co-rotating and counter-

rotating orbits cancel the net motion along the direction orthogonal to this straight line. The
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gravitational perturbation generated in this case is hence linearly-polarized. Our explicit example

for the `∗ = 2 tidal moment, from (A.4) to (A.7), represent the continuous behavior of E`∗m∗ of

all `∗ under a rotation about ι∗.

A.2 Higher-Order Couplings

In §2.2, we ignored the α-corrections to the gravitational potentials (2.16) and (2.17). However,

these higher-order couplings can still mediate interesting transitions, especially if they mediate

resonances that are forbidden by the selection rules of their leading-order counterparts. We will

now show the expressions of these additional couplings, leaving a detailed investigation of their

effects for future work.

It is useful to first estimate the order in α at which the α-expansion should be truncated. As a

useful guide, we require the Landau-Zener parameter (3.13) to be greater than order unity, such

that the nature of the transitions are adiabatic. Denoting the higher-order overlaps by ηβ ≡ αβη,

where η is the leading-order overlap, cf. (2.25), we find that

η2
β

γ
' 2.8× 104 q

(1 + q)5/3

(
Rab
0.3

)2( |∆mab|
2

)5/3 ∣∣∣∣
n2
an

2
b

n2
a − n2

b

∣∣∣∣
5/3(

0.07

α

)5

α2β , (A.8)

where we assumed the transitions are Bohr-like, and have used (2.33) and (2.34). By demanding

adiabaticity in (A.8), i.e. η2
β/γ & 1, we find β . 2. This conclusion remains unchanged for fine

and hyperfine transitions. In what follows, we will therefore expand the gravitational interactions

up to order α2.

For the scalar cloud, the gravitational perturbation up to order α2 is

V∗ = −1

4
µh̄00 − ih̄0i∂i +O(α3) , (A.9)

where the first term is the same as that in (2.16), and the second term arises from the (trace-

reversed) gravitomagnetic perturbation h̄0i. The latter metric perturbation scales as h̄0i ∼ v h̄00,

where v is the typical velocity of the binary. Since ∂iψ ∼ µαψ and v . α (see Footnote 4), this

new term is α2-suppressed compared to its leading-order counterpart. On the other hand, for the

vector cloud, we find that

V il
∗ =− 1

4
δilµh̄00 − h̄00

2µ
∂i∂l − ∂rh̄

00

4µ
εirpε

l
pq∂q

+
i

2
∂lh̄0i +

i

2
h̄0l∂i − iδilh̄0p∂p ,

(A.10)

where εijk is the Levi-Civita symbol, and we replace all of the temporal components ψ0 with

the Lorenz condition ∂iψi + iµψ0 = O(α3). To obtain both (A.9) and (A.10), we utilized the

fact that the gravitomagnetic perturbation is divergence-less, i.e. ∂ih̄
i0 = 0. We also simplified

these results by ignoring higher-order corrections that contain time-derivatives, ∂0ψ ∼ µα2ψ, as

the types of resonances that they mediate are already accessible by the leading-order potentials.

This is to be contrasted with terms with spatial gradients, which change the angular structures

of the field and therefore induce resonances that obey different selection rules.
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B Landau-Zener Transition

As discussed in detail in Section 3, a key feature of the evolution of boson clouds in the inspiral

of a binary are resonant Landau-Zener transitions. In this appendix, we collect details of these

transitions that are relevant to, but not necessarily suitable for, the main text. Specifically,

in §B.1, we first review the exact solution of the two-state Landau-Zener transition, cf. [31, 32],

which provides intuition for understanding the more complicated multi-state transitions. In §B.2,

we then describe adiabatic Floquet theory. This is necessary for generalizing the dressed frame

presented in Section 3 to connect the dynamics of a general binary-cloud system to those of a

series of LZ transitions.

B.1 The Two-State Model

The Schrödinger equation for the two-state LZ transition presented in §3.1 can be reduced to the

Weber equation of a quantum harmonic oscillator, and is thus exactly solvable. In the following,

we will review this solution.

The dressed frame coefficients d1(t) and d2(t) evolve according to the Hamiltonian (3.4):

iḋ1 = +γ̃td1/2 + ηd2 ,

iḋ2 = −γ̃td2/2 + ηd1 ,
(B.1)

where we defined γ̃ ≡ |∆m|γ. These equations can be combined into the Weber equations for

either coefficient,
d̈1 + 1

4

(
(γ̃t)2 + 2iγ̃ + 4η2

)
d1 = 0 ,

d̈2 + 1
4

(
(γ̃t)2 − 2iγ̃ + 4η2

)
d2 = 0 ,

(B.2)

whose solutions are the parabolic cylinder functions [76],

d1(t) = C1 D−iz
(

(−1)1/4
√
γ̃t
)

+ C2 Diz−1

(
(−1)3/4

√
γ̃t
)
,

d2(t) =
(−1)1/4

√
z

C2 Diz

(
(−1)3/4

√
γ̃t
)

+ (−1)1/4√z C1 D−iz−1

(
(−1)1/4

√
γ̃t
)
,

(B.3)

where we have defined z ≡ η2/γ̃ and related the two solutions using (B.1). We are ultimately

interested in finding the total population contained in the second state |d2(t)|2 in the asymp-

totic future, assuming that the system fully occupied the first state in the asymptotic past,

|d1(−∞)|2 = 1. Imposing this initial condition, the undetermined coefficients in (B.3) are (up to

an arbitrary choice of phase)

C1 = exp
(3π

4
z
)

and C2 =
i
√

2π

Γ(iz)
exp

(π
4
z
)
. (B.4)

We thus find that
|d1(∞)|2 = e−2πz ,

|d2(∞)|2 = 1− e−2πz .
(B.5)

We see that for large values of the Landau-Zener parameter, z = η2/γ̃ � 1, the “probability”

that the system remains in the state |1〉 is exponentially small and the state |2〉 becomes almost

fully occupied.
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Likewise, if we impose |d2(−∞)|2 = 1, then the coefficients in (B.3) are (up to an arbitrary

phase)

C1 = 0 and C2 = z exp
(
− π

4
z
)
, (B.6)

and the asymptotic occupations are the converse of (B.5):

|d1(∞)|2 = 1− e−2πz ,

|d2(∞)|2 = e−2πz .
(B.7)

As discussed in §3.3, the information contained in (B.5) and (B.7) can be encoded in an S-matrix,

|ψ(∞)〉 = S|ψ(−∞)〉. We will often only consider the modulus of the S-matrix elements

|S| =
(

e−πz
√

1− e−2πz
√

1− e−2πz e−πz

)
, (B.8)

which have well-defined asymptotic limits.

B.2 Adiabatic Floquet Theory

Throughout Section 3, it was convenient to work in a dressed frame that rotated along with the

orbital motion of the gravitational perturbation, making it clear that the system could evolve

adiabatically. However, states are generically connected by perturbations that oscillate at mul-

tiple frequencies, especially when we consider more general inspiral configurations with eccentric

and inclined orbits, cf. §A.1. In that case, there are multiple dressed frames and one would

have to awkwardly switch between them depending on which resonance one is interested in.

Fortunately, the Floquet Hamiltonian provides a natural generalization of the dressed frame to

arbitrary inspiral configurations, and we now review its construction.

Floquet theory relies on the existence of a compact variable or phase to trivialize some part

of the dynamics. Throughout, we will concentrate on the Hamiltonian studied in the main text,

Hab(t, ϕ∗(t)) = Eaδab +
∑

mϕ∈Z
η

(mϕ)
ab (t)e−imϕϕ∗(t) , (B.9)

where we now emphasize its dependence on the angular variable ϕ∗(t). This Hamiltonian describes

generic orbits, with inclination and eccentricity. Intuitively, it would be useful to expand in the

Fourier modes eikϕ∗(t), as this will trivialize the oscillatory part of the dynamics. This is how

Floquet theory is typically presented—if a Hamiltonian is time-periodic, H(t) = H(t + 2π), we

may expand the wavefunction as ψ(x, t) =
∑

k∈Z ψk(x, t)e
ikt to derive a “Floquet Hamiltonian”

for the modes ψk(x, t) that does not depend on time. However, it is not clear what the Fourier

modes are for the phase ϕ∗(t), which can be an arbitrary non-monotonic function of time. It will

thus be useful to present an alternative construction of the Floquet counterpart of (B.9), which

is more thoroughly reviewed in [77].

It will be useful to extend (B.9) to a family of Hamiltonians Hab(t, ϕ∗(t) + θ), parameterized

by a new phase θ ∈ [0, 2π), each with its own time evolution operator

i∂tU(t, t0; θ) = H(t, ϕ∗(t) + θ)U(t, t0; θ) . (B.10)
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This is useful because we can then extend our original Hilbert space H to K = H ⊗ L ,

where L = L2(S1, dθ/2π) is the space of square-integrable 2π-periodic functions. This space

is generated by eikθ, with k ∈ Z. That is, we now think of θ as an additional variable in our

problem. The dressed-frame coefficients then become functions of this variable, ca(t)→ ca(t, θ),

and inner products between two states are defined by

〈ψ1|ψ2〉 =
∑

a

∫ 2π

0

dθ

2π
c∗1,a(t, θ)c2,a(t, θ) , (B.11)

where |ψi〉 ≡
∑

a ci,a(t, θ)|a〉. Time evolution is again generated by U(t, t0; θ), such that

ca(t, θ) = Uab(t, t0; θ)cb(t0, θ) , (B.12)

where the time-evolution operator has been extended to the new Hilbert space K by treating its

dependence on θ as multiplication.

The reason this is useful is that we may now define a phase translation operator

Tφ = exp(φ∂θ) , (B.13)

which acts on a state ψ(t, θ) like Tφψ(t, θ) = ψ(t, θ + φ). Crucially, this operator allows us to

remove the dependence of ϕ∗(t) of the Hamiltonian (B.9):

H(t, ϕ∗(t) + θ) = Tϕ∗(t)H(t, θ)T−ϕ∗(t) . (B.14)

This allows us to rewrite the full time evolution operator in terms of the Floquet time evolution

operator

U(t, t0; θ) = Tϕ∗(t)UK(t, t0)T−ϕ∗(t0) , (B.15)

which evolves i ∂tUK(t, t0) = K(t, θ)UK(t, t0) according to the Floquet Hamiltonian

Kab(t, θ) = δab
(
Ea − iϕ̇∗(t)∂θ

)
+
∑

mϕ∈Z
η

(mϕ)
ab (t) e−imϕθ . (B.16)

The transformation (B.14) and the Hamiltonian (B.16) generalize the dressed frame transforma-

tion (3.25) and the Hamiltonian (3.26), respectively. All of the “fast” motion due to ϕ∗(t) has

now been removed from (B.16), which evolves slowly in time.

Given a solution of the Schrödinger equation

i ∂tca(t, θ) = Kab(t, θ)cb(t, θ) , (B.17)

we can then generate a solution for the original Hamiltonian by simple substitution, ca(t) =

ca(t, ϕ∗(t)). If we expand ca(t, θ) into the Floquet eigenbasis eikθ,

ca(t, θ) =
∑

k∈Z
c(k)
a (t)eikθ , (B.18)

then it is clear that this substitution is simply the Fourier expansion in ϕ∗(t) we originally wanted.
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It is particularly useful to analyze the dynamics in this Floquet basis, in which the Floquet

Hamiltonian is

Kf1,f2

ab (t) =

∫ 2π

0

dθ

2π
eif1θKab(t, θ)e−if2θ = δabδf1,f2 (Ea − f2ϕ̇∗(t)) + η

(f1−f2)
ab (t) . (B.19)

Clearly, this is of the same form as the dressed Hamiltonian we considered in Section 3, and

the same decoupling arguments apply here. Indeed, we may consider the instantaneous (quasi)-

energy eigenstates and describe the cloud’s evolution throughout the entire inspiral as a series of

isolated scattering events. Crucially, if the system is in a state with definite Floquet number, the

translation in θ does not affect populations, |ca(t, ϕ∗(t))|2 = |ca(t, θ)|2. We can avoid working with

the Schrödinger-frame coefficients entirely, if we are only interested in the population contained

within a state.

C Angular Momentum Transfer

Our analysis of the backreaction in Section 4 relied crucially on the balance of angular momentum

between the orbit and the cloud. In this appendix, we provide a more detailed analysis of this

balance. We first derive the cloud-orbit coupling through conservation of angular momentum, and

then analyze the orbit’s behavior during an adiabatic transition. We find that angular momentum

conservation during the transition can cause the orbit to either float or kick.

C.1 Orbital Dynamics

The motion of the binary companion satisfies (see e.g. [78, 79])

R̈∗ −R∗Ω2 = −(1 + q)M

R2∗
+

64q(1 + q)M3

15

Ṙ∗
R4∗

+
16qM2

5

Ṙ3
∗

R3∗
+

16qM2

5R∗
Ṙ∗Ω2 , (C.1)

R2
∗Ω̇ + 2R∗Ṙ∗Ω = −24q(1 + q)M3

5R2∗
Ω− 8qM2

5R∗
Ṙ2
∗Ω−

8qM2

5
R∗Ω3 , (C.2)

where we have included the leading Newtonian and radiation reaction forces. Both the radial

separation, R∗ = R∗(t), and instantaneous frequency, Ω = Ω(t), are functions of time and, since

the orbital plane does not precess, they fully describe the orbital motion. We should interpret

(C.2) as a statement of angular momentum conservation: the orbital angular momentum of the

binary on the left-hand side decreases due to gravitational wave emission on the right-hand side.

Fortunately, most of the terms in (C.1) and (C.2) can be dropped for the large, quasi-circular

orbits we consider. Let us consider such an orbit of characteristic size Rr and frequency Ωr. We

take the frequency to be near a Bohr resonance, Ωr ∼ µα2. Because the orbit is quasi-circular,

we have Ω2
rR

3
r = (1 + q)M , and so the dimensionless quantity

$ ≡ 2q1/5RrΩr

(1 + q)2/5
∝ q1/5α

(1 + q)1/15
, (C.3)

is suppressed α � 1. Because the orbit changes on the timescale of order Ωr/γ, where γ was

defined in (2.28), it will also be useful to define the dimensionless time

τ ≡ γt

Ωr
. (C.4)
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Finally, we define the dimensionless radius and frequency

R∗(t) = Rrr∗(τ) and Ω∗(t) = Ωrω∗(τ) , (C.5)

so that the equations of motion become

0 = 1− ω2
∗r

3
∗ +

$10

50

(
18r2r′′∗ −

(4 + 3ω2
∗r

3
∗)r
′
∗

r2∗

)
− 27$20

1250

r′3∗
r∗
, (C.6)

0 = ω′∗ +
2ω∗r′∗
r∗

+
ω∗(3 + ω2

∗r
3
∗)

12r4∗
+

3$10

100

ω∗r′2∗
r3∗

, (C.7)

where primes denote derivatives with respect to the time τ . Clearly, the terms dressed by (high)

powers of $ are suppressed37 for α� 1, and we may ignore them. In that case, (C.1) reduces to

Ω2R3
∗ = (1 + q)M , (C.8)

while (C.2) becomes38

R2
∗Ω̇ + 2R∗Ṙ∗Ω = −24q(1 + q)M3

5R2∗
Ω− 8qM2

5
R∗Ω3 . (C.9)

Including the angular momentum of the cloud (4.1), the last equation receives an extra contri-

bution

R2
∗Ω̇ + 2R∗Ṙ∗Ω±

(1 + q)Ṡc(t)

qM
= −24q(1 + q)M3

5R2∗
Ω− 8qM2

5
R∗Ω3 , (C.10)

where the upper (lower) sign denotes co-rotating (counter-rotating) orbits. Using (C.8), the

orbital angular momentum L = qMR2
rΩr/(1 + q), and the cloud’s angular momentum (4.1), this

equation can then be rewritten as

dΩ

dt
= γ

(
Ω

Ωr

)11/3

± 3RJΩr

(
Ω

Ωr

)4/3 d

dt

[
m1|c1|2 +m2|c2|2 + · · ·+mN |cN |2

]
, (C.11)

where we have introduced RJ , the ratio of the cloud and orbital angular momenta (4.5).

Assuming m2 = · · · = mN and |c1|2 + · · ·+ |cN |2 = 1, we may write (C.11) as

dΩ

dt
= γ

(
Ω

Ωr

)11/3

± 3RJ∆mΩr

(
Ω

Ωr

)4/3(
−d|c1|2

dt

)
, (C.12)

where ∆m = m2 −m1. To get an intuition for the physics behind this equation, let us assume

that the orbit is co-rotating, so that + sign is appropriate above. The population |c1|2 depletes

during the transition, so its time derivative will be negative. If ∆m < 0, the cloud loses angular

momentum, and we see that the frequency will increase more slowly—the angular momentum

lost by the cloud resupplies the orbital angular momentum, which depletes due to gravitational

wave emission. Conversely, if ∆m > 0, the cloud gains angular momentum during the transition,

causing the orbit to speed up and shrink faster.

37This suppression is lost for extremely large mass ratios. However, for α . 0.2, such mass ratios q & 105 are far

beyond those that we consider in this paper, and so we can safely ignore these terms.
38Strictly, this is only true in the adiabatic limit, where we also ignore angular momentum lost due to gravitational

wave emission of the cloud. Fortunately, these effects are negligible on the timescales we are interested in.
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C.2 Backreaction Time

We would like to understand how long the transition takes when we include the cloud’s backre-

action. Assuming |c1|2 to be a function only of Ω, we may write (C.12) as

dΩ

dt
= γ

(
Ω

Ωr

)11/3
[

1± 3RJ∆mΩr

(
Ω

Ωr

)4/3 d|c1|2
dΩ

]−1

. (C.13)

It will be convenient to define the effective coupling ηeff by

d|c1|2
dΩ

∣∣∣∣
Ωr

≡ −|∆m|
4ηeff

, (C.14)

such that ηeff = |η| for the two-state system (3.6). An exact form for ηeff for multi-state systems

is difficult to find. However, numerical experiments show that η2
eff ≈ η̃2

12 + η̃2
13 + · · · + η̃2

1N is a

good approximation, where the parameters η̃1a are the diagonalized couplings between the initial

state and the degenerate subspace, cf. (3.17).

Near Ω = Ωr, the equation of motion (C.13) simplifies to

dΩ

dt
=

γ

1∓ 3RJ∆m|∆m|Ωr/(4ηeff)
+O(Ω− Ωr) , (C.15)

which integrates to

Ω(t) ≈ Ωr +
γt

1∓ 3RJ |∆m|∆mΩr/(4ηeff)
+O(t2) . (C.16)

As we explained before, if the orbit is co-rotating (− sign) and ∆m < 0, the cloud will lose

angular momentum to the orbit, and the instantaneous frequency will increase more slowly. If

∆m > 0 however, the cloud will receive angular momentum from the orbit, and the instantaneous

frequency will grow more quickly. The state of the cloud changes rapidly when the instantaneous

frequency is in the resonance band |Ω(t) − Ωr| . ηeff . The time it takes to cross this band

decomposes into two pieces, ∆ttot = ∆t±∆tc, where we have defined both the time it takes the

binary to cross the resonance band without including backreaction, ∆t, and the time added or

subtracted by the cloud, ∆tc. In terms of the parameters in (C.16), we get

∆t =
2ηeff

γ
and ∆tc =

3RJ |∆m2Ωr|
2γ

. (C.17)

We discuss the observable consequences of this backreaction in Sections 4 and 5.
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